©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY
 (HINGLISH)

MOCK TEST PAPER

Exercise

1. In a set of reactions acetic acid yields a product $[D]$ The structures of $[D]$ would be:
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}}[A] \xrightarrow[\mathrm{Anhy}^{2} \cdot \mathrm{AlCl}_{3}]{\mathrm{C}_{6} \mathrm{H}_{5}}[B]$ $\xrightarrow{H C N}[C] \xrightarrow{H O H}[D]$

Answer:

2. The continuous chain hydrocarbon isomeric with 2-methyl-3-ethyl hexane is:
A. nonane
B. 2-methyle octane
C. 2, 3-dimethylel heptane
D. 2, 2, 3-trimethyle hexane

Answer:

D Watch Video Solution
3. In solid ammonia, each NH_{3} molecule has six other NH_{3} molecules as nearest neighbours. ΔH sublimation of $N H_{3}$ at the melting point is $30.8 \mathrm{kJmol}^{-1}$, and the estimated ΔH sublimation in the absence of hydrogen bonding is $14.4 \mathrm{kJmol}^{-1}$. the strength of a hydrogen bond is NH_{3} is
A. $5.5 \mathrm{kmol}^{-1}$
B. $98.4 \mathrm{kJmol}^{-1}$
C. $2.73 \mathrm{kJmol}^{-1}$
D. $8.2 \mathrm{kJmol}^{-1}$

Answer:

- Watch Video Solution

4. Which statement is not correct about the given nuclear reaction.
${ }_{\cdot 37}^{81} R b+{ }_{-1} e^{0} \rightarrow{ }_{.36}^{81} \mathrm{Kr}$
A. The process is called Kelectron capture
B. The process gives out radiations called γ
-rays
C. The process gives out radiations called

$$
X \text {-rays }
$$

D. $R b$ nucleaus accepts of the $1 s$-electron
and one proton to give rise to the

formation of one neutron

Answer:

D Watch Video Solution

5. The correct statement are:

1. for an elementary reaction order and molecularity are same
2. Reactions having order and molecularity
<3 are rate
3. Rate of reaction is decided by slowest step
of mechanism
4. for a reaction $t_{1 / 2}$ does not depend upon
temperature
5. energy of activation for free radical combination is zero.
A. $1,2,3,4$
B. $1,2,3,5$
C. $2,3,4,5$
D. 4,5

Answer:

D Watch Video Solution

6. An aqueous solution of urea has a freezing point of $-0.52^{\circ} C$. Assuming molarity same for the solution, the osmotic pressure of
solution at $37^{\circ} C$ would be : $\left(K_{f}\right.$ of $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{~K}$ molarity. ${ }^{-1}$)
A. 7.9 atm
B. 7.1 atm
C. 6.9 atm
D. 10.2 atm

Answer:
(Watch Video Solution
7. The potential of a silver / silver chloride electrode measured with respect to a saturated calomel electrode $\left(E_{O P}^{\circ}=0.244 V\right)$ is 0.022 V . The standard reduction potential of silver / silver chloride electrode is:
A. 0.222 V
B. 0.266 V
C. $-0.222 V$
D. -0.266 V

- Watch Video Solution

8. The possible product in the reaction given below is:

(a) $\square_{\text {Сно }}$
A.

C.
(c) $\square_{\text {Сно }}$

Answer:

D View Text Solution

9. The set of molecule having two different bond angles is
10. Cl_{3}, 2. XeF_{6}, 3. XeOF_{4}, 4. $P C l_{5}, 5 . B F_{3}$
A. $1,2,3,4$
B. $1,2,3,5$
C. 3,4

$$
\text { D. } 2,3,4
$$

Answer:

D View Text Solution

10. Statement-1 Diamond is tetrahedral,
graphite is planar and C_{60} has bucky ball structures.

Statement-2 Carbon in diamond, graphite and
C_{60} is $s p^{3}, s p^{2}$ and $s p$ hybridised respectively.
A. If both the statement are TRUE and

Statement -2 is the correct explanation of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE
D. If statement -1 is FALSE and Statement-2

Answer:

D View Text Solution

11. Statement-1L The bond angles in molecules
depneds upon hybridization electronagativity of central atom, no. of lone pair, odd electron and multiplicity of bond.

Statement-2 NO_{2} and NO_{2}^{-}have angles 134° and 115° respectively.
A. If both the statement are TRUE and

Statement -2 is the correct explanation of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE
D. If statement -1 is FALSE and Statement-2

Answer:

D View Text Solution

12. Statement-1 The ratio of σ-bonds and π bonds in tetra-cynomethane is 1.

Statement-2 Tetra-cyanomethane has 8π and 8σ bonds.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct explanation of Statement-1
C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer: A

- Watch Video Solution

13. The compounds $1,2,3,4$ given below are allowed in undergo electrophilic substitution by bromonium ions assuming only
monobromo substitution the substitutes
products are A, B, C, D respectively.

The diamonds A is:
A.
(a) $\mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{C}_{0}^{-0}-\bigcirc_{\mathrm{Br}}$
B.
(b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{T}_{0}^{\mathrm{O}} 0_{0}^{-\mathrm{Br}}$
C.
${ }^{\text {(c) }} \mathrm{C}_{6} \mathrm{H}_{-}^{-\mathrm{ClO}}-()^{\mathrm{Br}}$
D. both (a) and (b)

Answer:

D View Text Solution

14. The compounds $1,2,3,4$ given below are allowed in undergo electrophilic substitution by bromonium ions assuming only monobromo substitution the substitutes products are A, B, C, D respectively.

The compound B is :
A.

B. ${ }^{(b)}{ }_{\mathrm{Br}}{ }^{-} \bigcirc-(\mathrm{O})_{-\mathrm{OCH}_{3}}$

C ${ }^{\text {(c) }}$

D. both (a) and (b)

Answer:

D View Text Solution

15. The compounds $1,2,3,4$ given below are
allowed in undergo electrophilic substitution
monobromo substitution the substitutes
products are A, B, C, D respectively.

The compound C is:
A.
(a)

(b)

B.

C.

D.

Answer:
16. The compounds $1,2,3,4$ given below are allowed in undergo electrophilic substitution by bromonium ions assuming only monobromo substitution the substitutes products are A, B, C, D respectively.

The compound D is:

C.
(c)

(d)

Answer:

D View Text Solution

17. Which of the following is correct order for basic nature?
A. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{NH}_{2}$

B. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{OH}$
 C. $\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{OH}$
 D. $\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{~F}$

Answer:

D View Text Solution

18. Which set represents interamolecular redox changes?
19. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
20. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
21. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}^{+}$ 4. $\mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 2 \mathrm{MnO}_{2}+3 / 2 \mathrm{O}_{2}$
A. $1,2,4$
B. $1,2,3$
C. 3,4
D. 2,3

Answer:

D View Text Solution
19.
In
the
reaction,

$$
\xrightarrow[\mathrm{H}^{-}]{\mathrm{H}_{2} \mathrm{O}} A+B
$$

A and B are:
A.
(a) $+\mathrm{CH}_{3} \mathrm{OH}$
B.
(b) $+\mathrm{CH}_{3} \mathrm{OH}$
C. ${ }^{\text {(c) }}+\mathrm{CH}_{3} \mathrm{OCH}$:
D.
(d) $\underbrace{\mathrm{O}}+\mathrm{CH}_{3} \mathrm{OH}$

Answer:
20. Alkyl halides reacts with dialkyl copper reagents to give (A). The reaction is called $B,(A)$ and (B) are :
A. alkenes, corey house synthesis
B. alkanes, corey house synthesis
C. alkanes, Rosenmund's synthesis
D. aleknyl halides, elemination reaction

- View Text Solution

21. The density of crystalline $C s C l$ is
$3.988 \mathrm{~g} / \mathrm{cm}^{3}$. The volume effectively occupied by a single $C s C l$ ion pairs in the crystals is : (Given CsCl has mol. Mass 168.4)

$$
\begin{aligned}
& \text { А. } 7.014 \times 10^{-23} \mathrm{~cm}^{3} \\
& \text { Д. } 7.014 \times 10^{-20} \mathrm{~cm}^{3} \\
& \text { C. } 5.023 \times 10^{-23} \mathrm{~cm}^{3} \\
& \text { D. } 5.023 \times 10^{-20} \mathrm{~cm}^{3}
\end{aligned}
$$

Answer:

- Watch Video Solution

22. The possible product in the reaction given below is:
$\left\langle\mathrm{O}_{\mathrm{O}}^{\text {C }}\right.$
A.
(a) ${ }^{1 /}{ }_{\mathrm{O}}-\mathrm{CH}=\mathrm{CHNO}_{2}$
B.
(b)

c.
(c) $<\frac{1}{}-\mathrm{COCH}_{3}$
(d)

Answer:

D View Text Solution

23. Which indicator should be used for the titration of $0.10 \mathrm{MKH}_{2} \mathrm{BO}_{3} \quad$ with
$0.10 \mathrm{MHCl}\left(K_{a}\right)$ for $\mathrm{H}_{3} \mathrm{BO}_{3}$ is $\left.7.3 \times 10^{-10}\right)$
A. Phenol red: $6.8-8.6$
B. Methyl red : 3.8-6.1
C. Methyl orange: $2.8-3.8$
D. Phenolphthlein: $8.0-9.6$

Answer:

D View Text Solution

24. A reaction between two reactants A and B
shows $I I$ order. Which of the following
differential rate expression might possibly not
valid?
A. Rate $=K[A][B]$
B. Rate $=K[2 A]^{2}$
C. Rate $=K[A]^{2}$
D. Rate $=K[B]^{2}$

Answer:

- Watch Video Solution

25. Which is not possible resonance form for
N_{3}^{-}?
А. $: \ddot{N}=N=\ddot{N}$:

$$
\text { B. }: N \equiv N-\ddot{N}:
$$

C. $: N \equiv N-\ddot{N}:$
D. $\quad \begin{aligned} & \text { (d) }: N=N: \\ & \mid N:!\end{aligned}$

Answer:

D View Text Solution

26. Statement-1: Addition of bromine on trans
-2 butene yeilds meso-2, 3 -dibromo butane.

Statement-2: The addition of $B r_{2}$ on double bond is anti-addition.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2

is TRUE

Answer:

D View Text Solution

27.

Statement
$\mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { Peroxide }]{\mathrm{CCl}_{3} \mathrm{Br}} \mathrm{RCH}-\mathrm{CH}_{2} \mathrm{CCl}_{3}$
Statement-2: The addition obey free radical addition on alkenes in presence of peroxide.
A. If both the statement are TRUE and

Statement -2 is the correct explanation of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE
D. If statement -1 is FALSE and Statement-2

Answer:

D View Text Solution

28. Statement-1: Reaction of t-butyl chloride on

Wurtz reaction gives alkene.

Statement-2: t-butyl chloride on Wurtz reaction gives alkene.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct explanation of Statement-1
C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer:

29. Statement-1: $S b_{2} S_{3}$ is not soluble in yellow ammonium sulphide.

Statement-2: the common ion effect due to S^{2-} ions reduces the solubility of $S b S_{3}$.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1

C. If statement- 1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer:

D View Text Solution

30. Follow the given sequence of reaction :

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (ii) } \mathrm{NaNH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$

The compound $[A]$ is
A. hex-3-yne
B. hex-2-yne
C. pent-2-yne
D. pent-1-yne
31. Follow the given sequence of reaction :
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (i) } \mathrm{NaH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$ 到

The compound $[B]$ is:
A. cis-hex-3-ene
B. trans-hex-3-ene
C. cis-pent-2-ene
D. trans-pent-2-ene

Answer:

- Watch Video Solution

32. Follow the given sequence of reaction :

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (ii) } \mathrm{NaNH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$

The compound $[E]$ is
A. cis-hex-3-ene
B. trans-hex-3-ene

C. cis-pent-2-ene

D. trans-pent-2-ene

Answer:

D Watch Video Solution

33. Follow the given sequence of reaction :

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (ii) } \mathrm{NaNH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$

The compound $[D]$ shows:
A. geometrical isomerism
B. optical isomerism
C. no isomerism
D. keto-enolisomerism

Answer:

- Watch Video Solution

34. Follow the given sequence of reaction :

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (i) } \mathrm{NaH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$

The compound $[D]$ is:

A. hexane $-3,4$-diol
B. hexane-3, 4-ene
C. hexane-1, 2 -diol
D. hexane-2, 3-diol

35. Follow the given sequence of reaction :

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { (ii) } \mathrm{NaNH}_{3} \mathrm{CH}_{2} \mathrm{Br}}$

The possible isomers of the compound $[D]$ are:
A. two enantiomers, one meso and one recemic
B.four enantiomers, one meso and one
racemic
C.four enantiomers, two meso and one
racemic
D.four enantiomers, one meso and one
racemin

Answer:
36. $1 g$ pure iron is dissolved in excess of
$\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up 100 mL .10 mL of this solution is treated with $0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+} ions are oxidised to Fe^{3+} ions. Now $0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The volume of KMnO_{4} needed to convert $F e^{2+}$ ions to $F e^{3+}$ ions in $100 m L$ original solution is:
A. $71 m L$
B. $142 m L$
C. $35.7 m L$
D. 80 mL

Answer:

D View Text Solution

37. $1 g$ pure iron is dissolved in excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up $100 m L .10 m L$ of this solution is treated with $0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+}
ions are oxidised to Fe^{3+} ions. Now
$0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution
is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The amount of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to be dissolved to prepare $V m L$ of $K_{2} C r_{2} O_{7}$, which is just sufficient to completely oxidised 10 mL of above FeSO_{4} solution ?
A. $0.0875 g$
B. $0.875 g$
C. 8.75 g
D. $0.0087 g$

Answer:

D View Text Solution

38. $1 g$ pure iron is dissolved in excess of
$\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up 100 mL .10 mL of this solution is treated with $0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+} ions are oxidised to Fe^{3+} ions. Now $0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Select the correct statement.

1. The $F e^{3+}$ ions present in solution are reduced by Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$
2. H_{2} gas formed by the action of $Z n$ and
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is reducing agent.
3. Atomic form of H formed by the action of

Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reducing agent
4. Nascent form of H formed by the action of

Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reducing agent
A. 1,2
B. 1,3
C. 1, 4

D. $1,2,3$

Answer:

D View Text Solution

39. $1 g$ pure iron is dissolved in excess of
$\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up 100 mL .10 mL of this solution is treated with $0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+} ions are oxidised to Fe^{3+} ions. Now $0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution
is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The volume of $0.1 \mathrm{MKMnO}_{4}$ used after
reducing the solution mixture with
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A. $5.572 m L$
B. $3.572 m L$
C. $4.572 m L$
D. $6.572 m L$

Answer:

40. $1 g$ pure iron is dissolved in excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up 100 mL .10 mL of this solution is treated with
$0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+}
ions are oxidised to Fe^{3+} ions. Now
$0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The volume of $0.1 M K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ used after reducing the solution mixture with
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}$ is :
A. $4.64 m L$
B. $5.46 m L$
C. $3.46 m L$
D. $2.64 m L$

Answer:

D View Text Solution

41. $1 g$ pure iron is dissolved in excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The clear filtrate is made up $100 m L .10 m L$ of this solution is treated with $0.1 \mathrm{MKMnO}_{4}$ solution till whole of the Fe^{2+}
ions are oxidised to Fe^{3+} ions. Now
$0.2 g F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in it. the solution
is now treated with Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The ratio of equivalent of KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ used for reducing the solution is:
A. $5 / 6$
B. $6 / 5$
C. 1
D. 2

Answer:
42. Van't Hoff factor, (i) for 100% ionised $\mathrm{K}_{2} \mathrm{HgI}_{4}$ solution in water is:

- Watch Video Solution

43. Number of Na^{+}and Cl^{-}ions associated with each a unit cell of $N a C l$ is:

D Watch Video Solution
44. Number of $B-O$ bonds in diborate ion $\left[B_{2} O_{5}\right]^{4-}$ is

- Watch Video Solution

45. Find the number of waves in an orbit of H atom having radius equal to $8.464 \times 10^{-10} \mathrm{~m}$.

- Watch Video Solution

46. As per cooled water freezes spontaneously,
its temperature rises to $0^{\circ} C . \Delta H$ for the
spontaneous process.
$H_{2} O_{(l)}\left(-10^{\circ} C\right) \rightarrow H_{2} O_{(s)}\left(0^{\circ} C\right)$ is :
A. zero
B. $+v e$
C. $-v e$
D. either of these

Answer: A
47. o-hydroxy benzaldehyde (salicylaldehyde)
shows intermolecular H-bonding. The number of atoms present in the additional formed is:
A. 2
B. 4
C. 6
D. 8
48. Inorganic graphite is:
A. $B N$
B. $B_{4} C_{3}$
C. $C a C_{2}$
D. $B_{3} N_{3} H_{6}$

Answer:

- Watch Video Solution

49.

Oxidation

KMnO_{4} yields:
A. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}_{C} \mathrm{H}_{3} \mathrm{COCH}_{3}$

Answer:

D View Text Solution

50. The oxidation state of chromium ion and iodine in the final products formed by the reaction between KI and acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ respectively are:
A. $+4,0$
B. $+6,+3$
C. $+3,0$

D. $+3,+3$

Answer:

D Watch Video Solution

51. The simplest chiral alkane, alkene, alkene
and alkyne posses carbon atoms respectively.
A. $7,6,6$
B. $6,6,6$
C. $5,5,5$

D. $6,5,5$

Answer:

D View Text Solution

52. Which set of molecule is polar?
A. p-dimethyloxy bezene and p-dinitro
benzene
B. $B F_{3}$ and Icl_{3}
C. $S F_{4}$ and $S i F_{4}$

D. p-dimethoxy benzene and trans-1 dinitro

 chloropene
Answer:

D View Text Solution

53. An acidic buffer's solution is made up of:
A. a strong acid + its salt of weak base
B. a weak acid+its conjugate base
C. a strong acid +its conjugate base

D. either of these

Answer:

D View Text Solution

54. Corundum and carbonundum are respectively.:
A. $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiC}$
B. $\mathrm{SiC}, \mathrm{Al}_{2} \mathrm{O}_{3}$
C. $M g_{3} B_{2}, A l_{2} O_{3}$

D. $M g_{2} B_{2} S i C$

Answer:

D Watch Video Solution

55. Statement-1:Compounds having
$-N R_{3}^{+},-S R_{3}^{+}$etc. as leaving groups give

Hofmann product in E_{2} elimination.

Statement-2: E_{2} elimination is a single step
reaction.
A. If both the statement are TRUE and

Statement -2 is the correct explanation of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE
D. If statement -1 is FALSE and Statement-2

Answer:

D View Text Solution

56. Statement-1: $\mathrm{CF}_{3}-\mathrm{CHCl}_{2}$ when treated
with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$, the major product formed is
$C F_{3}-C D C l_{2}$ rather than $C F_{2}=C C l_{2}$

Statement-2: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$is a poor base.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct explanation of Statement-1
C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer:

57. (i) An aqueous solution of a white coloured
compound (A) on reaction with HCl gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with
the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming
a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
SnCl_{2} give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a
mixture of cold solutions of (A) and FeSO_{4} is
added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.
Compound (A) contains ... ions.

> A. $\mathrm{Pb}^{2+}, \mathrm{NO}_{3}^{-}$
> B. $\mathrm{Hg}^{2+} \mathrm{m}, \mathrm{NO}_{3}^{-}$
> C. $\mathrm{Hg}_{2}^{2+}, \mathrm{NO}_{3}^{-}$
> D. $\mathrm{Hg}^{2+}, \mathrm{Cl}^{-}$

Answer:
58. (i) An aqueous solution of a white coloured compound (A) on reaction with $H C l$ gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
$S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a mixture of cold solutions of (A) and FeSO_{4} is added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.

Compound (B) is
A. $P b C l_{2}$
B. $\mathrm{HgCl} l_{2}$
C. $H g_{2} C l_{2}$
D. PbCl_{4}

Answer:

D Watch Video Solution

59. (i) An aqueous solution of a white coloured
compound (A) on reaction with $H C l$ gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used
for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
$S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a mixture of cold solutions of (A) and FeSO_{4} is added slowly into a mixture of cold solutions of (A) and FeSO_{4}, a brown ring of compound (F) is formed.

Compound (D) is
A. $H g_{2} C l_{2}$
B. PbCl_{2}
C. $H g C l_{2}$

D. PbCl_{4}

Answer:

D Watch Video Solution

60. (i) An aqueous solution of a white coloured
compound (A) on reaction with $H C l$ gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with
the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate
which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
$S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a mixture of cold solutions of (A) and FeSO_{4} is added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.
Compound (D) is
A. anionic complex
B. Nessler's reagent
C. ionic compound

D. either of these

Answer:

D Watch Video Solution

61. (i) An aqueous solution of a white coloured compound (A) on reaction with $H C l$ gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with
the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with $S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a mixture of cold solutions of (A) and FeSO_{4} is added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.

The oxidation number of $F E$ in compound (F) is:
A. +1
B. +2
C. +3
D. zero

Answer:
(Watch Video Solution
62. (i) An aqueous solution of a white coloured
compound (A) on reaction with $H C l$ gives a
white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
$S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a
mixture of cold solutions of (A) and FeSO_{4} is
added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.
Grey precipitate of (E) is :
A. $H g_{2} C l_{2}$
B. $H g_{2}$
C. $H g C l_{2}$
D. $\mathrm{K}_{2} \mathrm{Hg} \mathrm{I}_{4}$

Answer:
63. (i) An aqueous solution of a white coloured compound (A) on reaction with $H C l$ gives a white precipitate of compound (B).
(ii) (B) becomes soluble in chlorine water with the formation of (C)
(iii) (C) reacts with $K I$ to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.
(iv) (B) and (C) both, on treatement with
$S n C l_{2}$ give a grey precipitate of (E).
(v) When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added slowly into a mixture of cold solutions of (A) and FeSO_{4} is added slowly into a mixture of cold solutions
of (A) and FeSO_{4}, a brown ring of compound
(F) is formed.
(A) on dissociation in $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives:
A. $\mathrm{Hg}_{2} \mathrm{SO}_{4}$
B. HgSO_{4}
C. HgHSO 4
D. $\mathrm{Fe} \mathrm{SO}_{4}$

Answer:

D Watch Video Solution

64. The cell designed as
$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} C l_{2}, 0.01 N K C l\right| H g$ has emf of $0.271 V$ at $298 K$ and 0.2669 at $308 K$. The
$E_{\mathrm{H}_{2}^{2+} / \mathrm{Hg}}$ is 0.260 V
The change in free energy (ΔG) during cell reaction is:
A. $-52.3 k J$
B. $+52.3 k J$
C. $-26.15 k J$
D. $+26.15 k J$

Answer:

D Watch Video Solution

65. The cell designed as
$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} \mathrm{Cl}_{2}, 0.01 \mathrm{NKCl}\right| \mathrm{Hg}$ has emf of $0.271 V$ at $298 K$ and 0.2669 at $308 K$. The

$E_{H_{2}^{2+} / \mathrm{Hg}}$ is 0.260 V

The heat of reaction for redox change is:
A. $+79.2 k J$
B. $-75.9 k J$
C. $+75.9 k J$
D. $-79.2 k J$

Answer:
(Watch Video Solution
66.

The
cell designed
$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} C l_{2}, 0.01 N K C l\right| H g$ has emf of $0.271 V$ at $298 K$ and 0.2669 at $308 K$. The

$$
E_{H_{2}^{2+} / \mathrm{Hg}} \text { is } 0.260 \mathrm{~V}
$$

The temperature coefficient of cell is :

> A. 4.1×10^{-4}
> B. -4.1×10^{-4}
> C. -4.1×10^{-3}
> D. 4.1×10^{-3}

67. The cell designed as

$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} \mathrm{Cl}_{2}, 0.01 \mathrm{NKCl}\right| \mathrm{Hg}$ has emf of $0.271 V$ at 298 K and 0.2669 at 308 K . The

$$
E_{H_{2}^{2+} / \mathrm{Hg}} \text { is } 0.260 \mathrm{~V}
$$

The change in free entropy during cell reaction is :
A. $+79.2 k J$
B. $-75.9 k J$
C. $+75.9 k J$

$$
\text { D. }-79.2 k J
$$

Answer:

D Watch Video Solution

68. The cell designed as
$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} C l_{2}, 0.01 N K C l\right| H g$ has emf of 0.271 V at 298 K and 0.2669 at 308 K . The
$E_{H_{2}^{2+} / \mathrm{Hg}}$ is 0.260 V
The E° for oxidation electrode at $298 K$ is:

$$
\text { A. } 0.011 \mathrm{~V}
$$

$$
\text { B. }-0.011 V
$$

C. -0.022 V
D. +0.022 V

Answer:

D Watch Video Solution

69. The cell designed as
$P t_{H_{2}}\left|H C l_{a q}\right|\left|H g_{2} C l_{2}, 0.01 N K C l\right| H g$ has emf of $0.271 V$ at $298 K$ and 0.2669 at $308 K$. The

$$
E_{\mathrm{H}_{2}^{2+} / \mathrm{Hg}} \text { is } 0.260 \mathrm{~V}
$$

If pressure of H_{2} is 2 atm , then pH of solution

on negative electrode is :

A. 0.036
B. 1.026
C. 2.096
D. 3.124

Answer:
(Watch Video Solution

70. Which of the following reaction will not

give picric acid?

Answer:

D View Text Solution

71. In $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$, oxygen atom has p^{3}
hybridisation with two lone pair of electron.
$C-O-C$ bond angle is:
A. 110°
B. $109^{\circ} 28^{\prime}$
C. $106^{\circ} 51^{\prime}$
D. $104^{\circ}, 31^{\prime}$

Answer:

72. Which of the following process may be reversible?
A. Transfer of heat by radiation
B. Transfer of heat by conduction
C. Electrical heating of a nichrome wire

D. Isothermal compression

Answer:

D View Text Solution

73. Which statement is correct ?

A. $H_{3} \mathrm{PO}_{3}$ is stronger acid than $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. HClO_{4} is weaker acid then HCIO_{3}
C. $H F$ is stronger acid than HCl
D. HOCl is weaker acid than HOBr

Answer:

- Watch Video Solution

74.

The
molecule

has:
A. one asymmetric carbon and one meso
form and two optically active isomers.
B. two asymmetric carbon and one meso
form and two optically active isomers.
C. no asymmetric carbon and no meso

form and no optically active isomers

D. one asymmetric caron and two optically active isomers with no meso form

Answer:

D View Text Solution

75. Which of the following substance would be drawn most strongly into a magnetic field?
A. TiCl
B. $V C l_{3}$
C. $F e C l_{2}$
D. CuCl_{2}

Answer:

D Watch Video Solution

76. Which one is called quantum mechanical liquid?
A. $H e(I)$
B. $H e(I I)$
C. $X e$
D. H_{2}

Answer:

D Watch Video Solution

77. For solid \Leftrightarrow liquid equilibrium, the correct statements, when forward reaction predominates is:
78. Increase in pressure if solid is ice
79. Decrease in pressure if solid is ice
80. Decrease in pressure if solid is other than ice
81. Increase in temperature if solid is ice
82. Decrease in temperature if solid is ice
A. $1,2,3$
B. $1,3,4$
C. $2,3,4$
D. $2,3,5$
83. Boling point of a liquid is defined temperature when vapour pressure of liquid becomes.
A. = atomspheric pressure
B. $>$ atmospheric pressure
C. $<$ atmospheric pressure
D. one atm or 76 cm of Hg

- Watch Video Solution

79. Statement-1: First step is always the rate determine step in the path of the reaction.

Statement-2: Study of kinetics of a reaction can report events only up to the rate determining step, not beyond that.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct explanation of Statement-1
C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer:

80. Statement-1: Low activation energy means
the reaction will be faster.

Statement-2 A thermodynamically stable product is always formed easily.
A. If both the statement are TRUE and

Statement -2 is the correct explanation
of Statement-1:
B. If both the statement are TRUE but

Statement-2 is not the correct
explanation of Statement-1
C. If statement- 1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2
is TRUE

Answer:

D View Text Solution

81. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

Which statements is correct for given values of teh reactions.?
A. Dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ occurs with degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4} 0.35$
B. Formation of NO_{2} occurs and total
moles of NO_{2} at equilibrium 1.35
C. Dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ occurs leaving 0.35
moles at equilibrium

D. Formation of NO_{2} occurs with total

 moles at equilibrium 2.70
Answer:

D View Text Solution

82. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow N_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$N_{2} O_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

The numerical value of K_{c} and K_{p} the reaction actually taking place in container is:
A. $4.44,145.8$
B. $0.23,7.56$
C. $146.13,4.8 \times 10^{3}$
D. $6.8 \times 10^{-3}, 6$

Answer:

D View Text Solution

83. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$N_{2} O_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

The ratio of moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium is :
A. 2.62
B. 0.38
C. 3.62

D. 0.28

Answer:

D View Text Solution

84. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is
carried out by taking 1 mole each of NO_{2} and
$N_{2} O_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

The ratio of partial pressures of $N O_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is:
A. 2.62
B. 0.38
C. 3.62
D. 0.28

Answer:
(Watch Video Solution
85. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

The equilibrium pressure at which dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ will show degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ to be 0.50 in the above case:
A. 82.1 atm
B. 65.7 atm
C. 72.0 atm
D. 70.0atm

Answer:

D View Text Solution

86. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is
carried out by taking 1 mole each of NO_{2} and
$\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

The molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ in equilibrium
mixture, when equilibrium pressure in 77 atm
is:
A. 58.72
B. 76.5
C. 62.2
D. 82.4

Answer:

D View Text Solution
87. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$N_{2} O_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77atm.

Addition of one mole of an inert gas to the above equilibrium shows that degree of dissociation and equilibrium pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ is
A. \propto decrease, $P=77 \mathrm{~atm}$
B. \propto increase, $P=77 \mathrm{~atm}$
C. \propto does not change, $P=110.0 \mathrm{~atm}$
D. \propto decreases, $P=110.0 \mathrm{~atm}$

Answer:

D View Text Solution

88. The reaction of dimerisation of NO_{2} in
$\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and
$N_{2} O_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be 77 atm .

After attaining the equilibrium, 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ is added in the quilibrium mixture.The total pressure at equilibrium would be:
A. 65.2 atm
B. 121.5 atm
C. 140.0 atm
D. 128.2 atm

Answer:

D View Text Solution
89. Numerical value of Δn in the change:
$2 \mathrm{KClO}_{3} \Leftrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

D Watch Video Solution

90. The moles of CO_{2} produced an electrolysing 1 litre solution of $32.8 g$ solution acetate in 100 mL solution

D Watch Video Solution

91. Number of carbonyl units co-ordinated to

iron metal in its carbonyl is:

D Watch Video Solution
92. Molecular weight of sample of ozonised
oxygen has the value 33.28 . Find the percentage of O_{3} in sample.

D Watch Video Solution

