©゙’doubtnut
 India's Number 1 Education App

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

SOLID STATE

Exercise

1. The first - order diffraction os X - rays from a
certain set of crystal planes occurs an angle of 11.8°
from the planes. If the planes are 0.281 nm apart, what is the wavelength of $X-$ rays?
2. Under what conditions, the Bragg's equation wl fail to define a crystal ?

- Watch Video Solution

3. Calculate the number (n) of atoms contained within
(a) cubic cell, (b) a body - centred cubic cell, (c) a
face - centred cubic cell.

- Watch Video Solution

4. At room temperature, sodium crystallized in a body

- centred cubic lattrice with $a=4.24 \AA$. Calculate theoretical density of sodium (at wt. of $N a=23$).

- Watch Video Solution

5. Silver crystallizes in fcc lattic. If the edge length of the cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and density is $10.5 \mathrm{gcm}^{-3}$.

Calculate the atomic mass of silver.

Watch Video Solution

6. Copper crystallizer into an fcc lattice with edge length $3.61 \times 10^{8} \mathrm{~cm}$, Show that the calculated density in in agreement with its measured value of $8.92 \mathrm{gcm}^{3}$.

- Watch Video Solution

7. Formula mass of NaCl is $58.45 \mathrm{gmol}^{-1}$ and density of its pure form is $2.167 \mathrm{gcm}^{-3}$. The average distance between adjacent sodium and chloride ions in the crystal is $2.814 \times 10^{-8} \mathrm{~cm}$. Calculate Avogadro constant.

D Watch Video Solution

8. Thallium chloridde, $T l C l$ crystallized in either a simple cubic lattice or a face - centred cubic lattice of
$C l^{c-}$ ions with Tl^{+}ions in the holes. If the density of the solid is with Tl^{+}ions in the holes. If the density of the solide is $9.00 \mathrm{gcm}^{-3}$ and edge of the unit cell is $3.85 \times 10^{-8} \mathrm{~cm}$, what is the unit cell geometry ?

- Watch Video Solution

9. Sodium metal crystallises in body centred cubic lattic with cell edge $4.29 \AA$. What is the radius of sodium atom
10. Niobium crystallizes in body-centred cubic structure.

If the density is $8.55 \mathrm{gcm}^{-3}$, calculate the atomic radius of niobium using its atomic mass $93 u$.

- Watch Video Solution

11. Aluminium crystallizes in a cubic close-packed structre. Its metallic radius is $125 p \pm$
a. What is the length of the side of the unit cell?
b. How many unit cell are there in $1.00 \mathrm{~cm}^{3}$ of aluminium?

D Watch Video Solution

12. Gold (atoic radius $=0.144 \mathrm{~nm}$) crystallizes in a facelcentred unit cell. What is the length of a side of the cell?

D Watch Video Solution

13. A solid $A B$ has $N a C l$ structure. If the radius of the
cation A is 100 pm , what is the radius of anion B ?

D Watch Video Solution

14. The radius of $C s^{+}$ion is $160 \pm$ while the radius of
Cl^{-}ion is $181 \pm$. Suggest the co - ordination of
cesium in $C s C l$.

- Watch Video Solution

15. If the radius of the octaheral void is r and the radius of the atoms in close-packing is R, derive relation between r and R

- Watch Video Solution

16. Analysis shows that nickel oxide has the formula
$N i_{0.98} O_{1.00}$. What fractions of nickel "exist" as Ni^{2+} and $N i^{3+}$ ions?
17. A compound formed by elements A and B crystallizes in cubic structure, where A atoms are at the corners of a cube and B atoms are at the face centre. What is the formula of the compound ?

D Watch Video Solution

18. The figure below show the locations of atoms in three crystallographic planes in an fcc lattice. Draw the unit cells for these structure and identify these planes
in your diagrams.

(D) Watch Video Solution
19. Sodium metal crystallises in body centred cubic lattic with cell edge $4.29 \AA$. What is the radius of sodium atom
20. Chromium metal crystallizes with a body-centred cubic lattice. The length of the unit cell edge is found to be 287 pm . Calculate the atomic radius. What woulds be the density of chromium in gcm^{-3} ?

- Watch Video Solution

21. A metal crystallizes into two cubic phases, facecentred cubic and body-centred cubic, which have unit cell lengths 3.5 and $3.0 A$, respectively. Calculate the ration of densities of fcc and bcc.
22. A unit of cell of sodium chloride has four formula units. The edge length of the unit cell is 0.564 nm . What is the density of sodium chloride?

D Watch Video Solution

23. You are given marbles of diameter 10 mm . They are to be placed such that their centres are laying in a square bound by four lines each of length 40 mm . What will be the arrangements of marbles in a plane so that maximum number of marbles can be placed inside the area? Sketch the diagram and derive expression for the number of molecules per unit area.

(Watch Video Solution

24. A compount $A B$ has a rock type structure with
$A: B=1: 1$. The formula weight of $A B$ is $6.023 Y a m u$ and the closed $A-B$ distance is $Y^{1 / 3} n m$.
(i) Find the density of lattice.
(ii) If the density of lattice is found to be $20 \mathrm{kgm}^{-3}$, then predict the type of defect.

(D) Watch Video Solution

25. An element crystallises in f.c.c. lattice having edge length 400 pm . Calculate the maximum diameter, which
can be placed in interstitial sites without disturbing the structure.

- Watch Video Solution

26. The edge length of unit cell of a metal having molecular weight $75 \mathrm{gmol}^{-1}$ is $5 \AA$ which crystallizes in cubic lattice. If the density is $2 g^{\wedge}(-1)$, then find the radius of metal atom $\left(N_{A}=6 \times 10^{23}\right)$. Give the answer in pm .
27. Unit cell of $\mathrm{Fe}_{2} \mathrm{O}_{4}$ (Ferrous ferrite) has $32 \mathrm{O}^{2-}$ ions in the unit cell. Then the unit cell of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ has :
A. $16 F e^{2+}$ ions
B. $8 \mathrm{Fe}^{3+}$ ions
C. $16 \mathrm{Fe}^{3+}$ ions and $8 \mathrm{Fe}^{2+}$ ions
D. none of these

Answer:

- Watch Video Solution

28. Paramagnetic substances are those, in which the individual atoms, ions or molecules posses a permanent
magnetic dipole moment. In the absence of an external magnetic field, the atomic dipoles of paramagentic substance are as below:
(a)

A.
(A)
(b)

B.
(B)
(c)

C.
(C)

D.
(D)

Answer:

- Watch Video Solution

29. In the above question, if an external magnetic field is applied, then the answer is :
A. (A)
B. (B)
C. (C)
D. (D)

Answer:
(D) Watch Video Solution
30. Which of the following gases are of paramagnetic nature ?
A. Oxygen
B. $\mathrm{N}_{2} \mathrm{O}_{4}$
C. CO_{2}
D. H_{2}

Answer:

- Watch Video Solution

31. Which of the following materials is not ferromagnetic?
A. Iron
B. Cobalt
C. Nickel
D. Copper

Answer: d

(D) Watch Video Solution

32. For the structure of solid given below, if the lattice points represent A^{+}ions and the B^{-}ioins occupy the
tetrahedral voids, then coordination number of A is :

A. 2
B. 4
C. 6
D. 8

- Watch Video Solution

33. In a crystal, some ions are missing from normal sites.

This is an example of :
A. $F-$ centres
B. interstitial defect
C. Frenkel defect
D. Schottky defect

Answer: d

- Watch Video Solution

34. TiO_{2} is well known example of :
A. triclinic system
B. tetragonal system
C. monoclinic system
D. none of these

Answer: B

D Watch Video Solution

35. For a solid with the following structure, the coordination number of the point B is :

A. 3
B. 4
C. 5
D. 6

Answer: d

- Watch Video Solution

36. For the structure given below, the site marked as S
is a :

A. tetrahedral void
B. cubic void
C. octahedral void
D. none of these

Answer: c

- Watch Video Solution

37. The structue of sodium chloride crystal is :
A. body - centred cubic lattice
B. face - centred cubic lattice
C. octahedral
D. square planar

Answer: b

D Watch Video Solution

38. Most crystals show good cleavage because their atoms, ions and molecules are :
A. weakly bonded together
B. strongly bonded together
C. spherically symmetrical
D. arranged in planes

Answer: d
39. The following structure drawn is of:

A. fluorite
B. cesium chloride
C. wartzite
D. zinc blende

- Watch Video Solution

40. The co - ordination number of a body - centred atom is :
A. 4
B. 6
C. 8
D. 12

Answer: c
41. The ratio of closed packed atoms to tetrahedral holes in cubic close packing is :
A. $1: 1$
B. $1: 2$
C. $1: 3$
D. 2:1

Answer: b

- Watch Video Solution

42. The vacant space in body - centred cubic lattice b. c. c. unit cell is about,
A. 32%
B. 10%
C. 23%
D. $46 \%^{\prime}$

Answer: a

- Watch Video Solution

43. The melting point of $R b B r$ is $682^{\circ} C$, while that of
$N a F$ is $988^{\circ} \mathrm{C}$. The principla reason that melting point
of $N a F$ is much higher than that of $R b B r$ is that :
A. the two crystal are not isomorphous
B. the molar mass of $N a F$ is smaller thean that of $R b B r$
C. the internuclear distance $r_{c}+r_{a}$ is greater for
$R b B r$ than for $N a F$.
D. the bond in $R b B r$ has more covalent character than the bond in $N a F$.

Answer: c

44. In solid NH_{3} each NH_{3} molecule has six other NH_{3} molecules as nearest neighbouts. ΔH of sublimation of
NH_{3} at the melting point is $30.8 \mathrm{kJmol}^{-1}$ and the estimated ΔH of sublimation in the absence of $H-$ bonding is $14.4 \mathrm{kJmol}^{-1}$. What is the strength of a hydrogen bond in solid ammonia?
A. $6.5 \mathrm{kJmol}^{-1}$
B. $16.5 \mathrm{kJol}^{-1}$
C. $5.5 \mathrm{kJmol}^{-1}$
D. $4.5 \mathrm{kJmol}^{-1}$

Answer: C

45. Extremely pure samples of $G e$ and $S i$ are non conductors, but their conductivity increases suddenly on introducting . in their crystal lattice
A. arsenic
B. boron
C. both (a) and (b)
D. none of these

Answer: c

46. The crystals are bonded by plane faces (f) straight edges (e) and interfacial angle (c). The relationship between these is :
A. $f+c=e+2$
B. $f+e=c+2$
C. $c+e=f+2$
D. none of these

Answer: a

- Watch Video Solution

47. An alloy of $C u, A g$ and $A u$ is found to have copper constituting the $c . c$. p. lattice. If $A g$ atom occupy the edge centres and $A u$ atom is present at body centre, the formula of this alloy is :
A. $C u_{4} A g_{4} A u$
B. $C u_{4} A g_{2} A u$
C. $C u A g A u$
D. $C u_{4} A g_{3} A u$

Answer: d
48. The ratio of cations to anion in a octahedral close packing is :
A. 0.414
B. 0.225
C. 0.02
D. none of these

Answer: a

D Watch Video Solution

49. If a is the length of unit cell, then which one is correct relationship ?
A. For simple cubic lattice, Radius of metal atom

$$
=\frac{a}{2}
$$

B. For b. c. c. lattice, Radius of metal atom $=\frac{\sqrt{3} a}{4}$
C. For f.c.c. lattice, Radius of metal atom $=\frac{a}{2 \sqrt{2}}$
D. All of these

Answer: d

D Watch Video Solution

50. The unit cell with the structure below refers to crystal system.

A. cubic
B. orthorhombic
C. tetragonal
D. trigonal

Answer: b
51. In the cubic lattice given below, the three distances between the atoms $A-B, A-C$, and $A-G$ are, respectively,

A. $\frac{a}{2}, \frac{a}{\sqrt{2}}, \frac{\sqrt{3 a}}{2}$
B. $a, \sqrt{3} a, \sqrt{2} a$
C. $a, \sqrt{2} a, \sqrt{3} a$
D. $a, \frac{\sqrt{3} a}{2}, \sqrt{2} a$

Answer: c

- Watch Video Solution

52. A solide $A^{+} B^{-}$has the B^{-}ions arranged as below.

If the A^{+}ions occupy half of the tetrahedral sites in
the structure. The formula of solid is :

A. $A B$
B. $A B_{2}$
C. $A_{2} B$
D. $A_{3} B_{4}$

Answer: a

D Watch Video Solution

53. The radius of the Na^{2+} is 95 pm and that of Cl^{-}ion
is 181 pm . Predict the co - ordination number of
$N a^{+}$:
A. 4
B. 6
C. 8
D. unpredictable

Answer: B

D Watch Video Solution

54. A metal crystallises in b.c.c. lattice. The per cent fraction of edge length not covered by atom is :
A. 11.4%
B. 12.4%
C. 13.4%
D. 14.4%

Answer: c

- Watch Video Solution

55. Silicon doped with arsenic is an example of :
A. $p-$ type conductor
B. n - type conductor
C. $n-p-$ type conductor
D. none of these

Answer: b

D Watch Video Solution

56. Which of the following statements is not correct?
A. The co - ordination number of each type of ion in

CsCl crystal is 8
B. A metal that crystallises in b.c.c. structure has a co - ordination no. of 12
C. A unit cell of an ionic crystal shares some of its ions with other unit cells
D. The length of the unit cell in NaCl is 552 pm

$$
\left(r_{N a^{+}}=95 p m, r_{C l^{-}}=181 p m\right)
$$

Answer: b

D Watch Video Solution

57. In a f.c.c. arrangement of A and B atoms, where A atoms are at the corners of the unit cell and B atoms
at the face - centres, one of the A atom is missing
from one corner in each unit cell. The formula of compound is:
A. $A_{24} B_{7}$
B. $A_{7} B_{24}$
C. $A_{7} B_{28}$
D. $A_{28} B_{7}$

Answer: b

- Watch Video Solution

58. How many tetrahedral holes are occupied in diamond?
A. 25%
B. 50%
C. 75%
D. 100%

Answer: b

- Watch Video Solution

59. A solid $X Y$ has $N a C l$ structure. If radius of X^{+}is

100 pm . What is the radius of Y^{-}ion ?
A. $120 p m$
B. $136.6 t o 241.6 p m$
C. $136.6 p m$
D. $241.6 p m$

Answer: b

(D) Watch Video Solution

60. The density of $K B r$ is $2.75 \mathrm{gcm}^{-3}$ length of the unit cell is $654 p m . K=39, B r=80$, then what is true about the predicted nature of the solide ?
A. Solid has face - centred cubic system with co ordination number $=6$
B. Solid has simple cubic system with co ordinatiion number $=4$
C. Solid has face - centred cubic system with co ordination number $=1$
D. none of these

Answer: a

D Watch Video Solution

61. In the fcc arrangement of A and B atoms whose A atoms are at corners of the unit cell and B are at the
face centres one of the A atom is missing from one
corner in each unit cell. What is the simplest formula of the compound?
A. $A_{7} B_{3}$
B. $A B_{3}$
C. $A_{7} B_{24}$
D. $A_{7 / 8} B_{3}$

Answer: c
62. The number of atoms per unit cell in a simple cube,
face - centred cube and body - centred cube are respectively :
A. $1,4,2$
B. $1,2,4$
C. $8,14,9$
D. $8,4,2$

Answer: A

- Watch Video Solution

63. Antifluorite structure is for :
A. TiO_{2}
B. $\mathrm{Na}_{2} \mathrm{O}$
C. both (a) and (b)
D. none of these

Answer: b

- Watch Video Solution

64. Two ionic solid $A B$ and $C B$ crystallise in the same lattice. If $r_{A^{+}} / r_{B^{-}}$and $r_{C^{+}} / r_{B^{-}}$are 0.50 and 0.70 respectively, then the ratio of edge length of $A B$ and $C B$ is :
A. 0.88
B. 0.78
C. 0.68
D. 0.58

Answer: a

D Watch Video Solution

65. A matchbox exhibits:
A. cubic geometry
B. monoclinic geometry
C. orthohombic geometry
D. tetragonal geometry

Answer: C

D Watch Video Solution

66. Which arrangement of electrons leads to
ferromagnetism ?
A. $\uparrow \uparrow \uparrow \uparrow \uparrow$
B. $\downarrow \uparrow \downarrow \uparrow$
C. $\uparrow \uparrow \uparrow \downarrow \downarrow$
D. none of these

Answer: a

- Watch Video Solution

67. Ferrimagnetic is converted into ferromagnetic at :
A. 300 K
B. 400 K
C. 600 K
D. 850 K

Answer: d

68. An alloy of copper and gold crystallizes in cubic lattic, in which the $A u-$ atoms occupy the lattice points at the corners of cube and $C u-$ atoms occupy the centre of each face. The formula of this alloy is :
A. $A u C u$
B. $A u C u_{2}$
C. $A u C u_{3}$
D. $A u_{3} C u$

Answer: c

- Watch Video Solution

69. The crystal structure adopted by iron is shown below. The distance between the nearest iron atoms is

A. $286 p m$
B. $124 p m$
C. $143 p m$
D. $247.6 p m$

Answer: d

D Watch Video Solution

70. Which of the following figures represents the cross section of an $O V$?
(a)

A.
(b)

B.
(c)

Answer: d

D Watch Video Solution

71. The $C a^{2+}$ and F^{-}ions located in $C a F_{2}$ crystal respectively at $f . c . c$. lattice points and in:
A. octahedral voids
B. tetrahedral voids
C. half of octahedral voids
D. half of tetrahedral voids

Answer: b

- Watch Video Solution

72. If r is the radius of the octahedral voids and R is the radius of the atom in close packing,then :

$$
\begin{aligned}
& \text { A. } \frac{R}{r}=9.1 \\
& \text { B. } \frac{R}{r}=3.22 \\
& \text { C. } \frac{R}{r}=2.41 \\
& \text { D. } \frac{R}{r}=4.67
\end{aligned}
$$

Answer: d
73. CsBr crystallises in a body centred cubic lattice. The unit cell length is 436 pm . Given that the atomic mass of
$\mathrm{Cs}=133$ and that of $\mathrm{Br}=80 \mathrm{amu}$ and Avagadro number being $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ the density of CsBr is
A. $8.5 \mathrm{~g} / \mathrm{cm}^{3}$
B. $4.25 \mathrm{~g} / \mathrm{cm}^{3}$
C. $42.5 \mathrm{~g} / \mathrm{cm}^{3}$
D. $0.425 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: a

74. The appearance of colour in solide state of alkali metal halides is generally due to :
A. Frenkel defect
B. Interstitial positions
C. F - centres
D. Schottky defect

Answer: c

D Watch Video Solution

75. The mole fraction of Schottky defect and Frenkel defects, in NaCl crystal at 1000 K are respectively. If
energy required to produce these defects are 2 eV and 3 eV respectively.

$$
\left(1 \mathrm{e} V=1.6 \times 10^{-19} J \text { and } k=1.38 \times 10^{-23} J K^{-1}\right)
$$

A. 3.62×10^{-7} and $\left.6.32 \times 10^{-9}\right)$
B. 9.17×10^{-6} and 3.924×10^{-8}
C. 2.86×10^{-5} and 5.38×10^{-8}
D. 5.40×10^{-8} and 8.31×10^{-9}

Answer: b

D Watch Video Solution

76. If a stands for the edge length of the cubic system : simple cubic, body - centred cubic anf face centred cubic, then the ratio of radii of the spheres in these systems will be respectively:

$$
\begin{aligned}
& \text { A. } \frac{a}{2}: \frac{a \sqrt{3}}{2}: \frac{a \sqrt{2}}{2} \\
& \text { B. } 1 a: \sqrt{3} a: \sqrt{2} a \\
& \text { C. } \frac{a}{2}: \frac{a \sqrt{3}}{4}: \frac{a}{2 \sqrt{2}} \\
& \text { D. } \frac{a}{2}: \sqrt{3} a: \frac{a}{\sqrt{2}}
\end{aligned}
$$

Answer: c

- Watch Video Solution

77. Which of the following relation is correct for first order Bragg's diffraction?
A. $\sin \theta=\frac{\lambda}{2 a}\left(h^{2}+k^{2}+l^{2}\right)^{1 / 2}$
B. $\sin \theta=\frac{\lambda}{2 a}\left(h^{2}+k^{2}+l^{2}\right)^{2}$
C. $\sin \theta=\frac{2 a}{\lambda}\left(h^{2}+k^{2}+l^{2}\right)^{1 / 2}$
D. $\sin \theta=\frac{2 a}{\lambda}\left(h^{2}+k^{2}+l^{2}\right)^{2}$

Answer: a

- Watch Video Solution

78.

The graph represents the titration curve for :
A. strong acid and strong base
B. strong acid and weak base
C. weak acid and stong base
D. weak acid and weak base

D Watch Video Solution

79. Which of the following statements are correct ?
A. The co - ordination number of each type of ions in $C s C l$ crystal is 8 .
B. A metal that crystallizes in b.c.c. structure has
co - ordination number of 12 .
C. The length of a unit cell in NaCl is 552 pm

$$
\left(r_{N a^{+}}=95 p m, r_{C l^{-}}=181 p m\right)
$$

D. A unit cell of an ionic crystals shares some of its ions with other unit cells.

Answer: a,c,d

- Watch Video Solution

80. The corrent statement regarding defects is solids in solids is
A. Frenkel defect is usually favoured by a very small difference in the sezes of cation and anion.
B. Frenkel defect is a dislocation defect.
C. trapping of an electron in the lattice leads to the formation of F - centre
D. Schottky defects have no effect on the physical properties of solids.

Answer: b,c

- Watch Video Solution

81. Which of the following are not the characteristics of crystalline solids ?
A. They are exhibit polymorphism
B. The are isotropic
C. They do not have thermodynamic defects
D. After melting, they become crystalline

Answer: b,c

- Watch Video Solution

82. Which of the following statements are correct ?
A. The cations occupy more space than atoms in crystal packing
B. In Schottky defect, equal number of cation and anion vacancies are present
C. Ionic solids show change in density due to Frenkel defect.
D. An increase in pressure on NaCl crystal, the $6: 6$

$$
\text { co - ordination changes to } 8: 8 \text { co }- \text { ordination }
$$

Answer: a,b,d

- Watch Video Solution

83. Which of the following statements are false ?
A. The radius of a metal atom is taken as half the nearest metal - metal distance in a metallic crystal
B. One tetrahedral void per atom is present in h. c. p. structure
C. In the fluorite structure $\left(C a F_{2}\right)$, the $C a^{2+}$ ions are located at the lattice points and the fluoride ions fill all the tetrahedral holes in the c.c.p. crystal
D. In the antifluorite structure $\left(L_{2} O, R b_{2} S\right)$ the cations are located at the lattice points and anions fill the tetrahedral holdes in the c.c.p. structure.

Answer: b,d

- Watch Video Solution

84. If the radius of Na^{+}ion is 95 pm and that of Cl^{-} ion is $181 p m$, then :
A. co - ordination no. of $N a^{+}$is 6
B. co - ordination no. of Na^{+}is 8
C. length of the unit cell is $552 p m$
D. length of the unit cell is 380 pm

Answer: a,c

D Watch Video Solution

85. Which of the following having their radius ratio between 0.414 to 0.73 , i.e., for NaCl structure have
their radius ration not in theis range but possess NaCl type structure?
A. KCl
B. BaO
C. RbCl
D. LiBr

Answer: a,b,c,d

- Watch Video Solution

86. Which of the following statement (s) is (are)
correct ?
A. When the radius ration is in the range
$0.414-0.732$, a b.c.c. arrangement with co ordination no. 8
B. When the ration ratio is in the rage $0.225-0.414$,
a tetrahedral arrangement with co - ordination
no. 4
C. When the radius ratio is in the range
$0.155-0.225$, an octahedral arrangement with co

- ordination no. 6
D. In $B_{2} O_{3}$, smaller cations occupy triangular voids
and a planar trigonal arrangement with co ordination no. 3

Answer: b,d

- Watch Video Solution

87. In the crystal structure of CsCl :
A. $C l^{-}$ions are present at the corners of a cube
B. $C s^{+}$ions are present in the cubic voids
C. Cl^{-}ions are present in the cubic voids
D. the close packed structure is formed by Cs^{+}ions

Answer: a,b

88. If radius of anion is 0.20 nm , the maximum radius of cations which can be filled in respective voids are correctly matched in :
A. $r^{+}=0.045 n m$ triangular void
B. $r^{+}=0.0828 \mathrm{~nm}$ for tetrahedral void
C. $r^{+}=0.1464 n m$ for octahedral voids
D. none of these

Answer: a,b,c

- Watch Video Solution

89. Which of the following statement (s) is (are) correct
for $C a F+(2)$?
A. Ca^{2+} ions are present only at the corners of a cube
B. c. c. p. type structure
C. F^{-}ions are present in all the octahedral voids
D. The structure has 8:4co - ordination

Answer: b,d

- Watch Video Solution

90. Which of the following statement are correct for the

 ionic solids in which positive and negative ions are held by strong electrostatic attractive forces ?A. The radius ratio r^{+} / r^{-}increases as co ordination number increases
B. As the difference in size of ions increases co -
ordination number increases
C. When $c o-$ ordination number is 8 , the r^{+} / r^{-}
ratio lies between 0.225 to 0.414
D. In ionic solid of the type $A X(Z n S$, Wurtzite $)$
the co - ordination number of $Z n^{+}$and S^{+}are

4 and 4 respectively

Answer: a,b,d

D Watch Video Solution

91. $N a$ and $M g$ crystallise in b.c.c. and f.c.c. type crystals respectively, then the number of atoms of $N a$ and $M g$ present in the unit cell of their repsectively crystal is :
A. 4 and 2
B. 9 and 14
C. 14 and 9
D. 2 and 4

(D) Watch Video Solution

92. How many unit cell are present in a cubic-shaped ideal crystal of NaCl of mass $1.0 g$?
A. 1.28×10^{21} unit cells
B. 1.71×10^{21} unit cells
C. 2.57×10^{21} unit cells
D. 5.14×10^{21} unit cells

Answer: C
93. What type of crystal defect is indicated in the diagram given below
$N a^{\oplus} \quad C l^{\ominus} \quad N a^{\oplus} \quad C l^{\ominus} \quad N a^{\oplus} \quad C l^{\ominus}$
$C l^{\ominus} \quad \square \quad C l^{\ominus} \quad N a^{\oplus} \quad \square \quad C l^{\ominus}$
$N a^{\oplus} C l^{\ominus} \quad \square \quad C l^{\ominus} \quad N a^{\oplus} \quad C l^{\ominus}$
$C l^{\ominus} \quad N a^{\oplus} \quad C l^{\ominus} \quad N a^{\oplus} \quad \square \quad N a^{\oplus}$
A. Frenkel and Schottky defects
B. Schottky defect
C. Interstitial defect
D. Frenkel defect

Answer: B

94. An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centers of the faces of the cube. The empirical formula for this compound would be
A. $A B$
B. $A_{2} B$
C. $A_{3} B$
D. $A B_{3}$

Answer: d

95. The volume of atom present in a face-centred cubic

 unit cell of a metal (r is atomic radius) isA. $\frac{20}{3} \pi r^{3}$
B. $\frac{24}{3} \pi r^{3}$
C. $\frac{12}{3} \pi r^{3}$
D. $\frac{16}{3} \pi r^{3}$

Answer: D

- Watch Video Solution

96. In a compound atoms of element Y form ccp lattice and those of element X occupy $2 / 3^{\text {rd }}$ of tetrahedral
voids. The formula of the compound will be
A. $X_{4} Y_{3}$
B. $X_{2} Y_{3}$
C. $X_{2} Y$
D. $X_{3} Y_{4}$

Answer: a

D Watch Video Solution

97. Copper crystallises in fcc with a cell length of 361 pm

What is the radius of copper atoms?
A. $108 p m$
B. $127 p m$
C. $157 p m$
D. $181 p m$

Answer: B

- Watch Video Solution

98. The edge length of a face-centred cubic unit cell is
$508 \pm$. If the radius of the cation is $110 \pm$ the radius of the anion is
A. $288 p m$
B. $398 p m$
C. $618 p m$
D. $144 p m$

Answer: D

D Watch Video Solution

99. Percentage of free space in cubic close packed struchure and in body centred structure are respectively.
A. 30% and 26%
B. 26% and $32 \%^{`}$
C. 32% and 48%

Answer: B

D Watch Video Solution

100. In a face centred cubic lattice, atom A occupies the corner positions and atom B occupies the face centred positions. If one atom of B is missin from one of the face centred points,, the formula of the compound is :
A. $A_{2} B$
B. $A B_{2}$
C. $A_{2} B_{2}$
D. $A_{2} B_{5}$

Answer: d

- Watch Video Solution

101. Lithium forms body centred cube structure .The length of the side of its unirt cell is 351 pm Atomic radius of the lithium will be
A. $300 p m$
B. 240 pm
C. $152 p m$
D. 75 pm

- Watch Video Solution

102. The coordination number of a metal crystallizing in
a hexagonal close-packed structure is
A. 12
B. 4
C. 8
D. 6

Answer: A
103. In a solid $A B$ having the $N a C l$ structure, A atom occupies the corners of the cubic unit cell. If all the facecentred atoms along one of the axes are removed, then the resultant stoichiometry of the solid is
A. $A B_{2}$
B. $A_{2} B$
C. $A_{4} B_{3}$
D. $A_{3} B_{4}$

Answer: A
104. A substance $A_{x} B_{y}$ crystallizes in a face-centred cubic lattice in which atoms A occupy the centres of each face of the cube. Identify the correct composition of the substance $A_{x} B_{y}$.
A. $A B_{3}$
B. $A_{4} B_{3}$
C. $A_{3} B$
D. can not be specified

Answer: A

105. In which of the following crystals, alternate tetrahedral voids are occupied?
A. NaCl
B. $Z n S$
C. $\mathrm{CaF}_{2} \mathrm{O}$
D. $\mathrm{Na}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

106. The packing efficiency of a two-dimensional square unit cell shown below is

A. 32.97%
B. 68.02%
C. 74.05%
D. 78.54%

- Watch Video Solution

107. A compound $M_{p} X_{q}$ has cubic close packing (p) arrangement of X. Its unit cell structure is shown below. The empirical formula of the compound is

a. MX
b. MX_{2}
c. $\mathrm{M}_{2} \mathrm{X}$
A. $M X$
B. $M X_{2}$
C. $M_{2} X$
D. $M_{5} X_{14}$

Answer: b

- Watch Video Solution

108. A molecule $A_{2} B(M w=166.4)$ occupies triclinic lattice with $a=5 \AA, b=8 \AA$, and $c=4 \AA$, If the density of $A B_{2}$ is $5.2 \mathrm{gcm}^{-3}$, the number of molecules present in one unit cell is
109. Chromium metal crystallizes with a body-centred cubic lattice. The length of the unit cell edge is found to be 287 pm . Calculate the atomic radius. What woulds be the density of chromium in gcm^{-3} ?

- Watch Video Solution

110. Calculate the number of atoms in a cubic-shared unit cell having one atom on each corner and two atoms one each diagonal.

D Watch Video Solution

111. If the radius of $C s^{+}$si 169 pm and that of $C l^{-}$is $181 p m$, then find the co - ordination number of $C s^{+}$

(D) Watch Video Solution

112. A compound $A B_{x}$ is formed such that A atoms are at corners and B atoms at face centre. Find the value of x.

D Watch Video Solution

113. Ice crystallizes in hexagonal lattice. At the low temperature at which structure was determined, the
lattice contents were were $a=4.53 \AA$ and $c=7.41 \AA$.
$c=741 \AA$. Calcuate the no. of $\mathrm{H}_{2} \mathrm{O}$ molecules present in a unit cell. (Density of ice $=9.22 \mathrm{~g} / \mathrm{cm}$)

D Watch Video Solution

114. The density of $C r$ atoms is $7.02 \mathrm{~g} / \mathrm{cm}$. If the unit cell has edge length 289 pm . Calculate the number of chromium atoms per unit cell. (at masss of $C r=52$).

D Watch Video Solution

115. In $C s C l$ with cubic structure, $C l^{-}$ions are located at each corner and $C s^{+}$ions at the centre of the unit
cell. If $r_{C s^{+}}$and $r_{C l^{-}}$and $1.69 \AA$ and $1.81 \AA$ respectively.
Find the value of edge length of cube.

- Watch Video Solution

116. Find the coordination of $N a^{\oplus}$ in $N a_{2} O$.

- Watch Video Solution

117. The density of $K B r$ is $2.73 \mathrm{~g} / / \mathrm{cm}$
.The $\leq n>$ hoftheunitcellis654p $\mathrm{m}^{`}$. Find the number of atoms per unit cell in the cubic structure.

Watch Video Solution

118. At room temperature, sodium crystallized in a body

- centred cubic lattrice with $a=4.24 \AA$. Calculate theoretical density of sodium (at wt. of $N a=23$).

(D) Watch Video Solution

119. Analysis shows that nickel oxide has the formula
$N i_{0.98} O_{1.00}$. What fractions of nickel "exist" as $N i^{2+}$ and $N i^{3+}$ ions?

D Watch Video Solution

120. 1 mole of an ideal monoatomic gas is mixed with

1mole of an ideal diatomic gas. The molar specific heat
of the mixture at constant volume is :

Watch Video Solution

121. Temperature of 1 mol of a gas is increased by 1° at constant pressure. The work done is

- Watch Video Solution

122. For a gaseous reaction
$A+3 B \Leftrightarrow 2 C, \Delta H^{\circ}=-90.0 k J, \Delta S^{\circ}=-200.0 j k^{-1}$
AT $400 k$. The ΔG° for the reaction $\frac{1}{2} A+\frac{3}{2} B \rightarrow C$ at 400 K is :
123. Find the number of Na^{+}ions and Cl^{-}ions associated with each in a unit cell and NaCl .

- Watch Video Solution

124. Find the number of hexagonal faces that are present in a truncated octahedral.

D Watch Video Solution

125. A solid made up of ions of A and B possess edge length of unit cell of $0.5664 n m$ has four formula units.

Among the two ions, the smaller one occupy the
interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The density of solid is :
A. $2.16 \mathrm{~g} / \mathrm{cm}^{3}$
B. $0.54 \mathrm{~g} / \mathrm{cm}^{3}$
C. $1.08 \mathrm{~g} / \mathrm{cm}^{3}$
D. $1.562 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: a

- Watch Video Solution

126. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The ionic radius of B ion assuming anion - anion contact is :
A. $1.815 \AA$
B. $1.994 \AA$
C. $1.682 \AA$
D. $1.712 \AA$

Answer: b

- Watch Video Solution

127. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The ionic radius for A^{+}ion is :
A. $0.755 \AA$
B. $0.625 \AA$
C. $0.826 \AA$
D. $0.914 \AA$

Answer: c

- Watch Video Solution

128. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The co - ordination number of solid is :
A. 8
B. 6
C. 4
D. 2

Answer: b

D Watch Video Solution

129. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of
solid has mass $9.712 \times 10^{-23} g$.
Which statement is wrong about solid is :
A. Cation fills the void
B. The solid has octahedral voids filled by A^{+}ions
C. Anion fills the void
D. Each anion has six octahedral holes

Answer: c

D Watch Video Solution

130. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The structural arrangement of $A B$ is :
A. cubic
B. octahedral
C. tetrahedral
D. triangular

Answer: b

131. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units. Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The solid $A B$ is supposed to have structure like :
A. NaCl
B. CsCl
C. $Z n S$
D. $B a S$
132. A solid made up of ions of A and B possess edge length of unit cell of 0.5664 nm has four formula units.

Among the two ions, the smaller one occupy the interstitial void and the larger ions occupy the space lattice with ccp type of arrangement. One molecule of solid has mass $9.712 \times 10^{-23} g$.

The solide $A B$ is supposed to show :
A. Schottky defect
B. Frenkel defect
C. non - stoichiometric defect
D. none of these

Answer: A

- Watch Video Solution

133. In a hexaonal system system of cycstals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are refular hexagons, and three atoms are sandwiched in between them. A space-cilling model of this structure, called hexagonal close-paked is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three spherres are then placed overt the first layer so that they toych each other and represent the
second layer so that they toych each other and present
the second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the second
layer is convered with a third layer identical to the bottom layer in relative position. Assume the radius of every sphere to be r.

The number of atom in this hcp unit cell is
A. 4
B. 6
C. 12
D. 17

Answer: B

134. In a hexaonal system system of cycstals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are refular hexagons, and three atoms are sandwiched in between them. A space-cilling model of this structure, called hexagonal close-paked is constituted of a sphere on a flat surface surrounded in
the same plane by six identical spheres as closely as
possible. Three spherres are then placed overt the first
layer so that they toych each other and represent the
second layer so that they toych each other and present
the second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the second
layer is convered with a third layer identical to the bottom layer in relative position. Assume the radius of every sphere to be r.

The voume of this hcp unit cell is
A. $24 \sqrt{2} r^{3}$
B. $16 \sqrt{2} r^{3}$
C. $12 \sqrt{2} r^{3}$
D. $\frac{64}{3 \sqrt{3}} r^{3}$

Answer: a

- Watch Video Solution

135. In a hexaonal system system of cycstals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are refular hexagons, and three atoms are sandwiched in between them. A space-cilling model of this structure, called hexagonal close-paked is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three spherres are then placed overt the first layer so that they toych each other and represent the
second layer so that they toych each other and present
the second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the second
layer is convered with a third layer identical to the
bottom layer in relative position. Assume the radius of every sphere to be r.

The empty space in this hcp unit cell is
A. 74%
B. 47.6%
C. 32%
D. 26%

Answer: d

- Watch Video Solution

136. The $C s C l$ has cubic structure of $C l^{-}$ions in which
$C s^{+}$in which $C s^{+}$ion is present in the body centre of
the cube. It density is $3.99 \mathrm{gcm}^{-3}$.
Then length of the edge of unit cell is :
A. $312 p m$
B. $412 p m$
C. $436 p m$
D. $536 p m$

Answer: b
137. $C s C l$ has cubic structure. Its density is $3.99 \mathrm{gcm}^{-3}$.

What is the distance between $C s^{\oplus}$ and $C l^{\Theta}$ ions?
(Atomic mass of $C s=133$)
A. $256.8 p m$
B. $348.8 p m$
C. 248. $8 p m$
D. $356.8 p m$

Answer: d

- Watch Video Solution

138. The $C s C l$ has cubic structure of $C l^{-}$ions in which
$C s^{+}$in which $C s^{+}$ion is present in the body centre of the cube. It density is $3.99 \mathrm{gcm}^{-3}$.

The radius of $C s^{+}$ion if the radius of Cl^{-}ion is 180 pm is :
A. $180.6 p m$
B. ${ }^{2} 276.8 \mathrm{pm}$
C. $176.8 p m$
D. $280.6 p m$

Answer: c
139. Statement: Initially the term pseudo - solid was given for solids which were easily distorted by bending and compressing forces. They even tend to flow slowly under its own weight and lose shape.

Explanation : These, characteristics are shown by pseudo - solids as in pitch, glass and thus the name pseudo - solid was replaced by super - cooled liquids.

- Watch Video Solution

140. Assertion :The close packing of atoms in cubic structure is in the order $f>b>s c$ Reason: Packing density $=\frac{\text { Volume of unit cell }}{a^{3}}$

- Watch Video Solution

141. Assertion : In hexagonal close packing vaccant space are between three touching spheres whose centes lie at the coeners of an equilateral traingle

Reason :In hexagonal close packing voids are called voids are called square voids

D Watch Video Solution

142. Assertion :Bragg's equation has no solution, if $n=2$ and $\lambda>d$

Reason : Bragg's equation is $n \lambda=2 d \sin \theta$
143. Statement : 6:6co- ordination at normal tempeature and pressure changes to 8:8 co ordination at high pressure.

Explanation : Pressure influences the structure of solids.

D Watch Video Solution

144. Statement: $8: 8$ co - ordination of CsCl at low temperature changes to $6: 6$ co - ordinationat 760 K .

Explanation: Temperature also infuences the strutures of solids.
145. Statement : Solids containing F - centres are paramagnetic.

Explanation : $F-$ centres solids possess holes occupied by unpaired electrons.

- Watch Video Solution

146. Assertion : Solids having more F-centre possess intense colour

Reason: Excess of Na^{+}in NaCI solid having F-centers makes it appear pink
147. Statement : The conductance through electrons is called n - type conductance and if through positive holes it is called p - type conducton.

Explanation : Doping involves preparation of semi conductors by the presence of impurities in the intrisic semi - conductor.

- Watch Video Solution

148. Statement I: In any ionic solid $[M X]$ with Schottky defect, the number of positive and negative ions are same.

Statement II: An equal number of cation and anion vacancies is present.

- Watch Video Solution

149. Statement : Due to Frenkel defect the density of the crystalline solid remains same.

Explanation : In Frenkel defect, no cations or anions leave the lattice.

- Watch Video Solution

150. Statement : Schottky defect is generally shown by the compounds with high co - ordination no.

Explanation : Equal no. of cations and anions are missing from the lattice sites in Schottky defect.

D Watch Video Solution

151. Calculate the number (n) of atoms contained within (a) cubic cell, (b) a body - centred cubic cell, (c) a face - centred cubic cell.

- Watch Video Solution

152. A body - centred cubic lattice is composed of anions Q and cations P, where ions Q occupy the corners and ions P occupy the centre.
(i) What is the formula of the compound?
(ii) What is the co - ordination number of P and Q ?

- Watch Video Solution

153. A compound formed by elements A and B crystallizes in cubic structure, where A atoms are at the corners of a cube and B atoms are at the face centre. What is the formula of the compound ?

- Watch Video Solution

154. Calculate the co - ordination number of an atom in :
(i) A primitive cubic unit cell,
(ii) A body - centred cubic unit cell.
(iii) A face - centred cubic unit cell.

D Watch Video Solution

155. In a close packed structure of an ionic compound anions B form the close packed lattice and the cations
A occupy octahedral voids.Predict the formula of the compound.
156. In corrundum, oxid ions are arranged in h.c.p. array and the aluminum ions occupy two - thirds of octahedral voids. What is the formula of currundum ?

- Watch Video Solution

157. A solid between A and B has the following arrangement of atoms :
(i) Atoms A are arranged in c. c. p. array.
(ii) Atoms B occupy all the all the octahedral voids and half the tetrahedral voids. What is the formula of the compound ?
158. In a closed packed structure of mixed oxides, the lattice is composed of mixed oxides ions. One-eighth of tetrahedral voids are occupied by divalent cation $\left(A^{2+}\right)$ while one-half of octahedral voids are occupied by trivalent cations $\left(B^{3+}\right)$. The fromula of mixed oxide is

- Watch Video Solution

159. In a crystal of an ionic compound, the anions B
form a close packed lattice and the cations A occupy
one half of the tetrahedral voids. What is the formula of the compound ?
160. In a crystal of an ionic compound, the anions B
form a close packed lattice and the ions A occupy all the tetrahedral voiods. What is the formula of the compound ?

D Watch Video Solution

161. A closed packed structure of uniform spheres has
the cell edge $=0.8 \mathrm{~mm}$. Calculate the radius of molecule if it has :
(a) simple cubic lattice,
(b) b. c. c. lattice,
(c) f.c.c. lattice.

- Watch Video Solution

162. An ionic solid $A^{\oplus} B^{\Theta}$ crystallizes as an bcc
structure. The distance between cation and anion in the
lattice is $338 \pm$. The edge length of cell is

- Watch Video Solution

163. The edge length of a body - centred cubic unit cell is $390 p m$. If the radius of the cation is $150 p m$, what is the radius of the anion?
164. The edge length of a face - centred cubic unit cell is 508 pm . If the radius of the anion is 144 pm , what is the radius of the cation?

- Watch Video Solution

165. The unit cube length for LiCl (NaCl structure) is
5.14 \AA. Assuming anion-anion contact, calculate the
ionic radius for chloride ion.

- Watch Video Solution

166. The length of the unit cell edge of a body centred cubic metal crystal is 352 pm . Calculate he radius of an atom of the metal.

D Watch Video Solution

167. Cesium bromide crystallizes in the cubic system. Its unit cell has a Cs^{+}ion at the body centred and a Br ion at each corner. Its density is $4.44 \mathrm{gcm}^{-3}$. Determine the length of the unit cell edge.

D Watch Video Solution

168. Calculate the value of Avogadro number from the internuclear distance of adjacent ions in
$\mathrm{NaCl}, 0.282 \mathrm{~nm}$ and the density of solid NaCl is $2.17 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. A unit cell contains 4 NaCl formula units.

- Watch Video Solution

169. Lithium borohydride crystallizes in an orthorhombic system with 4 molecule per unit cell. The unit cell dimensions are $a=6.8 \AA, b=4.4 \AA$ and $c=7.2 \AA$. If the molar mass is 21.76 , calculate density of crystal.

D Watch Video Solution

170. An element crystallizes as body - centred cubic lattic. Its density is $7.12 \mathrm{gcm}^{-3}$ and the length of the side of the unit cell is $2.88 \AA$. Calculate the number of atoms present is $288 g$ of the element.
171. A compound CuCl has face - centred cubic structure. Its density is $3.4 \mathrm{gcm}^{-3}$. What is the length of unit cell ?

- Watch Video Solution

172. The density of KCl is $1.9893 \mathrm{~g} . \mathrm{cm}^{-3}$ and the length of a side of unit cell is $6.29082 \AA$. The value of Avogadro's number is:

D Watch Video Solution

173. A face-centred cubic element (atomic mass 60) has a cell edge of 400 pm . What is its density?

- Watch Video Solution

174. Potassium fluoride $(K F)$ has $N a C l$ structure . Its density is $2.48 \mathrm{gcm}^{-3}$ and its molar mass is $58 \mathrm{gmol}^{-1}$.

Compute the distance between K^{+}and F^{-}ions $\in \mathrm{KF}^{\prime}$.

- Watch Video Solution

175. At room temperature, sodium crystallized in a body - centred cubic lattrice with $a=4.24 \AA$. Calculate
theoretical density of sodium (at wt. of $N a=23$).

- Watch Video Solution

176. Calculate the value of Avogadro's number from the following data:

Density of $\mathrm{NaCl}=2.165 \mathrm{gcm}^{-3}$
Distance between $N a^{\oplus}$ and $C l^{\Theta}$ in $N a C l=281 \mathrm{pm}$

- Watch Video Solution

177. An element crystallizes into a structure which may be describes by a cubic type of unit cell having one atom on each corner of the cube and two atoms on one
of its diagonals. If the volume of this unit cell is $24 \times 10^{-24} \mathrm{~cm}^{3}$ and density of element is $7.2 \mathrm{gcm}^{-3}$.

Calculate the number of atoms present in 200 g of element.

- Watch Video Solution

178. The density of solid argon is $1.65 \mathrm{~g} / \mathrm{mL}$ at $-233^{\circ} \mathrm{C}$
. If the argon atom is assumed to be sphere of radius $1.54 \times 10^{-8} \mathrm{~cm}$, what percentage of solid argon is apparentaly empty space ? $(A t . W t$. of $A r=40)$

- Watch Video Solution

179. Two ions A^{\oplus} and B^{Θ} have radii 88 and 200 pm , respectively. In the close-packed crystal of compound $A B$, predict coodination number of A^{\oplus}.

- Watch Video Solution

180. If NaCl is doped with $10^{-3} \mathrm{~mol} \%$ of SrCl_{2}, what is
the concentration of cation vacancies?

D Watch Video Solution

181. In the cubic crystal of $C s C l\left(d=3.97 \mathrm{gcm}^{-3}\right)$, the eight corners are occupied by $C l^{\Theta}$ with a $C s^{\oplus}$ at the
centre and vice versa. Calculate the distance between the neighbouring $C s^{\oplus}$ and $C l^{\Theta}$ ions. What is the radius of the two ions? ($A w$ of $C s=132.91$ and $C l=35.45)$

- Watch Video Solution

182. Calculate λ of X-rays which give a diffraction angle $2 \theta=16.8^{\circ}$ for crystal, if the interplanar distance in the crystal is $0.2 n m$ and that only for the first-order diffraction is observed. Given $\sin 8.40^{\circ}=0.146$.

- Watch Video Solution

183. The angle of diffraction 2θ for a first - order nature was found to be $27^{\circ} 8^{\prime}$ using $X-$ rays of wavelength $2.29 \AA$. Calculate the distance between two diffracted planes.

(D) Watch Video Solution

Exercise 9

1. Gold has a close - packed structure which can be viewed as spheres occupying 0.74 of the total volume . If
the density of gold is $193 g / c c$, calculate the apparent radius of a gold ion in the solid.
