©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - R SHARMA CHEMISTRY (HINGLISH)

EQUILIBRIUM

Examples

1. Write the expressions for K_{p} and K_{e} (whichever is applicable) for the following reversible reactions at equilibrium:
(i) $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{SO}_{2}(g)$
(ii) $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
(iii) $\mathrm{HF}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}($aq. $)+F($ aq. $)$
2. Calculating K_{c} : Some nitrogen and hydrogen gas are placed in an empty 2.50 L container at $500^{\circ} \mathrm{C}$. When equilibrium is established, 1.51 mol of $N_{2}, 1.05 \mathrm{~mol}$ of H_{2}, and 0.283 mol of NH_{3} are present. Calculate K_{c} for the following reaction at $500^{\circ} C$:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow N H_{3}(g)$

D Watch Video Solution

3. Calculating K_{p} : In an equilibrium mixture at $500^{\circ} C$, we find that $P_{N H_{3}}=0.076 \mathrm{~atm}, P_{N_{2}}=3.00 \mathrm{~atm}$, and $P_{H_{2}}=1.85 \mathrm{~atm}$.

Calculate K_{p} at $500^{\circ} C$ for the following reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
4. Calculate K_{p} from K_{c} : The equilibrium constant, K_{c}, for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
is 3.64×10^{-3} at $25^{\circ} C$. What is the value of K_{p} at this temperature?

- Watch Video Solution

5. K_{c} and K_{p} for heterogeneous equilibrium:

Write the equilibrium constant expressions K_{c} and K_{p}, if applicable, for each of the following heterogeneous system:
(i) $S(s)+H_{2} S O_{3}(a q.) \Leftrightarrow H_{2} S O_{3}(a q$.
(ii) $2 \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \Leftrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(s)$
(iii) $P_{4}(s)+6 C l_{2}(g) \Leftrightarrow 4 P C l_{3}(l)$
(iv) $A g C l(s) \Leftrightarrow A g^{+}(a q)+.C l(a q$.
(v) $\left(\mathrm{NH}_{4}\right) \mathrm{Se}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+H_{2} S e(g)$

- View Text Solution

6. Reaction quotient: At a very high temperature, $K_{c}=65.0$ for the following reversible reaction:
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
The following concentrations were detected in a mixture.

$$
C_{H I}=0.50 M, C_{H_{2}}=2.80 M, \text { and } C_{I_{2}}=3.40 M
$$

Is the system at equilibrium ? If not, in which direction must the reaction proceed for equilibrium to be established?

- Watch Video Solution

7. Finding equilibrium concentrations: A mixture of $0.50 \mathrm{~mol} \mathrm{H}_{2}$
and $0.50 \mathrm{~mol} I_{2}$ is placed in a 1.00 L stainless steel container at
$400^{\circ} C$. The equilibrium constant K_{c} for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
is 54.3 at this temperature. Calculate the equilibrium concentrations of H_{2}, I_{2}, and $H I$.

- Watch Video Solution

8. The equilibrium constant K_{c} for the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 54.3 at $400^{\circ} C$. If the initial concentrations of H_{2}, I_{2} and $H I$ are $0.00623 M, 0.00414 M$, and $0.0224 M$, respectively, calculate the concentrations of these species at equilibrium.

- Watch Video Solution

9. Changes in concentration: Some hydrogen and iodine are mixed at $229^{\circ} C$ in a 1.00 -liter container. When equilibrium is
estabilished, the following concentrations are present:
$C_{H_{2}}=0.080 \mathrm{M}, C_{I_{2}}=0.060 \mathrm{M}$, and $C_{H I}=0.490 \mathrm{M}$. If an additional 0.300 mol of $H I$ is then added, what concentrations will be present when the new equilibrium is established?

- Watch Video Solution

10. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at
0.28 and 1.1 atm , respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

- Watch Video Solution

11. Write the conjugate bases for the following Brddotonsted acids
(a) $H F$
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{HCO}_{3}^{\Theta}$

(Watch Video Solution

12. Wirte the conjugate acids for the following Brdddotosted bases:
a. $\stackrel{\Theta}{N} H_{2}$ b. $N H_{3}$ c. $H C O O^{\Theta}$

- Watch Video Solution

13. Classify the following species into Lewis acids and bases and show how these act as such:
(i) BCl_{3} (ii) H^{+}(iii) F^{-}(iv) HO^{-}

- Watch Video Solution

14. Calculate the degree of ionization of pure water at $25^{\circ} C$.

(Watch Video Solution

15. The ionization constant of $H F$ is 3.2×10^{-4}. Calculate the degree of ionization of HF in its $0.02 M$ solution. Calculate the concentration of all species present in the solution and its $p H$.

- Watch Video Solution

16. Calculate the percent ionization of $0.10 M$ acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$.

D Watch Video Solution

17. The $p H$ of $0.004 M$ hydrazine $\left(\mathrm{NH}_{2} . \mathrm{NH}_{2}\right)$ solution is 9.7 .

Calculate its ionisation constant K_{b} and $p K_{b}$.
18. Calculate the concentration of all species present in $0.010 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution. $\left(K_{a_{2}}=1.3 \times 10^{-2}\right)$

- Watch Video Solution

19. Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$of a mixture (solution) that is 0.010 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.20 M in $\mathrm{NaCH}_{3-} \mathrm{COO}$.

$$
\left(K_{a}=1.8 \times 10^{-5}\right)
$$

- Watch Video Solution

Follow Up Test 1

1. When a volatile liquid is introduced into an evacuated closed vessel at a particular temperature, both evaporation and condensation take place simultaneously. The system reaches equilibrium state when
A. the liquid is completely transformed into the corresponding vapor
B. equal amounts of liquid and vapor are present in the system
C. the rate of evaporation becomes equal to the rate of condensation
D. liquid cannot be converted into vapor and vice versa.

Answer: C

2. Which of the following equilibrium is dynamic?
A. Solid \Leftrightarrow Liquid
B. Liquid \Leftrightarrow Vapor
C. Solid \Leftrightarrow Vapor
D. All of these

Answer: D

- Watch Video Solution

3. Which of the following is not true for solid-liquid equilibrium?
A. It can be established at any given temperature.
B. The mass of solid does not change with time.
C. The mass of liquid does not change with time.
D. There is no exchange of heat between the system and its surroundings.

Answer: A

- Watch Video Solution

4. The vapor pressures of water, acetone, and ethanol at $293 K$ are $2.34,12.36$, and $5.85 k P a$, respectively. Which of the following statements is correct?
A. Acetone has the lowest boiling point.
B. Water has the highest boiling point.
C. Water evaporates the least in a sealed container at $293 K$
before equilibrium is established.
D. All of these

Answer: D

- Watch Video Solution

5. Which of the following substances can be placed in a closed vessel to establish solid \Leftrightarrow vapor equilibrium?
A. Ammonium chloride
B. Camphor
C. lodine
D. All of these

D Watch Video Solution

6. Which of the following solutions kept in contact with undisolved solute is an example of solid-solution equilibrium?
A. Aqueous solution
B. Saturated solution
C. Unsaturated solution
D. Nonaqueous solution

Answer: B

(D) Watch Video Solution

7. 0.200 g of iodine is stirred in 100 mL of water at 298 K till equilibrium is reached:
$\left[I_{2}(\text { aq. })\right]_{\text {Equilibrium }}=0.0011 \mathrm{molL}^{-1}$ at 298 K
What will be the mass of iodine found in solution?
A. $0.028 g$
B. $0.28 g$
C. $0.0028 g$
D. $2.8 g$

Answer: A

D Watch Video Solution

8. 0.200 g of iodine is stirred in 100 mL of water. After equilibrium is reached, we add 150 mL of water to the system.

How much iodine will be left undissolved?
A. $1.3 g$
B. $0.130 g$
C. $0.013 g$
D. $13 g$

Answer: B

- View Text Solution

9. What will be the concentration of iodine in solution?
A. 1.1 M
B. $0.011 M$
C. $0.0011 M$

Answer: C

- View Text Solution

10. Which of the following is correct regarding the gas-solution equilibrium?
A. The solubility of the dissolved gas increases with the increase of pressure and decreases with the increase of temperature.
B. The solubility of the dissolved gas increases with the increase of pressure as well as temperature.
C. The solubility of the dissolved gas decreases with the increase of pressure and increases with the increase of temperature.
D. The solubility of the dissolved gas decrease with the increase of pressure as well as temperature.

Answer: A

- Watch Video Solution

Follow Up Test 2

1. A reversible chemical reaction is said to be at equilibrium when
A. equal amounts of reactants and products are present
B. reactants are completely converted into products
C. the rates of the forward and backward reactions become equal
D. products cannot be converted into reactants and vice versa.

Answer: C

- Watch Video Solution

2. Chemical equilibrium is a dynamic equilibrium because
A. the rate of forward reaction in nonzero
B. the rate of backward in nonzero
C. concentrations of reactants and products always keep changing
D. Both forward and backward reactions occur simultaneously at the rate which is nonzero.

Answer: D

- Watch Video Solution

3. An example of a reversible reaction is
A. $2 \mathrm{Na}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+.\mathrm{H}_{2}(g)$
B. $\mathrm{AgNO}_{3}(a q)+.\mathrm{HCl}(\mathrm{aq}.) \rightarrow \mathrm{AgCl}(s)+\mathrm{HNO}_{3}(a q$.
C.

$$
\mathrm{KNO}_{3}(a q .)+\mathrm{NaCl}(a q .) \rightarrow \mathrm{KCl}(a q .)+\mathrm{NaNO}_{3}(a q .)
$$

D.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\text { aq. })+2 \mathrm{NaI}(\text { aq. }) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{NaNO}_{3}(a q .)
$$

Answer: C

- Watch Video Solution

4. The reaction which proceeds in the forward direction is.
A. $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
B. $2 \mathrm{C}+\mathrm{I}_{+} 4 \mathrm{~K}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+4 \mathrm{Kl}$
C. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
D. $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: D

5. Which of the following correctly depicts the attainment of equilibrium for the reaction:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
beginning with stoichiometric amounts of $\mathrm{N}_{2}(g)$ and $\mathrm{H}_{2}(g)$
and no $\mathrm{NH}_{3}(g)$.
A.

B.

C.

D.

Answer: B

- Watch Video Solution

6. Equilibrium mixture (I) consists of $\mathrm{N}_{2}, \mathrm{H}_{2}$, and NH_{3}. Equilibrium mixture (II) consists of N_{2}, D_{2}, and $N D_{3}$. Which of the following observations is correct if both the mixtures (I and
II) are mixed together and left for a while?
A. The concentration of NH_{3} is just the same as before.
B. Ammonia and all deuerium-containing forms of ammonia $\left(\mathrm{NH}_{2} \mathrm{D}, \mathrm{NHD}_{2}\right.$, and $\left.\mathrm{ND}_{3}\right)$ are present.
C. Dihydrogen and all deutrated forms ($H D$ and D_{2}) are present.
D. All of these

Answer: D

- Watch Video Solution

7. Which of the following correctly depicts the fact that identical chemical equilibrium can be attained through reversible reaction $\mathrm{H}_{2}+I_{2}=2 \mathrm{HI}$ from either direction?
A.

(2)

B.
(2)
(3)
C.
D.

Answer: A

- View Text Solution

Follow Up Test 3

1. According to the law of mass action, the rate of an elementary reaction is directly proportional to the of the
reactants.
A. mole fractions
B. molalities
C. normalities
D. molarities

Answer: D

- Watch Video Solution

2. According to the law of chemical equilibrium,
A. the rate of forward reaction becomes equal to the rate of
backward reaction when the chemical system attains equilibrium
B.a system can achieve the equilibrium state through forward as well as backward reaction
C. both (1) and (2)
D. the equilibrium constant $K_{e q}$ is defined as the product of the equilibrium active masses of the products, each raised
to the power that corresponds to its coefficient in the balanced equation, divided by the product of the equilibrium active masses of reactants, each raised to the power that corresponds to its coefficient in the balanced equation

Answer: D

3. K_{f} and K_{b} are the velocity constants of forward and backward reactions. The equilibrium constant $K_{e q}$ of the reversible reaction will be
A. K_{b} / K_{f}
B. $K_{f} \times K_{b}$
C. K_{f} / K_{b}
D. $K_{f}-K_{b}$

Answer: C

- Watch Video Solution

4. In which of the following equilibrium equation, $K_{p}>K_{c}$?
A. $2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+O_{2}(g)$
B. $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

Answer: A

(D) Watch Video Solution

5. For the equilibrium equation
$2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
the units of K_{p} will be
A. $(\mathrm{atm})^{-2}$
B. $(\mathrm{atm})^{2}$
C. $(\mathrm{atm})^{3}$
D. atm

Answer: B

- Watch Video Solution

6. The equilibrium constant of the equilibrium equation

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)
$$

is 0.44 at 1259 K . The value of equilibrium constant for the equilibrium equation
$\mathrm{H}_{2}(g)+2 \mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g)$
will be
A. -0.44
B. $-1 / 0.44$
C. $1 / 0.44$
D. 0.44

(D) Watch Video Solution

7. For the reversible reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
the value of the equilibrium constant depends on the
A. pressure of the system
B. volume of the reaction vessel
C. initial concentration of H_{2} and I_{2}
D. 'temperature of the system

Answer: C

8. If the equilibrium constant of the reversible reaction $H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$ is 7.4 , the equilibrium constant for the reversible reaction $2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ will be
A. $\sqrt{7.4}$
B. 54.76
C. 14.8
D. 7.4

Answer: B

D Watch Video Solution

9.1.7 g of $\mathrm{NH}_{3}(\mathrm{~g})$ is present in a $2-L$ flask. The active mass of $\mathrm{NH}_{3}(g)$ is
A. $0.1 M$
B. 0.02 M
C. $0.05 M$
D. 0.5 M

Answer: C

- Watch Video Solution

10. The active mass for any pure liquid or pure solid
A. is always taken as 1
B. is always infinity
C. is always zero
D. would depend on the nature of the solid

- Watch Video Solution

11. The relation between K_{p} and K_{x} is
A. $K_{p}=K_{x}\left(\frac{P}{\sum n}\right)$
B. $K_{p}=K_{x}(P)^{-\Delta n}$
C. $K_{p}=K_{x}(P)^{\Delta n}$
D. $K_{p}=K_{x}(R T)^{\Delta n}$

Answer: C

Watch Video Solution
12. If the equilibrium constant of the reaction $2 \mathrm{HI}(g) \Leftrightarrow \mathrm{H}_{2}(g)+I_{2}(g)$ is 0.25 , the equilibrium constant of the reaction
$\frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g) \Leftrightarrow H I(g)$
will be
A. 2.0
B. 4.0
C. 1.0
D. 3.0

Answer: A

- Watch Video Solution

13. If $\mathrm{CoO}(s)+\mathrm{H}_{2}(g) \Leftrightarrow \mathrm{Co}(s)+\mathrm{H}_{2} \mathrm{O}(g), K_{1}=60$
$\mathrm{CoO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Co}(s)+\mathrm{CO}_{2}(g), K_{2}=180$ then the equilibrium constant of the reaction
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
will be
A. 0.44
B. 0.11
C. 0.22
D. 0.33

Answer: D

- Watch Video Solution

1. Equilibrium concentrations of A, B and C in a reversible reaction
$3 A+B \Leftrightarrow 2 C+D$
are $0.03,0.01$, and $0.008 \mathrm{~mol}^{-1}$. Calculate the initial concentration of A ?
A. 0.014
B. 0.042
C. 0.084
D. 0.343

Answer: B

- Watch Video Solution

2. At $250^{\circ} C, K_{c}$ for $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 0.04 . How

 many moles of $P C l_{5}$ must be added to a $3-L$ flask to obtain $0.15 M C l_{2}$ at equilibrium?A. 2.1 mol
B. 1.7 mol
C. 0.9 mol
D. 3.5 mol

Answer: A

- Watch Video Solution

3. A large value of equilibrium constant shows that
A. the reaction is taking place at high temperature
B. the reaction is very little in the forward as well as backward direction
C. the reaction is less in the forward direction and more in the backward direction
D. the forward reaction occurs to a greater extent than the reverse reaction

Answer: D

- Watch Video Solution

4. The equilibrium constant K_{p} for the reaction
$A \Leftrightarrow 2 B$
is related to the degree of dissociation (α) of A and total
pressure P as
A. $\frac{4 \alpha^{2} P}{1-\alpha}$
B. $\frac{4 \alpha^{2} P^{2}}{1-\alpha}$
C. $\frac{4 \alpha^{2} P}{1-\alpha^{2}}$
D. $\frac{4 \alpha^{2} P^{2}}{1-\alpha^{2}}$

Answer: C

- Watch Video Solution

5. The partial pressures of $N O, B r_{2}$, and $N O B r$ in a flask at $25^{\circ} \mathrm{C}$ are $0.01,0.1$, and $0.04 a t m$, respectively. If the equilibrium constant at $25^{\circ} \mathrm{C}$ for the reaction

$$
2 N O(g)+B r_{2}(g) \Leftrightarrow 2 N O B r(g)
$$

is equal to $160 \mathrm{~atm}^{-1}$, then we can say that
A. the partial pressure of NOBr finally will be 0.05 atm
B. there is equilibrium in the flask
C. the reaction will proceed in the forward direction
D. the reaction will proceed in the backward direction

Answer: B

- Watch Video Solution

6. The equilibrium for the formation of SO_{3} was established at a certain temperature starting with one mole of O_{2} and two moles of SO_{2}. If V is the volume of the vessel and $2 x$ is the number of moles of SO_{3} present at equilbrium, then equilibrium constant will be
A. $\frac{(1-x)^{3}}{2 V}$
B. $\frac{4 x^{2}}{(2-x)(1-x)}$
C. $\frac{x^{2}}{(2-x)(1-x)}$
D. $\frac{x^{2} V}{(1-x)^{3}}$

Answer: D

- Watch Video Solution

7. The dissociation of ammonium hydrogen sulphide in a closed container produces a pressure of 10 atm at $200^{\circ} \mathrm{C}$. The value of
K_{p} is
A. 25
B. 50
C. 100
D. 75

- Watch Video Solution

8. If $1: 3$ (molar ratio) mixture of N_{2} and H_{2} yields 20% (by volume) of NH_{3} at 30 atm , then the moles of N_{2} converted into the product at equilibrium will be
A. 0.66
B. 0.22
C. 0.33
D. 0.44

Answer: C

9. The equilibrium pressure necessary to obtain 50% dissociation of $P C l_{5}$ at $250^{\circ} \mathrm{C}$ is numerically \qquad of K_{p}.
A. six times
B. four times
C. five times
D. three times

Answer: D

- Watch Video Solution

10. 2 mol each of A and B are taken in a container to carry out the following reaction:
$2 A(g)+B(g) \Leftrightarrow 2 C(g)+2 D(g)$
When the system attains equilibrium, we have
A. $[A]<[B]$
B. $[A]>[B]$
C. $[A]=[B]$
D. $[A]=[B]=[C]=[D]$

Answer: A

- Watch Video Solution

Follow Up Test 5

1. Which of the following expressions is correct?
A. $\Delta G=\Delta G^{\Theta}+R T 1 n Q$
B. $\Delta G^{\Theta}=-R T 1 n K_{e q}$
C. $K_{e q}=e^{-\Delta G^{\Theta} / R T}$
D. All of these

Answer: D

- Watch Video Solution

2. If for heterogeneous equilibrium,

$$
\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{e q}=1 \text { at } 1 \mathrm{~atm}
$$

pressure, the corresponding temperature is given by
A. $T=\frac{\Delta G^{\Theta}}{\Delta H^{\Theta}}$
в. $T=\frac{\Delta G^{\Theta}}{R}$
С. $T=\frac{\Delta S^{\Theta}}{\Delta H}$
D. $T=\frac{\Delta H^{\Theta}}{\Delta S^{\Theta}}$

Answer: D

- Watch Video Solution

3. If for homogeneous equilibrium,
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g), K_{e q}=1$, then
A. the reaction is spontaneous in the forward direction
B. the reaction is spontaneous in the backward direction
C. the reaction is spontaneous in both the directions
D. the reaction is neither spontaneous in the forward direction nor spontaneous in the backward direction

Answer: D

Follow Up Test 6

1. Le Chatlier's principle is applicable when
(i) $F e(s)$ and $S(s)$ react to form $F e S(s)$
(ii) $P C l_{5}(g)$ decomposes to form $P C l_{3}(g)$ and $C l_{2}(g)$
(iii) $N_{2}(g)$ and $H_{2}(g)$ react to form $\mathrm{NH}_{3}(g)$
(iv) $H_{2}(g)$ and $I_{2}(g)$ react to form $H I(g)$
A. (i), (ii), (iii), (iv)
B. (i), (ii), (iii)
C. (ii), (iii), (iv)
D. (i), (iii), (iv)

Answer: C

2. Iron (III) thiocyanate $\left[\mathrm{Fe}(\mathrm{SCN})_{3}\right]$ dissolves readily in water to give a red solution. The red color of the solution deepens when \qquad is added.
(i) oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
(ii) sodium thiocyanate $(N a S C N)$
(iii) iron (III) nitrate $\left[\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right]$
(iv) mercuric chloride $\left(\mathrm{HgCl}_{2}\right)$
A. (i), (ii), (iii)
B. (i), (iv)
C. (i), (iii), (iv)
D. (i), (ii), (iii), (iv)

Answer: A

3. For a physical equilibrium
$\mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)$
which of the following is true?
A. At low pressure, the nature of equilibrium changes to

$$
H_{2} O(s) \Leftrightarrow H_{2}(g)+1 / 2 O_{2}(g)
$$

B. More of liquid freezes if the pressure on the system is increased.
C. The pressure change does not affect the equilibrium.
D. More of ice melts if the pressure on the system is increased.

Answer: D

4. Which of the following equilibria remains unaffected by a change in pressure (or volume)?
A. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
B. $\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g)$
C. $2 \mathrm{PbS}(s)+3 \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{PbO}(s)+2 \mathrm{SO}_{2}(g)$
D. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

Answer: B

- Watch Video Solution

5. Which of the following equilibrium is favored by a temperature increase?
A. C (graphite) \Leftrightarrow C (diamond)
B. $H_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow H_{2} O(g)$
C. $2 O_{3} \Leftrightarrow 3 O_{2}$
D. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$

Answer: A

- View Text Solution

6. Consider the following equilibrium system:
$2 S_{2}(g)+O_{2}(g) \Leftrightarrow 2 S_{3}(g)$
Some inert gas is added to the above system at constant volume. Predict which of the following is true?
A. More of SO_{3} is produced.
B. Less SO_{2} is produced.
C. Addition of inert gas does not affect equilibrium.
D. System moves to new equilibrium position which can not
be predicted theoretically.

Answer: C

- Watch Video Solution

7. Which of the following is not true for the equilibrium reaction

$$
N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H=180 \mathrm{kJmol}^{-1}
$$

A. The formation of $N O$ is increased at higher temperature.
B. The volume change at constant pressure does not affect the equilibrium.
C. The pressure change at constant volume does not affect the equilibrium.
D. The formation of $N O$ is decreased at higher temperature.

Answer: D

- Watch Video Solution

8. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and NaNO_{2} is left behind. At equilibrium,
A. increased temperature favors forward reaction
B. addition of NaNO_{2} favors reverse reaction
C. increased pressure favors forward reaction
D. adding of NaNO_{2} favors forward reaction

Answer: A

9. Adding a catalyst to a reaction at equilibrium
A. changes Q
B. changes $K_{e q}$
C. changes both Q and $K_{e q}$
D. changes neither Q nor $K_{e q}$

Answer: D

- Watch Video Solution

10. Consider the following equilibrium system:
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$
set up in a cylinder fitted with a piston. Some inert gas is added
and the piston is moved outwards to keep the total gaseous pressure constant. Predict which of the following is true?
A. Addition of inert gas does not affect the equilibrium.
B. Less $S O_{3}(g)$ is product.
C. More $\mathrm{SO}_{3}(g)$ is produced.
D. The system moves to new equilibrium position which cannot be predicted theoretically.

Answer: B

D Watch Video Solution

Follow Up Test 7

1. Which of the following is an electrolyte?
A. $C_{6} H_{12} O_{6}$
B. $C_{12} H_{22} O_{11}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{K}_{2} \mathrm{CrO}_{4}$

Answer: D

- Watch Video Solution

2. Which of the following is a nonelectrolyte ?
A. Urea
B. Methanol
C. Ethanol
D. All of these
3. Which of the following is a weak electrolyte ?
A. $H F$
B. $H C I$
C. HBr
D. $H I$

Answer: A

- Watch Video Solution

4. Which of the following is a strong electrolyte?
A. $\mathrm{Ba}(\mathrm{OH})_{2}$
B. $\mathrm{Sr}(\mathrm{OH})_{2}$
C. $\mathrm{Ca}(\mathrm{OH})_{2}$
D. $M g(O H)_{2}$

Answer: D

- Watch Video Solution

5. Which of the following gives the maximum number of ions per mole when dissolved in water ?
A. $K_{2} M g I_{4}$
B. CuSO 4
C. FeCI_{3}
D. $K I_{3}$

Answer: C

D Watch Video Solution

6. Which of the following is the best conductor of electricity ?
A. $1 \mathrm{MH}_{3} \mathrm{PO}_{4}$
B. $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
C. $1 \mathrm{MH}_{2} \mathrm{CO}_{3}$
D. $1 M H C I$

Answer: B

Follow Up Test 8

1. Hydrochloric acid present in the gastric juice is secreted by the lining of our stomach in a significant amount of \qquad L $d a y^{-1}$.
A. $1.2-1.5$
B. $0.5-1.0$
C. $1.5-2.0$
D. $1.0-2.0$

Answer: A

- View Text Solution

2. Which of the following acids is known to be the main component of vinegar ?
A. Hydrocyanic acid
B. Formic acid
C. Butyric acid
D. Acetic acid

Answer: D

- Watch Video Solution

3. Lemon and orange juices contain
A. citric acid
B. ascorbic acid
C. tartaric acid
D. both (1) and (2)

Answer: D

- Watch Video Solution

4. Which of the following acids is not completely ionized in aqueous solution?
A. Hydrochloric acid
B. Sulphuric acid
C. Acetic acid
D. Nitric acid

Answer: C

5. Which of the following salts is a base and is used for washing purposes?
A. NaHCO_{3}
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $N a C I$

Answer: B

- Watch Video Solution

Follow Up Test 9

1. Which of the following is not a typical Arrhenius acid ?
A. CO_{2}
B. SO_{2}
C. SO_{3}
D. All of these

Answer: D

D Watch Video Solution

2. Which of the following is not a typical Arrhenius base ?
A. NH_{3}
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. CaO

Answer: D

D Watch Video Solution

3. Which of the following is a Bronsted acid ?
(i) HCN , (ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(iii) NH_{4}^{+}, (iv) HCI
A. (i), (iii)
B. (i), (ii), (iii), (iv)
C. (ii), (iii)
D. (i), (iii), (iv)
4. Which of the following is a Bronsted base ?
(i) NH_{3}, (ii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(iii) HCO_{3}^{-}, (iv) SO_{4}^{2-}
A. (i), (ii), (iii), (iv)
B. (i), (ii)
C. (i), (ii), (iv)
D. (ii), (iii), (iv)

Answer: A

- Watch Video Solution

5. The conjugate base of hydroxide ion is
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{3} \mathrm{O}^{+}$
C. O^{2-}
D. O_{2}

Answer: C

- Watch Video Solution

6. The conjugate acid of amide ion $\left(\mathrm{NH}_{2}^{-}\right)$is
A. $N_{2} H_{4}$
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NH_{4}^{+}
D. NH_{3}

- Watch Video Solution

7. Which of the following can acct both as a Bronsted acid as well as a Bronsted base ?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HCO_{3}^{-}
C. O^{2-}
D. NH_{4}^{+}

Answer: B

8. Which of the following acid-base reactions cannot be explained by the Bronsted theory?
A. $\mathrm{CO}_{2}+\mathrm{CaO} \rightarrow \mathrm{CaCO}_{3}$
B. $B F_{3}+N H_{3} \rightarrow \bar{B} F_{3} \stackrel{+}{N} H_{3}$
C. $\mathrm{Ni}+4 \mathrm{CO} \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}$
D. All of these

Answer: D

- Watch Video Solution

9. Which of the following Bronsted acids has the wekest conjugate base ?

$$
\text { A. } \mathrm{H}_{2} \mathrm{O}
$$

B. $H C N$
C. HCOOH
D. $H F$

Answer: D

- Watch Video Solution

10. Which of the following is a Lewis acid ?
A. $B F_{3}$
B. SnCI_{4}
C. CO_{2}
D. All of these

Answer: D

- Watch Video Solution

11. Which of the following is not a Lewis base ?
A. CH_{4}
B. $C N^{-}$
C. ROH
D. NH_{3}

Answer: A

- Watch Video Solution

12. Which of the following is correct according to the Lewis acidbase concept ?
A. All positively chages ions are bases.
B. All negatively charged ions are acids.
C. A molecule in which the central atom has vacant d orbitals avaliable acts as an acid.
D. Species in which the central atom has complete octet cannot act as acid.

Answer: C

- Watch Video Solution

13. Which of the following ions can act as Lewis acids ?
A. Alkali metal ions
B. Transition metal ions
C. Alkaline earth metal ions
D. All metal ions

Answer: B

- Watch Video Solution

14. Which of the following is correct regarding the Lewis concept of acids and bases ?
A. It cannot explain the cases when a species is donating as
well as accepting electron pairs.
B. It cannot explain the acidic chaacter of protonic acids.
C. It cannot explain quantiatively the strength of acids as

D. All of these

Answer:

- View Text Solution

Follow Up Test 10

1. The concentration of OH^{-}ions in a $0.050 \mathrm{MHNO}_{3}$ solution
is
A. 2.0×10^{-13}
B. 1.0×10^{-13}
C. 0.5×10^{-13}
D. 1.5×10^{13}

D Watch Video Solution

2. The pH of a $0.005 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution is
A. 3.3
B. 5.0
C. 2.0
D. 4.0

Answer: C

- Watch Video Solution

3. Which of the following has the minimum pH ?
A. Blood
B. Gastric juice
C. Saliva
D. Milk

Answer: B

(D) Watch Video Solution

4. The pH of a solution is 1.30 . The number of signuficant figure is
A. three
B. one
C. zero
D. two

Answer: D

- Watch Video Solution

5. The pH of an aqueous solution containing $0.1 M H C I$ will be
A. small than $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
B. smaller than $0.1 M$ acetic acid solution
C. greater than $0.1 M$ acetic acid solution
D. equal to $0.1 M$ acetic acid solution.

Answer: B

6. Which of the following has $p K_{w}=13.36$ at $50^{\circ} C$, the pH of pure water will be
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. $H F$
D. All of these

Answer: D

- View Text Solution

7. If a neutral solution has $p K_{w}=13.36$ at $50^{\circ} C$, then pH of the solution is
A. 6.63
B. 7.0
C. 7.13
D. 6.0

Answer: A

- Watch Video Solution

8. How many hydrogen ions are present in 1 ml of a solution of $p H=13 ?$
A. 10^{-16}
B. 6.022×10^{13}
C. 6.022×10^{7}
D. 6.022×10^{23}

- Watch Video Solution

9. What will be the change in the pH of water if $10^{-3} \mathrm{~mol}$ of NaOH is added to 1.0 L of water?
A. Decreased by 4
B. Increased by 4
C. Increased by 3
D. Decreased by 4

Answer: B

10. If $p H$ of A, B, C and D are $9.5,2.5,3.5$ and 5.5 respectively, then strongest acid is
A. D
B. C
C. A
D. B

Answer: D

- Watch Video Solution

11. On dilution, the pH of a basic solution
A. increases
B. remains the same
C. decreases
D. may increase ordecrease depending upon the nature of

the solution

Answer: C

- Watch Video Solution

12. Give $p K_{w}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.77$ at $40^{\circ} \mathrm{C}$, predict the nature of the solution having $p H=7$ at $40^{\circ} C$?
A. Basic
B. Acidic
C. Neutral
D. Cannot be predicted

- Watch Video Solution

13. With decrease of temperature, ionic product of water
A. increases
B. decreases
C. remains the same
D. may increase or decrease

Answer: B

- Watch Video Solution

14. $10^{-5} \mathrm{MHCI}$ solution at $25^{\circ} \mathrm{C}$ is dilluted 1000 times. The pH of the diluted solution will
A. be equal to 8
B. remain unchanged
C. lie between 5 and 6
D. lie between 6 and 7

Answer: D

- Watch Video Solution

15. pH of a 100 cc solution is 2 . It will not change if
A. 100 cc of 0.1 M HCl is added to it
B. 100 cc of water is added to it
C. 100 cc of 0.01 N HCl is added to it
D. 1 cc of 0.1 M HCl is added to it

Answer: C

- Watch Video Solution

Follow Up Test 11

1. Calculate the concentration of the formate ion present in 0.100 M formic acid $(H C O O H)$ solution at equilibrium $\left(K_{a}=1.7 \times 10^{-4}\right)$.
A. $4.1 \times 10^{-3} M$
B. $3.1 \times 10^{-3} M$
C. $2.1 \times 10^{-3} M$
D. $5.1 \times 10^{-3} M$

Answer: A

- Watch Video Solution

2. Which of the following is the weakest acid ?
A. Phenol $\left(K_{a}=1.3 \times 10^{10}\right)$
B. Hydrocyanic acid $\left(K_{a}=4.9 \times 10^{-10}\right)$
C. Acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$
D. Benzoic acid $\left(K_{a}=6.5 \times 10^{-5}\right)$

Answer: A

3. The correct experssion for Ostwald's dilution law is
A. $K_{a}=\alpha^{2} V$
B. $K_{a}=\frac{\alpha^{2}}{V}$
C. $K_{a}=\frac{\alpha^{2}}{(1-\alpha) V}$
D. $K_{a}=\frac{\alpha^{2}}{(1-\alpha) C}$

Answer: B

D Watch Video Solution

4. The pH of 0.1 M monobasic acid is 4.50 . The acidity constant $\left(K_{a}\right)$ of the monobasic acid is
A. 1.0×10^{-7}
B. 1.0×10^{-5}
C. 1.0×10^{-4}
D. 1.0×10^{-8}

Answer: D

- Watch Video Solution

5. If the concentration of the weak monoprotic acid HA is C $\mathrm{mmol} L^{-1}$ and its ionization constant is K_{a}, then
A. $C_{H}^{+}=C / 2$
B. $C_{H}^{+}=\sqrt{C}$
C. $C_{H}^{+}=\sqrt{K_{a} C}$
D. $C_{H}^{+}=C / C_{a}$

Answer: C

- Watch Video Solution

6. Which of the following is the strongest base ?
A. $C_{6} H_{5} N H_{2}\left(p K_{b}=9.42\right)$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}\left(p K_{b}=9.15\right)$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\left(p K_{b}=8.94\right)$
D. $C_{6} H_{5} N H C_{2} H_{5}\left(p K_{b}=8.89\right)$

Answer: D

- Watch Video Solution

7. The $p K_{b}$ of NH_{3} is 4.75. Calculate the concentration of H^{+} ions in solution formed by mixing $0.2 \mathrm{MNH}_{4} \mathrm{CI}$ and $0.1 \mathrm{MNH}_{3}$
A. 0.88×10^{-5}
B. 1.12×10^{-9}
C. 1.12×10^{-5}
D. 0.88×10^{-9}

Answer: B

- Watch Video Solution

8. K_{a} for a weak monobasic acid is 1.0×10^{-6}. The $p K_{b}$ of its conjugate base base is
A. 8.0
B. 1.0×10^{-8}
C. 1.0×10^{-4}
D. 6.0

Answer: A

- Watch Video Solution

9. If the dissociation constants of two weak acids $H A_{1}$ and $H A_{2}$ are K_{1} and K_{2}, then the relative strengths of $H A_{1}$ and $H A_{2}$ are given by
A. $\sqrt{K_{2} / K_{1}}$
B. $\sqrt{K_{1} / K_{2}}$
C. K_{2} / K_{1}
D. K_{1} / K_{2}
10. Which of the following is arranged in the order of increseing ionization constants of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
A. $K_{3}<K_{1}<K_{2}$
B. $K_{1}<K_{2}<K_{3}$
C. $K_{2}<K_{1}<K_{3}$
D. $K_{3}<K_{2}<K_{1}$

Answer: D

D Watch Video Solution

11. Oxoacids are \qquad acids.
A. binary
B. ternary
C. quatenary
D. secondary

Answer: B

- Watch Video Solution

12. Which of the following is correct for a compound of the type

ZOH?

A. It is an hydroxide.
B. It is an oxoacid.
C. It is either a hydroxide nor an oxoacid.
D. It is neither a hydroxide nor an oxoacid.

Answer: C

- Watch Video Solution

13. Which of the following oxocids is the strongest acid ?
A. HClO
B. HBrO
C. HIO
D. All are equally strong

Answer: A

14. Which of the following oxoacids is the weakest acid ?
A. HCIO_{4}
B. HCIO_{3}
C. HCIO_{2}
D. HCIO

Answer: D

D Watch Video Solution

15. Which of the following order of acidic strengths is incorrect
?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{HNO}_{3}$
B. $\mathrm{H}_{2} \mathrm{SeO}_{3}<\mathrm{H}_{2} \mathrm{SO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{3}<\mathrm{HNO}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}<\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

D View Text Solution

16. Which of the following is the strongest acid ?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}$
D. All are equally strong

Answer: C

Follow Up Test 12

1. The pH of a solution containing $0.20 \mathrm{MCH}_{3} \mathrm{COOH}$ and $0.30 \mathrm{MCH}_{3} \mathrm{COONa}$ is
A. 2.89
B. 4.92
C. 5.04
D. 3.89

Answer: B
2. When $\mathrm{CH}_{3} \mathrm{COONa}$ is added to an aqueous solution of

$\mathrm{CH}_{3} \mathrm{COOH}$

A. pH value becomes zero
B. pH value remains unchanged
C. pH value decreases
D. pH value increases

Answer: D

D Watch Video Solution

3. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 8. Aspirin will be:
A. completely ionizzed in the small intestine and in the stomach
B. ionized in the small intestine and almost uniozed in the stomch
C. ionized in the stomach and almost unionized in the small
intestine
D. unionized in the small intestine and in the stomach

Answer: B

- Watch Video Solution

4. 50.0 mL of 0.10 M ammonia solution is treated with 25.0 mL of 0.10 MHCI . If $K_{b}\left(\mathrm{NH}_{3}\right)=1.77 \times 10^{-5}$, the pH of the resulting solution will be
A. 11.12
B. 8.75
C. 10.34
D. 9.24

Answer: D

- Watch Video Solution

5. Which of the following cations is not hydrolyzed in aqueous solution?
(i) Ba^{2+}, (ii) Ca^{2+}
(iii) $N a^{+}$, (iv) K^{+}
A. (i), (ii)
B. (iii), (iv)
C. (i), (ii), (iii), (iv)
D. (i), (ii), (iii)

Answer: C

- View Text Solution

6. Which of the anions is not hydrolyzed in aqueous solution ?
CI^{-}, (ii) NO_{3}^{-}
(iii) Br^{-}, (iv) CIO_{4}^{-}
A. (i), (ii), (iii), (iv)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)
D. (ii), (iv)

D View Text Solution

7. Which of the following salts does not undergo hydrolysis ?
A. $K C N$
B. $K C I$
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. $\mathrm{FeCI}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

8. Which of the following salts undergoes anionic hydrolysis ?
A. $A I C I_{3}$
B. CuSO 4
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{NH}_{4} \mathrm{CI}$

Answer: C

- Watch Video Solution

9. The aqueous solution of aluminium chloride is acidic due to the
A. formation of $\mathrm{AI}(\mathrm{OH})_{3}$
B. hydrolysis of cation and anion
C. hydrolysis of anion
D. hydrolysis of cation

Answer: D

- Watch Video Solution

10. Which of the following relations is correct during the hydrolysis of salts of weak acid and strong bases?
A. $K_{h}=\frac{K_{w}}{K_{a}}$
B. $K_{h}=\frac{K_{w}}{K_{a} K_{b}}$
C. $K_{h}=\frac{K_{w}}{K_{b}}$
D. $K_{h}=\frac{K_{a}}{K_{w}}$

Answer: A

11. For the aqueous solution of a salt of a weak acid abd a weak base,
A. $K_{h}=\frac{\sqrt{h}}{1-h}$
B. $\sqrt{K_{h}}=\frac{h^{2}}{1-h}$
C. $\sqrt{K_{h}}=\frac{h}{1-h}$
D. $K_{h}=\frac{h}{1-h}$

Answer: C

- Watch Video Solution

12. For cationic hydrolysis, pH given by
A. $p H=\frac{1}{2} p K_{w}+\frac{1}{2} p K_{a}+\frac{1}{2} \log C$
B. $p H=\frac{1}{2} p K_{w}-\frac{1}{2} p K_{a}-\frac{1}{2} \log C$
C. $p H=\frac{1}{2} p K_{w}+\frac{1}{2} p K_{a}-\frac{1}{2} p K_{b}$
D. $p H=\frac{1}{2} p K_{w}+\frac{1}{2} p K_{b}+\frac{1}{2} \log C$

Answer: B

D View Text Solution

13. Which of the following salts is neutral in water ?
A. $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{CN}$
D. $\mathrm{NH}_{4} F$

Answer: A

- Watch Video Solution

Follow Up Test 13

1. A buffer solution is one which has
A. reserved acid
B. reserved base
C. reserved acid and reserved base
D. pH equal to 7

Answer: C

2. Which of the following solutions cannot act as buffer system ?
A. $\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{NaCIO}_{4} / \mathrm{HCIO}_{4}$
C. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHHCI}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$

Answer: B

- Watch Video Solution

3. An acidic buffer solution can be prepared by mixing equimolar amounts of
A. $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
B. NH_{3} and $\mathrm{NH}_{4} \mathrm{CI}$
C. $H C I$ and $N a C I$
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: D

(D) Watch Video Solution

4. Which of the following salts solution will act as a buffer ?
A. $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}(\mathrm{aq}$.
B. $\mathrm{NH}_{4} \mathrm{CI}($ aq. $)$
C. $\mathrm{NaCH}_{3} \mathrm{COO}$ (aq. $)$
D. $N a C I(a q$.

- View Text Solution

5. Which of the following expression tepresents the Henderson equation for an acidic buffer ?
A. $p H=\frac{1}{2} p K_{a}-\frac{1}{2} \log C$
B. $p H=p K_{a}-\log \frac{[\text { Conjugate base }]}{[\text { Acid }]}$
C. $p H=p K_{a}+\log \frac{[\text { Conjugate base }]}{[\text { Acid }]}$
D. $p H=p K_{a}$

Answer: C

- Watch Video Solution

6. A buffer solution contains 0.1 mol each of $\mathrm{NaCH}_{3} \mathrm{COO}$ and $\mathrm{CH}_{3} \mathrm{COOH}$. On diluting the solution to double its volume, the pH of the solution
A. will because half
B. will remain unchanged
C. will be doubled
D. cannot be predicted

Answer: B

- Watch Video Solution

7. Which of the following combinations will make a buffer solution?
(i) $\mathrm{CH}_{3} \mathrm{COONa}(2 \mathrm{~mol})+\mathrm{HCI}(1 \mathrm{~mol})$
(ii) $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mol})+\mathrm{NaOH}(1 \mathrm{~mol})$
(iii) $\mathrm{CH}_{3} \mathrm{COOH}(1 \mathrm{~mol})+\mathrm{CH}_{3} \mathrm{COONa}(1 \mathrm{~mol})$
A. (iii)
B. (i),(ii)
C. (ii), (iii)
D. (i), (ii), (iii)

Answer: D

D Watch Video Solution

8. Which of the following conditions will make the buffer most efficient?
A. $p H=p K_{a}$
B. $p H=p H_{a} \pm 1$
C. $p H=p K_{a}+1$
D. $p H=p H_{a}-1$

Answer: A

- Watch Video Solution

9. The range of pH for acidic and basic buffer is where K_{a} and K_{b} are the acid base dissociation constants, respectively.
A. form $p H=p K_{a} \pm 2 \rightarrow p H=p K_{b} \pm 2$
B. from $p H=p K_{a}+1 \rightarrow p H=p K_{b}+1$
C. from $p H=p K_{a} \pm 1 \rightarrow p H=p K_{b} \pm 1$
D. from $p H=p K_{a}+1 \rightarrow p H=p K_{b}-1$

Answer: C

- Watch Video Solution

10. The pH of blood circulating in a human body is maintained around. 7.4 by the action of the buffer system
A. $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{NH}_{4} \mathrm{CI} / \mathrm{NH}_{3}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{2-}$
D. $\mathrm{CO}_{2} / \mathrm{HCO}_{3}^{-}$

Answer: D

Follow Up Test 14

1. Which of the following is the correct representation of the solubility product expression for mercurous iodide $\left(\mathrm{HgI}_{2}\right)$?
A. $\left[H g_{2}^{2+}\right]\left[I^{-}\right]^{2}$
B. $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{I}^{-}\right]^{2}$
C. $\left[H g^{+}\right]\left[I^{-}\right]$
D. $\left[H g^{2+}\right]\left[I^{-}\right]^{2}$

Answer: A

- Watch Video Solution

2. The units of solubility product of silver chromate $\left(\mathrm{AgCrO} \mathrm{O}_{4}\right)$
A. $m o l^{2} L^{-2}$
B. $m o l^{3} L^{-3}$
C. $m o l L^{-1}$
D. $\mathrm{mol}^{-1} L$

Answer: B

- Watch Video Solution

3. Which of the following quantities refers to a saturated solution?
A. Mol solubility
B. Solubility
C. Solubility product

D. All of these

Answer: D

- View Text Solution

4. At a certain temperature, the solubility of the salt $A_{x} B_{y}$ is S moles per litre. The general expression for the solubility product will be
A. $K_{s p}=X^{y} Y^{x} S^{x+y}$
B. $K_{s p}=(X Y)^{x+y} S^{x+y}$
C. $K_{s p}=\left(X^{x} Y^{y}\right) S^{x+y}$
D. $K_{s p}=X^{y} Y^{x} S^{x y}$

Answer: C

5. The molar solubility of silver sulphate is $1.5 \times 10^{-2} \mathrm{molL}^{-1}$. The solubility product of the salt will be
A. 2.25×10^{-4}
B. 1.4×10^{-5}
C. 1.7×10^{-6}
D. 3.0×10^{-3}

Answer: B

D Watch Video Solution

6. Which of the following metal sulphide solutions will have the
A. $M n S\left(K_{s p}=6.0 \times 10^{-16}\right)$
B. $F e S\left(K_{s p}=1.1 \times 10^{-19}\right)$
C. $\left.Z n S(K s p) 1.2 \times 10^{-21}\right)$
D. $C d S\left(K_{s p}=3.5 \times 10^{-29}\right)$

Answer: A

- Watch Video Solution

7. The ionic product of an ionic solid
A. can be equal to or less than $K_{s p}$
B. is always equal to $K_{s p}$
C. is always less than $K_{s p}$
D. can be less than, equal to, or greater than $K_{s p}$

- Watch Video Solution

8. The pH an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 10.0 . If the $K_{s p}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 1.0×10^{-9}, the concetration of Ba^{2+} ions in the solution is
A. $1.0 \times 10^{-5} M$
B. $1.0 \times 10^{-1} M$
C. $1.0 \times 10^{-4} M$
D. $1.0 \times 10^{-2} M$

Answer: B

9. The precipitate of $C a F_{2}\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
A. $10^{-3} M C a^{2+}+10^{-5} M F^{-}$
B. $10^{-5} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
C. $10^{-2} M C a^{2+}+10^{-3} M F^{-}$
D. $10^{-4} M C a^{2+}+10^{-4} M F^{-}$

Answer: C

- Watch Video Solution

10. If S_{0}, S_{1}, S_{2}, and S_{3} are the solubility of AgCI in water, $0.01 M C a C I_{2}, 0.01 M N a C I 1$, and $0.5 M A g N O_{3}$ solutions, respectively, then which of the following is true ?
A. $S_{0}>S_{2}>S_{1}>S_{3}$
B. $S_{0}=S_{2}=S_{1}=S_{3}$
C. $S_{3}>S_{1}>S_{2}>S_{0}$
D. $S_{0}>S_{2}>S_{3}>S_{1}$

Answer: A

- Watch Video Solution

11. The solubility of calcium sulphate is $0.67 g L^{-1}$. The value of
$K_{s p}$ for calcium sulphate will be
A. 1.7×10^{-6}
B. 3.5×10^{-4}
C. 2.4×10^{-5}
D. 9.3×10^{-8}

Answer: C

- Watch Video Solution

12. Given $K_{s p}(A g I)=8.5 \times 10^{-17}$. The solubility of Ag in $0.1 M K I$ solution is
A. $0.1 M$
B. $8.5 \times 10^{-16} M$
C. $8.5 \times 10^{-17} M$
D. $8.5 \times 10^{-18} M$

Answer: B

Question Bank

1. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$, If $K_{p}=K_{c}(R T)^{x}$ where the symbols have usual meaning then, the value of x is (assuming ideality).
A. $-1 / 2$
B. -1
C. $1 / 2$
D. 1

Answer: A
2. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$as $10^{-6} \mathrm{~mol} L^{-1}$. What is the value of K_{w} at $90^{\circ} C$?
A. 10^{-14}
B. 10^{-6}
C. 10^{-12}
D. 10^{-8}

Answer: C

- Watch Video Solution

3. In which of the following equilibrium, does the change in the volume of the system not alter the number of moles?
A. $S O_{2} C I_{2}(g) \Leftrightarrow S O_{2}(g)+C I_{2}(g)$
B. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: D

D Watch Video Solution

4. What is the equilibrium expression for the reaction

$$
P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?
$$

A. $K_{e q}=\left[O_{2}\right]^{5}$
B. $K_{e q}=\frac{1}{5} \frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]}$
C. $K_{e q}=\frac{1}{\left[O_{2}\right]^{5}}$
D. $K_{e q}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$

- Watch Video Solution

5. Which of the following reactions carried out in closed vessels are reversible ?
(1) $2 \mathrm{KCIO}_{3} \rightarrow 2 \mathrm{KCI}+\mathrm{O}_{2}$
(2) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
(3) $P C I_{5} \rightarrow P C I_{3}+C I_{2}$
(4) $\mathrm{Fe}^{3+}+S C N^{-} \rightarrow[\mathrm{Fe}(S C N)]^{2+}$
A. (i), (ii), (iii), (iv)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)
D. (i), (iii), (iv)

Answer: B

- Watch Video Solution

6. Which of the following is not the characteristic of chemical equilibrium?
A. At equilibrium, the concentration of each of the reactants and the products becomes constant.
B. At equilibrium, the rate of forward reaction becomes equal to the rate of backward reaction, and hence, the equilibrium is dynamic in mature.
C. A chemical equilibrium can be estabilised only if none of the products is allowed to escape out separate out as a solid.
D. Chemical equilibrium for the reversible reaction
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ can be attained from forward direction only.

Answer: D

- Watch Video Solution

7. How many litres of water must be added to $1 L$ of an aqueous solution of HCl with a $p H$ of 1 to create an aqueous solution with $p H$ of 2 ?
A. $0.9 L$
B. $2.0 L$
C. $9.0 L$
D. 0.1 L

- Watch Video Solution

8. The $K_{s p}$ of AgCrO_{4} is 1.1×10^{-12} at 298 K . The solubility (in $\mathrm{mol} L^{-1}$) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a 0.1 MAgNO solution is
A. 1.1×10^{-10}
B. 1.1×10^{-11}
C. 1.1×10^{-12}
D. 1.1×10^{-9}

Answer: A

9. Solide $B a\left(\mathrm{NO}_{3}\right)_{2}$ is hradually dissolved in a $1.0 \times 10^{-4} M N a_{2} \mathrm{CO}_{3}$ solution. At what concentration of $B a^{2+}$ will a precipitate being to from ? $\left(K_{s p}\right.$ for $\mathrm{BaCO}_{3}=5.1 \times 10^{-9}$)
A. $8.1 \times 10^{-7} M$
B. $8.1 \times 10^{-5} M$
C. $5.1 \times 10^{-5} M$
D. $4.1 \times 10^{-5} M$

Answer: C

- Watch Video Solution

10. In the case of gaseous homogeneous reaction, the active mass of the reaction is obtained by the expression.
A. $\frac{n}{v} R T$
B. $\frac{P}{R T}$
C. $\frac{R T}{P}$
D. $\frac{P V}{R T}$

Answer: B

- Watch Video Solution

11. For the following three reaction 1,2 and 3 , equilibrium constants are given:
(1) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}, K_{1}$
(2) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}, \mathrm{K}_{2}$
(3) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)}, \mathrm{K}_{3}$

Which of the following relations is correct ?
A. $K_{2} K_{3}=K_{1}$
B. $K_{1} \sqrt{K_{2}}=K_{1}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{2} K_{3}=K_{1}$

Answer: C

- Watch Video Solution

12. Phosphorous pentachloride dissociates as follows (in a closed reaction vessel):
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
If the total pressure at equilibrium on the reaction mixture is P and the degree of dissociation of $P C I_{5}$ is x , the partial pressure of $P C I_{3}$ will be
A. $\left(\frac{x}{x+1}\right) P$
B. $\left(\frac{x}{1-x}\right) P$
C. $\left(\frac{2 x}{1-x}\right) P$
D. $\left(\frac{x}{x-1}\right) P$

Answer: A

- Watch Video Solution

13. The dissociation constant of a substitude benzoic acid at $25^{\circ} C$ is 1.0×10^{-4}. The pH of a $0.01 M$ solution of its sodium salt is
A. 10
B. 8
C. 9
D. 7

Answer: B

- Watch Video Solution

14. For the reaction
$C O(g)+C I_{2}(g) \Leftrightarrow \mathrm{COCI}_{2}(g)$
K_{p} / K_{c} is equal to
A. 1.0
B. RT
C. $\sqrt{R T}$
D. $1 / R T$
15. Which of the following acids has the smallest dissociation constant?
A. $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$
C. $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CHFCOOH}$

Answer: A

- Watch Video Solution

16. Amongst the following hydroxides, the one which has the lowest value of $K_{s p}$ is:
A. $\mathrm{Ba}(\mathrm{OH})_{2}$
B. $\mathrm{Mg}(\mathrm{OH})_{2}$
C. $\mathrm{Be}(\mathrm{OH})_{2}$
D. $\mathrm{Ca}(\mathrm{OH})_{2}$

Answer: C

- Watch Video Solution

17. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid $(H A, 1 M)$ is $1 / 100 t h$ of that of a strong acid $(H X, 1 M)$, at $25^{\circ} C$. The $K_{a}(H A)$ is
A. 1×10^{-3}
B. 1×10^{-4}
C. 1×10^{-5}
D. 1×10^{-6}

Answer: B

- Watch Video Solution

18. The thermal dissociation equilibrium of $\mathrm{CaCO}_{3}(s)$ is strudied under different conditions
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
For this equilibrium, the correct statements are
(i) K is dependent on the pressure of CO_{2} at a given T .
(ii) ΔH is dependent on T .
(iii) ΔH is independent of the catalyst, if any.
(iv) K is independent of the inintial amount of CaCO_{3}.
A. (i), (ii), (iii), (iv)
B. (i), (ii), (iii)
C. (ii), (iii), (iv)
D. (i), (ii), (iv)

Answer: C

- Watch Video Solution

19. Which of the following will decrease the pH of a 50 ml solution of 0.01 MHCI ?
A. Addition of Mg
B. Addition of 50 ml 0.002 MHCI
C. Addition of 50 ml 0.01 MHCI
D. Addition of 5 ml 1 M HCl

(D) Watch Video Solution

20. The $p K_{a}$ of a weak acid $(H A)$ is 4.5 . The $p O H$ of an aqueous buffered solution of $H A$ in which 50% of the acid is ionized is:
A. 4.5
B. 7.0
C. 9.5
D. 2.5

Answer: C

- Watch Video Solution

21. The $p H$ of $0.1 M$ solution of the following salts increases in the order
A. $\mathrm{HCI}<\mathrm{NaCI}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$
B. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCl}$
C. $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
D. $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$

Answer: C

(D) Watch Video Solution

22. Chemical equiluibrium fir the reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
can be achived in \qquad different ways.
A. two
B. three
C. four
D. just one

Answer: B

- Watch Video Solution

23. A solution of $\mathrm{CoCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in isopropyl alcohol and water is purple. The color change to blue when we add
A. concentrated HCl
B. ${ }^{\wedge} \mathrm{AgNO}_{-}(3)$ (aq.)
C. both (1) and (2)
D. none of these

Answer: A

- View Text Solution

24. 2.5 mL of $2 / 5 \mathrm{M}$ weak monoacidic base $\left(K_{b}=1 \times 10^{-12}\right.$ at $25^{\circ} \mathrm{C}$) is titrated with $2 / 15 \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is $\left(K_{w}=1 \times 10^{-14}\right.$ at $25^{\circ} \mathrm{C}$)
A. $2.7 \times 10^{-2} M$
B. $3.2 \times 10^{-2} M$
C. $3.2 \times 10^{-7} M$
D. $2.7 \times 10^{-13} M$

- View Text Solution

25. Solubilirty product constants $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$, and $M_{3} X$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$, and salts of temperature T is in the order
A. $M X_{2}>M_{3} X>M X$
B. $M_{3} X>M X_{2}>M X$
C. $M X>M_{3} X>M X_{2}$
D. $M X>M X_{2}>M_{3} X$

Answer: C

26. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[\mathrm{H}^{+}\right]$in solution is
A. $8 \times 10^{-11} M$
B. $8 \times 10^{-2} M$
C. $1.6 \times 10^{-11} M$
D. $8 \times 10^{-5} M$

Answer: A

- Watch Video Solution

Archives

1. Indentify the correct order of solubility in aqueous medium
A. $Z n S>N a_{2} S>C u S$
B. $N a_{2} S>C u S>Z n S$
C. $N a_{2} S>Z n S>C u S$
D. $C u S>Z n S>N a_{2} S$

Answer: C

- Watch Video Solution

2. Which of these is least likely to act as Lewis base?
A. F^{-}
B. $B F_{3}$
C. $P F_{3}$
D. CO

Answer: B

(D) Watch Video Solution

3. Which is the strongest acid in the following ?
A. HCIO_{3}
B. HCIO_{4}
C. $\mathrm{H}_{2} \mathrm{SO}_{3}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B
4. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibirum
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. 3.0×10^{-5}
B. 3.0×10^{-4}
C. 3.0×10^{4}
D. 3.0×10^{5}

Answer: C

- Watch Video Solution

5. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 MHCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. $0.40 M$
B. 0.050 M
C. $0.12 M$
D. 0.10 M

Answer: D

D Watch Video Solution

6. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at $298 K$. Hydrolysis constant of ammonium chloride is
A. 6.50×10^{-12}
B. 5.65×10^{-13}
C. 5.65×10^{-12}
D. 5.65×10^{-10}

Answer: D

- Watch Video Solution

7. Which of the following molecules acts as a Lewis acid?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
B. $\left(\mathrm{CH}_{3}\right)_{3} P$
C. $\left(\mathrm{CH}_{3}\right)_{3} N$
D. $\left(\mathrm{CH}_{3}\right)_{3} B$

- Watch Video Solution

8. Equimolar concentrations of H_{2} and I_{2} are heated to equilibrium in a 2 L flask. At equilibrium, the forward and backward rate constants arer found to be equal. What percentage of initial concentration of H_{2} has reached at equilibrium?
A. 33%
B. 66%
C. 50%
D. 40%

Watch Video Solution

9. The number of H^{+}ions present in 250 ml of lemon juice of $\mathrm{pH}=3$ is
A. 1.506×10^{22}
B. 1.506×10^{23}
C. 1.506×10^{20}
D. 3.012×10^{21}

Answer: C

10. The values of K_{p} and $K p_{2}$ fot the reactions $X \Leftrightarrow Y+Z$,
(a)
and $A \Leftrightarrow 2 B$, (b)
are in the ration of $9: 1$. If the degree of dissociation of X and A is equal, then the total pressure at equilibriums (a) and (b) is in the ration
A. $3: 1$
B. 1:9
C. $36: 1$
D. 1:1

Answer: C

11. The dissociation equilibrium of a gas $A B_{2}$ can be represented as
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
The degree of dissociation is x and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium contant K_{p} and total pressure p is
A. $\left(2 K_{p} / P\right)$
B. $\left(2 K_{p} / P\right)^{1 / 3}$
C. $\left(2 K_{p} / P\right)^{1 / 2}$
D. $\left(K_{p} / P\right)$

Answer: B

12. If the concentration of OH^{-}ions in the reaction
$F e(O H)_{3}(s) \Leftrightarrow F e^{3+}(a q)+.3 O H^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of Fe^{3+} will increase by
A. 8 times
B. 16 times
C. 64 times
D. 4 times

Answer:

- Watch Video Solution

13. Equimolar solution of the following were prepared in water separately. Which one of the solutions will record the highest
A. $S r C I_{2}$
B. $B a C I_{2}$
C. $M g C I_{2}$
D. $C a C I_{2}$

Answer: B

- Watch Video Solution

14. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
A. $1.11 \times 10^{-4} M$
B. $3.7 \times 10^{-4} M$
C. $3.7 \times 10^{-3} M$
D. $1.11 \times 10^{-3} M$

Answer:

- Watch Video Solution

15. The equilibrium constant $\left(K_{p}\right)$ for the decomposition of gaseous $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\frac{1}{2} O_{2}(g)$
is related to the degree of dissociation α at a total pressure P by
A. $K_{p}=\frac{\alpha^{3} P^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
B. $K_{p}=\frac{\alpha^{3} P^{3 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
C. $K_{p}=\frac{\alpha^{3 / 2} P^{2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
D. $K_{p}=\frac{\alpha^{3 / 2} P^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$

Answer: D

- Watch Video Solution

16. The aqeous solutions of $\mathrm{HCOONa}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{CI}$, and KCN are, respectively,
A. acidic, acidic, basic
B. acidic, basic, neutral
C. basic, neutral, neutral
D. basic, acidic, basic
17. Which one of the following ionic speeies has the greatest protonaffinity toi form stable compound ?
A. I^{-}
B. $H S^{-}$
C. NH_{2}^{-}
D. F^{-}

Answer:

18. A weak acid, HA, has a K_{a} of 1.00×10^{-5}. If 0.100 mol of the acid is dissolved in 1 L of water, the percentage of the acid dissociated at equilibrium is the closed to
A. 0.100%
B. 99.0%
C. 1.00%
D. 99.9%

Answer: C

- Watch Video Solution

19. Calculate the $p O H$ of solution at $25^{\circ} C$ that contains
$1 \times 10^{-10} \mathrm{M}$ of hydronium ions, i.e., $\mathrm{H}_{3} \mathrm{O}^{+}$
A. 1.000
B. 7.000
C. 4.000
D. 9.000

Answer: C

- Watch Video Solution

20. When hydrogen molecules decompose into its atoms, which conditions give the maximum yield of hydrogen atoms ?
A. High temperature and low pressure
B. Low temperature and high pressure
C. High temperature and high pressure
D. Low temperature and low pressure

Answer: A

D Watch Video Solution

21. For the reaction
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)$
$\Delta_{r} H=-170.8 \mathrm{kJmol}^{-1}$
Which of the following statements is not true ?
A. Addition of $\mathrm{CH}_{4}(\mathrm{~g})$ or $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium will cause a shift to the right.
B. The reaction is exothermic.
C. At equilibrium, the concentrations of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}$ are not equal.
D. The equilibrium constant for the reaction is given by

$$
K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}
$$

Answer: D

- Watch Video Solution

22. Choose the correct order arranged in decreasing order of basicity
A. $\mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{OH}^{-}$
B. $\mathrm{OH}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}$
C. $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{OH}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}$
D. $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$

- Watch Video Solution

23. If at a given temperature, $p K_{w}=13.68$, then pH is
A. 6.84
B. 7
C. 6.79
D. none of these

Answer: A

- Watch Video Solution

24. Which of the following is not a Lewis acid ?

$$
\text { A. } \mathrm{AICI}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

B. $A I C I_{3}$
C. $S n C I_{4}$
D. $\mathrm{FeCI} I_{3}$

Answer: A

- Watch Video Solution

25. The degree of dissociation of $0.1 \mathrm{NCH}_{3} \mathrm{COOH}$ is
$\left(K_{a}=1 \times 10^{-5}\right)$
A. 10^{-5}
B. 10^{-4}
C. 10^{-3}
D. 10^{-2}

Answer: D

- Watch Video Solution

26. 40 ml of 0.1 M ammonia is mixed with 20 ml of 0.1 MHCI .

What is the pH of the mixture ? $\left(p K_{b}\right.$ of ammonia solution is 4.74.)
A. 4.74
B. 2.26
C. 9.26
D. 5.00

Answer: C

27. Which of the following pairs consitutes buffer?
A. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B. HCl and KCl
C. HNO_{2} and NaNO 2
D. NaOH and $N a C I$

Answer: C

- Watch Video Solution

28. The hydrogen ion concentration of a $10^{-8} \mathrm{MHCl}$ aqueous soultion at $298 K\left(K_{w}=10^{-14}\right)$ is

$$
\text { A. } 9.525 \times 10^{-8} M
$$

B. $1.0 \times 10^{-8} M$
C. $1.0 \times 10^{-6} M$
D. $1.0525 \times 10^{-7} M$

Answer: D

- Watch Video Solution

29. $\mathrm{NH}_{4} \mathrm{COONH}_{2}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$ If equilibrium pressure is 3 atm for the above reaction, then K_{p} for the reaction is
A. 4
B. 27
C. $4 / 27$
D. $1 / 27$

D Watch Video Solution

30. $A+B \Leftrightarrow C+D$. If finally the concentrations of A an $d B$ are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
A. $4 / 9$
B. $9 / 4$
C. $1 / 9$
D. 4

Answer: D

31. For the chemical equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta_{r} H^{\ominus}$ can be determined from which one of the following plots?

A.

B.

C.
D.
(4)

Answer: A

- Watch Video Solution

32. Equilibirum constants K_{1} and K_{2} for the following equilibria
$N O(g)+\frac{1}{2} O_{2} \Leftrightarrow N O_{2}(g)$ and $2 \mathrm{NO}_{2}(g) \Leftrightarrow$
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ are related as
A. $K_{2}=1 / K_{1}$
B. $K_{2}=K_{1} / 2$
C. $K_{2}=1 / K_{1}^{2}$
D. $K_{2}=K_{1}^{2}$

- Watch Video Solution

33. Which of the following anions is the weakest base?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
B. $C N^{-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D. NO_{3}^{-}

Answer: D

Watch Video Solution
34. A solution has $p H=5$, it is diluted 100 times, then it will become
A. neutral
B. basic
C. unaffectes
D. more acidic

Answer: A

- Watch Video Solution

35. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} \cdot 0.01 M M g^{2+}$ will precipitate tate at the limiting pH of
B. 9
C. 3.5
D. 8

Answer: B

- Watch Video Solution

36. At $25^{\circ} C$, the dissociation constant of a base. BOH is
1.0×10^{-12}. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be
A. $1.0 \times 10^{6} \mathrm{~mol} L^{-1}$
B. $1.0 \times 10^{-7} \mathrm{~mol} L^{-1}$
C. $2.0 \times 10^{-6} \mathrm{~mol} L^{-1}$
D. $1.0 \times 10^{-5} \mathrm{~mol} L^{-1}$

- Watch Video Solution

37. When 10 ml of $0.1 M$ acitec acid $\left(p k_{a}=5.0\right)$ is titrated against 10 ml of 0.1 M ammonia solution $\left(p k_{b}=5.0\right)$, the equivalence point occurs at $p H$
A. 5.0
B. 6.0
C. 7.0
D. 9.0

Answer: C

38. $H_{2} S$ gas when passed through a solution of cations containing HCl precipitates the cations of second group in qualitative analysis but not those belonging to the fourth group. It is because
A. presence of HCl decreases the sulphide ion sulphide ion concentration
B. sulphides of group IV are unstable in HCl
C. solubility product of group II sulphides is more than that of group IV sulphides
D. pressence of HCl increases the sulphide ion concentration

Answer: A

- Watch Video Solution

39. The correct order of acid strength is
A. $\mathrm{HCIO}_{4}<\mathrm{HCIO}_{3}<\mathrm{HCIO}_{2}<\mathrm{HCIO}$
B. $\mathrm{HCIO}_{2}<\mathrm{HCIO}_{3}<\mathrm{HCIO}_{4}<\mathrm{HCIO}$
C. $\mathrm{HCIO}_{4}<\mathrm{HCIO}<\mathrm{HCIO}_{2}<\mathrm{HCIO}_{3}$
D. $\mathrm{HCIO}<\mathrm{HCIO}_{2}<\mathrm{HCIO}_{3}<\mathrm{HCIO}_{4}$

Answer: D

- Watch Video Solution

40. What is the correct relationship between the pH of isomolar solutions of sodium oxide $\left(p H_{1}\right)$, sodium sulphide $\left(p H_{2}\right)$, sodium selenide $\left(\mathrm{pH}_{3}\right) \sim$, and sodiumtelluride($\left.\mathrm{pH}_{-}(4)\right)^{\prime}$?
A. $p H_{1}<p H_{2}<p H_{3}<p H_{4}$
B. $p H_{1}>p H_{2}>p H_{3}>p H_{4}$
C. $p H_{1}<p H_{2}<p H_{3} \approx p H_{4}$
D. $p H_{1}>p H_{2} \approx p H_{3}>p H_{4}$

Answer: B

- Watch Video Solution

41. 2 mol of N_{2} is mixed with 6 mol of H_{2} in a closed vessel of 1 L capacity. If 50% of N_{2} is converted into NH_{3} at equilibrium, the value of K_{C} for the reaction
$N_{2}\left(g 0+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)\right.$ is
A. $4 / 27$
B. $27 / 4$
C. $1 / 27$
D. 27

Answer: A

- Watch Video Solution

42. Ammoina carbonate when heated to $200^{\circ} \mathrm{C}$ gives a mixture of NH_{3} and CO_{2} vapour with a density of 13.0 What is the degree of dissociation of ammonium carbonate ?
A. $3 / 2$
B. $1 / 2$
C. 2
D. 1
43. A mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a vapor density of 38.3 at 300 K . What is the number of moles of NO_{2} in 100 g of themixture?
A. 0.43
B. 4.4
C. 0.437
D. 0.437

Answer:

- Watch Video Solution

44. Of the following, which change will shift the reaction towards the product ?

$$
I_{2}(g) \Leftrightarrow 2 I(g), \Delta H_{r}^{\circ}(298 K)=+150 J
$$

A. Increases in concentration of I
B. Decrease in concentration of I_{2}
C. Increase in temperature
D. Increase in total pressure

Answer: C

- Watch Video Solution

45. What will be the pH of 0.05 M barium hydroxide solution ?
A. 8
B. 9
C. 7
D. 13

Answer:

- Watch Video Solution

46. The only cations present in a slightly acidic are $\mathrm{Fe}^{3+}, \mathrm{Zn}^{2+}$, and $C u^{2+}$. The reagent that when added in excess to this solution would identify and separate $F e^{3+}$ ions in one step is
A. 2 M HCl
B. MNH_{3}
C. 6 MNaOH
D. $\mathrm{H}_{2} \mathrm{Sgas}$

- View Text Solution

47. The principal buffer present in human blood is
A. $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaH}_{2} \mathrm{PO}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{HCO}_{3}^{-}$

Answer:

- Watch Video Solution

48. 40 mg of pure sodium hydroxide is dissolved in 10 L of distilled water. The pH of the solution is
A. 9.0
B. 10
C. 11
D. 12

Answer: B

- Watch Video Solution

49. The rapid change of pH near the stocichiometric point of an acid-base titration is the basis of indicator detrection. pH of the solution is related to the ratio of concentration of conjugate
acid (HIn) to the concentration of base $\left(\mathrm{In}^{-}\right)$froms of the indicator by the expression
A. $\log \frac{\left[I n^{-}\right]}{[H I n]}=p K_{I n}-p H$
B. $\log \frac{[H I n]}{\left[I n^{-}\right]}=p K_{I n}-p H$
C. $\log \frac{[H I n]}{\left[I n^{-}\right]}=p H-p K_{I n}$
D. $\log \frac{\left[I n^{-}\right]}{[H I n]}=p H-p K_{I n}$

Answer: D

- Watch Video Solution

50. What is the $p H$ of $0.01 M$ glycine solution? For glycine, $K_{a_{1}}=4.5 \times 10^{-3}$ and $K_{a_{2}}=1.7 \times 10^{-10}$ at $298 K$
A. 3.0
B. 10.0
C. 6.1
D. 7.2

Answer: C

- Watch Video Solution

51. In the reaction
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
the equilibrium concentrations of $P C I_{3}$ and $P C I_{3}$ are 0.4 and $0.2 \mathrm{~mol}^{-1}$, respectively. If the value of K_{c} is 0.5 , what id the concentration of $C I_{2}$ in moles per litre?
A. 2.0
B. 1.5
C. 1.0
D. 0.5

Answer: C

- Watch Video Solution

52. The equilibrium constants for the following reactions
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g) N_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)$
and $H_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow H_{2} O(I g)$ are K_{1}, K_{2} and K_{3}
respectively.
The equilibrium constant (K) for the reaction
$\left.2 \mathrm{NH}_{3}(g)+2^{1} / 2\right) \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+3 \mathrm{H}_{2} \mathrm{O}(I)$ is
A. $K_{1} K_{2} / K_{3}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3}^{2} / K_{1}$
D. $K_{2} K_{3} / K_{1}$

Answer: B

- Watch Video Solution

53. The reaction quotient (Q) for thereaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
is given by
$Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
The reaction will proceed from right to left if where K_{C} is the equilibrium constant.
A. $Q=K_{C}$
B. $Q<K_{C}$
C. $Q>K_{C}$
D. $Q=0$

Answer: C

- Watch Video Solution

54.1 mol of N_{2} and 2 mol of H_{2} are allowed to react in a 1 dm vessel. At equilibrium, 0.8 mol of NH_{3} is formed. The concentration of H_{2} in the vessel is
A. 0.6 mol
B. 0.8 mol
C. 0.2 mol
D. 0.4 mol

- Watch Video Solution

55.1 mol of hydrogen and 2 mol of iodine are taken initially in a 2 L vessel. The number of moles of hydrogen at equilibrium is 0.2 . Then the number of moles of iodine and hydrogen iodide at equilibrium are
A. 1.2, 1.6
B. 1.8, 1.0
C. $0.4,2.4$
D. $0.8,2.0$

Answer: A

56. The solubility of PbI_{2} is 0.0013 M . Then the solubility product of $P b I_{2}$ is
A. 2.2×10^{-9}
B. 8.8×10^{-9}
C. 6.8×10^{-6}
D. 0.8×10^{-6}

Answer: B

D Watch Video Solution

57. The solubility product of AgI at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-16} \mathrm{~mol}^{2} L^{-2}$. The solubility of AgI in $10^{-4} \mathrm{~N}$ solution
of $K I$ at $25^{\circ} \mathrm{C}$ is approximately (in $\mathrm{molL} L^{-1}$)
A. 1.0×10^{-16}
B. 1.0×10^{-12}
C. 1.0×10^{-10}
D. 1.0×10^{-8}

Answer: B

- Watch Video Solution

58. At $18^{\circ} \mathrm{C}$, the solubility product of AgCI is 1.8×10^{-10}. In the solution, the value of $A g^{+}$is $4 \times 10^{-3} \mathrm{~mol} L^{-1}$. The value of $\left[C I^{-}\right]$to precipitate AgCl from this solution should be greater than
A. $4.5 \times 10^{-8} \mathrm{~mol} L^{-1}$
B. $7.2 \times 10^{-12} \mathrm{molL} L^{-1}$
C. $4.0 \times 10^{-3} \mathrm{molL} L^{-1}$
D. $4.5 \times 10^{-7} \mathrm{~mol}^{-1}$

Answer: A

(D) Watch Video Solution

59. The number of moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ required to prepare 250 ml of solution with pH 14 (assuming complete ionization) is
A. 0.25
B. 1.0
C. 0.125
D. 10.0

- Watch Video Solution

60. The least soluble compound (salt) of the following is
A. $C s C I\left(K_{s p}=10^{-12}\right)$
B. $H g S\left(K_{s p}=1 \times 10^{-52}\right)$
C. $P b C I_{2}\left(K_{s p}=1.7 \times 10^{-5}\right)$
D. $Z n S\left(K_{s p}=1.2 \times 10^{-23}\right)$

Answer: B

- Watch Video Solution

61. In which of the following acid-base titration, the pH is greater than 8 at the equivalence point ?
A. Acetic acid versus ammonia
B. Acetic acidversus sodium hydroxide
C. Hydrohloric acid versus ammonia
D. Hydrochloric acid versus sodium hydroxide.

Answer:

- Watch Video Solution

62. Which one of the following is not a buffer solution ?
A. $0.8 M H_{2} S+0.8 M K H S$
B. $2 M C_{6} H_{5} N H_{2}+2 M C_{6} H_{5} \stackrel{+}{N} H_{3} B r^{-}$
C. $3 \mathrm{MH}_{2} \mathrm{CO}_{3}+3 \mathrm{MKHCO}_{3}$
D. $0.05 \mathrm{MKCIO}_{4}+0.05 \mathrm{MHCIO}_{4}$

Answer: D

- Watch Video Solution

63. A certain buffer solution sontains equal concentration of X^{-}and $H X$. The K_{a} for $H X$ is 10^{-8}. The of the buffer is
A. 3
B. 8
C. 11
D. 14

Answer: B

- Watch Video Solution

64. Solution of $0.1 \mathrm{NNH}_{4} \mathrm{OH}$ and $0.1 \mathrm{NNH}_{4} \mathrm{Cl}$ has pH 9.25 , then find out K_{b} of $\mathrm{NH}_{4} \mathrm{OH}$.
A. 9.25
B. 4.75
C. 3.75
D. 8.25

Answer: B

- Watch Video Solution

65. The concentration of water molecules in pure water at 298 K
A. $10^{-7} M$
B. 55.5 M
C. $5.55 M$
D. $7.26 M$

Answer: B

- Watch Video Solution

66. A solution of an acid has $p H=4.70$. Find out the concentration of OH^{-}ions $\left(p K_{w}=14\right)$.
A. $5 \times 10^{-10} M$
B. $4 \times 10^{-10} M$
C. $2 \times 10^{-5} M$
D. $9 \times 10^{-10} M$

Answer: A

- Watch Video Solution

67. Among the following the weakest base is
A. H^{-}
B. CH_{3}^{-}
C. $\mathrm{CH}_{3} \mathrm{O}^{-}$
D. $C I^{-}$

Answer: D

68. Which has the highest $p H$?
A. $\mathrm{CH}_{3} \mathrm{COOK}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{CI}$
D. NaNO_{3}

Answer:

D Watch Video Solution

69. What is the value of $K_{s p}$ for $\mathrm{PbCl}_{-}(2)^{\prime}$?
A. $\left[\mathrm{Pb}^{2+}\right]\left[2 C I^{-}\right]$
B. $\left[\mathrm{Pb}^{2+}\right]\left[2 C I^{-}\right]^{2}$
C. $\left[P b^{2+}\right]\left[C I^{-}\right]^{2}$
D. $\left[\mathrm{Pb}^{2+} C I^{-}\right]^{2} s$

Answer: C

- Watch Video Solution

