©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - R SHARMA CHEMISTRY

(HINGLISH)

ISOMERISM

Examples

1. Write the structure of different isomeric
alkanes corresponding to the molecular
formula $C_{6} H_{14}$. Also give their IUPAC names.

Strategy: Start with the longest contionous chain with no branching and go on increasing the number of branching by removing one, two, etc, C atoms from the longest chain and reattaching them, but do not attach them to the terminal C atoms.

Watch Video Solution

2. Draw the structures of the nine isomeric heptanes $\left(C_{7} H_{16}\right)$.

Strategy: start with the straight chain isomer
(longest chain). Going to a six-carbon chain, a
$C H_{3}$ may be placed either on $C-2$ or on
$C-3$ to give two isomers. Starting with a five-
carbon chain, either two CH_{3}, or a $\mathrm{CH}_{3} \mathrm{CH}_{2}$
must be added as side chain for a total of
seven C's. The two CH_{3} may be placed on the
same C atom or on different carbons giving a total of four isomers. The $\mathrm{CH}_{3} \mathrm{CH}_{2}$ group can only be placed on the central C atom. At other
points it either lengtherns the chain or reproduces previous isomer.Finally, go for a four carbon chain and three CH_{3} 's to form the ninth isomer.

D Watch Video Solution

3. Write down the acyclic isomers having the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.

Strategy: first calculate the degree of unsaturation or DBEs:
$D B E=\frac{\sum n(v-2)}{2}+1$

$$
=3(4-2)+6(1-2)+1(2-2)
$$

This means that various acyclic isomers of
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ contain just one double bond, i.e.,
$C=C$ or $C=O$, in the following skeletons:
$C-C-C-O, C-C-O-C, C-C-C$

- Watch Video Solution

4. Write all the acyclic and cyclic isomers of a compound having molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.

D Watch Video Solution

5. Write down the structural isomeric ethers
corresponding to the molecular forluma
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$.
$D B E=\frac{\sum n(v-2)}{2}+1$
$=\frac{5(4-2)+12(1-2)+1(2-2)}{2}+1=0$
This implies that only saturated acyclic ethers are to be considered

- Watch Video Solution

Follow Up Test 1

1. Isomers do not have
A. same number of atoms
B. same kinds of atoms
C. same molecular formula
D. same properties

Answer: D

D Watch Video Solution
2. Which of the following are constitutional
isomers? $\mathrm{CH}_{3} \mathrm{CH}_{3}$
CH_{3}
(ii). $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHCH}_{3}$
CH_{3}
${ }_{\mathrm{CH}}^{\mathrm{CH}}$
CH_{3}
(iii). $\mathrm{CH}_{3} \stackrel{\text { l }}{\mathrm{C}} \underset{\substack{\mathrm{H} \\ \mathrm{C} \\ \mathrm{CH}}}{\mathrm{CH}} \underset{3}{ } \mathrm{HCH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{2}$
(iv). $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \underset{\substack{\text { l } \\ \mathrm{CH}_{3}}}{\substack{\mathrm{C} \\ \mathrm{CH}_{2} \mathrm{CH}_{3}}} \mathrm{HCH}_{3}$
A. (i),(ii)
B. (i),(iv)
C. (i),(iii)
D. (ii),(iv)

Answer: C

D Watch Video Solution

3. Consider the simplest alkane having only one $2^{\circ} C$ one $3^{\circ} C$, and one $4^{\circ} C$, how may structural isomers are possible?
A. only one

B. Three

C. Two
D. four

Answer: B

D Watch Video Solution

4. What is the maximum number of methyl
group possible for $C_{8} H_{18}$?
A. Eight
B. Seven
C. six
D. Five

Answer: C

D Watch Video Solution

5. Draw the structures of the nine isomeric heptanes $\left(C_{7} H_{16}\right)$.

Strategy: start with the straight chain isomer
(longest chain). Going to a six-carbon chain, a
CH_{3} may be placed either on $\mathrm{C}-2$ or on
$C-3$ to give two isomers. Starting with a five-
carbon chain, either two CH_{3}, or a $\mathrm{CH}_{3} \mathrm{CH}_{2}$ must be added as side chain for a total of seven C's. The two CH_{3} may be placed on the same C atom or on different carbons giving a total of four isomers. The $\mathrm{CH}_{3} \mathrm{CH}_{2}$ group can only be placed on the central C atom. At other points it either lengtherns the chain or reproduces previous isomer.Finally, go for a four carbon chain and three CH_{3} 's to form the ninth isomer.
A. eight
B. Seven
C. nine
D. six

Answer: C

D Watch Video Solution

6. How many chain isomers of hexane,
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$, are possible ?
A. five
B. six
C. three
D. four

Answer: D

D Watch Video Solution

Follow Up Test 2

1. How many constututional isomers are possible for the alkene $C_{4} H_{8}$?
A. Two
B. Three
C. Four
D. Five

Answer: B
(D) Watch Video Solution
2. Which of the statements are correct for alkyne with molecular formula $C_{6} H_{10}$?
A. Six
B. Nine
C. Right
D. Seven

Answer: D

D Watch Video Solution
3. Which of the statements are correct for alkyne with molecular formula $C_{6} H_{10}$?
A. Four
B. Five
C. Three
D. Six

Answer: A

D Watch Video Solution
4. Which of the statements are correct for alkyne with molecular formula $C_{6} H_{10}$?

A. Two

B. Three
C. seven
D. four

Answer: B

D Watch Video Solution
5. How many dichloro derivatives (only constitutional isomers) of propane
$\left(C_{3} H_{5} C l_{3}\right)$ are possible?
A. Six
B. Four
C. Five
D. Seven

Answer: B

D Watch Video Solution
6. How may trichloro derivatives (only constitutional isomers) of propane
$\left(C_{3} H_{5} \mathrm{Cl}_{3}\right)$ are possible?
A. Six
B. four
C. Five
D. Seven

Answer: C

- Watch Video Solution

7. How many choropentanes $\left(C_{5} H_{11} B r_{2}\right)$ are possible if only structural isomers are considered?

A. Nine

B. Ten
C. Eleven
D. Eight

Answer: D

D Watch Video Solution
8. How many dibromobutanes $\left(C_{4} H_{8} B r_{2}\right)$ are possible if only structural isomers are considered?

A. Eight

B. Seven
C. nine
D. Six

Answer: C

D Watch Video Solution
9. Which of the following alkanes gives two monochloro derivatives?
A. 2-methylpentane
B. n-hexane
C. 2,3-dimethylbutane
D. 2,2-dimethylbutane

Answer: C
(D) Watch Video Solution
10. Which of the following pairs of compounds are position isomers?
A. Ethyl alcohol and ethylene glycol
B. isopnetyl alcohol and neopentyl alcohol
C. isobutyl alcohol and s-butyl alcohol
D. isobutyl alcohol and t-butyl alcohol

Answer: D

D Watch Video Solution
11. Which of the following compounds exhibit
chains as well as position isomerism?
(i) t-Butyl alcohol
(ii) Isobutyl alcohol
(iii) sec-Butyl alcohol
(iv) n -Butyl alcohol
A. (iii),(iv)
B. (ii),(iv)
C. (i),(iv)
D. (i),(iii)

D Watch Video Solution

12. Which of the following pairs of compounds are not position isomers?
A. s-Butyl alcohol and t-butyl alcohol
B. proplylene glycol and trimethylene
glycol
C. isobutylamine and t-buylamine
D. Ethylene dichloride and ethylidene

dichloride

Answer: A

- Watch Video Solution

13. How many following pairs of compounds are not position isomers?
A. Three
B. Two

C. Four

D. Five

Answer: C

D View Text Solution

14. Which of the following pairs of compounds

 are not position isomers?
B. (a) $\sim^{\text {coon mad }}{ }^{\text {coon }}$
C.
(3) and $\underbrace{\text { OH }}$
D. ${ }^{(4)}{ }^{0}$ and ${ }_{\text {ó }}$

Answer: B

D Watch Video Solution

Follow Up Test 3

1. How many alkynes and dienes are possible for the molecular formula $\mathrm{C}_{5} \mathrm{H}_{8}$?
A. Six
B. seven
C. eight
D. nine

Answer: C

D Watch Video Solution
2. The total number of constitutional isomers
having the molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ is
A. 3
B. 4
C. 2
D. 5

Answer: A

- Watch Video Solution

3. Which of the following compounds is isomeric with propanal?
A. Ethyl methyl ether
B. Propan-1-ol
C. methyl vinyl ether
D. propan-2-ol

Answer: C

D Watch Video Solution

4. The compound which is not isomeric with diethyl ether is :
A. 2-methylpropane-2-ol
B. Butanone
C. Butan-1-ol
D. methyl n-proplyl ether

Answer: B

D Watch Video Solution

5. How many structural isomers
(aldehyde+ketone) are possible for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$?
A. Seven
B. five
C. six
D. four

Answer: A

D Watch Video Solution

6. Which of the following is not an isomer of cyclopropanol?
A. Allyl alcohol
B. Acetone
C. Propan-2-ol
D. 2-methyloxirane

Answer: C

D Watch Video Solution

7. The number of carboxylic acid with the formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ exhibiting constitutional isomerism is
A. four
B. five
C. three
D. two

Answer: A

D Watch Video Solution

8. Amino acids are functional isomers of
(i) oximes
(ii) amides
(iii) alkyl nitrites
(iv) nitroalkanes
A. (i),(ii),(iii),(iv)
B. (i),(ii)
C. (iii),(iv)
D. (ii),(iii),(iv)

Answer: C

D Watch Video Solution
9. The total number of amines with molecular formula $C_{3} H_{8} N$ exhibiting constitutional
isomerism is
A. 5
B. 4
C. 2
D. 3

Answer: B

D Watch Video Solution
10. The number of primary alcohols with the formula $C_{4} H_{10} O$ is
A. 4
B. 3
C. 2
D. 5

Answer: C

D Watch Video Solution
11. The total number of aromatic amines possible with the molecular formula $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ is
A. Six
B. four
C. three
D. Five

Answer: D

D Watch Video Solution
12. Which of the following pairs of compounds are not functional isomers?
A. Methyl cyanide and methyl isocyanide
B. nitromethane and methyl nitrite
C. Ethylidene dichloride and ethylene
dichloride
D. glucose and fructose

Answer: C

13. Which of the following pairs of compounds

 are functional isomers?A. ${ }^{(1)} \AA_{0}{ }_{0}$ mad ${ }^{-9}$
B. (1) ${ }_{O_{0}^{\prime}}^{\mathrm{O}}$ and

C (3)
D. (4) and

Answer: D

- View Text Solution

14. Which of the following pairs of compounds may be regarded both as position isomers and functional isomers?
A. o-crestol and p-crestol
B. Benzyl alcohol and methoxybenzene
C. benzyl alcohol and o-cresol

D. benzyl alcohol and benzyl methyl ether

Answer: C

1. Which of the following constututional isomerism arises due to different organic groups on either side of the functional group
in the molecule?
A. Chain isomerism
B. Metamerism
C. Position isomerism
D. Functional group isomerism

- Watch Video Solution

2. Which of the following is ot a correct statement?
A. Pentan-3-one is a metamer of pentan-2one.
B. Diethylamine is a metamer of methyl n propylamine.
C. methyl n-propyl thioether is a metamer of isopropyl methy thioether.
D. isopropylamine is a metamer of n propylamine.

Answer: D

D Watch Video Solution

3. Which of the following compounds cannot exhibit metamer-ism?

A. Ether

B. Carboxylic acid

C. Ester
D. ketone

Answer: B

D Watch Video Solution
4. Primary amines cannot exhibit
A. Chain isomerism

B. position isomerism

C. metamerism
D. function isomerism

Answer: C

D Watch Video Solution

5. Which of the following can sxhibit metamerism?
A. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

B. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SCH}_{3}$

Answer: C

D Watch Video Solution
6. Which of the following is incorrect regarding tautomerism?
A. It is a special kind of functional
isomericm.
B. Tautomers exist in static equilibrium
with each other.
C. it arises due to the migration of a
hydrogen atom from one polyvalent
atom to the other within the same molecule.
D. it leads to the rearrangement of
linkages.

Answer: B

D Watch Video Solution

7. The number of stable isomers with

 molecular formula $C_{2}-4 O$ isA. 3
B. 4
C. 5
D. 2

Answer: A

D Watch Video Solution

Question Bank

\author{

1. Question Bank
}

A. two

B. three
C. four

D. five

Answer: B

D View Text Solution

2. But-1-yne and buta-1,3-diene are examples of

A. position isomers
B. chain isomers
C. functional isomers
D. metamers

- Watch Video Solution

3. Isomers are different compounds that have
the same
A. molecular structure
B. molecular shape
C. molecular formula
D. molecular properties

Answer: C

D Watch Video Solution

4. Constitutional isomers are isomers that differ bacause
A. they have different numbers of atoms
B. they have different kinds of atoms
C. they have different arrangement of their

D. their atoms are connected in a different

 order
Answer: D

D Watch Video Solution

5. Two constitutional isomers which exist
together in equilibrium at room temperature are called
A. rotamers
B. conformers
C. tautomers
D. mesomors

Answer: C

D Watch Video Solution

6. Pentan-2-one and 3-methylbutanone are a pair of isomers.
A. stereo
B. position
C. functional
D. chain

Answer: D

D Watch Video Solution

7. n-Pentane and 2-methylbutane are a pair of

A. stereoisomers
B. diastereomers

C. constitutional isomers

D. enantiomers

Answer: C

- Watch Video Solution

8.

A. Chain isomers
B. functional isomers

C. position isomers

D. stereoisomers

Answer: B

- Watch Video Solution

9. Which of the following are isomers ?

A. Methyl alcohol and dimethyl ether
B. propanoic acid and propanone
C. acetone and propanone

D. ethyl alcohol and dimethyl ether

Answer: D

- Watch Video Solution

10. Which of the following is an isomer of propanal?
A. Propionic acid
B. Propanol
C. Propanone

D. Propane

Answer: C

D Watch Video Solution

11. The isomers that can be interconverted through rotation around a single bond are:

A. Enantiomers

B. conformes
C. diasstereomers

D. position isomers

Answer: B

D Watch Video Solution

12. Which of the following pairs of compounds are chain isomers?
A. n-Butyl alcohol and s-butyl alcohol
B. isobutyl alcohol and t-butyl alcohol
C. s-butyl alcohol and t-butyl alcohol

D. n-propyl alcohol and isompropyl alcohol

Answer: C

D Watch Video Solution

13. How many pairs of chain isomers are possible for $C_{4} H_{16} \mathrm{Cl}$?
A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

14. The total number of benzene derivatives
having the molecular formula $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Br}$ is
A. 5
B. 4
C. 2
D. 3

Answer: B

D Watch Video Solution

15. How many trichloro derivatives are possible
for cyclopentane?
A. four
B. five
C. seven

D. six

Answer: A

D Watch Video Solution

16. Ethylidene dichloride and ethylene dichloride are
A. chain isomers
B. position isomers
C. functional isomers
D. metamers

Answer: B

D Watch Video Solution

17. The total number of benzene derivatives
corresponding to the molecular formula
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}$ is
A. 3
B. 4
C. 5
D. 2

Answer: A

D Watch Video Solution

18. Which of the following pairs of compounds are not isomers?
A. Propan-1-ol and methoxyethane
B. Propene and cyclopropene

C. propyne and propadiene

D. propyne and cyclopropene

Answer: B

D Watch Video Solution

19. Out of the five isomeric hexanes, the isomer
that can give two monochlorinated
compounds is:
A. n-hexane
B. 2,2-dimethylbutane
C. 2,3-dimethylbutane
D. 2-methylpentane

Answer: C

D Watch Video Solution

20. Strutural isomers $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$ have the same value of
A. boiling points
B. heat of vaporization
C. gaseous densities at the same
temperature and pressure
D. vapor pressure at the same temperature

Answer: C

D Watch Video Solution
21. The number of ether metamers represented by the formula $C_{4} H_{10} O$ is
A. 2
B. 3
C. 4
D. 1

Answer: B

D Watch Video Solution

22. The number of possible structural isomers
of $C_{4} H_{10} O$ is
A. 7
B. 8
C. 6
D. 5

Answer: A

D Watch Video Solution

23. The total number of possible isomeric trimethylbenzenes is
A. 6
B. 4
C. 2
D. 3

Answer: D

- Watch Video Solution

24. The enolic form of acetone contains:
A. 9 sigma bonds, 2 pi bonds, and 1 lone
pair
B. 10 sigma bonds, 1 pi bond, and 1 lone pair
C. 9 sigme bonds, 1 pi bonds, and 2 lone pairs
D. 8 sigme bonds, 2 pi bonds, and 2 lone pairs

Answer: C
25. How many consitutional isomers are possible for the arene $C_{9} H_{12}$?
A. Eight
B. Seven
C. Six
D. Five

Answer: A
26. The number of possible structural isomers
of $C_{4} H_{10} O$ is
A. Eight
B. Six
C. Seven
D. Five

Answer: C
(Watch Video Solution
27. The number of aromatic structures possible for the molecular formula $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ is
A. 5
B. 4
C. 7
D. 9

Answer: A

D Watch Video Solution

28. A molecule of urea can show

A. optical isomerism

B. geometrical isomerism
C. tautomerism

D. position isomerism

Answer: C

- Watch Video Solution

29. Total number of ethers possible with the

molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ exhibiting

constitutional isomerism is
A. 6
B. 5
C. 4
D. 7

Answer: A

- Watch Video Solution

30. Which of the following pairs of compounds

 are functional isomers?

C. ${ }^{(3)} \mu_{0}{ }^{\text {and }}{ }_{j}{ }_{0}$
D. ${ }^{(19)} \mathcal{i}_{\sigma} \quad$ mos

Answer: D

D Watch Video Solution
31. Which of the following does not exhibit tautomerism?
A.

(2)

c.

D.

Answer: A

- Watch Video Solution

32. The number of carboxylic esters with the
formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ exhibiting constitutional isomerism is
A. nine
B. eight
C. ten

D. seven

Answer: A

33. The total number of dimethylphenols
having the molecular formula $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ is
A. 8
B. 5
C. 6
D. 7

Answer: C

D Watch Video Solution
34. Which one of the following formular does not represents an organic compound?
A. $C_{4} H_{10} O_{4}$
B. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
C. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO}_{4}$
D. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{4}$

Answer: D

- Watch Video Solution

35. Only two isomeric monochloro derivatives are possible for
A. (i),(ii)
B. (i),(iv)
C. (i),(ii),(iii)
D. (i),(ii),(iii),(iv)

Answer: B
(D) Watch Video Solution
36. Keto-enol tautomerism is observed in
A. (i),(ii),(iii),(iv)
B. (i),(ii),(iii)
C. (ii),(iv)
D. (ii),(iii)

Answer: C

D Watch Video Solution
37. Tautomerism is exhibited by

(i)

(iii)
(iv) $\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$
(iv)
A. (ii),(iii),(iv)
B. (i),(ii),(iii),(iv)
C. (i),(iii),(iv)
D. (i),(ii),(iii)

D Watch Video Solution

38. The enol form of acetone after treatment with $\mathrm{D}_{2} \mathrm{O}$ gives:

$$
\begin{aligned}
& \text { A. } C D_{3}-\stackrel{O}{C}-C D_{3} \\
& \text { B. } C H_{3}-\stackrel{\mid l}{C}=C H_{2} \\
& \text { C. } C H_{2}=\stackrel{O H}{C}-C H_{2} D
\end{aligned}
$$

$O D$
 D. $C D_{2}=\stackrel{\mid}{C}-C D_{3}$

Answer: B

- Watch Video Solution

39. Which of the following has the most acidic hydrogen?
A. Hexane-2,3-dione
B. Hexane-2,5-dione
C. hexane-3-one

D. Hexane-2,4-dione

Answer: D

D Watch Video Solution

Archives

1. The order of stability of the following
tautomeric compounds is
(i). $\mathrm{CH}_{2} \stackrel{\stackrel{O H}{\mid} \stackrel{O}{\mathrm{C}} \mathrm{H}}{\mathrm{H}} \mathrm{CH}_{2}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3} \Leftrightarrow$
(ii). $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{3} \Leftrightarrow$
(iii). $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}-\mathrm{C}-\mathrm{CH}_{3}$
A. $(i i i)>(i i)>(i)$
B. $(i i)>(i)>(i i i)$
C. $(i i)>(i i i)>(i)$
D. $(i)>(i i)>(i i i)$

Answer: A

D Watch Video Solution
2. Which isomer of hexane has only two different sets of structurally equivalent hydrogen atoms?
A. 2,2-dimethylbutane
B. 2-methylpentane
C. 3-methylpentane
D. 2,3-dimethylbutane

Answer: D

- Watch Video Solution

3. Which one of the following compounds

 cannot show tautomerism?A. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
B. $\mathrm{CH}_{3}=\mathrm{CH}-\mathrm{OH}$
(3)

C.
(4)

D.

Answer: D

4. How many primary amines including stereoisomers are possible for the molecular formula $C_{4} H_{11} N$.
A. 1
B. 2
C. 3
D. 4

Answer: D

5.

The molecular formula of diphenylmethane, How many structural isomers are possible when one of the hydrogen atoms is replaced by a chorine atom?
A. 8
B. 7
C. 4
D. 6

Answer: C

D Watch Video Solution

6. Isomers of propionic acid are
A. $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$ and $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
B. $\mathrm{HCOOC} \mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$
D. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$

D Watch Video Solution

7. The compound which is not isomeric with

 diethyl ether is:A. n-propyl methyl ether
B. 1-butanol
C. 2-methyl-2-propanol
D. butanone

Answer: D

- Watch Video Solution

8. Cyanides and isocyanides are isomers of the type
A. position isomers
B. tautomers
C. functional isomers
D. none of these

Answer: C

D Watch Video Solution

9. Tautomerism will be exhibited by

A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNO}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
C. $R_{3} C N O_{2}$
D. $\mathrm{RCH}_{2} \mathrm{NO}_{2}$
10. n-Propyl alcohol and isopropyl alcohol are examples of
A. position isomerism
B. chain isomerism
C. tautomerism

D. geometrical isomerism

Answer: A
11. The number of isomers of $C_{6} H_{14}$ is:
A. 6
B. 3
C. 4
D. 5

Answer:

D Watch Video Solution
\square

