©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - R SHARMA CHEMISTRY (HINGLISH)

COORDINATION COMPOUNDS

Follow Up Test

1. Discovery of complexes was made by

A. B. M. Tassaert
B. C.K. Jorgenson
C. Alfred Werner
D. Kasimiv Fajan

Answer: A

- Watch Video Solution

2. Which of the following is a coordination compounds?
A. Carnallite
B. Microcosmic salt
C. Fischer salt
D. Chrome alum

Answer: C

- Watch Video Solution

3. When potash alum is dissolved in water, the total number of ions furnish in aqueous solution is
A. thirty two
B. ten
C. four
D. eight

Answer: D

D Watch Video Solution

4. Which of the following is incorrect?
A. A complex ion is a metal ion with Lewis
bases attached to it through coordinate covalent bonds.

B. A complex (or coordination compound) is a

compound consisting either of complex ions
and other ions of opposite charge or of a neutral complex specoes.
C. The ions or molecules bound to the central
atom/ion in the coordination entity are
called lighands.
D. The interations between a central metal
atom/ion and the ligands can be thought of as Bronsted acid-base reactions.
5. The coordination number of cobalt in tris(ethylendiamine) cobalt(III) ion, $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$, is
A. 3
B. 6
C. 9
D. 5

D Watch Video Solution

6. Which of following coordination compounds contains the central metal witrh the highest oxidation number ?
A. $\left[R u\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] C I_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}$
C. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
D. $K_{4}\left[F e(C N)_{6}\right]$

Answer: B

(D) Watch Video Solution

7. The oxidation number of iron in sodium

 nitroprusside isA. +3
B. +4
C. +2
D. +1
8. Which of the following is not a chelating ligand ?
A. Monodentate
B. Bidentate
C. Tridentate
D. Quadridentate

Answer: A
9. Which of the following complex ions is octachedral ?
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[F e(p h e n)_{3}\right]^{2+}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. All of these

Answer: D

D Watch Video Solution

10. The IUPAC name for $\left.[A]\left(O H_{2}\right)_{5}(\mathrm{OH})\right]^{+2}$ is

A. aquametaalumination ion
B. pentahydroaluminium hydroxide
C. pentaaquahydroxidoaluminium (III) ion
D. pentaaquaaluminate (III) hydroxide

Answer: C

(D) Watch Video Solution
11. The IUPAC name of $\left[R u\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{2}\right] C I_{2}$ is
A. pentaammine (azido) ruthenium
dichloride
B. rutheniumpentammine
dichlorodinitrogen
C. pentamine (nitrogen) ruthenium (II) chloride
D. pentaammine (dinitrogen) ruthenium
chloride

Answer: D

12. The IUPAC name of $K\left[\mathrm{SbCI}_{5} \mathrm{C}_{6} \mathrm{H}_{5}\right]$ is

A. potassium pentachlorido (phenyl)
antimonate (V)
B. lutero antimonate (V)
C. potassium benzalantimony (III) choride
D. potassium phenylchorontimonate (V)

Answer: A

Watch Video Solution

13.
 The
 IUPAC
 name
 of

$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{CI})\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}$ is
A. triamminechlorobromonitrplatinum
chloride
B. triamminebromidochloridonitroplatinum
(IV) chloride
C. bromidochloridonitrotriammineplatinum
(IV) chloride
D. triamminentrochloridobromidoplatinum (IV)
chloride

Watch Video Solution

14. The IUPAC name of $B a\left[B r F_{4}\right]_{2}$ is
A. brium bis [tetrafluorobrominate (III)]
B. brium bromofluoride (III)
C. barium bis [tetrafluorobromate (IV)]
D. barium tetrafluoridobromate (III)

Answer: D

15. The IUPAC name of the complex
$N i\left[C_{4} H_{7} O_{2} N_{2}\right]$ formed by the reaction between $N i^{2+}$ and dimethylglyoxime is
A. bis (dimethylglyoxime) nikel
B. bis (methylglyoxime) nickel (II)
C. bis (2,3- butanedionedioximoto) nickel (II)
D. bis (2,3- butanedioldioximato) nivkel (II)

Answer: D

16. The IUPAC name for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{SO}_{4}$ is
A. pentaamine (nitrito-O) cobalt (III) sulphate
B. pentaamine (nitro-N) cobalt (III) suphate
C. pentaamine (nitro-O) cobalt (III) sulphate
D. pentaamine (nitrito-N) cobalt (III) sulphate

Answer: A

- Watch Video Solution

17. The IUPAC name for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ is
A. hexacynochromate (III) hexaamminecobalt
(III)
B. hexaaamminecobalt
(III)hexacyanidochromate (III)
C. hexaamminechrominum cobalt hexaammine
(VI)
D. hexamminecobalt (III) hexacyanochomium
(III)

18. The IUPAC name for $\left.[\mathrm{CO})_{5} \mathrm{Mn}-\mathrm{Mn}(\mathrm{CO})_{5}\right]$ is

A. bis[pentacarbonylmanganate (VIII)]
B. decarbonyldimanganate (VIII)
C. bis(pentracarbonylmanganese (0)]
D. bis(pentacarbonyldimanganese)

Answer: C

19. The IUPAC name for
 $\left[(\mathrm{CO})_{3} \mathrm{Fe}(\mathrm{CO})_{3} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ is

A. tri- μ - nanocarbonyl ion (III)
B. tri- μ - carbonyl-bis [tricarbonyldi(iron (0)]
C. tri- μ - hexacarbonyliron (II)
D. tri- μ - carbonyl-bis[tricarbonyliron (0)]

Answer: D

20. The formula of the complex

 ethylenetrichloridoplatinum (II) isA. $K_{3}\left[P t_{2} C I_{3}\left(C_{2} H_{4}\right)_{3}\right]$
B. $K_{2}\left[\mathrm{PtCI}_{3}\left(C_{2} H_{4}\right)_{3}\right]$
C. $K\left[P t\left(C_{2} H_{4}\right) C I_{3}\right]$
D. $K_{4}\left[P t C I_{3}\left(C_{2} H_{4}\right]\right.$

Answer: C

21. Magnus's green salt has the formula

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left[\mathrm{PtCI}_{4}\right]^{2-} \\
& \text { B. }\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]^{2-} \\
& \text { C. }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2}+\left[\mathrm{PtCI}_{4}\right]^{2-} \\
& \text { D. }\left[\mathrm{PtCI}_{2}(e n)\right]
\end{aligned}
$$

Answer: A
22. How may structural isomers are possible are possible for a complex consisting of Co^{3+} as the central metal ion, two en molecules, two $C I^{-}$ ions one NO_{2}^{-}ion ?

A. Four

B. Three

C. Five
D. Two

Answer: B
23. The Compounds $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{CI}_{3}$, $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2} . \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\right]$.
$2 \mathrm{H}_{2} \mathrm{O}$ exhibit
A. hydrate isomerism
B. ionization isomerism
C. linkage isomerism
D. coordination isomerism

Answer: A

- Watch Video Solution

24. $\quad\left[\mathrm{Co}\left(\mathrm{HN}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right] \quad$ and $\left[C r\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are.
A. Coordination position isomerism
B. Polymerization isomerism
C. Coordination isomerism
D. Ionization isomerism

Answer: C

- Watch Video Solution

25. Which of the following pairs corresponds to linkage ismerism ?A. $\left[C o(e n)_{3}\right]\left[C r(C N)_{6}\right]$and

$$
\left[C r(e n)_{3}\right]\left[\mathrm{Co}(C N)_{6}\right]
$$

$$
\text { B. }\left[M n(C O)_{5}(S C N)\right]
$$

and

$$
\left[M n(C O)_{5}(N C S)\right]
$$

$$
\text { C. }\left[\mathrm{Co}\left(\mathrm{MH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\right] \mathrm{SO}_{4}
$$

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SO}_{4}\right)\right] \mathrm{NO}_{3}
$$

$$
\text { D. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}\right] C I_{2}
$$

and

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{CI} . \mathrm{H}_{2} \mathrm{O}
$$

Answer: B

(D) Watch Video Solution

26. A comples has the composition
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}_{3}$
Conductance measurements show that there are three ions per formula unit and precipitation of AgCl with silver nitrate shows that there are $C I^{-}$ions not coordinated to cobalt. The structural formula of the compound is
A. $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{CI}_{3}\right] \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{CI}_{3} \mathrm{H}_{2} \mathrm{O}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{CI}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{CI}$

Answer: D

- Watch Video Solution

27. Which of the following compexes can't exhibit geometric isomerism?
A. Tetrahedral complexes
B. Square planar complexes
C. Both (1) and (2)

D. Octachedral comlexes

Answer: A

- Watch Video Solution

28. Which of the following types of square planer
complexes has maximum number of geometric isomer ?
where Mn is central metal, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are
different monodentate ligands, and $A B$ is an unsymmetrical bidentate ligand.
A. $M A_{2} B_{2}$
B. $M A_{2} B C$
C. MABCD
D. $M(A B)_{2}$

Answer: C

Watch Video Solution
29. Which of the following types of square planar
complexes can't show geometric isomerism ?
A. $M A_{4}$
B. $M A_{3} B$
C. $M A B_{3}$
D. All of these

Answer: D

- Watch Video Solution

30. Total number of geometric isomers possible for an octahedral molecules, two $C I^{-}$ions and one NO_{2}^{-}ion is
A. 3
B. 6
C. 9
D. 4

Answer: B

- Watch Video Solution

31. Which of the following types of octahedral complexes can show mer-fac isomerism ?
where M is central metal, A, B and c are different monodentate ligands while AA is a symmetrical bidentate ligand.
A. $M A_{4} B_{2}$ or $M A_{2} B_{4}$
B. $M(A A)_{2} B_{2}$ or $M(A A)_{2} B C$
C. $M A_{3} B_{3}$
D. $M A_{5} B$

Answer: C

D View Text Solution

32. Which of the following complexes can't exibit optical isomerism ?
A. Octahedral complexes

B. Square planar complexes

C. Tetrahedral complexes
D. Both 2 and 3

Answer: B

D Watch Video Solution

33. Which of the following is incorrect regarding the octahedral complex of the type $M A_{4} B_{2}$?
A. It has two distereoisomers
B. cis- $M A_{4} B_{2}$ is optically active
C. trans- $M A_{4} B_{2}$ is optically inactive
D. Both cis-and trans $M A_{4} B_{2}$ are optically inactive

Answer: B

D Watch Video Solution

34. How many isomers are possible for an octahedral complex of the type $M A_{2} B_{2} C_{2}$?
A. 3
B. 4
C. 5
D. 6

Answer: D

- View Text Solution

35. Total number of isomers of $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{+}$is
A. 3
B. 4
C. 2
D. 5

D Watch Video Solution

36. Total number of all possible optical isomers of
an octahedral complex, composed of Co^{3+} ion
(central metal), two en molecules, two $C I^{-}$ions
and NO_{2} ion, is
A. 3
B. 4
C. 6
D. 5

Answer: C

- Watch Video Solution

37. Which one of the following postulates of Werner's theory is incorrect ?
A. Primary valence are nondirectional while secondery valences are directional
B. Primary valences can be satisfied by neutral
as well as negative ions only
C. Primary valence is linked to what we now call
the oxidation number of the central metal
D. Secondery valence corresponds to whalt we now call the coordination number of the central metal

Answer: B

- Watch Video Solution

38. Some platinum (IV) complexes were studied by

Werner. Which of the following yields maximum
number of ions in aqueous solution?
A. $\mathrm{PtCI}_{4} \cdot 6 \mathrm{NH}_{3}$
B. $\mathrm{PtCI}_{4} \cdot 4 \mathrm{NH}_{3}$
C. $\mathrm{PtCI}_{4} \cdot 3 \mathrm{NH}_{3}$
D. $\mathrm{PtCI}_{4} \cdot 2 \mathrm{NH}_{3}$

Answer: A

D Watch Video Solution

39. Another complex studied by Werner has a composition corresponding to the formula PtCI_{4}

2 KCl . Form electrical conductance measurements,
he determine that each formula unit contained
three ions. He also found tat silver nitrae did not give a precipitate of AgCl with this complex. Which of the following formula fot this complex agrees with this information?
A. $P t\left[K_{2} C I_{6}\right]$
B. $K_{2}\left[P t C I_{6}\right]$
C. $K_{2}\left[P t C I_{4}\right] C I_{2}$
D. $\left[K_{2} P t C I_{2}\right] C I_{2}$

Answer: B
40. Which of the following complexes will have the highest molar conductivity?
A. $\mathrm{CoCI}_{3} \cdot 3 \mathrm{NH}_{3}$
B. $\mathrm{CoCI}_{3} .4 \mathrm{NH}_{3}$
C. $\mathrm{CoCI}_{3} .5 \mathrm{NH}_{3}$
D. $\mathrm{CoCI}_{3} \cdot 6 \mathrm{NH}_{3}$

Answer: D
41. Which of the following complexes will lead to lowest cryoscopic measurement ?
A. $\mathrm{CoCI}_{3} \cdot 6 \mathrm{NH}_{3}$
B. $\mathrm{CoCI}_{3} .5 \mathrm{NH}_{3}$
C. $\mathrm{CoCI}_{3} \cdot 4 \mathrm{NH}_{3}$
D. $\mathrm{CoCI}_{3} .3 \mathrm{NH}_{3}$

Answer: A

- Watch Video Solution

42. The geometries of $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[N i C I_{2}\left(P P h_{3}\right)-(2)\right]$ are
A. tetrahedral
B. square planar
C. tetraheal and square planar repectively
D. square planer and tetrahedal respectively

Answer: A

D Watch Video Solution
43. The hydridizoation states of the central metal ion in the complexes $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$ and $\left[\operatorname{Fr}(C N)_{6}\right]^{4-}$ are
A. all $s p^{3} d^{2}$
B. all $d^{2} s p^{3}$
C. $s p^{3} d^{2}, d^{2} s p^{3}$ and $d^{20 s p^{3}}$
D. $d^{2} s p^{3}, s p^{3} d^{2}$ and $s p^{3 d^{2}}$

Answer: B
44. Which of the following complex ions is dimagnetic ?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[F e F_{6}\right]^{3-}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: D

(D) Watch Video Solution
45. Hybridization of iron in $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A. $d s P^{3}$
B. $s P^{3} d$
C. $d^{2} s P^{3}$
D. $s P^{3} d^{2}$

Answer: A

Watch Video Solution
46. Which of the following statements is not correct ?
A. $\left[C u C I_{4}\right]^{2-}$ has a tetrahedral geometry and
is paramagnetic
B. $\left[M n C I_{4}\right]^{2-}$ has a tetrahedral geometry and is paramagnetic
C. $\left[N i C I_{4}\right]^{2-}$ has a tetrahedral geometry and
is paramagenitc
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ has a square planar geometry and is paramagnetic

Answer: D

D Watch Video Solution

47. Which of the following is not an inner orbital complex ?
A. $\left[M n(C N)_{6}\right]^{3+}$
B. $\left[F e(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Answer: C

- Watch Video Solution

48. Which of the following is not an outer orbital complex ?
A. $\left[M n C I_{6}\right]^{3-}$
B. $\left[F e(C N)_{6}\right]$
C. $\left[F e F_{6}\right]^{3-}$
D. $\left[\mathrm{CoF}_{6}\right]^{3-}$

Answer: B
49. Which of the following is a low spin (spinpaired) complex ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Answer: A
50. Which of the following is a high spin (spinfree) complex ?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[F e(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[M n(C N)_{6}\right]^{4-}$

Answer: C

- Watch Video Solution

51. Which of the following statements is correct ?
A. $\left[M n(C N)_{6}\right]^{3-}$ has magnetic moment of two unpaired electrons while $\left[M n(C I)_{6}\right]^{3-}$
has a paramagnetic moment of four
unpaired electrons.
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ has mahnetic moment of a
single unpaired electron while $\left[F e F_{6}\right]^{3-}$
has a paramagnetic moment of five unaired
electrons
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$ is paramagnetic with four unpaired d electrons while $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ is diamagnetic

D. All of these

Answer: D

- Watch Video Solution

52. Which of the following is not correct for crystal field theory ?
A. The crystal field theory (CFT) was originally
proposed for explaining the optical
properties of crystallise solids.
B. Cft assume the ligands to be point charges.
C. The interaction between the ligands and the
electrons of the central metal is assumed to
be covalent in nature.
D. The interaction between the ligand and the
central metal atom/ion results in splitting of
the d orbital energies.

Answer: C

- Watch Video Solution

53. In the octahedral crystal field, there is splitting of d orbitals. Which of the following d orbitals constitute the higher energy e_{g} set of orbitals.
A. $d_{x y}, d_{x y}$
B. $d_{z^{2}}, d_{y z}$
C. $d_{x y}, d_{x^{2}-y^{2}}$
D. $d_{x^{2}-y^{2}}, d_{z^{2}}$

Answer：D

D View Text Solution

54．In an ocahedral crystal field，the $t-(2 g)$ orbitals are

A．lower in energy by 0.4Δ 。

B．raised in energy by 0.4Δ 。

C．lowered in energy by 0.6Δ 。

D．raised in energy by 0.6Δ 。
55. Which of the following lighands leads to minimum value of Δ_{\circ} ?
A. NO_{2}^{-}
B. $C N^{-}$
C. F^{-}
D. OH^{-}

Answer: C
56. Which of the following electronic configurations can leads to the formation of high spin and low spin octahedral complexes ?
A. d^{1}
B. d^{2}
C. d^{3}
D. d^{4}

Answer: D
57. The crystal field theory attributes the colour of cooedination compounds to
A. $d-d$ transition
B. charge transfer spectrum
C. polarisation
D. All of these

Answer: A

- Watch Video Solution

58. Which of the following colour change occurs when tridentate ligand, ethane-1, 2-diamine (en) is progressively added to an aqueous solution of nickel (II) chloride ?
A. Green to pale blue
B. Green to purple blue
C. Green to violet
D. All of these

Answer: D

D Watch Video Solution
59. Gem stones such as ruby and emerald own emerald owe their color to
A. Co^{2+} ions
B. $N i^{2+}$ ions
C. $C r^{3+}$ ions
D. Mn^{2+} ions

Answer: C

D Watch Video Solution
60. Which of the following complex ions has three unpaired electrons?
A. $\left[C r(e n)_{3}\right]^{3+}$
B. $\left[M n(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. Both (1) and (3)

Answer: D

- Watch Video Solution

61. $C u F_{2}$ contains $C u^{2+}$ ions surrounded by six
F^{-}ions, four F^{-}being at a distance of 0.193 nm other two at a distance of 0.227 nm . Thus, it should have the configuration.

$$
\begin{aligned}
& \text { A. }\left(d_{z^{2}}\right)^{1}\left(d_{x^{2}-y^{2}}\right)^{2} \\
& \text { B. }\left(d_{z^{2}}\right)^{2}\left(d_{x^{2}-y^{2}}\right)^{1} \\
& \text { C. }\left(d_{x y}\right)^{1}\left(d_{y z}\right)^{1}\left(d_{x z}\right)^{1} \\
& \text { D. }\left(d_{x y}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{x z}\right)^{0}
\end{aligned}
$$

Answer: B
62. Which of the following d-electron distribution of the diamagnetic complex $[N i(C N)]^{2-}$ is possible according to the crystal field theory?

$$
\begin{aligned}
& \text { A. }\left(d_{y z}\right)^{2}\left(d_{x y}\right)^{2}\left(d_{z^{2}}\right)^{2}\left(d_{x y}\right)^{2} \\
& \text { B. }\left(d_{x y}\right)^{2}\left(d_{x z}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{x^{2}-y^{2}}\right)^{1}\left(d_{z^{2}}\right)^{1} \\
& \text { C. }\left(d_{x y}\right)^{2}\left(d_{x y}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{x^{2}-y^{2}}\right)^{2} \\
& \text { D. }\left(d_{x y}\right)^{2}\left(d_{x z}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{z^{2}}\right)^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

63. In tetrahedral crystal field, three is splitting of d orbitals. Which of the following d orbitals constitute the higher energy set of orbirals.
A. $d_{x y}, d_{x^{2}-y^{2}}$
B. $d_{z^{2}}, d_{x^{2}-y^{2}}$
C. $d_{x y}, d_{y z}, d_{x z}$
D. $d_{z^{2}}, d_{x z}, d_{y z}$

Answer: C

64. Which of the following relations is correct

$$
\begin{aligned}
& \text { A. } \Delta_{t}=(9 / 4) \Delta_{\circ} \\
& \text { B. } \Delta_{t}=(2 / 3) \Delta_{\circ} \\
& \text { C. } \Delta_{t}=(3 / 2) \Delta_{\circ} \\
& \text { D. } \Delta_{t}=(4 / 9) \Delta_{\circ}
\end{aligned}
$$

Answer: D

(D) Watch Video Solution

65. Nearly all tetrahedral complexes are
A. high spin
B. low spin
C. intermediate spin
D. complex spin

Answer: A

Watch Video Solution
66. Which of the following d orbitals has highest
energy in square planer complexes ?
A. $d_{x y}$
B. $d_{x y}$
C. $d_{x^{2}-y^{2}}$
D. $d_{y z}$

Answer: C

- Watch Video Solution

67. Which of the following is not an organometallic compounds?
A. Sodium ethoxide
B. Trimethoxytitanium chloride
C. trimethylorthoborate
D. All of these

Answer: D

- Watch Video Solution

68. Oxidation state of Fe in ferrocene is
A. 0
B. +3
C. +2
D. +1
69. Which of the following ligands donates three
electrons during the formation of compolexes?
A. NO
B. CO
C. $C N^{-}$
D. $P R_{3}$
70. Which of the following solvents are used for organometallic chemistry ?
(i) THF (tetrahydrofuran)
(ii) Ether
(iii) Acetone
(iv) DCM (Dichloromethane)
A. (i), (ii)
B. (i), (ii), (iv)
C. (ii), (iii)
D. (i), (iii)

Answer: B

Watch Video Solution
71. The value of x in the complex $\mathrm{H}_{x} \mathrm{Co}(\mathrm{CO})_{4}$ is
$(C o, Z=27)$
A. 2
B. 3
C. 1
D. 0

Answer: C

D Watch Video Solution

72. Which of the following metals from polynuclear complex ?
A. Ti
B. V
C. Cr
D. Mn
73. Which of the following organometallics is used in the purification of the metal centre?
A. $\mathrm{Ni}\left(\mathrm{CO}_{4}\right.$
B. $\mathrm{Fe}(\mathrm{CO})_{5}$
C. $\mathrm{Cr}(\mathrm{CO})_{6}$
D. All of these

Answer: A
74. Which of the following metal carbonyls is synthesized by the drect interaction of finely divided metal with CO ?
A. $F e_{3}(C O)_{12}$
B. $F e_{2}(C O)_{9}$
C. $\mathrm{Fe}(\mathrm{CO})_{5}$
D. All of these

Answer: C
75. Which of following is an example is an example of a sandwich compound ?
A. Ferrocene
B. Chromocene
C. Manganocene
D. All of these

Answer: D

D Watch Video Solution
76. Hardness of water is estimated by simple tirtration with

A. EDTA

B. H_{4} EDTA
C. $N a_{2} H_{2}$ EDTA
D. $N a_{3} \mathrm{H}$ EDTA

Answer: C

- Watch Video Solution

77. The extraction of --- by the formation of cyanide complex is a typical example of the use of coordination compounds in metallurgical processes.
A. Ag
B. Au
C. Cu
D. Both 1 and 2

Answer: D
78. Which of the following metals is purified by
converting the metal to the coordination compounds?
A. Pt
B. Ni
C. Pd
D. All of these

Answer: B
79. The chelate effect is important in biological complexes. There is a ---- ligand of particular importance to biological system, the porphyrin ring.
A. tetradentate
B. pentadentate
C. hexadenate
D. bidentate

Answer: A
80. Rhodium complex, $\left[R h C I\left(P P h_{3}\right)_{3}\right]$, a

Wilkinson catalyst is used for hydrogenation of
A. arenes
B. alkanes
C. alkenes
D. alkynes

Answer: C

D Watch Video Solution
81. Ziegler-Natta catal,yst, catalyese the polymerisation of ------ at atmospheric pressure and ambient temperature.
A. alkynes
B. alkenes
C. arenes
D. All of these

Answer: B

- Watch Video Solution

82. The structure and hybridisation of organometallic $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ is
A. trigonal, $s p^{2}$
B. bent, sp
C. tetrahedral , $s p^{3}$
D. octahedral, $s p^{3} d$

Answer: C

D Watch Video Solution

1. The number of geometrical isomers for $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$ is
A. 3
B. 4
C. 1
D. 2

Answer: D

D Watch Video Solution
2. The coordination number and oxidation state of

Cr in $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ an respectively
A. 3 and +3
B. 6 and +3
C. 3 and 0
D. 4 and +2

Answer: B

- Watch Video Solution

3. In metal carbonyl having and genral formula $M(C O)_{x}$, where, $\mathrm{M}=$ metal, $\mathrm{x}=4$ and the metal is bonded to
A. carbon and oxygen
B. oxygen
C. carbon
D. $C \equiv O$

Answer: C

- Watch Video Solution

4. Which of the following ligands is expected to bidentates?
A. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
C. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{N}$
D. Br

Answer: B
(D) Watch Video Solution
5. The number of ions formed form a formula unit of potassium ferricyanide in solution is
A. 4
B. 5
C. 2
D. 3

Answer: A

- Watch Video Solution

6. Which of the following is a hexadentate ligand ?

A. Ethylenediaminetetraacetato
B. Dimethylglyoxime anion
C. 8-Hydroxyquinolinol ion
D. 2,2' - Dipyridyl

Answer: A

(D) Watch Video Solution

7. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right] C I_{2}$ is
A. pentaammi9ne (thiocyanato-S)cobalt
chloride
B. pentaammine (thiocyanato-N)cobalt
chloride
C. pentaammine (mercapto-N)cobalt
chloride
D. pentaammine (isothiocyanato-N)cobalt
chloride

Answer: B

D Watch Video Solution
8. Wilkinson's catalyst has the formula

$$
\begin{aligned}
& \text { A. } C o(a c a c)_{3} \\
& \text { B. } p\left[C o\left(N_{2}\right)(H)\left(P P h_{3}\right)_{3}\right] \\
& \text { C. }\left[\operatorname{Ir}(C O)(C I)\left(P P h_{3}\right)_{2}\right] \\
& \text { D. }\left[R h(C I)\left(P P h_{3}\right)_{3}\right]
\end{aligned}
$$

Answer: D

D Watch Video Solution
9. Tetrahedral complexes of the types of $\left[M A_{4}\right]$
and $\left[M A_{3} B\right]$ (where $\mathrm{M}=$ central metal, $\mathrm{A}, \mathrm{B}=$ achiral ligands) are not able to show optical isomerism because
A. these molecules/ion have nonsuperposable minor images
B. these molecules posses a centre of
symmetry
C. these molecules possess a plane of
symmetry and hence are achiral.
D. these molecules/ion possess c_{n} axis of
symetry.

Answer: C

- Watch Video Solution

10. The number of unpaired spins in the $\left[C r(e n)_{3}\right]^{2+}$ ion is
A. two
B. four
C. three
D. zero

Answer: A
(D) Watch Video Solution
11. Which of the following is paramagnetic and squre planar?
A. $\left[N i(C N)_{4}\right]^{2-}$
B. $\left[P t C I_{4}\right]^{2-}$
C. $\left[\mathrm{FeCI}_{4}\right]^{-}$
D. $\left[N i C I_{4}\right]^{2-}$

Answer: B

- Watch Video Solution

12. The magnitude of crystal field stabilization energy (CFSE) in tetrahedral complexes is considerably less than in the octahedral field beause
A. There are only four ligands instead of six so
the ligand field is only $2 / 3$ the size hence
the Δ_{t} is only $2 / 3$ the size
B. The direction of the orbitals does not coincide with the direction of the ligands.

This reduces the crystal field stabilization energy Δ_{t} by further $2 / 3$.
C. Both points (1) and (2) are correct
D. Both points (1) and (2) are wrong

Answer: C

13. A coordination compound of cobalt has the molecular, formula containing five ammonia molecules, one nitro group and two chlorine atoms for onew cobalt atom. One mole of this compounds three ions in an aqueous solution. On reacting this solution with excess of AgNO_{3} solution, we get two moles of AgCl precipitate.

The ionic formula for this complex would be
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right]\left[\mathrm{CI}\left(\mathrm{NO}_{2}\right)\right]$
C. $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{CI}\right]\left[\mathrm{NH}_{3}\right) \mathrm{CI}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]\left[\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CI}_{2}\right]$

Answer: A

D Watch Video Solution

14. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{Br})\left(\mathrm{NO}_{2}\right) \mathrm{CI}\right] \mathrm{CI}$

 isA. trimminenitrochlorobromoplatinum
chloride
B. triamminebromochloronitroplatinum
C. triamminebromonitrochloroplatinum
chloride
D. triamminechlorobromonitroplatinum
chloride

Answer: B

Watch Video Solution

15. The number of geometrical isomers of the complex $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$ is
A. 0
B. 3
C. 4
D. 2

Answer: D

- Watch Video Solution

16. The formula of dichlorobis (urea) copper (II) is
A. $\left[C u C I_{2}\left\{O=C\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right]$
B. $\left[C u\left\{O=c\left(N H_{20-}(2) C I\right] C I\right.\right.$
C. $\left[C u\left\{O=C\left(\mathrm{NH}_{2}\right)_{2}\right\}\right] C I_{2}$
D. $\left[C u C I_{2}\left\{O=C\left(\mathrm{NH}_{2}\right)_{2} \mathrm{H}_{2}\right\}\right]$

Answer: A

D Watch Video Solution

17. The complex ion $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is formed by $s p^{3} d^{2}$ hybridiration. Hence, the ion should posses
A. octachedral geometry
B. tetrahedral geometry
C. square planar geometry
D. tetragonal geometry

Answer: A

(D) Watch Video Solution

18. Consider the follwing complexes ion P, Q and
R
$P=\left[\mathrm{FeF}_{6}\right]^{3-}, Q=\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
and
$R=\left[F e\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according
to their spin only magnetic moment values (inBM) is.

$$
\text { A. } R<Q<P
$$

B. $Q<P<R$
C. $Q<R<P$
D. $R<P<Q$

Answer: C

- Watch Video Solution

19. The number of geometric isomers that can exist for square planner complex ion $\left[\mathrm{Pt}(\mathrm{CI})(\mathrm{PY})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right]^{+} \quad$ is $\quad(\mathrm{Py}=$ pyridine) :
A. 3
B. 4
C. 6
D. 2

Answer: A

Watch Video Solution

20. If the freezing point of a 0.01 molal aqueous
solution of a cobalt (III) chloride-ammonia
complex (which behaves as a strong electrolyte) is
$-0.0558^{\circ} C$, the number of chloride (s) in the coordination sphere of the complex if $\left[K_{f}\right.$ of water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right]$
A. Four
B. one
C. three
D. Two

Answer: B
21. In the complex ion $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$
A. Fe is in the $=2$ oxidation state and NO
coordinates as NO^{+}
B. Fe is in the +3 oxidation state and NO
coordinates as NO^{-}
C. Fe is in the +2 oxidation state and NO
coordinates as neutral NO (nitrosyl) radical
D. Fe is in the +1 oxidation state and NO
coordinates as NO^{+}(nitrosonium ion)
22. Which of the following statements is incorrect regarding the stereisomerism of the complexes note below (where M statids for a metal, and A, B, C and D are achiral ligands) ?
A. The ocatachedral complex [MABCD(EE)]
where $E E$ is a symmetrical bidentate ligand
have 12 stereoisomers
B. The facial and meridional isomers of an
$M A_{3} B_{3}$ octahedral complex are both
optically active.
C. The facial and meridional isomer of the octahedral complex $M\left(A_{3} B_{3}\right)$ possess three identical ligands (A or B) at positions $1,2,3$ and $1,2,6$ respectively.
D. In the cis and trans isomers of the octahedral complex $\left(M A_{4} B_{2}\right)$ two ligand occupy the posiotion 1, 2 and 1, 6 respectively.
23. Which of the following coordination entities are more stable for strong forld as compared to weak field cases ?
A. $d^{1}-d^{3}$
B. $d^{4}-d^{7}$
C. $d^{8}-d^{10}$
D. $d^{5}-d^{9}$

Answer: B
24. The total number possible isomers for the complex compound $\left[\mathrm{Cu}^{I I}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{Pt}^{I I} \mathrm{CI}_{4}\right]\right.$ are
A. 5
B. 6
C. 4
D. 3

Answer: C

- Watch Video Solution

25. Which of the folloiwng complexes in not expected to exhibit optical isomerism?.
A. $\left[\mathrm{Co}(e n){ }_{2} \mathrm{CI}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
C. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]^{+}$
D. $\left[C o(e n)_{3}\right]^{3+}$

Answer: B

- Watch Video Solution

26. The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red,green,
yellow and bule, respectively The increasing order of ligand strengh of the four ligands is
A. $L_{3}<L_{2}<L_{4}<L_{1}$
B. $L_{1}<L_{2}<L_{4}<L_{3}$
C. $L_{4}<L_{3}<L_{2}<L_{1}$
D. $L_{1}<L_{3}<L_{2}<L_{4}$

Answer: D
27. The equation which is balanced and represents the correct product(s) is .
A.

$$
\begin{aligned}
& \left.\qquad \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right]^{+}+5 \mathrm{H}^{+} \rightarrow 5 \mathrm{NH}_{4}^{+}+\mathrm{CI}^{-} \\
& \text {B. } \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCI} \rightarrow 2 \mathrm{LiCI}+\mathrm{K}_{2} \mathrm{O} \\
& \text { C. } \\
& \mathrm{CuSO} \\
& 4
\end{aligned}
$$

28. In the complex acetylbromidodicarbonyl bis
(triethyphospine) iron (II), the number of $\mathrm{Fe}-\mathrm{C}$ bonds (s) is
A. 3
B. 4
C. 6
D. 5
29. Among the complex ions,
$\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{+} \quad, \quad\left[\mathrm{CrCI}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{OH}_{2}\right]^{+} \quad, \quad\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-}\right.$
$\left[\mathrm{Cp}(e n)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{CI}\right]^{2+} \quad$ and
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}\right]^{2+}$,
the number of complex ion(s) that show (s) cistrans isomerism is
A. 5
B. 1
C. 4

D. 6

Answer: D

- View Text Solution

30. Which of the following is a bidentate ligand ?
(i) Acetylacetonate (ii) Glycinato
(iii) Oxalato (iv) Carbanato
A. (i), (ii), (iii), (iv)
B. (ii), (iii), (iv)
C. (i), (iii), (iv)
D. (i), (ii), (iii)

Answer: A

D Watch Video Solution

31. The IUPAC name of the complex
$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$ formed bby the reaction between Cu^{2+} and acetylacetone is
A. bis (2, 4- pentanediol)copper(II)
B. bis (2, 4 -pentanol)copper (II)
C. bis (2, 4- pentanedionato)copper (II)
D. bis (2,3- pentanedionato)copper (II)

Answer: C

D Watch Video Solution

32. The IUPAC name for
$\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cr}-(\mathrm{OH})-\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\right]$ is
A. μ-hydroxido-bis[pentaaminechromium(III)]
B. $\mu \quad$ - hydroxo-bis(octaamminechromium)
$(5+)$ ion
C. μ - hydroxo-bis(pentaamminedichromium)

$$
(5+)
$$

D. m-hydroxyl-bis(decaamminedichromium)

$$
(5+) \text { ion }
$$

Answer: A

- Watch Video Solution

33. The pair(s) of coordination complexes/ion exhibiting the same kind of isomerism is (are):
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{CI}$
(ii)
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}\right]^{+}$
(iii) $\left[\mathrm{CoBr}_{2} \mathrm{CI}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{CI}_{2}\right]^{2-}$
(iv) $\quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{CI}$
and
$\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}\right] \mathrm{Br}$
A. (i) and (iii)
B. (i), (ii), (iii)
C. (i), (ii), (iii), (iv)
D. (ii) and (iv)

Answer: D
34. $E D T A^{4-}$ i9s ethylenediamine tetraacetate ion The total number of $N-C O-O$ bond angles in $[C o(E D T A)]^{-1}$ complex ion is .
A. 8
B. 6
C. 5
D. 7

Answer: A
35. Which of the following compounds is not yellow coloured?
A. $K_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$
B. $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]$
C. BaCrO_{4}
D. $Z n_{2}\left[F e(C N)_{6}\right]$

Answer: D
36. For the octahedral complex of $F e^{+}$in $S C N^{-}$
(thiocyanato-S) and in CN^{-}ligand environments,
the difference between the spin - only magnetic moments in Bohr magneton (when approximated to the nerest integer) is $[A t$. No. ofFe $=26]$
A. 3
B. 6
C. 4
D. 5

Answer: C

37. An aqueous solution of metal ion $M I$ reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively An aqueous solution of another metal ion $M 2$ always forms tetrahedral complexs with theses reagents. Aqueous solution of $M 2$ on reaction with reagent S gives white precipitate which dissolves in excess of S The reactions are summarised in the scheme given below: SCHEME :

Tetrahedral $\underset{\text { excess }}{\stackrel{Q}{S}}$ M1 $\underset{\text { excess }}{\stackrel{R}{\longrightarrow}}$ Square Planar
Tetrahedral $\underset{\text { excess }}{\stackrel{Q}{4}} \mathbf{M} \underset{\text { excess }}{\mathrm{R}}$ Tetrahedral
S stoichiometric amount
White precipitate $\xrightarrow[\text { excess }]{\text { S }}$ precipitate dissolves

what is $M 2$ and $S ? ?$

A. $Z n^{2+}, \mathrm{KCN}, \mathrm{HCl}$ and $K_{4}\left[F e(C N)_{6}\right]$
B. $N i^{2+}, \mathrm{HCl}, \mathrm{KCN}$ and KOH
C. $\mathrm{Cd}^{2+}, \mathrm{KCN}, \mathrm{HCl}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
D. $\mathrm{Co}^{2+}, \mathrm{HCl}, \mathrm{KCN}$ and $\mathrm{K}_{2} \mathrm{CrO}_{4}$

Answer: B

- Watch Video Solution

38. $A I F_{3}$ is soluble in $H F$ only in presence of $K F$
. It is due to the formation of
A. $K_{3}\left[A I F_{3} H_{3}\right]$
B. $K_{3}\left[A I F_{6}\right]$
C. AIH_{3}
D. $K\left[A I F_{3} H\right]$

Answer: B

- Watch Video Solution

1. Which of the following pairs of d-orbitals will hare electron density along the axes?
A. $d_{z^{2}}, d_{x z}$
B. $d_{x z}, d_{y z}$
C. $d_{z^{2}}, d_{x^{2}-y^{2}}$
D. $d_{x y}, d_{x^{2}-y^{2}}$

Answer: C

- Watch Video Solution

2. Jahn - Teller effect is not observed in high spin complexes of
A. d^{7}
B. d^{8}
C. d^{4}
D. 2-)

Answer: B
3. Which of the following has longest $C-O$ bond length? (Free $C-O$ bond length in CO is $1.128 \AA$
).
A. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
B. $N i(C O)_{4}$
C. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
D. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$

Answer: D

D Watch Video Solution
4. The name of complex ion, $\left[F e\left(C N_{6}\right)\right]^{3-}$ is
A. Tricyanoferrate (III) ion
B. Hexacyanidoferrate (III) ion
C. Hexacyanoiron (III) ion
D. Hexacyanitoferrate (III) ion

Answer: B

- Watch Video Solution

5. The hybridization involved in complex
$\left[N i(C N)_{4}\right]^{2-}$ is $(A t . N o . N i=28)$
A. $d^{2} s p^{2}$
B. $d^{2} s p^{3}$
C. $d s p^{2}$
D. $s p^{3}$

Answer: C

Watch Video Solution
6. The sum of coordination number and oxidation number of the metal M in the complex
$\left[M(e n)_{2}\left(C_{2} O_{4}\right)\right] C I$
A. 7
B. 8
C. 9
D. 6

Answer: C
7. Number of possible isomer for the complex $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right] C I$ will be: (em = ethylenediamine)
A. 3
B. 4
C. 2
D. 1

Answer: A

- Watch Video Solution

8. Which of these statements about $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is true?
A. $\left[\mathrm{Co}(C N)_{6}\right]^{3-}$ has no unpaired electrons
and will be in a high-spin configuration
B. $\left[C o(C N)_{6}\right]^{3-}$ has no unpaired electrons
and will be in a low-spin configuration
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons
and will be in a lowspin configuration
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electtrons
and will be in a high-spin configuration

Answer: B

Watch Video Solution

9. Cobalt (III) chloride forms several octahedral
complexes with amonia. Which of the following
will not give test for chloride ions with silver nitrate at $25^{\circ} C$?
A. $\mathrm{CoCI}_{3} \cdot 6 \mathrm{NH}_{3}$
B. $\mathrm{CoCI}_{3} \cdot 3 \mathrm{NH}_{3}$
C. $\mathrm{CoCI}_{3} \cdot 4 \mathrm{NH}_{3}$
D. $\mathrm{CoCI}_{3} .5 \mathrm{NH}_{3}$

Answer: B
(D) Watch Video Solution
10. The complex used as an anticancer agent is
A. $\mathrm{mer}-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
B. cis $-\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$
C. cis $-K_{2}\left[P t B r_{2} C I_{2}\right]$
D. $\mathrm{Na}-(2)\left[\mathrm{CoCI}_{4}\right]$
11. A magnetic moment of 1.73 B.M. will be shown by one among the following:
A. $\left[N i(C N)_{4}\right]^{2-}$
B. TiCI_{4}
C. $p\left[\mathrm{CoCI}_{6}\right]^{4-}$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
12. An excess of AgNO_{3} is added to 100 mL of a $0.01 M$ solution of dichlorotetraaquachromium(III) chloride The number of moles of $A g C I$ precipitated would be .
A. 0.002
B. 0.003
C. 0.01
D. 0.001

Answer: D

- Watch Video Solution

13. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour ?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
14. Red precipitae is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal $N i(I I)$. Which of the following statement is not true?
A. Dimethylgiyloxime functions as bidentate ligand.
B. Red complex has a square planar geometry
C. Complex has symmetrical H bonding
D. Red complex has a tetrahedral geometry

Answer: D

Watch Video Solution

15. Low spin complex of d^{6}-cation in an octahedral
field will have the following energy:
A. $-2 / 5 \Delta_{0}+P$
B. $-12 / 5 \Delta_{0}+P$
C. $-12 / 5 \Delta_{0}+3 P$
D. $-2 / 5 \Delta_{0}+2 P$
16. The complex, $\left[P t(p y)\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers?
A. 2
B. 3
C. 4
D. 0

Answer: B
17.
A. Geometrical isomerism
B. Linkage isomerism
C. Ionization isomerism
D. coordination isomerism

Answer: D
(D) Watch Video Solution
18. The d-electron configurations of
$\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are d^{4}, d^{5}, d^{6} and
d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behavious?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: D

19. Of the following complex ions, which is diamagnetic in natures?
A. $\left[\mathrm{CoF}_{3}\right]^{3-}$
B. $\left[N i C I_{4}\right]^{2-}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{CuCI} I_{4}\right]^{2-}$

Answer: C

- Watch Video Solution

20. Which of the following complex compounds will exhibit highest magnetic behaviour ?
$(A t . N \odot T i=22, C r=24, C o=27, Z n=30)$
A. $\left[Z n\left(N H_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: C

21. Which of the following complex ions is not expected to absorve visible light?
A. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[N i(C N)_{4}\right]^{2-}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

22. The existence of two different colored complexes with the composition of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]$ is due to
A. ionization isomerism
B. Linkage isomerism
C. geometrical isomerism
D. coordination isomerism

Answer: C

- Watch Video Solution

23. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $-0.6 \Delta_{0}$
B. $-1.8 \Delta_{0}$
C. $-1.8 \Delta_{0}+P$
D. $-1.2 \Delta_{0}$

Answer: A

- Watch Video Solution

24. Which one of the following complex is not expected to exhibit isomerism?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right]^{2+}\right. \\
& \text { B. }\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} C I_{2}\right] \\
& \text { C. }\left[\mathrm{Ni}\left(N H_{3}\right)_{2} C I_{2}\right] \\
& \text { D. }\left[\mathrm{Ni}(e n)_{3}\right]^{2+}
\end{aligned}
$$

Answer: A
25. Which of the following does not show optical isomerism?

> A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
> B. $\left.\left[\mathrm{Co}(e n) \mathrm{CI}_{2}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
> C. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
> D. $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{+}$

Answer: A
26. Which of the following complex compounds will exhibit highest magnetic behaviour ?
$(A t . N \odot T i=22, C r=24, C o=27, Z n=30)$
A. $\left[T i(e n)_{2}\left(N H_{3}\right)_{2}\right]^{4+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B
27. A $0.002 M$ aqueous solution of an ionic compound $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$ freezes at $-0.00732^{\circ} C$. Find the number of moles of ions
which 1 mole of ionic compound produces of being dissolved in water. $\left(K_{f}=-1.86^{\circ} C / m\right)$.
A. 3
B. 4
C. 1
D. 2

Answer: D

28. Which of the following complexes exhibits the highest paramagnetic behaviour?
where $g l y=g l y c i n e, ~ e n=e t h y l e n e d i a m i n e ~ a n d ~ b i p y ~$
=bipyridyl
(At. no. $T i=22, V=23, F e=26, C o=27$)
A. $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[V(g l y)_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
C. $\left[\mathrm{Fe}(e n)(b p y)\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
D. $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{OH})_{2}\right]^{-}$
29. In which of the following coordination entites the magnitude of Δ_{0} (CFSE in octehedral field) will be maximum.
(At. No. $C o=27$)
A. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$

Answer: D

D Watch Video Solution

30. The d electron congfiguration of Cr^{2+}, $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and $N i^{2+}$ are $3 d^{4}, 3 d^{5}, 3 d^{6}$ and $3 d^{8}$ respectively. Which one of the folowing aqua complexes will exhibit the minimum paramagnetic behaviour?
$($ At. $N o . C r=24, M n=25, F e=26, N i=28)$
A. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: A

- Watch Video Solution

31. Which of the following will give a pair of enontiomorphs?
$e n=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
A. $\left[\mathrm{Co}(e n)_{2} C I_{2}\right] C I$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCI}_{6}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{NO}_{2}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$

Answer: A

- Watch Video Solution

32. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of $3.83 B . M$. The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{Z}^{1}$
B. $3 d_{x^{2}-y^{2}}^{1}, 3 d_{z^{2}}^{1}, 3 d_{x z}^{1}$
C. $3 d_{x y}^{1}, 3 d_{x^{2}-y^{2}}^{1}, 3 d_{y z}^{1}$
D. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{x z}^{1}$

Answer: D

- Watch Video Solution

33. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] C I$ exhibits
A. linkage isomerism, geometrical isomerism,
and opical isomerism
B. linkage isomerism, ionization isomerism and optical isomerism
C. linkage isomerism, ionization isomerism and geometrical isomerism
D. ionization isomerism, geometrical
isomerism and optical isomerism.

Answer: C

34. Which one of the following is expected to exhibit optical isomerism (en=ethylenediamine)?
A. cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$
B. trans- $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]$
C. trans- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$
D. cis- $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{+}$

Answer: D

- Watch Video Solution

35. Which one of the following is an inner orbital complex as well as diamagnetic in nature?
A. $\left[Z n\left(N H_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: C

36.

Among
$\left[N i(C O)_{4}\right],\left[N i(C N)_{4}\right]^{2-},\left[N i C l_{4}\right]^{2-} \quad$ species,
the hybridization states at the $N i$ atom are, respectively (At. no.of $N i=28$)
A. $s p^{3}, d s p^{2}, d s p^{2}$
B. $s p^{3}, d s p^{3}, s p^{3}$
C. $s p^{3}, s p^{3}, d s p^{2}$
D. $d s p^{2}, s p^{3}, s p^{3}$

Answer: B
37. Considering $\mathrm{H}_{2} \mathrm{O}$ as a weak field ligand, the number of unpaired electrons in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ will be (At. no. of $M n=25$)
A. 3
B. 5
C. 2
D. 4

Answer: B
38. $C N^{-}$is a strong field ligand. This is due to the fact that
A. it carries a negative charge
B. it is a pseudohalide
C. it can accept electrons form metal species
D. it form high spin complexes with metal
species

Answer: C
39. Which of the following does not have a metal carbon bond?

> A. $\mathrm{A1}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$
> B. $C_{2} \mathrm{H}_{5} \mathrm{MgBr}$
> C. $\mathrm{K}\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) C I_{3}\right]$
> D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Answer: A
40. Which of the following is considered to be an anticancer species ?

Answer: C
41. Which of the following coordination compounds would exhibit optical isomerism?
A. pentaaamminenitrocobalt (III) iodide
B. Diamminedichloplatinum (II)
C. trans-Dicyanobis
(ethylenediamine)
chromium (III) Chloride
D. Tris-(ethylendiamine) cobalt (III) bromide

Answer: D

42. Among the following, which is not the π bonded organometallic compound ?

$$
\begin{aligned}
& \text { A. } K\left[P t C I_{3}\left(\eta^{2}-C_{2} H_{4}\right)\right] \\
& \text { B. } F e\left[\eta^{5}-C_{5} H_{5}\right]_{2} \\
& \text { C. } C r\left[\eta^{6}-C_{6} H_{6}\right]_{2} \\
& \text { D. }\left(C H_{3}\right)_{4} S n
\end{aligned}
$$

Answer: D
43. The number of unpaired electrons in the complex ion $\left[\mathrm{CoF}_{6}\right]^{3-}$ is (Atomic no. of $\mathrm{Co}=27$)
A. 3
B. 2
C. 4
D. 0

Answer: C

- Watch Video Solution

44. According to IUPAC nomenclature sodium nitroprusside is named as
A. sodium pentacyanonitrosyl ferrate (II)
B. sodium pentacyanonitrosyl ferrate (III)
C. sodium nitroferricyanide
D. sodium nitroferrocyanide

Answer: B

- Watch Video Solution

45. Which of the following octahedral complex does not show geometrical isomerism (A and B are monodentate ligands) ?
A. $\left[M A_{4} B_{2}\right]$
B. $\left[M A_{5} B\right]$
C. $\left[M A_{2} B_{4}\right]$
D. $\left[M A_{3} B_{3}\right]$

Answer: B

D Watch Video Solution
triamminediaquachloridocobalt(III) chloride can be represented as :
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{CI}\right] \mathrm{CI}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}_{3}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{CI}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{CI}_{3}$

Answer: A

Watch Video Solution

47. Atomic numbers of $C r$ and $F e$ are respectively

24 and 26 . Which of the following is paramagnetic with the spin of the electron?
A. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
B. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: D

D Watch Video Solution

48. In the silver plating of copper, $K\left[A g(C N)_{2}\right]$ is used instead of AgNO_{3}. The reason is
A. a thin voltage of Ag is formed on Cu
B. more voltage is required
C. Ag^{+}ions are completely removed form solution
D. less availabiliuty of Ag^{+}ions as Cu cannot
displace Ag form $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion

Answer: D

49. Which of the following will give maximum number of isomer?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]$
B. $\left[N i(e n)\left(N H_{3}\right)_{4}\right]^{2+}$
C. $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(e n)_{2}\right]$
D. $\left[\operatorname{Cr}(S C N)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

Answer: D
50. Which of the following organometallic compound is σ and π-bonded?
A. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
B. $K\left[P t C I_{3}\left(\eta^{2}-C_{2} H\right)_{4}\right]$
C. $\left[\mathrm{Co}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]^{2+}$
D. $\mathrm{AI}\left(\mathrm{CH}_{3}\right)_{3}$

Answer: C

- Watch Video Solution

51. Coordination number of $N i$ in $\left[N i\left(C_{2} O_{4}\right)_{3}\right]^{4-}$ is:
A. 3
B. 6
C. 4
D. 2

Answer: B

D Watch Video Solution
52. Which statement is incorrect?
A. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$-tretrahedral, paramagnetic B. $\left[N i(C N)_{4}\right]^{2-}$ - square planar, diamagnetic
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - tetrahedral, diamagnetic
D. $\left[N i(C I)_{4}\right]^{2-}$ - tetrahedral, paramagnetic

Answer: A
(D) Watch Video Solution
53. Which of the following will exhibit maximum ionic conductivity?

> A. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
> B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CI}_{3}$
> C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{CI}$
> D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Answer: A

- Watch Video Solution

54. Which of the following complexes will have four isomers?
A. $\left[C o(e n)_{3}\right] C I_{3}$
B. $\left[\mathrm{Co}(e n){ }_{2} C I_{2}\right] C I$
C. $\left[\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{CI}_{2}\right] C I$
D. $\left[\mathrm{Co}\left(P \mathrm{Ph} h_{3}\right)_{3} C I\right] C I_{2}$

Answer: B

- View Text Solution

55. In the separation of $C u^{2+}$ and $C d^{2+}$ of lind group in qualitative analysis of cations, tetraamminecopper
(II) sulphate and
tetramminecadmium (II) sulphate react with KCN
to form the corresponding cyano complex. Which one of the following pairs of the complexes and their relative stability enables the separation of $C u^{2+}$ and $C d^{2+}$?
A. $K_{3}\left[C u(C N)_{4}\right]$: less stable and
$K_{2}\left[C d(C N)_{4}\right]$: more stable
B. $K_{3}\left[C u(C N)_{4}\right]$: more stable and
$K_{2}\left[C d(C N)_{4}\right]$: less stable
C. $K_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$: less stable and
$K_{2}\left[C d(C N)_{4}\right]$: more stable
D. $K_{2}\left[C u(C N)_{4}\right]$: more stable and $K_{2}\left[C d(C N)_{4}\right]$: less stable.

Answer: B
56. What is the shape of $\mathrm{Fe}(\mathrm{CO})_{5}$ molecule ?

Given that its dipole moment $=0$.
A. octahedral
B. square planar
C. trigonal bipyramidal
D. square bipyramidal

Answer: C

- Watch Video Solution

