©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - R SHARMA CHEMISTRY

(HINGLISH)

CHEMICAL BONDING

Examples

1. Use the Lewis dot symbols to describe the
formation of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$.

Strategy: The Lewis dot symbols of Al and O
are
$: A l . \quad . \ddot{O}$.

Thus, the common valency of $A l$ is 3 while that
of O is two. As a result, aluminium tends to
form the trivalent cation $\left(A l^{3+}\right)$ and oxygen,
the divalent anion $\left(O^{2-}\right)$. The transfer of electrons is from Al to O . There are three
valence electrons in each Al atom, each O
atom needs two electrons to form the O^{2-}
ion, which is isoelectronic, with neon. Thus, the
simplest neutralizing ratio of $A l^{3+}$ to O^{2-} is
$2: 3$, two $A l^{3+}$ ions have a total charge of $6+$
and three O^{2-} ions have a total charge of
$6-$. Thus, the empirical formula of aluminium oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$.

- Watch Video Solution

2. Draw a Lewis structure for nitrogen trichloride, $N C l_{3}$.

D Watch Video Solution
3. Write the Lewis dot structure of $C O$ molecule.

D Watch Video Solution
4. Draw the Lewis structure of nitric acid,
HNO_{3}.

D Watch Video Solution
5. Draw a Lewis structure for the bicarbonate ion, HCO_{3}^{-}.

D Watch Video Solution
6. Write the Lewis dot structure of the nitrite ion $\left(\mathrm{NO}_{2}^{\Theta}\right)$.

- Watch Video Solution

7. Draw the Lewis structure of $B e C l_{2}$.

- Watch Video Solution

8. Draw a Lewis structure of nitric oxide, NO.

- Watch Video Solution

9. Draw the Lewis structure for $S F_{6}$.

D Watch Video Solution
10. Draw the Lewis structure of iodine pentafluoride, $I F_{5}$.

D Watch Video Solution

11. Write the resonance structures for $\mathrm{N}_{2} \mathrm{O}_{4}$ which has an $N-N$ bond as suggested by experiments.

D Watch Video Solution

1. Matter consists of
(i) elements
(ii) compounds
(iii) mixtures of elements
(iv) mixtures of compounds
A. (i), (ii)
B. (i), (ii), (iii)
C. (i), (ii), (iii), (iv)
D. (i), (ii), (iii)

Answer: C

D Watch Video Solution

2. Two or more atoms of the same or different elements chemically combine to form a
(i) molecule of an element
(ii) molecule of a covalent compound
(iii) polyatomic ion
(iv) network solid
A. (i), (ii)
B. (i), (ii), (iii)
C. (i), (ii), (iv)
D. (i), (ii), (iii), (iv)

Answer: D

D Watch Video Solution

3. During the formation of a chemical bond, the potential energy of the interacting atoms is lowered by at least $k J m o l=1$.
A. 40
B. 50
C. 60
D. 30

Answer: A

D Watch Video Solution
4. How many extreme types of chemical bonds exists in chemical species?
A. Two
B. Three
C. Four
D. Five

Answer: B

D Watch Video Solution

5. According to the electronic theory of chemical bonding, developed independently
representative elements can combine either by the transfer of valence electrons from one atom to another (gaining or losing) or by the sharing of valence electrons in order to have an octet in their \qquad . This is known as octet rule.
A. inner shell
B. penultimate hsell
C. antepenultimate shell
D. outermost shell

Follow Up Test 2

1. An ionic bond is the electrostatic attraction
between positive and negative ions which are formed by two different elements when
A. both have low negative electron gain enthalpy
B. both have high ionization enthalpy
C. one of the elements has low ionization enthalpy and the other has a high negative electron gain enthalpy D. one of the elements has high $\Delta_{1} H$ and
the other has a low negative $\Delta_{e g} H$

Answer: C

D Watch Video Solution

2. The electrovalency of the element is equal to the
A. number of electrons lost
B. number of electrons gained
C. number of electrons transferred
D. number of electrons lost or gained by
the atom of the element during the
formation of ions of ionic compound

Answer: D
3. We cannot describe the shape and geometry of the formula units of ionic compounds because ionic bonds are
A. very strong
B. nondirectional
C. formed through exchange of electrons
D. very rare
4. What is the coordination number of an ion in sodium chloride?
A. 6
B. 8
C. 4
D. 2

Answer: A
5. The coordination number of ions in ionic solids is decided by the
A. magnitude of charge on the ions
B. number of electrons in the ions
C. ionic radii of ions
D. electronic configurations of ions

Answer: C

- Watch Video Solution

6. Which of the following polar solvents has the highest dielectric constant?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{D}_{2} \mathrm{O}$
C. $\mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Answer: A
7. Lattice enthalpy is the change in energy that occurs when __of an ionic solid is separated into isolated ions in the gas phase.
A. one gram
B. one mole
C. one gram atom
D. one gram molecule

Answer: B

D Watch Video Solution
8. Which of the following ionic solids has the lowest melting point?
A. $K C l$
B. $N a C l$
C. $L i F$
D. LiCl

Answer: D

D Watch Video Solution
9. Most of the monatomic ions of the representative elements are obtained by removing all the valence electrons from the atoms of metallic elements. Once these atoms
have lost their valence electrons, they have stable noble gas or pseudo noble gas configurations.

Which of these elements forms a cation having pseudo noble gas configuration?
A. $M g$
B. $G a$

C. K

D. Al

Answer: B

D Watch Video Solution

10. Group 13 elements show less tendency to
form ionic compounds than do group 1 and 2 elements, which primarily form ionic compounds because
A. they are p-block elements
B. they fall after d-block elements
C. the loss of successive electrons from an atom requires increasingly more energy

D. none of these

Answer: C

D Watch Video Solution

11. No compounds of representative elements
are found with ions having charges greater
than the group number because
A. these elements do not exhibit variable
valency
B. once atoms of these elements have lost
their valence electrons, they have stable
noble gas or pseudo noble gas
configurations
C. they are s - and p -block elements

D. they have good shielding electrons

Answer: B

D Watch Video Solution

12. There is a tendency for the elements of groups 13 to 15 of higher periods, particulary period 6, to form compounds with ions having a positive charge of ___ less than the group number.
A. one
B. three
C. four
D. two

Answer: D

D Watch Video Solution

13. The elements fo groups 16 and 17 whose atoms have the largest negative electron gain enthalpies would be expected to
form_____by gaining electrons to
give __________configurations.
A. polyatomic ions, noble gas
B. polyatomic ions, pseudo noble gas
C. monatomic ions, noble gas, or pseudo
noble gas
D. monoatomic ions, noble gas

Answer: C

14. Although the electron gain enthalpy of
$N\left(2 s^{2} 2 p 63\right)$ is positive, the N^{3-} ion $\left(2 s^{2} 2 p^{6}\right)$
is stable in the presence of certain positive ions such as
A. $N a$
B. $L i$
C. K
D. $R b$

Answer: B
15. Which of the following cations posses neither noble gas nor pseudo noble gas configurations?
(i) Bi^{3+} (ii) Pb^{2+}
(iii) $S n^{2+}$ (iv) $T l^{+}$
A. (ii), (iii)
B. (i), (iv)
C. (i), (ii), (iii)
D. (i), (ii), (iii), (iv)

Answer: D

D Watch Video Solution

16. Many ions, particulary anions, are polyatomic. The atoms in these ions are held together by
A. electrovalent bonds
B. hydrogen bonds
C. covalent bonds
D. metallic bonds

Answer: C

- Watch Video Solution

17. Cations are usually made from metals and anions are usually made from nonmetals, but there is one cation in ionic solids which is made from non metallic elements. The elements are
A. N and H
B. H and O

C. P and H

D. N and O

Answer: A

D Watch Video Solution

18. Most transition metals from several cations

having _______configurations.
A. pseudo noble gas
B. noble gas
C. both pseudo noble gas and noble gas
D. neither pseudo noble gas nor noble gas

Answer: A

D Watch Video Solution

19. In forming ions, the atoms of transition metals generally lose the ns electrons first, then they may lose one or more $(n-i) d$ electrons. The $2+$ ions are common for the transition elements and are obtained by the
loss of the highest energy electrons from the atom except
A. $N i$
B. $F e$
C. $C u$
D. $C o$

Answer: C
(Watch Video Solution
20. Many transition elements also form $3+$
ions by losing one $(n-1) d$ electron in addition to the two ns electrons except
A. $S c$
B. $C r$
C. $F e$
D. $N i$

Answer: D

D Watch Video Solution
21. In case of transition metals, certain atoms
can lose different numbers of valence electrons, i.e., they show variable electrovalency. The more stable ion is the one which has more stable core except
A. $F e^{3+}$
B. $C u^{2+}$
C. $C u^{+}$
D. $F e^{2+}$

Answer: B

- Watch Video Solution

22. Many ionic compounds in transition metal
ions are colored because of the electronic transitions (in the visible range) involving d electrons, whereas the ionic compounds of the representative elements are usually colorless.

Which of the following compounds is green in color?
A. $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

C. $\mathrm{NiCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$

D. $\mathrm{CoCl}_{2.6} \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

23. Aqueous solutions of transition metal cations are also colored. Which of the following imparts pale yellow color?
A. $F e^{3+}$
B. $F e^{2+}$
C. $M n^{2+}$
D. $C r^{3+}$

Answer: A

- Watch Video Solution

24. Which of the following catios forms colorless solution?
A. $C O^{2+}$
B. $N i^{2+}$
C. $C u^{2+}$
D. $Z n^{2+}$

Answer: D

D Watch Video Solution

25. Which of the following transition metal
catios have noble gas core?
(a) $S c^{3+}$ (b) Y^{3+}
(c) $L a^{3+}$ (d) $A c^{3+}$
A. (i), (ii), (iii)
B. (i), (ii), (iii), (iv)
C. (i), (ii), (iv)
D. (ii), (iii), (iv)

Answer: B

D Watch Video Solution
26. For the formation of ionic bond between
two atoms, the electronegativity difference
between them should be greater than or equal to
A. 1.7
B. 1.9
C. 2.0
D. 2.5

Answer: C

- Watch Video Solution

27. Although for $M g, \Delta_{i} H\left(378 \mathrm{kJmol}^{-1}\right)$ is greater than $\Delta_{i} H_{2}\left(1450 \mathrm{kJmol}^{-1}\right), \quad M g$ prefers to form MgCl_{2} rather than MgCl because
A. Mg^{2+} ion has the noble gas
configuration
B. Mg^{2+} ion is smaller than Mg^{+}
C. Mg^{2+} ion has higher charge than Mg^{+}

D. the lattice enthalpy of $M g C l_{2}$ is very

 high
Answer: D

D View Text Solution

28. Although Na^{2+} has a higher charge and,
therefore, NaCl_{2} should have a greater lattice enthalpy, sodium prefers to form NaCl rather
than $N a C l_{2}$ because
A. $\Delta_{i} H_{2}$ of $N a$ is very high
B. the lattice enthalpy of NaCl_{2} is far too small to compensate for the energy required to produce the $N a^{2+}$ ion
C. $N a^{2+}$ does not have the noble gas
electron configuration
D. the lattice enthalpy of $N a C l_{2}$ is less
than the lattice enthalpy of NaCl

Answer: B

Follow Up Test 3

1. A covalent bond results from the sharing of electrons between two atoms of
A. metallic elements
B. nonmetallic elements
C. metalloid elements
D. zero or relatively small electronegativity

Answer: D

D Watch Video Solution

2. Pairs of nonmetal atoms share electron pairs to form covalent bonds because the result of this sharing is that each atom attains
a more stable electron configuration, frequently the same as that of the
A. following noble gas
B. preceding noble gas

C. nearest noble gas

D. inert gas

Answer: C

D Watch Video Solution

3. The total number of lone pairs in a chlorine molecule is
A. six

B. three

C. four

D. two

Answer: A

D Watch Video Solution

4. Most covalent bonds involve the sharing of electrons.
(i) three (ii) two
(iii) four (iv) six
A. (i), (ii), (iii), (iv)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)
D. (ii), (iii)

Answer: B

D Watch Video Solution
5. How many covalent bonds are present in a molecule of carbon dioxide?
A. Two
B. Four
C. Six
D. Three

Answer: B

D Watch Video Solution
6. In a polyatomic ion such as the ammonium
ion, NH_{4}^{+}, the atoms are held together by
A. ionic bonds
B. covalent bonds
C. both ionic and covalent bonds
D. nondirectional bonds

Answer: B

D Watch Video Solution
7. Which of the follwing forms covalent compound?
A. Ca
B. Mg
C. Sr
D. Be

Answer: D

D Watch Video Solution

8. Which of the following conditions are fulfilled by the Lewis dot structure for carbon tetrachloride?
(i) Each covalent bond is formed as a result of sharing of an electron pair between the atoms.
(ii) Each combining atom contributes at least one electron to the shared pair.
(iii) The combining atoms attain the noble gas
configurations as a result of the sharing of electrons.
A. (i), (ii)
B. (ii), (iii)
C. (i), (iii)
D. (i), (ii), (iii)

Answer: D

- Watch Video Solution

Follow Up Test 4

1. The nitrogen atom shows a maximum
covalency of
A. six
B. five
C. four
D. three

Answer: C

D Watch Video Solution

2. Carbon suboxide $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)$ is a foul-smelling gas. Which of the following formulation represents the correct ground state Lewis structure for carbon suboxide?
А. $: O: C: C: C: O$:
B. $: O:: C:: C:: C: O$:
C. $: O: C: C: C: O$
D. $: \ddot{O}:: C: C:: C: \ddot{O}$:

Answer: D

D Watch Video Solution

3. $B F_{3}$ and NH_{3} combine readily because of
the formation of
A. a dative bond
B. an ionic bond
C. a hydrogen bond
D. a covalent bond

Answer: A

D Watch Video Solution
4. Lewis formulas are not normally written for
(i) s-block (ii) p-block
(iii) d-block (iv) f-block
A. (ii), (iii), (iv)
B. (iii), (iv)
C. (ii), (iii)
D. (i), (ii), (iii)

Answer: B

D Watch Video Solution
5. Which of the following is an electrondeficient compound?
A. BeCl_{2}
B. BCl_{3}
C. AlCl_{3}
D. All of these

Answer: D

- Watch Video Solution

6. Which one of the following is not a hypervalent compound?
A. $P F_{5}$
B. $S F_{4}$
C. $S i C l_{4}$
D. $I F_{7}$

Answer: C

D Watch Video Solution

7. Which of the following compounds does not

follow the octet rule?

A. $S F_{2}$
B. $C I F_{3}$
C. $N C l_{3}$
D. $C C l_{4}$

Answer: B

D Watch Video Solution
8. Which of the following compound contains ionic as well as covalent bonds?
A. $K C N$
B. NaCl
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. $M g O$

Answer: A

- Watch Video Solution

9. Maximum covalency shows by phosphorous

is
A. 7
B. 6
C. 8
D. 5

Answer: B

D Watch Video Solution
10. In the linear I_{3}^{-}(triiodide ion), the central iodine atom contains
A. two unpaired electrons
B. no unshared pair of electrons
C. four unshared pairs of electrons
D. three unshared pairs of electrons

Answer: D

- Watch Video Solution

11. In the Lewis structure of acetic acid, there are
A. 18 shared and 6 unshared electrons
B. 16 shared and 8 unshared electrons
C. 14 shared and 10 unshared electrons
D. 12 shared and 12 unshared electrons

Answer: B

D Watch Video Solution

12. Which of the following types of bonds are present in $\mathrm{N}_{2} \mathrm{O}_{5}$?
(i) Ionic
(ii) Coordinate
(iii) Coordinate covalent
(iv) Metallic
A. (i), (ii)
B. (ii), (iii)
C. (i), (ii), (iii)
D. (ii)

D Watch Video Solution

13. The formal charges on the three O atoms in
the O_{3} molecule are
A. $0,+1,-1$
B. $0,0,+1$
C. $0,0,-1$
D. $0,-1,+1$

Answer: A

D Watch Video Solution

14. Which of the following is the most likely

Lewis structure of nitrosyl chloride, NOCl?
А. $\ddot{C} l=\ddot{N}-\ddot{O}$:
B. : $\ddot{C} l-\ddot{N}=\ddot{O}$
C. $\ddot{C} l=N=\ddot{O}$
D. $: \ddot{C} l-N \equiv O$:

Answer: B

D Watch Video Solution

15. In allene, $C_{3} H_{4}$, three C atoms are joined by
A. two sigma bonds and two pi bonds
B. two sigma bonds and one pi bond
C. three sigma bonds and three pi bonds
D. three pi bonds only

Answer: A

- Watch Video Solution

Follow Up Test 5

1. Which of the following molecules has the longest nitrogen-nitrogen bond?
A. $N_{2} H_{4}$
B. N_{2}
C. $N_{2} F_{2}$

D. All have equal bond lengths

Answer: A

D Watch Video Solution

2. Which of the following molecules has the maximum bond enthalpy?
A. $N_{2}(g)$
B. $C O(g)$
C. $F_{2}(g)$

D. $H F(g)$

Answer: B

D Watch Video Solution

3. Which of the following molecules has the highest value of carbon-carbon bond energy?
A. $C_{2} H_{4}$
B. $C_{3} H_{8}$
C. $C_{2} H_{2}$
D. $C_{2} H_{6}$

Answer: C

D Watch Video Solution

4. Which of the following has the shortest bond length?
A. $B r_{2}$
B. F_{2}
C. $C l_{2}$
D. I_{2}

Answer: B

D Watch Video Solution

5. Which of the following bonds has the lowest bond enthalpy?
A. $O-O$
B. $N-N$
C. $H-H$
D. $C-C$

Answer: A

D Watch Video Solution

6. In ethene, the carbon-carbon bond distance
is
A. $154 p m$
B. $120 p m$
C. $134 p m$
D. $142 p m$

Answer: C

D Watch Video Solution

7. The $H-O-H$ bond angle in water is

A. 109.5°
B. 107°
C. 102°
D. 104.5°

Answer: D

- Watch Video Solution

Follow Up Test 6

1. Which of the following is incorrect regarding
resonance?
A. The canonical forms have no real
existence.
B. The molecule exists for a certain fraction
of time in one canonical form and for other fractions of time in other canonical forms.
C. There is no such equilibrium between
the canonical forms as we have between
tautomeric forms (keto and enol) is tautomerism.
D. The molecule as such has a single
structure which is the resonance hybrid
of the canonical forms and which cannot as such be depicted by a Lewis structure.

Answer: B

D Watch Video Solution

2. A molecule is described by three Lewis
structures having energies E_{1}, E_{2}, and E_{3}, respectively. The energies of these structures follow the order $E_{1}>E_{2}>E_{3}$, respectively.

If the experimental energy of the molecules is E_{0}, the resonance energy is
A. $E_{0}-E_{3}$
B. $E_{0}-E_{1}$
C. $E_{0}-E_{2}$
D. $E_{0}-\left(E_{1}+E_{2}+E_{3}\right)$

Answer: A

D Watch Video Solution
3. How many resonance structures can be drawn for the nitrate ion, NO_{3}^{-}?
A. Four
B. Two
C. Three
D. zero or relatively small electronegativity
difference

Answer: C

4. Which of the following ions has resonating structures?
A. SO_{4}^{2-}
B. PO_{4}^{3-}
C. SO_{3}^{2-}
D. All of these

Answer: D

- Watch Video Solution

5. Which of the following can exhibit resonance?
(i) Oxygen (ii) Ozone
(iii) Allene (iv) Hydrogen peroxide
A. (i), (ii), (iii), (iv)
B. (ii), (iii)
C. (i), (ii), (iii)
D. (i), (ii)

Answer: C
6. Which of the following resonating structures is not correct for CO_{2} ?
$\stackrel{-}{:} \stackrel{+}{O}-\underset{I}{C} \equiv \stackrel{+}{O}: \leftrightarrow: \stackrel{+}{O}-\underset{I}{C} \equiv \underset{\cdots}{O} \stackrel{-}{:} \leftrightarrow$
$\ddot{O}=\underset{I I I}{C}=\ddot{O} \leftrightarrow: \stackrel{+}{O} \equiv \underset{I V}{C}-\ddot{O} \overline{:} \leftrightarrow$
A. I
B. II
C. III
D. IV

Answer: B

- Watch Video Solution

7. How many resonating structures can be

 drawn for NO_{2} ?A. Six
B. Four
C. Five
D. Two

Answer: B

- Watch Video Solution

Follow Up Test 7

1. The bond between two identical nonmetal atoms has a pair of electrons
A. with identical spins
B. transferred fully from one atom to

C. equally shared between them

D. unequally shared between the two

Answer: C

- Watch Video Solution

2. Which contains both polar and non-polar bonds?.
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. CH_{4}
C. $H C N$

$$
\text { D. } \mathrm{NH}_{4} \mathrm{Cl}
$$

Answer: A

- Watch Video Solution

3. Carbon tetrachloride has no net dipole moment because of
A. similar electron affinites of C and Cl
B. its regular tetrahedral geometry
C. its planar geometry

D. similar sizes of C and Cl atoms

Answer: B

D Watch Video Solution

4. Which of the following will have zero dipole moment?
A. trans-1, 2-Dichloroethylent
B. cis-1, 2-Dichloroethylene

C. 1, 1-Dichloroethylene

D. None of these

Answer: A

- Watch Video Solution

5. Which of the following molecule is nonpolar?
(i) PbCl_{4} (ii) $B F_{3}$
(iii) SnCl_{2} (iv) CS_{2}
A. (i), (ii), (iii)
B. (i), (ii), (iii), (iv)
C. (i), (ii), (iv)
D. (ii), (iii), (iv)

Answer: C

D Watch Video Solution

6. The most polar bond is
A. $O-H$
B. $C-H$
C. $N-H$
D. $F-H$

Answer: D

D Watch Video Solution

7. Which of the following has the highest dipole moment?
A. o-Dichlorobenzene
B. m-Dichlorobenzene
C. p-Dichlorobenzene
D. All have equal values

Answer: A

D Watch Video Solution

8. Both CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ contain polar covalent bonds but CO_{2} is nonpolar while $\mathrm{H}_{2} \mathrm{O}$ is polar because
A. H atom is smaller than C atom
B. CO_{2} is a linear molecule while $\mathrm{H}_{2} \mathrm{O}$ is an angular molecule
C. $O-H$ bond is more polar than $C-O$
bond
D. CO_{2} contains multiple bonds while $\mathrm{H}_{2} \mathrm{O}$
has only single bonds

Answer: B

D Watch Video Solution

9. Molecular size of $I C I$ and $B r_{2}$ is nearly same but b. pt. of $I C I$ is about 40° higher than $B R_{2}$. This is due to :
A. $I C l$ is bigger than $B r_{2}$
B. $I-C l$ is bond is stronger than
$B r-B r$ bond
C. $I C l$ is polar while $B r_{2}$ is nonpolar
D. $I E$ of $B r>I E$ of I

Answer: C

D Watch Video Solution
10. The observed dipole moment of HCl is
1.03 D . If the bond length of HCL is $1.3 \AA$, then
the percent ionic character of $\mathrm{H}-\mathrm{Cl}$ bond is
A. 17%
B. 34%
C. 40%
D. 10%

Answer: A

Watch Video Solution

11. According to Fajan's rules, the maximum ionic character is favored by
A. small cation, large anion, high charge on
ions
B. large cation, large anion, low charge on ions
C. small cation, small anion, high charge on

D. small anion, large cation, low charge on

 ions
Answer: D

D Watch Video Solution

12. Which of the following has the highest covalent character?
A. $B e C l_{2}$
B. $M g C l_{2}$

C. $C a C l_{2}$

D. $B a C l_{2}$

Answer: A

D Watch Video Solution

Follow Up Test 8

1. Among the following, the linear molecule is
A. ClO_{2}
B. CO_{2}
C. NO_{2}
D. SO_{2}

Answer: B

D Watch Video Solution

2. The species which has pyramidal shape is
A. NO_{3}^{-}
B. SO_{3}

C. PCl_{3}

D. CO_{3}^{2-}

Answer: C

D Watch Video Solution

3. Which one of the following molecules is planar?
A. $B F_{3}$
B. $P H_{3}$

C. $N C l_{3}$

D. $N F_{3}$

Answer: A

- Watch Video Solution

4. Which of the following has a geometry different from others?
A. $B F_{4}^{-}$
B. SO_{4}^{2-}
C. PH_{4}^{+}
D. XeF_{4}

Answer: D

- Watch Video Solution

5. The shape of NH_{2}^{-}is like that of
A. $B e C l_{2}$
B. SnCl_{2}
C. NO_{2}^{+}
D. $C S_{2}$

Answer: B

D Watch Video Solution

6. The molecule $A B_{n}$ is planar with six pairs of
electrons around A in the valence shell. The
value of n is
A. 6
B. 3
C. 4
D. 2

Answer: C

D Watch Video Solution

7. In which of the following pairs do the species have identical shapes?
A. XeO_{3} and I_{3}^{-}
B. $S n C l_{4}$ and $X e F_{4}$
C. $S O_{2}$ and $S O_{3}$
D. SnCl_{2} and O_{3}

Answer: D

- Watch Video Solution

8. Which of the following has a square pyramidal shape?
A. XeOF_{4}
B. $\mathrm{XeO}_{3} F_{2}$
C. $\mathrm{XeOF} F_{2}$
D. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$

Answer: A

- Watch Video Solution

9. Which of the following is not linear?

A. $I C l_{2}^{-}$
B. N_{3}^{-}
C. NO_{2}^{-}

D. $C N_{2}^{-}$

Answer: C

D Watch Video Solution

10. Which of the following has minimum bond angle?
A. $S O_{3}$
B. NOCl
C. NH_{4}^{+}
D. $H_{2} \mathrm{Se}$

Answer: D

D Watch Video Solution

Follow Up Test 9

1. Which of the following is not correct?
(i) There can be more than one sigma bond between two atoms.
(ii) Two p orbitals always overlap laterally.
(iii) A sigma bond has no free rotation around its axis.
A. (i), (ii)
B. (ii), (iii)
C. (i), (iii)
D. (i), (ii), (iii)

Answer: D

D Watch Video Solution
2. Which of the following contains nondirectional bonds?
A. $B C l_{3}$
B. $B e C l_{2}$
C. RbCl
D. $N C l_{3}$

Answer: C

D Watch Video Solution
3. The number of sigma (σ) and $p i(\pi)$ bonds present in a molecule of tetracyanoethene is
A. 9σ and 9π
B. 9σ and 7π
C. 5σ and 9π
D. 5σ and 8π

Answer: A

D Watch Video Solution
4. Which of the following is incorrect about sigma bonds?
A. They result from the end-to-end overlap of orbitals.
B. In σ bonds, the electron density is
concentrated above and below the bond
axis.
C. The shape of the molecule is determined
by the orientation of σ bonds.

D. All of these

Answer: B

D Watch Video Solution

5. According to the valence bond theory, when
a covalent bond is formed between two
reacting atoms, the potential energy of the
system becomes
A. negative

B. positive

C. minimum

D. maximum

Answer: C

D Watch Video Solution

6. The strongest covalent bond is formed by
the overlap of
A. s and p orbitals
B. s and s orbitals
C. p and d orbitals
D. p and p orbitals

Answer: D

D Watch Video Solution

Follow Up Test 10

1. Which of the following is incorrect about hybridization?
A. The concept of hybridization is not applied to isolated atoms.
B. Hybridization is the mixing of at least two nonequivalent atomic orbitals.
C. The number of hybrid orbitals generated
is more than the number of pure atomic
orbitals that participate in the
hybridization process.
D. Hybridization requires an input of
energy.

Answer: C

- Watch Video Solution

2. Covalent bonds in polyatomic molecules are
formed by the overlap of
A. pure atomic orbitals
B. hybrid orbitals
C. hybrid orbitals with unhybridized ones
D. both (2) and (3)

Answer: D

D Watch Video Solution

3. The hybridization state of the central atom
in $H g \mathrm{Cl}_{2}$ is
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $d s p^{2}$

Answer: A

D Watch Video Solution

4. The hybridization state of the central atom
in $A l I_{3}$ is
A. $d s p^{2}$
B. $s p^{3}$
C. $s p^{2}$
D. $s p$

Answer: C

- Watch Video Solution

5. Hybridization of the central atom in $P F_{3}$ is
A. $s p$
B. $d s p^{2}$
C. $s p^{2}$
D. $s p^{3}$
6. In $\mathrm{C}_{3} \mathrm{O}_{2}$, the hybridization state of C is
A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. $d s p^{2}$

Answer: B

7. What type of hybridization is involved in

 $X e F_{2}$?A. $s p^{3} d$
B. $d s p^{3}$
C. $s p^{3} d^{2}$
D. $d^{3} s p^{3}$

Answer: A

- Watch Video Solution

8. By hybridization, we mean the hybridization of
A. electrons
B. atomic orbitals
C. atoms
D. protons

Answer: B

- Watch Video Solution

9. In hydrazine
 $\left(N_{2} H_{4}\right)$,
 nitrogen

is hybridized.
A. $d s p^{2}$
B. $s p^{2}$
C. $s p^{3}$
D. $s p$

Answer: C

- Watch Video Solution

10. In $C_{2} H_{6}$ (ethane), the $C-C$ sigma (σ) bond is formed by _____overlap.
A. $p-p$
B. $s p-s$
C. $s-s$
D. $s p^{3}-s p^{3}$

Answer: D
(Watch Video Solution

Follow Up Test 11

1. Molecular orbitals energy level diagram consists of
A. bonding molecular orbitals
B. antibonding molecular orbitals
C. nonbonding molecular orbitals
D. molecular orbitals in order of increasing
energy

- Watch Video Solution

2. Which of the following is incorrect regarding the MO theory?
A. The number of molecular orbitals
formed is always equal to the number of atomic orbitals combined.
B. The more stable the bonding molecular orbitals, the less stable the
corresponding antibonding molecular
orbital.
C. In a stable molecule, the number of
electrons in bonding molecular orbitals
is always equal to that in antibonding
molecular orbitals.
D. Like an atomic orbital, each molecular orbital can accommodate up to two
electrons with opposite spins in
accordance with the Pauli exclusion principle.

Answer: C

- Watch Video Solution

3. If the z-axis is the molecular axis, then
$\pi M O s$ are formed by the overlap of
(i) p_{z} and p_{z} (ii) p_{y} and p_{y}
(iii) s and p_{z} (iv) p_{x} and p_{x}
A. (ii), (iv)
B. (i), (iii)
C. (i), (ii)
D. (ii), (iii)

Answer: A

D Watch Video Solution

4. If the z-axis if taken as the internuclear axis,
then which of the following combinations of atomic orbitals is a nonbonding combination?
A. s and p_{y}
B. p_{x} and $d_{y z}$
C. p_{x} and p_{y}
D. All of these

Answer: D

D Watch Video Solution

5. If E is the total energy of the combining atomic orbitals, and E_{b} and E_{a} are the
energies of the bonding and antibonding molecular orbitals formed, respectively, then
A. $E-E_{b}<E_{a}-E$
B. $E-E_{b}=E_{a}-E$
C. $E-E_{b}>E_{a}-E$
D. Any of these depending upon the nature
of combining atoms

Answer: A

- Watch Video Solution

6. Which of the following MOs has more than

 one nodal plane?A. $\pi_{2 p_{y}}$
B. $\sigma_{2 s}$
C. $\sigma_{2 p_{x}}^{*}$
D. $\pi_{2 p_{y}}^{*}$

Answer: D

- Watch Video Solution

7. The bond order of a molecule in the excited

 state can beA. positive

B. negative
C. zero
D. both (2) and (3)

Answer: B
(D) Watch Video Solution
8. Which of the following is the correct order of stability?

> A. $H_{2}>H_{2}^{+}>H e_{2}>H e_{2}^{+}$
> B. $H_{2}>H e_{2}^{+}>H_{2}^{+}>H e_{2}$
> C. $H_{2}>H_{2}^{+}>H e_{2}^{+}>H e_{2}$
> D. $H_{2}>H e_{2}>H_{2}^{+}>H e_{2}^{+}$

Answer: C

- Watch Video Solution

1. Which of the following linear combinations of atomic orbitals is incorrectly depicted?
A. ${ }^{n \oplus \infty-\odot \rightarrow \infty}$
B. ${ }^{\infty} \infty \rightarrow \infty \rightarrow \infty$
C.
D. $10-8 \rightarrow 8$

Answer: D

D Watch Video Solution
2. The strongest hydrogen bonding exists in
A. hydrogen sulphide
B. hydrogen fluoride
C. ammonia
D. water

Answer: B

D Watch Video Solution
3. Which of the following has the highest boiling point?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H F$
C. NH_{3}
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: A
4. Coordination number of hydrogen in a hydrogen bond is
A. 8
B. 4
C. 2
D. 1

Answer: C

D Watch Video Solution
5. The length of H bonds is
A. same as that of covalent bonds
B. greater than that of covalent bonds
C. less than that of covalent bonds
D. less, greater, or same as that of covalent
bonds depending upon the nature of substance

Answer: B

6. Two ice cubes are pressed over each other until they unite to form one block. The force mainly responsible for holding them together is
A. van der Waals force
B. dipole-dipole interaction
C. H bonding
D. covalent bonding

Answer: C

7. The vapor pressure of o-nitrophenol at any given temperature is predicted to be
A. higher than that of p-nitrophenol
B. lower than that of p-nitrophenol
C. same as that of p-nitrophenol
D. higher or lower depending upon the size
of the vessel

Answer: A

- Watch Video Solution

8. Which of the following hydeides has the lowest boiling point?
A. AsH_{3}
B. SbH_{3}
C. NH_{3}
D. PH_{3}

Answer: D

Follow Up Test 13

1. The energy of $\sigma_{2 x}$, is greater than that of $\sigma_{1 s}^{*}$ orbital because
A. $\sigma_{2 s}$ orbital is formed only after $1 s$
B. $\sigma_{2 s}$ orbital is bigger than $\sigma_{1 s}$ orbital
C. $\sigma_{2 s}$ orbital has a greater value of n than

$$
\sigma_{1 s}^{*}
$$

D. $\sigma_{2 s}$ is a bonding orbital while $\sigma_{2 x}^{*}$ is an

 antibonding orbital.
Answer: C

- Watch Video Solution

Question Bank Level I

1. The symbol for resonance is
A. \leftrightarrow
B. \Leftrightarrow
C. $=$
D. \rightarrow

Answer: A

- Watch Video Solution

2. $d^{2} s p^{3}$ hybridization of atomic orbitals
gives______geometry.
A. square planar

B. triangular

C. tetragonal
D. octahedral

Answer: D

D Watch Video Solution

3. A coordinate bond is a dative bond. Which of the following is true?
A. Two atoms bond by sharing electrons
from third atom.
B. Two atoms form bond by sharing their
electrons.
C. Two atoms form bond and one of them
provides both electrons.
D. Three atoms form bond by sharing their electrons.

Answer: C

4. The total number of electrons that take part in forming the bond in N_{2} is
A. 10
B. 6
C. 4
D. 2

Answer: B

5. Which of the following is covalent?

A. H_{2}
B. KCl
C. $N a_{2} S$
D. $C a O$

Answer: A
6. The number of lone pairs of electrons present on the central atom of $C I F_{3}$ is
A. 3
B. 1
C. 2
D. 0

Answer: C

D Watch Video Solution

Question Bank Level li

1. Which of the following contains both ionic and covalent bonding?
A. $N a B r$
B. PCl
C. $B a(C N)_{2}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Answer: C

- Watch Video Solution

2. Which of the following species is hypervalent?
A. ClO_{4}^{-}
B. PO_{4}^{3-}
C. $S O_{3}^{2-}$
D. All of these

Answer: D

3. Which of the following molecules is formed without following the octet rule?
A. $S F_{6}$
B. $I F_{7}$
C. BeCl_{2}

D. All of these

Answer: D

D Watch Video Solution
4. Which of the following is not correct about the concept of resonance?
A. Resonance involves several different
acceptable Lewis fomulas with the same
arrangement of atoms.
B. Resonance structures differ only in the
arrangements of electron pairs, and never in the position of the atom.
C. The actual structure of the molecule or ion exhibiting resonance is the average,
or composite, of its resonance
structures, but this does not mean that
the electrons are moving from one place
to another.
D. The average structure is less stable than
any of the individual resonance
structures.

Answer: D

- Watch Video Solution

5. According to valence bond theory, sharing of electrons during the formation of covalent bond results from the \qquad from two reacting atoms

A. addition

B. substraction
C. both (1) and (2)
D. overlap

Answer: D
6. In the compound $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$,
the hybridizations of $C-2$ and $C-3$
carbons are, respectively,
A. $s p^{3}$ and $s p^{3}$
B. $s p^{2}$ and $s p^{3}$
C. $s p^{2}$ and $s p$
D. $s p^{3}$ and $s p$

7. Hybridization of central atom in NH_{3} is

A. $s p^{3}$
B. $s p$
C. $s p^{2}$
D. $d s p^{2}$

Answer: A

- Watch Video Solution

8. Shape and hybridization of $I F_{5}$, respectively,

 areA. pentagonal pyramidal, $s p^{3} d^{3}$
B. square pyramidal, $s p^{3} d^{2}$
C. seesaw, $s p^{3} d$
D. trigonal bipyramidal, $s p^{3} d$

Answer: B
9. The calculated bond order of superoxide ion $\left(O_{2}^{-}\right)$is
A. 2.5
B. 1.5
C. 2
D. 1

Answer: B

D Watch Video Solution
10. BaSO_{4} is water insoluble although it is an ionic compound because
A. it has high hydration energy
B. it has low lattice energy
C. its hydration energy is more than lattice
energy
D. its lattice energy is more than hydration
energy

Answer: D
11. The magnetic moment of KO_{2} at room temperature is --------- BM.
А. 1.73
B. 1.41
C. 2.64
D. 2.23

Answer: A
12. Which of the following is correctly based on molecular orbital theory for peroxide ion?
A. Its bond order is two and it is
paramagnetic.
B. Its bond order is two and it is
diamagnetic.
C. Its bond order is one and it is
diamagnetic.
D. Its bond order is one and it is paramagnetic.

Answer: C

D Watch Video Solution
13. Which of the following is paramagnetic with bond order 0.5 ?
A. O_{2}^{-}
B. H_{2}^{+}
C. B_{2}
D. N_{2}

Answer: B

D Watch Video Solution

14. In the of the following pairs of molecules
/ions both the species are not likely to exist?
A. $H_{2}^{2+}, H e_{2}$
B. $H_{2}^{+}, H e_{2}^{2-}$
C. $H_{2}^{-}, H e_{2}^{2+}$
D. $H_{2}^{-}, H e_{2}^{2-}$

Answer: A

D Watch Video Solution

15. The hydrogen bond is the strongest in
A. $O-H . \ldots . N$
B. $O-H \ldots \ldots S$
C. $F-H . \ldots . . F$

$$
\text { D. } F-H \ldots \ldots . . O
$$

Answer: C

D Watch Video Solution

16. The charge/size ratio of a cation determines its polarizing power. Which one of
the following sequences represents the increasing order of the polarizing power of the cationic species,
$\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ba}^{2+}$?
A. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
B. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
C. $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<K^{+}<\mathrm{Ca}^{2+}$
D. $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<B e^{2+}<K^{+}$

Answer: B

D Watch Video Solution
17. In $X e F_{2}, X e F_{4}$, and $X e F_{6}$, the number of lone pairs on $X e$ is, respectively,
A. $4,1,2$
B. $1,2,3$
C. $2,3,1$
D. $3,2,1$

Answer: D

- Watch Video Solution

18. In which of the following species the underlined C atom has $s p^{3}$ hybridization?
A. $\mathrm{CH}_{2}=\underline{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \underline{\mathrm{C}} \mathrm{OCH}_{3}$
D. $\mathrm{CH}_{3} \underline{\mathrm{CO}} \mathrm{OOH}$

Answer: B

- Watch Video Solution

Question Bank Level lii

1. Which of the following oxides of nitrogen is ionic?
A. $\mathrm{N}_{2} \mathrm{O}_{5}$
B. $\mathrm{N}_{2} \mathrm{O}_{3}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $N O$

Answer: A

D Watch Video Solution
2. Which of the following is the correct electron-dot structure of $\mathrm{N}_{2} \mathrm{O}$ molecule?

$$
\begin{aligned}
& \text { A. }: N=N=\ddot{O}: \\
& \text { B. }: N \equiv \stackrel{+}{N}-\ddot{O}:- \\
& \text { C. }: N=N=\ddot{O}: \\
& \text { D. } \ddot{N}=\ddot{N}=\ddot{O}:
\end{aligned}
$$

Answer: B

- Watch Video Solution

3. Which of the following has the highest bond

 dissociation enthalpy?A. F_{2}
B. $B r_{2}$
C. $C l_{2}$
D. I_{2}

Answer: C

D Watch Video Solution
4. The bond dissociation energy of $B-F$ bond in $B F_{3}$ is kJmol^{-1} whereas that of
$C-F$ in $C F_{4}$ is $515 \mathrm{kJmol}^{-1}$. The correct reason for higher $B-F$ bond dissociation energy as compared to that of $C-F$ is
A. lower degree of ppi-ppi interaction
between B and F in $B F_{3}$ than that between C and F
B. significant ppi-p pi interaction between

B and F in $B F_{3}$ whereas there is no
possibility of such interaction between C
and F in $C F_{4}$
C. stonger σ bond between B and F in $B F_{3}$
as compared to that between C and F in
$C F_{4}$
D. smaller size of B atom as compared to
that of C atom.

Answer: B

5. Using $M O$ theory predict which of the following sepcies has the shortest bond length ?
A. O_{2}^{2+}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: A

6. $R b O_{2}$ is
A. peroxide and diamagnetic
B. superoxide and paramagnetic
C. peroxide and paramangetic

D. superoxide and diamagnetic

Answer: B

7. The bond angle and dipole moment of water

 respectively are :A. $102.5^{\circ}, 1.56 D$
B. $107.5^{\circ}, 1.56 D$
C. $109.5^{\circ}, 1.84 D$
D. $104.5^{\circ}, 1.84 D$

Answer: D

(D) Watch Video Solution
8. The number of nodal planes present in a σ^{*} antibonding orbital is
A. 2
B. 3
C. 1
D. 0

Answer: C

- Watch Video Solution

9. Which one of the following constitutes a group of the isoelectronic species?

$$
\begin{aligned}
& \text { A. } C_{2}^{2-}, O_{2}^{-}, C O, N O \\
& \text { B. } N_{2}, O_{2}^{-}, N O^{+}, C O \\
& \text { C. } C N^{-}, N_{2}, O_{2}^{2-}, C_{2}^{2-} \\
& \text { D. } N O^{+}, C_{2}^{2-}, C N^{-}, N_{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

10. Which of the following is not paramangnetic?
A. $N O$
B. H_{2}^{+}
C. $C O$
D. O_{2}

Answer: C

D Watch Video Solution
11. Which of the following has transient existence?
A. He
B. H_{2}^{+}
C. H
D. H^{+}

Answer: B

D Watch Video Solution
12. Which of the following is the structure of
$\mathrm{N}_{2} \mathrm{O}$ which is isoelectronic with CO_{2} and N_{3}^{-}

?

A. $N-N-O$
B. (2) $\mathrm{N}^{\prime} \mathrm{N}$
C. (3) $\mathrm{N}^{-}{ }_{\mathrm{N}}$
D. $N-O-N$

Answer: A
13. Which one of the following molecules is expected to exhibit diamagnetic behaviour?
(i) N_{2} (ii) O_{2}
(iii) S_{2} (iv) C_{2}
A. (i), (ii), (iii), (iv)
B. (ii), (iii)
C. (i), (iii)
D. (i), (iv)

Answer: D

14. The percentage of p-character in the orbitals forming $p-p$ bonds in P_{4} is
A. 75
B. 50
C. 25
D. 33

Answer: A
15. The species having bond order different from that in CO is
A. NO^{+}
B. NO^{-}
C. N_{2}
D. $C N^{-}$

Answer: B

- Watch Video Solution

16. Among the following, the paramagnetic

compound is :

A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{O}_{2}$
C. O_{3}
D. $K O_{2}$

Answer: D

D Watch Video Solution
17. In which of the following ionixation processes , the bond order has increased and the magnetic behaviour has changed ?
A. $O_{2} \rightarrow O_{2}^{+}$
B. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
C. $N_{2} \rightarrow N_{2}^{+}$
D. $C_{2} \rightarrow C_{2}^{+}$

Answer: B
18. How many types of $F-S-F$ bonds are present in $S F_{4}$?
A. 5
B. 4
C. 2
D. 3

Answer: C

D Watch Video Solution
19. Which among the following has smallest bond angle?
A. $H_{2} S$
B. $\mathrm{H}_{2} \mathrm{O}$
C. NH_{3}
D. SO_{2}

Answer: A

D Watch Video Solution

Question Bank Level Iv

1. The molecule of sulphuric acid contains
A. ions, covalent, and coordinate bonds
B. ionic and covalent bonds
C. covalent and coordinate bonds
D. only covalent bonds

Answer: D

2. The number of water molecule(s) derectly

 bonded to the metal centre in $\mathrm{CuSO}_{4.5} \mathrm{H}_{2} \mathrm{O}$ isA. 2
B. 3
C. 4
D. 5

Answer: D

D Watch Video Solution
3. The correct order of stabilities of the following resonance structures is:
(I) $H_{2} C=\stackrel{\oplus}{N}=\stackrel{\ominus}{N}$
(II) $H_{2} \stackrel{\oplus}{C}-N=\stackrel{\ominus}{N}$
(III) $H_{2} \stackrel{\ominus}{C}-\stackrel{\oplus}{N} \equiv N$
(IV) $H_{2} \stackrel{\ominus}{C}-N=\stackrel{\oplus}{N}$.
A. $(I I I)>(I)>(I V)>(I I)$
B. $(I)>(I I I)>(I I)>(I V)$
C. $(I)>(I I)>(I V)>(I I I)$
D. $(I I)>(I)>(I I I)>(I V)$

Answer: B

D Watch Video Solution

4. How many sigma and pi bonds are present
in the linear chain compound which has the
formula $C_{5} H_{4}$ and contains both double and triple bonds?
A. 6 sigma and 6 pi
B. 8 sigma and 2 pi
C. 6 sigma and 4 pi

D. 8 sigma and 4 pi

Answer: D

D Watch Video Solution

5. Stability of the species $L i_{2}, L i_{2}^{-}, L i_{2}^{+}$ increases in the order of
A. $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
B. $L i_{2}^{-}<L i_{2}<L i_{2}^{+}$
C. $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$
D. $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$

Answer: D

D Watch Video Solution

6. A square planar complex is formed by hybridisation of which atomic oritals?
A. $s, p_{x}, p_{y}, d_{x y}$
B. $s, p_{x}, p y, d_{z^{2}}$
C. $s, p_{x}, p_{y}, d_{x^{2}-y^{2}}$
D. $s, p_{x}, p_{y}, d_{y z}$

Answer: C

D Watch Video Solution

7. Number of sigma bonds in $P_{4} O_{10}$ is :

A. 16
B. 17
C. 7
D. 6

Answer: A

- Watch Video Solution

Archives

1. Which one of the following molecules
contains no π - bond ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. SO_{2}
C. NO_{2}
D. CO_{2}

Answer: A

D Watch Video Solution

2. Which of the following is a polar moleule?

A. $S F_{4}$
B. $S i F_{4}$
C. XeF_{4}
D. $B F_{3}$

- Watch Video Solution

3. Which of the following is paramagnetic?

A. O_{2}^{-}
B. $C N^{-}$
C. NO^{+}
D. $C O$
4. $X e F_{2}$ is isostructural with
A. ICl_{2}^{-}
B. SbCl_{3}
C. BaCl_{2}
D. TeF_{2}

Answer: A
5. In which of the following molecules/ions in the central atom $s p^{2}$-hybridized?
A. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
B. NO_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
C. BF_{3} and NO_{2}^{-}
D. NO_{2}^{-}and NH_{2}^{-}

Answer: C
6. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?

$$
\begin{aligned}
& \text { A. } N_{2}^{2-}<N_{2}^{-}<N_{2} \\
& \text { B. } N_{2}<N_{2}^{2-}<N_{2}^{-} \\
& \text {C. } N_{2}^{-}<N_{2}^{2-}<N_{2} \\
& \text { D. } N_{2}^{-}<N_{2}<N_{2}^{2-}
\end{aligned}
$$

Answer: A

7. In the case of alkali metals, the covalent character decreases in the order.
A. $M F>M C l>M B r>M I$
B. $\mathrm{MF}>\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}$
C. $M I>M B r>M C l>M F$
D. $\mathrm{MCl}>\mathrm{MI}>M B r>M F$

Answer: C

- Watch Video Solution

8. The state of hybridization of C_{2}, C_{3}, C_{5}, and
C_{6} of the hydrocarbon

is in the following sequence:
A. $s p^{3}, s p^{2}, s p^{2}$, and $s p$
B. $s p, s p^{2}, s p^{2}$, and $s p^{3}$
C. $s p, s p^{2}, s p^{3}$, and $s p^{2}$
D. $s p, s p^{3}, s p^{2}$, and $s p^{3}$
9. Arrange the following ions in the order of decreasing $X-O$ bond length where X is the central atom:

$$
\begin{aligned}
& \text { A. } \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{SiO}_{4}^{4-} \\
& \text { B. } \mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-} \\
& \text {C. } \mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-} \\
& \text { D. } \mathrm{SiO}_{4}^{4-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}
\end{aligned}
$$

10. The enolic form of butanone contains
A. 12σ bonds, 1π bond, and 2 lone pairs of
electrons
B. 11σ bonds, 1π bond, and 2 lone pairs of
electrons
C. 12σ bonds, 1π, and 1 lone pair of
electrons

D. 10σ bonds, 2π bond, and 2 lone pairs of

 electrons
Answer: A

D Watch Video Solution

11. Four diatomic species are listed in different sequence .Which of these represent the correct order of their increasing bond order?

$$
\text { A. } O_{2}^{-}<N O<C_{2}^{2-}<H e_{2}^{+}
$$

B. $\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
C. $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
D. $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$

Answer: D

D Watch Video Solution

12. The angular shape of none molecule $\left(\mathrm{O}_{3}\right)$
consists of
A. 1 sigma and 2 pi bonds
B. 2 sigma and 2 pi bonds
C. 1 sigma and 1 pi bonds
D. 2 sigma and 1 pi bonds

Answer: D

- Watch Video Solution

13. Which has the highest dipole moment?
(1)

B. ${ }_{\mathrm{H}_{3} \mathrm{C}^{\prime}}{ }^{\mathrm{C}=\mathrm{C}} \mathrm{H}$
(3)

(4)
D.

Answer: A

- Watch Video Solution

14. The hybridization of oxygen atom in $\mathrm{H}_{2} \mathrm{O}_{2}$
is
A. $s p^{3} d$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

Answer: D

D Watch Video Solution

15. Which one of the following pairs consists of only paramagnetic species
A. $O_{2}, N O$
B. O_{2}^{+}, O_{2}^{2-}
C. $C O, N O$

D. $\mathrm{NO}, \mathrm{NO}^{+}$

Answer: A

D Watch Video Solution

16. The bond lengths and bond angles in the molecules of methane, ammonia, and water are given below:

This variation in bond angle is a result of
(i) the increasing repulsion between H atoms
as the bond length decreases
(ii) the number of nonbonding electron pairs
in the molecule
(iii) a nonbonding electron pair having a greater repulsive force than a bonding electron pair
A. (i), (ii), and (iii) are correct
B. (i) and (ii) are correct
C. (ii) and (iii) are correct

D. only (i) is correct

Answer: C

D Watch Video Solution

17. The correct order of bond order values among the following
(i) NO^{-}(ii) NO^{+}
(iii) NO (iv) NO^{2+}
(v) NO^{2-}
A. (i) It (iv) It (iii) It (ii) It (v)

> B. (iv) = (ii) It (i) It (v) It (iii)

> C. (v) It (i) It (iv) = (iii) It (ii)
D. (ii) It (iii) It (iv) It (i) It (v)

Answer: C

D Watch Video Solution

18. A coordinate bond is a dative bond. Which of the following is true?
A. Three atoms form bond by sharing their electrons.
B. Two atoms form bond by sharing their
electrons.
C. Two atoms form bond and one of them
provides both electrons.
D. Two atoms form bond by sharing
electrons obtained from the third atom.

Answer: D

19. In $T e l_{4}$, the central tellurium involves the hybridization
A. $s p^{3}$
B. $s p^{3} d$
C. $s p^{3} d^{2}$
D. $d s p^{2}$

Answer: B
20. In which of the following pairs are the two species isostructural?
A. BrO_{3}^{-}and XeO_{3}
B. $S F_{4}$ and $X e F_{4}$
C. SO_{3}^{2-} and NO_{3}^{-}
D. $B F_{3}$ and $N F_{3}$

Answer: A

- Watch Video Solution

21. The number of σ and π - bonds in allyl isocyanide are
A. $9 \sigma, 3 \pi$
B. $9 \sigma, 9 \pi$
C. $3 \sigma, 4 \pi$
D. $5 \sigma, 7 \pi$

Answer: A

D Watch Video Solution
22. The energy of hydrogen bond is of the order of
A. $4 \mathrm{kJmol}^{-1}$
B. $40 \mathrm{kJmol}^{-1}$
C. $400 \mathrm{kJmol}^{-1}$
D. $4000 \mathrm{kJmol}^{-1}$

Answer: A

D Watch Video Solution
23. Which of the following has the least bond angle?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: B

- Watch Video Solution

24. Match the list I and II and choose the correct matching:

ListI(Species)	ListII(Geometry)
A. $\mathrm{H}_{3} \mathrm{O}^{+}$	1. Planar
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}$	2. Angular
C. ClO_{2}^{-}	3. Tetrahedral
D. NH_{4}^{+}	4. Trigonalbipyramidal
E. PCl_{5}	5. Pyramidal

A. $A-2, B-1, C-3, D-5, E-4$
B. $A-1, B-5, C-2, D-3, E-4$
C. $A-5, B-1, C-2, D-3, E-4$
D. $A-3, B-1, C-4, D-5, E-2$

Answer: C

- Watch Video Solution

25. The decreasing order of the boiling points of the following hydrides
(i) NH_{3} (ii) PH_{3}
(iii) As_{3} (iv) SbH_{3}
(v) $\mathrm{H}_{2} \mathrm{O}$ is
A. $(v)>(i v)>(i)>(i i i)>(i i)$
B. $(v)>(i)>(i i)>(i i i)>(i v)$

C. $(i i)>(i v)>(i i i)>(i)>(v)$
 D. $(i v)>(i i i)>(i)>(i i)>(v)$

Answer: A

- Watch Video Solution

26. Which of the following molecule is planar?

A. CH_{4}
B. NH_{3}
C. $C_{2} H_{4}$
D. $S i C l_{4}$

Answer: C

- Watch Video Solution

27. In $\left[A g(C N)_{2}\right]^{-}$, the number of π bonds is
A. 2
B. 3
C. 4
D. 6

D Watch Video Solution

28. Which of the following is not a correct statement?
A. Every $A B_{5}$ molecule has square pyramidal structure.
B. Multiple bonds are always shorter than
the corresponding single bonds.
C. The electron-deficient molecules can act
as Lewis acids.
D. The cannonical structure has no real existence.

Answer: A

D Watch Video Solution

29. The number of unpaired electrons in a parmamagnetic diatomic molecule of an element with atomic number 16 is :
A. 4
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

30. Which of the following is not isostructural

 with SiCI_{4} ?A. $P O_{4}^{3-}$
B. NH_{4}^{+}
C. $S C l_{4}$
D. SO_{4}^{2-}

Answer: C

D Watch Video Solution

31. Which of the following species has a linear shape?
A. NO_{2}^{+}
B. O_{3}
C. NO_{2}^{-}
D. SO_{2}

Answer: C

D Watch Video Solution

32. In which of the following molecules all the

 bonds are not equal ?A. $A l F_{3}$
B. $N F_{3}$
C. CIF_{3}
D. $B F_{3}$

Answer: A

D Watch Video Solution

33. The electronegaivity difference between N
and F is greater than that between N and H
yet the dipole moment of $N H_{2}(1.5 \mathrm{D})$ is
larger than that of $N F_{3}(0.2 D)$. This is because :
A. in $N H_{3}$ as well in $N F_{3}$, the atomic
dipole and bond dipole are in opposite
directions
B. in NH_{3}, the atomic dipole and bond
dipole are in the opposite directions
whereas in $N F_{3}$, these are in the same
direction
C. in $N H_{3}$ as well as in $N F_{3}$ the atomic dipole and bond dipole are in the same direction
D. in NH_{3}, the atomic dipole and bond
dipole are in the same direction whereas
in $N F_{3}$ these are in opposite directions

Answer: C

D Watch Video Solution

34. Which of the following statements is true?
A. The dipole moment of NF_{3} is zero.
B. The dipole moment of $N F_{3}$ is less than
NH_{3}.
C. The dipole moment of $N F_{3}$ is more than
NH_{3}.
D. The dipole moment of $N F_{3}$ is equal to
NH_{3}.

D Watch Video Solution

35. Which of the following is correct?
A. The number of electrons present in the
valence shell of S in $S F_{6}$ is 12 .
B. The rate of ionic reaction is very low.
C. According to $V S E P R$ theory, $S n C l_{2}$ is a
linear molecule.
D. The correct order of stability to form ionic compounds among $N a^{+}, M g^{2+}$,
and $A l^{3+}$ is $A l^{3+}>M g^{2+}>N a^{+}$.

Answer: A

D Watch Video Solution

36. Which of the following molecule is linear?
A. $B e C l_{2}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. SO_{2}
D. CH_{4}

D Watch Video Solution

37. The $H-O-H$ bond angle in water is
A. 120°
B. 109.5°
C. 107°
D. 104.5°
38. The correct order of the lattice energies of the following ionic compounds is
A. $\mathrm{NaCl}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{NaCl}>\mathrm{CaO}>\mathrm{MgBr}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{NaCl}$
D. $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{CaO}>\mathrm{MgBr}_{2}>\mathrm{NaCl}$

Answer: D
39. In which of the following molecules does the central atom not follow the octet rule?
A. CO_{2}
B. $B F_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $P C l_{3}$

Answer: B

- Watch Video Solution

40. The correct order of increasing covalent character is :
A. $B e C l_{2}<N a C l<L i C l$
B. $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
C. $\mathrm{BeCl}_{2}<\mathrm{LiCl}<\mathrm{NaCl}$
D. $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$

Answer: B
41. Which of the following would have permanent dipple moment ?
A. $B F_{3}$
B. $S F_{4}$
C. SiF_{4}
D. XeF_{4}

Answer: B

D Watch Video Solution
42. The correct order in which the $O-O$ bond length increases in the following :

$$
\begin{aligned}
& \text { A. } O_{3}<H_{2} O_{2}<O_{2} \\
& \text { B. } O_{2}<O_{3}<H_{2} O_{2} \\
& \text { c. } O_{2}<H_{2} O_{2}<O_{3} \\
& \text { D. } H_{2} O_{2}<O_{2}<O_{3}
\end{aligned}
$$

Answer: C

- Watch Video Solution

43. $\mathrm{O}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}_{2}$ is approximately
A. $127^{\circ} 28^{\prime}$
B. $109^{\circ} 28^{\prime}$
C. 104.5°
D. 97°

Answer: D

D Watch Video Solution
44.

Among
the
compounds
$B F_{3}, N C I_{3}, H_{2} S, S F_{4}$ and $B e C I_{2}$, identify
the ones in which the central atom has the same type of hybridisation
A. $B F_{3}, N C l_{3}$, and $H_{2} S$
B. $\mathrm{H}_{2} \mathrm{~S}$ and BeCl_{2}
C. NCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$
D. $B F_{3}$ and $N C l_{3}$

Answer: C

45. If molecule $M X_{3}$ has zero dipole moment,
the sigma bonding orbitals used by M (atomic number $<2 l$) are
A. pure p
B. sp hybrid
C. $s p^{2}$ hybrid
D. $s p^{3}$ hybrid

Answer: C

46. In BrF_{3} molecule, the lone pair occupies equatorial position minimize
A. lone pair-bond pair repulsion only
B. bond pair-bond pair repulsion only
C. Ione pair-lone pair repulsion and lone pair-bond pair repulsion
D. Ione pair-lone pair repulsion only

Answer: C

47. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x^{2}-y^{2}}, d z^{2}$
B. $d_{x z}, d_{x^{2}-y^{2}}$
C. $d_{z^{2}}, d_{x z}$
D. $d_{x y}, d_{y z}$

Answer: A

48. In a regular octahedral molecule $M X_{6}$ the

 number of $X-M-X$ bonds at 180° isA. three
B. two
C. six
D. four

Answer: A

- Watch Video Solution

49. Among the following the pair in which the two species are not isostuctural is
A. $S i F_{4}$ and $S F_{4}$
B. IO_{3}^{-}and XeO_{3}
C. BH_{4}^{-}and BH_{4}^{+}
D. $P F_{6}^{-}$and $S F_{6}$

Answer: A
(Watch Video Solution
50. The statement true for N_{3}^{-}is
A. it has a nonlinear structure
B. it is called a pseudohalogen
C. the formal oxidation state of nitrogen in
this anion is -1
D. it is isoelectronic with NO_{2}

Answer: B::C

51. Which of the following is arranged in the increasing order of enthalpy of vaporization?
A. $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$
B. $\mathrm{AsH}_{3}, \mathrm{PH}_{3}, \mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}, \mathrm{AsH}_{3}, \mathrm{PH}_{3}$
D. $\mathrm{PH}_{3}, \mathrm{AsH}_{3}, \mathrm{NH}_{5}$

Answer: D

- Watch Video Solution

52. The dipole moment is the highest for
A. trans-but-2-ene
B. 1,3-dimethyl benzene
C. acetophenone
D. ethanol

Answer: C
(Watch Video Solution
53. The $O N O$ bond angle is maximum in
A. NO_{3}^{-}
B. NO_{2}^{-}
C. NO_{2}
D. NO_{2}^{+}

Answer: D

D Watch Video Solution

54. Shape of $O_{2} F_{2}$ is similar to that of
A. $C_{2} F_{2}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. $H_{2} F_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: B

D Watch Video Solution

55. Which of the following is a correct set with respect to molecule, hybridization, and shape?
A. $B e C l_{2}, s p^{2}$, linear
B. $B e C l_{2}, s p^{2}$, triangular
C. $B C l_{3}, s p^{3}$, triangular planar
D. $B C l_{3}, s p^{3}$, tetrahedral

Answer: C

D Watch Video Solution

56. Which of the following is diamagnetic?
A. superoxide ion
B. carbon molecule

C. unipositive ion of nitrogen molecule

D. oxygen molecule

Answer: B

D Watch Video Solution

57. $\mathrm{H}_{2} \mathrm{~S}$ is more acidic than $\mathrm{H}_{2} \mathrm{O}$. The reason is
A. $O-H$ bond is stronger than $S-H$
B. O is more electronegative than S
C. $H-S$ bond is stronger than $O-H$
bond
D. $O-H$ bond is weaker than $H-S$
bond

Answer: A

- Watch Video Solution

58. Maximum bond angle is present in case of
A. $B B r_{3}$
B. $B C l_{3}$
C. $B F_{4}$
D. same in all

Answer: D

D Watch Video Solution
59. Which of the following statement is not correct for sigma and pi- bonds formed between two carbon atoms ?
A. A sigma bond is stronger tha a pi bond.
B. Bond energies of sigma and pi bonds are
of the order of $264 \mathrm{kJmol}^{-1}$ and
$347 \mathrm{kJmol}^{-1}$, respectively.
C. Free rotation of atoms about a sigma
bond is allowed but not in case of a pi
bond.
D. A sigma bond determines the direction
between C atoms but a pi bond has no
primary effect in this regard.

Answer: B

- Watch Video Solution

60. Number of π electrons present in naphthalene is
A. 6
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

61. The electronegativities of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I are $4.0,3.0,2.8$, and 2.5 , respectively. The hydrogen halide with a high percentage of ionic character is
A. $H F$
B. HCl
C. $H B r$

D. $H I$

Answer: A

D Watch Video Solution

62. Dipole moment is shown by
A. 1, 4- dichlorobenzene
B. cis - 1, 2-dichloroethene
C. $\tan s-1,2-$ dichloroethene
D. trans $-2,3-$ dichlorobut $-2-e \neq$

Answer: B

- Watch Video Solution

63. Which of the following does not contain coordinate bond?
A. BH_{4}^{-}
B. NH_{4}^{+}
C. CO_{3}^{2-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$

- Watch Video Solution

64. In $O F_{2}$, the number of bond pairs and lone pairs of electrons are respectively,
A. 2,6
B. 2,8
C. 2,10
D. 2,9

Answer: B

- Watch Video Solution

65. In NO_{3}^{-}ion, the number of bond pair and
lone pair of electrons no N -atom are :
A. 2,2
B. 3,1
C. 1,3
D. 4,0

Answer: D

D Watch Video Solution

66. Which of the following has $p \pi-d \pi$ bonding?
A. NO_{3}^{-}
B. SO_{3}^{2-}
C. BO_{3}^{3-}
D. CO_{3}^{2-}

Answer: B

- Watch Video Solution

67. Which of the following is soluble in water
A. $C S_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $C C l_{4}$
D. CHCl_{3}
68. Which pair among the following is isostructural?
A. $X e F_{2}, I F_{2}^{-}$
B. $\mathrm{NH}_{3}, B F_{3}$
C. CO_{3}^{2-}
D. $P C l_{3}, I C I_{5}$

Answer: A
69. The main axis of diatomic molecule is z.

The orbitals p_{x} and p_{y} overlap to form
A. π molecular orbital
B. σ molecular orbital
C. δ molecular orbital
D. no bond will be formed

Answer: D

- Watch Video Solution

70. Sideways overlap of $p-p$ orbitals forms
A. sigma bond
B. pi bond
C. coordinate bond
D. H bond

Answer: B

- Watch Video Solution

71. The shape of ClO_{3}^{-}is
A. triangular pyramidal
B. tetrahedral
C. triangular planar
D. triangular bipyramidal

Answer: A

- Watch Video Solution

72. The correct order of bond angles in the molecules, $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$, and CO_{2} is
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}>\mathrm{CO}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CO}_{2}<\mathrm{CH}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{CH}_{4}$
D. $\mathrm{CO}_{2}>\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

73. Fluorine molecule is formed by
A. the axial $p-p$ overlap
B. the sideways $p-p$ overlap
C. the axial $s-p$ overlap
D. the overlap of two $s p^{2}$ hybrid orbitals

Answer: A

- Watch Video Solution

