

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

MOCK TEST PAPER

Exercise

1. In a set of reactions acetic acid yields a product [D] The structures of [D] would be:

$$CH_3COOH \stackrel{SOCl_2}{\longrightarrow} [A] \stackrel{C_6H_5}{\longrightarrow} [B] \ \stackrel{HCN}{\longrightarrow} [C] \stackrel{HOH}{\longrightarrow} [D]$$

iew Text Solution

2. The continuous chain hydrocarbon isomeric with 2-methyl — 3-ethyl hexane is:

A. nonane

B. 2-methyle octane

C. 2, 3-dimethylel heptane

D. 2, 2, 3-trimethyle hexane

Answer:

Watch Video Solution

3. In solid ammonia, each NH_3 molecule has six other NH_3 molecules as nearest neighbours. ΔH sublimation of NH_3 at the melting point is $30.8kJmol^{-1}$, and the estimated ΔH sublimation in the absence of hydrogen bonding is $14.4kJmol^{-1}$. the strength of a hydrogen bond is NH_3 is

A. $5.5kJmol^{-1}$

 $\mathsf{B.}\,98.4kJmol^{-1}$

C. $2.73kJmol^{-1}$

D. $8.2kJmol^{-1}$

Watch Video Solution

4. Which statement is not correct about the given nuclear reaction.

$$.^{81}_{37}\,Rb+._{-1}\,e^0
ightarrow.^{81}_{36}\,Kr$$

A. The process is called Kelectron capture

B. The process gives out radiations called γ

-rays

C. The process gives out radiations called $\it X$ -rays

D. Rb nucleaus accepts of the 1s-electron and one proton to give rise to the formation of one neutron

- **5.** The correct statement are:
- 1. for an elementary reaction order and molecularity are same
- 2. Reactions having order and molecularity
 - < 3 are rate
- 3. Rate of reaction is decided by slowest step of mechanism
- 4. for a reaction $t_{1/2}$ does not depend upon temperature
- 5. energy of activation for free radical combination is zero.

- A. 1, 2, 3, 4
- B. 1, 2, 3, 5
- $\mathsf{C.}\ 2,\, 3,\, 4,\, 5$
- D. 4, 5

Watch Video Solution

6. An aqueous solution of urea has a freezing point of $-0.52^{\circ}C$. Assuming molarity same for the solution, the osmotic pressure of

solution at $37^{\circ}C$ would be : $\left(K_f\right)$ of $H_2O=1.86K$ molarity. $^{-1}$)

A. 7.9atm

B. 7.1 atm

 $\mathsf{C.}\:6.9atm$

D. 10.2atm

7. The potential of a silver/ silver chloride electrode measured with respect to a saturated calomel electrode $\left(E_{OP}^{\circ}=0.244V\right)$ is 0.022V. The standard reduction potential of silver/silver chloride electrode is:

$$\mathsf{A.}\ 0.222V$$

$${\tt B.}\ 0.266V$$

$$C. -0.222V$$

$$\mathsf{D.}-0.266V$$

8. The possible product in the reaction given below is:

$$\underbrace{\frac{\text{(i) O_3}}{\text{(ii) Zn/H}_2O}} \text{Product}$$

$$\underbrace{\text{(iii) OH}^-}$$

View Text Solution

- **9.** The set of molecule having two different bond angles is
- 1. Cl_3 , 2. XeF_6 , 3. $XeOF_4$, 4. PCl_5 , 5. BF_3
 - A. 1, 2, 3, 4
 - B. 1, 2, 3, 5

C. 3, 4

D. 2, 3, 4

Answer:

View Text Solution

10. Statement-1 Diamond is tetrahedral, graphite is planar and C_{60} has bucky ball structures.

Statement-2 Carbon in diamond, graphite and C_{60} is $sp^3,\,sp^2$ and sp hybridised respectively.

- A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:
 - B. If both the statement are TRUE but

 Statement-2 is not the correct

 explanation of Statement-1
- C. If statement-1 is TRUE and Statement-2 is
- D. If statement -1 is FALSE and Statement-2
- is TRUE

View Text Solution

11. Statement-1L The bond angles in molecules depneds upon hybridization electronagativity of central atom, no. of lone pair, odd electron and multiplicity of bond.

Statement-2 NO_2 and NO_2^- have angles 134° and 115° respectively.

- A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:
 - B. If both the statement are TRUE but

 Statement-2 is not the correct

 explanation of Statement-1
- C. If statement-1 is TRUE and Statement-2 is
- D. If statement -1 is FALSE and Statement-2
- is TRUE

View Text Solution

12. Statement-1 The ratio of σ -bonds and π -bonds in tetra-cynomethane is 1.

Statement-2 Tetra-cyanomethane has 8π and 8σ bonds.

A. If both the statement are TRUE and

Statement -2 is the correct explanation

of Statement-1:

B. If both the statement are TRUE but

Statement-2 is not the correct

explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2 is TRUE

Answer: A

13. The compounds 1,2,3,4 given below are allowed in undergo electrophilic substitution by bromonium ions assuming only monobromo substitution the substitutes products are A, B, C, D respectively.

The diamonds A is:

C.
$$(c) C_6H_5-C-O-OBr$$

D. both (a) and (b)

View Text Solution

14. The compounds 1,2,3,4 given below are allowed in undergo electrophilic substitution by bromonium ions assuming only monobromo substitution the substitutes products are A, B, C, D respectively.

The compound B is :

D. both (a) and (b)

Answer:

15. The compounds 1,2,3,4 given below are allowed in undergo electrophilic substitution by bromonium ions assuming only

monobromo substitution the substitutes $\label{eq:products} \text{products are } A, B, C, D \text{ respectively.}$

The compound C is:

Answer:

View Text Solution

16. The compounds 1,2,3,4 given below are allowed in undergo electrophilic substitution by bromonium ions assuming only monobromo substitution the substitutes products are A, B, C, D respectively.

The compound D is:

View Text Solution

17. Which of the following is correct order for basic nature?

A.
$$CH_3F > CH_3OH > CH_3NH_2$$

B. $CH_3F > CH_3NH_2 > CH_3OH$

 $\mathsf{C.}\,CH_3NH_2 > CH_3F > CH_3OH$

D. $CH_3NH_2 > CH_3OH > CH_3F$

- **18.** Which set represents interamolecular redox changes?
- $1.\ 2KClO_3
 ightarrow 2KCl + 3O_2$
- $2.\ (NH_4)_2 Cr_2 O_7
 ightarrow N_2 + Cr_2 O_3 + 4H_2 O$

 $3.~Cl_2 + OH^-
ightarrow ClO^- + Cl^- + H^+$

 $4.~Mn_2O_7
ightarrow 2MnO_2+3/2O_2$

A. 1, 2, 4

B. 1, 2, 3

C. 3, 4

D. 2, 3

19.

In

the

reaction,

$$OCH_3 \xrightarrow{H_2O} A + B;$$

\boldsymbol{A} and \boldsymbol{B} are:

Watch Video Solution

20. Alkyl halides reacts with dialkyl copper reagents to give (A). The reaction is called $B,\,(A)$ and (B) are :

A. alkenes, corey house synthesis

B. alkanes, corey house synthesis

C. alkanes, Rosenmund's synthesis

D. aleknyl halides, elemination reaction

21. The density of crystalline CsCl is $3.988g/cm^3$. The volume effectively occupied by a single CsCl ion pairs in the crystals is : (Given CsCl has mol. Mass 168.4)

A.
$$7.014 imes 10^{-23} cm^3$$

B.
$$7.014 imes 10^{-20} cm^3$$

C.
$$5.023 \times 10^{-23} cm^3$$

D.
$$5.023 imes 10^{-20} cm^3$$

Watch Video Solution

22. The possible product in the reaction given below is:

$$\begin{array}{c}
C \longrightarrow C \longrightarrow CH_3NO_2 \\
O \longrightarrow NaOH + CH_3OH
\end{array}$$
Product

A. (a)
$$\sqrt{O}$$
 CH=CHNO₂

C. (c)
$$\bigcirc$$
 COCH₃

View Text Solution

23. Which indicator should be used for the titration of $0.10MKH_2BO_3$ with $0.10MHCl(K_a)$ for H_3BO_3 is $7.3 imes 10^{-10}$)

A. Phenol red: 6.8 - 8.6

B. Methyl red :3.8-6.1

C. Methyl orange: 2.8-3.8

D. Phenolphthlein: 8.0-9.6

Answer:

View Text Solution

24. A reaction between two reactants A and B shows II order. Which of the following differential rate expression might possibly not valid?

A. Rate =
$$K[A][B]$$

B. Rate
$$=K[2A]^2$$

C. Rate=
$$K[A]^2$$

D. Rate
$$=K[B]^2$$

Watch Video Solution

25. Which is not possible resonance form for

 N_{3}^{-} ?

A. :
$$\ddot{N}=N=\ddot{N}$$
 :

B. :
$$N\equiv N-\overset{\cdot \cdot }{N}$$
 :

C. :
$$N\equiv N-\overset{\cdot \cdot }{N}$$
 :

View Text Solution

- **26.** Statement-1: Addition of bromine on trans
- -2 butene yeilds meso-2, 3-dibromo butane.

Statement-2: The addition of Br_2 on double bond is anti-addition.

A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:

Statement-2 is not the correct explanation of Statement-1

B. If both the statement are TRUE but

C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2

is TRUE

Answer:

View Text Solution

27.

Statement

Br

1:

$$R-CH=CH_2 \stackrel{CCl_3Br}{\underset{ ext{Peroxide}}{\longrightarrow}} \stackrel{|}{RCH}-CH_2CCl_3$$

Statement-2: The addition obey free radical addition on alkenes in presence of peroxide.

- A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:
 - B. If both the statement are TRUE but

 Statement-2 is not the correct

 explanation of Statement-1
- C. If statement-1 is TRUE and Statement-2 is
- D. If statement -1 is FALSE and Statement-2
 - is TRUE

View Text Solution

28. Statement-1: Reaction of t-butyl chloride on Wurtz reaction gives alkene.

Statement-2: t-butyl chloride on Wurtz reaction gives alkene.

A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:

B. If both the statement are TRUE but

Statement-2 is not the correct

explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

D. If statement -1 is FALSE and Statement-2 is TRUE

29. Statement-1: Sb_2S_3 is not soluble in yellow ammonium sulphide.

Statement-2: the common ion effect due to $S^{2\,-}$ ions reduces the solubility of SbS_3 .

A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:

B. If both the statement are TRUE but

Statement-2 is not the correct

explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2

is TRUE

Answer:

View Text Solution

30. Follow the given sequence of reaction:

The compound $\left[A\right]$ is

- A. hex-3-yne
- B. hex-2-yne
- C. pent-2-yne
- D. pent-1-yne

31. Follow the given sequence of reaction:

$$CH_3 \cdot CH_2C \equiv CH \xrightarrow{\text{(i) NaNH}_2} CH_3 \cdot CH_2C \equiv CH \xrightarrow{\text{(ii) CH}_3CH_2Br} BasSO_4 \rightarrow [B] \xrightarrow{\text{Alk. KMnO}_4} CH_2CH_2Br \rightarrow [A] \xrightarrow{\text{H}_2 + Pd - BasSO_4} Baseyer's reagent reduction [E] [D]$$

The compound [B] is:

- A. cis-hex-3-ene
- B. trans-hex-3-ene
- C. cis-pent-2-ene
- D. trans-pent-2-ene

Watch Video Solution

32. Follow the given sequence of reaction:

$$CH_{3} \cdot CH_{2}C \equiv CH \xrightarrow{\text{(i) NaNH}_{2}} (ii)CH_{3}CH_{2}Br \rightarrow [A] \xrightarrow{H_{2}+Pd-BaSO_{4}} [B] \xrightarrow{Alk. \ KMnO_{2}} [C]$$

$$\downarrow \text{Birch} \qquad \qquad \downarrow \text{Baeyer's reagent}$$

$$[E] \qquad \qquad [D]$$

The compound [E] is

- A. cis-hex-3-ene
- B. trans-hex-3-ene

- C. cis-pent-2-ene
- D. trans-pent-2-ene

Watch Video Solution

33. Follow the given sequence of reaction :

$$\begin{array}{c} \text{CH}_3 \cdot \text{CH}_2\text{C} & \equiv \text{CH} \xrightarrow{\text{(i) NaNH}_2} \\ & \stackrel{\text{(ii)CH}_3\text{CH}_2\text{Br}}{} \\ & [A] & \xrightarrow{\text{H}_2 + \text{Pd} - \text{BaSO}_4} \\ & \downarrow \text{Birch} & \downarrow \text{Baeyer's reagent} \\ & [E] & [D] \end{array}$$

The compound [D] shows:

- A. geometrical isomerism
- B. optical isomerism
- C. no isomerism
- D. keto-enolisomerism

Watch Video Solution

34. Follow the given sequence of reaction:

The compound [D] is:

- A. hexane -3, 4-diol
- B. hexane-3, 4-ene
- C. hexane-1, 2-diol
- D. hexane-2, 3-diol

35. Follow the given sequence of reaction :

$$\begin{array}{c} \mathrm{CH_3}\cdot\mathrm{CH_2C} \equiv \mathrm{CH} \xrightarrow{\hspace{0.1cm} \text{(i) NaNH}_2} \\ [A] \xrightarrow{\hspace{0.1cm} \text{H}_2 + \mathrm{Pd-BaSO}_4} \rightarrow [B] \xrightarrow{\hspace{0.1cm} \mathrm{Alk.\ KMnO}_4} \\ \downarrow \\ \mathrm{Birch} \\ \mathrm{reduction} \\ [E] & [D] \end{array}$$

The possible isomers of the compound $\left[D\right]$ are:

A. two enantiomers, one meso and one

recemic

B. four enantiomers, one meso and one racemic

C. four enantiomers, two meso and one racemic

D. four enantiomers, one meso and one racemin

36. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL, 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the $Fe^{2\,+}$ ions are oxidised to Fe^{3+} ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution is now treated with Zn and H_2SO_4 .

The volume of $KMnO_4$ needed to convert Fe^{2+} ions to Fe^{3+} ions in 100mL original solution is:

A. 71mL

 $\mathsf{B.}\,142mL$

 $\mathsf{C}.\,35.7mL$

D. 80mL

Answer:

View Text Solution

37. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL. 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the Fe^{2+}

ions are oxidised to Fe^{3+} ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution is now treated with Zn and H_2SO_4 .

The amount of $K_2Cr_2O_7$ to be dissolved to prepare VmL of $K_2Cr_2O_7$, which is just sufficient to completely oxidised 10mL of above $FeSO_4$ solution ?

A. 0.0875g

B. 0.875g

 $\mathsf{C.}\,8.75g$

D. 0.0087g

View Text Solution

Select the correct statement.

38. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL. 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the Fe^{2+} ions are oxidised to Fe^{3+} ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution is now treated with Zn and H_2SO_4 .

- 1. The Fe^{3+} ions present in solution are reduced by Zn and H_2SO_4
- $2.\ H_2$ gas formed by the action of Zn and H_2SO_4 is reducing agent.
- 3. Atomic form of \boldsymbol{H} formed by the action of

Zn and H_2SO_4 is reducing agent

- 4. Nascent form of H formed by the action of
- Zn and H_2SO_4 is reducing agent
 - A. 1, 2
 - B. 1, 3
 - C. 1, 4

D. 1, 2, 3

Answer:

View Text Solution

39. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL. 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the Fe^{2+} ions are oxidised to Fe^{3+} ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution

is now treated with Zn and H_2SO_4 .

The volume of $0.1MKMnO_4$ used after reducing the solution mixture with $Zn+H_2SO_4$ is:

A. 5.572mL

B. 3.572mL

 $\mathsf{C.}\ 4.572mL$

D. 6.572mL

40. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL. 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the Fe^{2+} ions are oxidised to $Fe^{3\,+}$ ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution is now treated with Zn and H_2SO_4 .

The volume of $0.1MK_2Cr_2O_7$ used after reducing the solution mixture with $Zn+H_2SO_4$ is :

A. 4.64mL

B. 5.46mL

 $\mathsf{C}.\,3.46mL$

D. 2.64mL

Answer:

View Text Solution

41. 1g pure iron is dissolved in excess of H_2SO_4 . The clear filtrate is made up 100mL. 10mL of this solution is treated with $0.1MKMnO_4$ solution till whole of the Fe^{2+}

ions are oxidised to Fe^{3+} ions. Now $0.2gFe_2(SO_4)_3$ is dissolved in it. the solution is now treated with Zn and H_2SO_4 .

The ratio of equivalent of $KMnO_4$ and $K_2Cr_2O_7$ used for reducing the solution is:

A.
$$5/6$$

 $\mathsf{B.}\,6/5$

C. 1

D. 2

View Text Solution

42. Van't Hoff factor, (i) for $100\,\%$ ionised K_2HgI_4 solution in water is:

43. Number of Na^+ and Cl^- ions associated with each a unit cell of NaCl is:

44. Number of B-O bonds in diborate ion $\left[B_2O_5\right]^{4-}$ is

Watch Video Solution

45. Find the number of waves in an orbit of H-atom having radius equal to $8.464 \times 10^{-10} m$.

Watch Video Solution

46. As per cooled water freezes spontaneously, its temperature rises to $0^{\circ}C$. ΔH for the spontaneous process.

$$H_2O_{\,(\,l\,)}\,(\,-\,10^{\,\circ}\,C)
ightarrow H_2O_{\,(\,s\,)}\,(0^{\,\circ}\,C)$$
 is :

A. zero

B. + ve

 $\mathsf{C.}-ve$

D. either of these

Answer: A

View Text Colution

VIEW TEXT POLITION

47. o-hydroxy benzaldehyde (salicylaldehyde) shows intermolecular H-bonding. The number of atoms present in the additional formed is:

A. 2

B. 4

C. 6

D. 8

48. Inorganic graphite is:

A. BN

B. B_4C_3

 $\mathsf{C}.\,CaC_2$

D. $B_3N_3H_6$

Answer:

Watch Video Solution

49.

Oxidation

of

by

 $KMnO_4$ yields:

A. $CH_3COCH_2CH_2COOH$

 $\mathsf{B.}\,CH_3CH_2CH_2CH_2COOH$

 $\mathsf{C.}\ CH_3CHO + CH_3CH_2CHO$

D. $CH_3CH_2CHO_CH_3COCH_3$

View Text Solution

50. The oxidation state of chromium ion and iodine in the final products formed by the reaction between KI and acidified $K_2Cr_2O_7$ respectively are:

$$A. +4, 0$$

$$B. +6, +3$$

$$C. +3, 0$$

$$D. +3, +3$$

Watch Video Solution

51. The simplest chiral alkane, alkene, alkene and alkyne posses carbon atoms respectively.

- A. 7, 6, 6
- B. 6, 6, 6
- C. 5, 5, 5

D.6, 5, 5

Answer:

View Text Solution

52. Which set of molecule is polar?

A. p-dimethyloxy bezene and p-dinitro

benzene

B. BF_3 and Icl_3

C. SF_4 and SiF_4

D. p-dimethoxy benzene and trans-1 dinitro chloropene

Answer:

View Text Solution

53. An acidic buffer's solution is made up of:

A. a strong acid + its salt of weak base

B. a weak acid+its conjugate base

C. a strong acid +its conjugate base

D. either of these

Answer:

View Text Solution

54. Corundum and carbonundum are respectively.:

A. Al_2O_3, SiC

B. SiC, Al_2O_3

C. Mg_3B_2 , Al_2O_3

D. Mg_2B_2SiC

Answer:

Watch Video Solution

55. Statement-1:Compounds having

 $-NR_3^{\,+}\,,\;-SR_3^{\,+}$ etc. as leaving groups give

Hofmann product in E_2 elimination.

Statement-2: E_2 elimination is a single step reaction.

- A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:
 - B. If both the statement are TRUE but

 Statement-2 is not the correct

 explanation of Statement-1
- C. If statement-1 is TRUE and Statement-2 is
- D. If statement -1 is FALSE and Statement-2

is TRUE

Answer:

View Text Solution

56. Statement-1: CF_3-CHCl_2 when treated with C_2H_5OD , the major product formed is CF_3-CDCl_2 rather than $CF_2=CCl_2$ Statement-2: $C_2H_5O^-$ is a poor base.

A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:

B. If both the statement are TRUE but

Statement-2 is not the correct

explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

D. If statement -1 is FALSE and Statement-2 is TRUE

Answer:

57. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

(ii) (B) becomes soluble in chlorine water with the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a

mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

Compound (A) contains ... ions.

A.
$$Pb^{2+}$$
 , NO_3^-

$$\mathsf{B}.\,Hg^{2+}m,NO_3^-$$

C.
$$Hg_2^{2+}$$
 , NO_3^-

D.
$$Hg^{2+},Cl^-$$

Answer:

Watch Video Solution

58. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

(ii) (B) becomes soluble in chlorine water with the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with

 $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

Compound (B) is

A. $PbCl_2$

B. $HgCl_2$

C. Hg_2Cl_2

D. $PbCl_4$

Answer:

Watch Video Solution

59. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

(ii) (B) becomes soluble in chlorine water with the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used

for detecting ammonium salts. (iv) (B) and (C) both, on treatement with $SnCl_2$ give a grey precipitate of (E). (v) When conc. H_2SO_4 is added slowly into a mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed. Compound (D) is A. Hq_2Cl_2 B. $PbCl_2$ $\mathsf{C}.\,HqCl_2$

D. $PbCl_4$

Answer:

Watch Video Solution

- **60.** (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).
- (ii) (B) becomes soluble in chlorine water with the formation of (C)
- (iii) (C) reacts with KI to give a precipitate

which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

Compound (D) is

A. anionic complex

- B. Nessler's reagent
- C. ionic compound
- D. either of these

Answer:

Watch Video Solution

61. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

The oxidation number of FE in compound (F) is:

A. + 1

B.+2

 $\mathsf{C.} + 3$

D. zero

Answer:

Watch Video Solution

62. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

(ii) (B) becomes soluble in chlorine water with the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a

mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

Grey precipitate of (E) is :

A.
$$Hg_2Cl_2$$

B. Hg_2

C.
$$HgCl_2$$

D. K_2HgI_4

Answer:

watch video Solution

63. (i) An aqueous solution of a white coloured compound (A) on reaction with HCl gives a white precipitate of compound (B).

(ii) (B) becomes soluble in chlorine water with the formation of (C)

(iii) (C) reacts with KI to give a precipitate which becomes solube in excess of it forming a compount (D). the compound (D) is used for detecting ammonium salts.

(iv) (B) and (C) both, on treatement with

 $SnCl_2$ give a grey precipitate of (E).

(v) When conc. H_2SO_4 is added slowly into a mixture of cold solutions of (A) and $FeSO_4$ is added slowly into a mixture of cold solutions of (A) and $FeSO_4$, a brown ring of compound (F) is formed.

(A) on dissociation in H_2SO_4 gives:

A. Hg_2SO_4

B. $HgSO_4$

 $\mathsf{C}.\,HgHSO_4$

D. $FeSO_4$

Answer:

Watch Video Solution

64. The cell designed as $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\, 0.01NKCl|Hg$ has emf of 0.271V at 298K and 0.2669 at 308K. The $E_{H_2^{2+}\,/Hg}$ is 0.260V

The change in free energy (ΔG) during cell

A. -52.3k.I

reaction is:

$$\mathsf{B.} + 52.3kJ$$

$$\mathsf{C.}-26.15kJ$$

$$\mathsf{D.} + 26.15kJ$$

Answer:

Watch Video Solution

65. The cell designed as $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\,0.01NKCl|Hg$ has emf of 0.271V at 298K and 0.2669 at 308K. The

 $E_{H_2^{2+}\,/Hg}$ is 0.260V

The heat of reaction for redox change is:

 $\mathsf{A.} + 79.2kJ$

B.-75.9kJ

 $\mathsf{C.} + 75.9kJ$

 $\mathsf{D.}-79.2kJ$

Answer:

Watch Video Solution

66. The cell designed as

 $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\, 0.01NKCl|Hg$ has emf

of 0.271V at 298K and 0.2669 at 308K. The

 $E_{H_2^{2+}\,/\,Hg}$ is 0.260V

The temperature coefficient of cell is:

A. $4.1 imes 10^{-4}$

 $\mathsf{B.}-4.1\times10^{-4}$

 $\mathsf{C.}-4.1\times10^{-3}$

D. $4.1 imes 10^{-3}$

Answer:

67. The cell designed as $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\,0.01NKCl|Hg$ has emf of 0.271V at 298K and 0.2669 at 308K. The $E_{H_2^{2+}/Hg}$ is 0.260V

The change in free entropy during cell reaction is:

 $\mathsf{A.} + 79.2kJ$

 $\mathsf{B.} - 75.9kJ$

 $\mathsf{C.} + 75.9kJ$

D. - 79.2kJ

Answer:

Watch Video Solution

68. The cell designed as $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\,0.01NKCl|Hg$ has emf of 0.271V at 298K and 0.2669 at 308K. The $E_{H_2^{2+}/Hg}$ is 0.260V

The $E^{\,\circ}$ for oxidation electrode at 298K is:

A. 0.011V

 ${\rm B.}-0.011V$

 $\mathsf{C.}-0.022V$

 $\mathsf{D.} + 0.022 V$

Answer:

Watch Video Solution

69. The cell designed as $Pt_{H_2}|HCl_{aq}||Hg_2Cl_2,\,0.01NKCl|Hg$ has emf of 0.271V at 298K and 0.2669 at 308K. The $E_{H_2^{2+}/Hg}$ is 0.260V

If pressure of H_2 is 2 atm, then pH of solution on negative electrode is :

- A. 0.036
- B. 1.026
- C. 2.096
- D. 3.124

Answer:

Watch Video Solution

70. Which of the following reaction will not give picric acid?

$$A. \quad \text{(a)} \overset{OH}{\bigodot}^{COOH} \xrightarrow[\text{furming of HNO}_3]{}^{Nitration}$$

$$\mathbf{B}. \qquad \text{(b)} \bigcirc \xrightarrow{\text{Conc. HNO}_3} \xrightarrow{\text{H}_2\text{SO}_4}$$

Answer:

71. In CH_3-O-CH_3 , oxygen atom has p^3

hybridisation with two lone pair of electron.

C-O-C bond angle is:

A. 110°

B. $109^{\circ}\,28$ '

C. $106^{\circ}51$

D. 104° , 31'

Answer:

View Text Solution

72. Which of the following process may be reversible?

- A. Transfer of heat by radiation
- B. Transfer of heat by conduction
- C. Electrical heating of a nichrome wire
- D. Isothermal compression

Answer:

View Text Solution

73. Which statement is correct?

A. H_3PO_3 is stronger acid than H_3PO_4

B. $HClO_4$ is weaker acid then $HCIO_3$

C. HF is stronger acid than HCl

D. HOCl is weaker acid than HOBr

Answer:

Watch Video Solution

74.

The

molecule

A. one asymmetric carbon and one meso

form and two optically active isomers.

B. two asymmetric carbon and one meso

form and two optically active isomers.

C. no asymmetric carbon and no meso form and no optically active isomers

D. one asymmetric caron and two optically active isomers with no meso form

Answer:

View Text Solution

75. Which of the following substance would be drawn most strongly into a magnetic field?

A. TiCl

B. VCl_3

C. $FeCl_2$

D. $CuCl_2$

Answer:

Watch Video Solution

76. Which one is called quantum mechanical liquid?

A. He(I)

B.He(II)

 $\mathsf{C}.\,Xe$

D. H_2

Answer:

Watch Video Solution

77. For solid \Leftrightarrow liquid equilibrium, the correct statements, when forward reaction predominates is:

- Increase in pressure if solid is ice
 Decrease in pressure if solid is ice
- 3. Decrease in pressure if solid is other than ice
 - 4. Increase in temperature if solid is ice
 - 5. Decrease in temperature if solid is ice
 - A. 1, 2, 3
 - B. 1, 3, 4
 - C. 2, 3, 4
 - D. 2, 3, 5

Answer:

78. Boling point of a liquid is defined temperature when vapour pressure of liquid becomes.

- A. = atomspheric pressure
- B. > atmospheric pressure
- C. < atmospheric pressure
- D. one atm or 76cm of Hg

Answer:

79. Statement-1: First step is always the rate determine step in the path of the reaction.

Statement-2: Study of kinetics of a reaction can report events only up to the rate determining step, not beyond that.

A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:

B. If both the statement are TRUE but

Statement-2 is not the correct

explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

D. If statement -1 is FALSE and Statement-2 is TRUE

Answer:

80. Statement-1: Low activation energy means the reaction will be faster.

Statement-2 A thermodynamically stable product is always formed easily.

- A. If both the statement are TRUE and Statement -2 is the correct explanation of Statement-1:
- B. If both the statement are TRUE but

 Statement-2 is not the correct

 explanation of Statement-1

C. If statement-1 is TRUE and Statement-2 is

FALSE

D. If statement -1 is FALSE and Statement-2

is TRUE

Answer:

81. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2\Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and

 $N_2 O_4$ in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm.

Which statements is correct for given values of teh reactions.?

A. Dissociation of N_2O_4 occurs with degree of dissociation of $N_2O_40.35$

B. Formation of NO_2 occurs and total moles of NO_2 at equilibrium 1.35

C. Dissociation of N_2O_4 occurs leaving 0.35

moles at equilibrium

D. Formation of NO_2 occurs with total moles at equilibrium $2.70\,$

Answer:

View Text Solution

82. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm.

The numerical value of K_c and K_p the reaction actually taking place in container is :

- A. 4.44, 145.8
- $\mathsf{B.}\ 0.23,\ 7.56$
- C. $146.13, 4.8 \times 10^3$
- D. $6.8 imes 10^{-3}, 6$

Answer:

View Text Solution

83. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm. The ratio of moles of N_2O_4 and NO_2 at equilibrium is :

A. 2.62

B. 0.38

C. 3.62

D.0.28

Answer:

View Text Solution

84. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm.

The ratio of partial pressures of NO_2 and N_2O_4 at equilibrium is:

A. 2.62

B.0.38

C. 3.62

D.0.28

Answer:

Watch Video Solution

85. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm. The equilibrium pressure at which dissociation of N_2O_4 will show degree of dissociation of N_2O_4 to be 0.50 in the above case:

A. 82.1atm

B.65.7atm

 $\mathsf{C}.\,72.0atm$

D.70.0atm

Answer:

View Text Solution

86. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2\Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm.

The molecular weight of N_2O_4 in equilibrium

mixture, when equilibrium pressure in 77 atm

A. 58.72

is:

B.76.5

 $\mathsf{C.}\,62.2$

D. 82.4

Answer:

View Text Solution

87. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm. Addition of one mole of an inert gas to the above equilibrium shows that degree of dissociation and equilibrium pressure of N_2O_4 is

A. \propto decrease, P = 77atm

B. \propto increase, P=77atm

C. \propto does not change, P=110.0atm

D. \propto decreases, P = 110.0atm

Answer:

View Text Solution

88. The reaction of dimerisation of NO_2 in N_2O_4 is $2NO_2 \Leftrightarrow N_2O_4$. The reaction is carried out by taking 1 mole each of NO_2 and N_2O_4 in a closed vessel of 1 litre at 400K. The equilibrium pressure was found to be 77atm.

After attaining the equilibrium, 1 mole of N_2O_4 is added in the quilibrium mixture. The total pressure at equilibrium would be:

- A. 65.2atm
- $\mathsf{B.}\ 121.5 atm$
- $\mathsf{C.}\ 140.0 atm$
- D. 128.2atm

Answer:

View Text Solution

89. Numerical value of Δn in the change:

 $2KClO_3 \Leftrightarrow 2KCl + 3O_2$

Watch Video Solution

90. The moles of CO_2 produced an electrolysing 1 litre solution of 32.8g solution acetate in 100mL solution

Watch Video Solution

91. Number of carbonyl units co-ordinated to iron metal in its carbonyl is:

Watch Video Solution

92. Molecular weight of sample of ozonised oxygen has the value 33.28. Find the percentage of O_3 in sample.

Watch Video Solution