

India's Number 1 Education App

CHEMISTRY

BOOKS - R SHARMA CHEMISTRY (HINGLISH)

STEREOCHEMISTRY

Example

1. Draw Fischer projection formulas for the following moelcules:

CHO
$$CHO$$

$$COOH$$

$$HOH_{2}C$$

$$OH$$

$$H_{3}C$$

$$CH_{2}OH$$

$$CH_{2}CH_{3}$$

$$CH_{2}OH$$

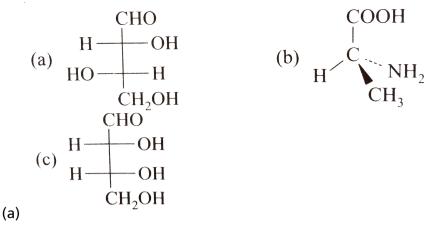
$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{3}OH$$

$$CH_{2}OH$$

Strategy: By convention, Fisher projections are written with the main carbon chain extending from top to bottom and with all groups esliped. in the Fischer formula, the chiral carbon is not drawm, it is at the crossing


of a horizontal and a vertical line. The horizontal lines represent bonds that project out of the plane of the paper, towards the viewer, and the vertical lines represent bonds that project behind the plane of the paper, away form the viewer

2. Assign the R and S configuration to the enantimers of 2-bromobutane Strategy: Identify the chiral carbon (stereocentre) and decide the order of priority for the four different ligands using CIP rules. Finally orient the molecule and designate the configuration.

3. Specify the configuration of the following compounds in ${\cal D}$ or ${\cal L}$ designation.

Strategy: The sterochemicla descriptor D refers to an arrangement about a centre of chirality that is identical to the three-dimensional arrangement in D-(+) glyceraldehyde in which the OH group on the chiral centre is on the right in the Fischer projection. Similarly, the other enatiomer of glyceraldehyde, which has $_OH$ group on the chiral centre to the left is given L configuration. For carbohydrates (polyhdroxy aldehydes or ketones) the focus should be on the last chiral carbon (from the top) while for amino acids the focus should be on the chiral carbon carrying the NH_2 group.

- 1. Isomers are different compounds that have the same A. empirical formula B. molecular formula C. precentage composition D. all of these **Answer: B View Text Solution Follow Up Test** 1. Constitutional isomers are iomers that differe because
 - A. their moelcules posses different polarities
 - B. their molcules posses different colours
 - C. their atoms are connceted in a different order

D. their atoms have different atomic order		
Answer: C		
Watch Video Solution		
2. Stereoisomers are isomers that differ because their atoms		

- A. are arranged differently in space
- B. have different radii
- C. have different atomic numbers
- D. have different number of neutrons

Answer: A

3. Stereoisomers may be of different types. Stereosiomers that are radialy interconvertible by rotation around a $\sigma-$ bond are known as _____ isomers

A. geometrical

B. optical

C. cis-trans

D. conformational

Answer: D

4. Those stereoisomers that are not intercovertible by a simple rotation around a σ -bond are called

A. configurational isomers

B. enantiomers

D. all of these				
Answer: D				
View Text Solution				
5. The spatial orientation of other atoms (or groups) around carbon				
atoms iswhen a carbon atom is bonded to four other atoms (or				
groups).				
A. pyramidal with a rectangular base				
B. pyramidal with a square base				
C. tetrahedral				
D. plane				
Answer: C				
Watch Video Solution				

C. diastereoisomers

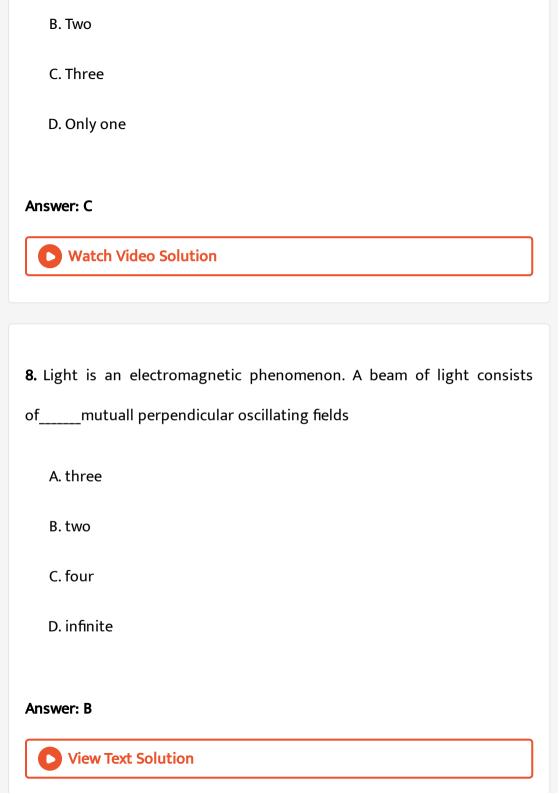
6. Consider CH_2CI_2 or CH_2BrCI as examples of disubstituted methanes. How many isomers would be possible in each instance if the carbon has a square planar geometry?

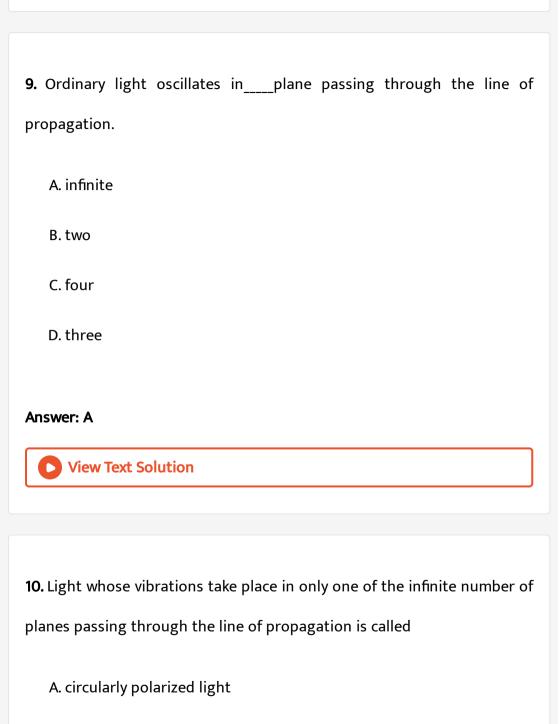
A. Two

B. Three

C. Only one

D. Four


Answer: A



Watch Video Solution

7. Consider CHBrCIF as an example of a trisubstituted methane. How many isomers would be possible if the geometry around carbon atom were square planar?

A. Four

B. plane polarized light

C. elliptically polarized light	
D. all of these	
Answer: B	
Watch Video Solution	
1. Nicol prism used to convert ordinary light into plane polarized ligh	t
consists of	
A. $MgCO_3$	
B. Na_2CO_3	
C. K_2CO_3	

 $\mathsf{D.}\, CaCO_3$

Watch Video Solution

Answer: D

12. Ordinary light is turned into plane-polarized light by passing it				
through a lens made of the material known as Polaroid. It consists of				
A. cellulose chloride				
B. cellulose nitrate				
C. cellulose sulphate				
D. cellulose carbonate				
Answer: B				
Watch Video Solution				
Watch Video Solution				
Watch Video Solution				
13. An optically active substance is one thatthe plane of polarized				
13. An optically active substance is one thatthe plane of polarized				
13. An optically active substance is one thatthe plane of polarized light.				
13. An optically active substance is one thatthe plane of polarized light. A. amplifies				

D. diminute

Answer: C

Watch Video Solution

- **14.** Which of the following factors affect the value of $lpha_{obs}$?
- (i) Solvent (ii) Temperature
- (iii) Wavelength (iv) Concentration
 - A. (ii) and (iv)
 - B. (ii) and (iii)
 - C. (i),(ii) and (iii)
 - D. (i),(ii),(iii) and (iv)

Answer: D

Watch Video Solution

15. The specific rotation, $[\alpha]$, is expressed as

A.
$$\frac{\alpha_{obs}}{l.c}$$

B. $lpha_{obs}lc$

C. $\frac{l.~c}{\alpha_{obs}}$

D. $\frac{lpha_{obs}}{l.~c^2}$

Answer: A

Watch Video Solution

16. Calculate the specific rotation of coniine (the toxic component of poison hemlock), if a solution containing 0.75gin 10mL is placed in a 1-dm polarimeter tube and its observed rotation at $25^{\circ}C(D$ line) is $+1.2^{\circ}$.

A. $+1.6^{\circ}$

 $B.+16^{\circ}$

C.	+	3.	.2

D. $+32^{\circ}$

Answer: B

Watch Video Solution

17. The optical activity is the characterstic of

A. gaseous state

B. liquid state

C. crystalline state

D. molecules

Answer: D

Watch Video Solution

18. The necessary and sufficient condition for a compound to be optically active is that

A. it must contain asymmetric carbon atoms

B. its molecule must be nonidentical with its mirroe image

C. its must be symmetric

D. its molecule must be identical with its mirror image

Answer: B

Watch Video Solution

19. A carbon atom is chiral when

A. it has tetrahdral orientation

B. it is sp^3 hybridized

C. it has four different ligands

D. it forms multiple bonds

Answer: C

Watch Video Solution

20. Which of the following atoms can be a chiral center in a given molecular species?

(i) Carbon (ii) Nitrogen

(iii) Phosphorus (iv) Silicon

A. (i),(ii),(iii),(iv)

B. (ii),(iii),(iv)

C. (iii),(iv)

D. Only (i)

Answer: A

View Text Solution

21. Which of the following objects is chiral?

- A. Fork
- B. Spoon
- C. Hammer
- D. Ear

Answer: D

Watch Video Solution

22. Which of the following compounds possesses a stereocenter?

- $\textbf{A.} \quad \overset{(1)}{\underset{Br}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Br}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Br}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\swarrow}} \quad \overset{(1)}{\underset{Cl}{\smile}} \quad \overset{(1)}{\underset{C}{\smile}} \quad \overset{(1)}{\underset{C}{\smile}} \quad \overset{(1)}{\underset{C}{\smile}} \quad \overset{(1)}$
- $\mathsf{B.}^{\text{(2) Cl}} \xrightarrow{\mathsf{CH_2-CH_2-CH_2-CH_2-CH_2-Br}} \mathsf{B}$
- C. (3) Br—CH₂—CH-CH₂—Dr
- D. (4) CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH-CH₂-CH-CH

Answer: B

Watch Video Solution

- **23.** The number of chiral centres present in 3,4-dichloropentan -2-ol is
 - A. 3
 - B. 4
 - **C**. 1
 - D. 2

Answer: A

Watch Video Solution

24. Consider a hypothetical planar molecule with the formula A_2B_2X (where X is the central atom). How may elements symmetry (plane of symmetry as well as centre of symmetry) does it have?

A. 5 B. 3 C. 4 D. 2 **Answer: C** Watch Video Solution 25. Which of the following can not be a chiral center? A. The $C^{\,+}$ of a carbocation B. The C^{+} of a radical C. The carbony1carbon in aldehydes D. All of these **Answer: D** Watch Video Solution

26. Which of the following pairs of compounds are enantiomers?

- A. (1) HO H and H H H
- C. (3) Br and Br Br Br

Answer: A

Watch Video Solution

27. Enantiomers have identical

A. medicinal (drug) properties

B. smells

C. tastes

D. melting points
Answer: D
Watch Video Solution
28. Which of the following statements in not correct?
.s. which of the following statements in not correct:
A. Enantiomers react with a given chiral reagent at the same rate

B. Enantiomers react with a given chiral reagent at the same rate


C. Diastercomers react with a given chiral reacgent at different rates

D. Enantiomers react with a given chiral reacgent at different rates

Answer: A

Watch Video Solution

29. Enantiomerism is shown by

31. Which of the following is a racemic mixture?

A.
$$25\,\%$$
 ($+$)and $75\,\%$ ($-$)

B.
$$50\,\%$$
 ($+$)and $50\,\%$ ($-$)

C.
$$80\,\%$$
 ($+$)and $20\,\%$ ($-$)

D.
$$40\,\%$$
 ($+$)and $60\,\%$ ($-$)

Answer: B

Watch Video Solution

32. The process of conversion of an optically pure enantiomer into an optically inactive equimolecular mixture of (+) and (-) enantiomers is called

A. epimerization

B. tautomerization

D. isomerization
Answer: C
Watch Video Solution
33. The process of separating a racemic mixture into optically pure $(+)$
and $(\ -\)$ enantiomers is known as
A. asymmetric synthesis
B. mutarotation
C. epimerization
D. resolution
Answer: D
Watch Video Solution

C. racemization

34. Enantiomers can be separated by means of

A. fractional distillation

B. fractional crystallization

C. chromatography

D. None of these

Answer: D

Watch Video Solution

35. Dextrororatory bytan-2-ol has a specific rotation

 $[lpha]_D^{25}=\ +13.52^\circ.$ A sample of butan-2-ol shows a specific rotation

 $[lpha]_D^{25}=\,+\,6.72^{\,\circ}$. Calculate the enantiomers excess (or optical purity) of

the sample?

A. $60\,\%$

B. 50~%

 $\mathsf{C}.\,70\,\%$

D. $80\,\%$

Answer: B

Watch Video Solution

36. Dextrororatory α — pinene has a specific rotation $[\alpha]_D^{20}=+51.3^\circ$. A sample of α — pinene containing both the enantiomers was found to have a specific rotation value $[\alpha]_D^{20}=+30.8^\circ$. The percentages of the (+) and (-) enantiomers present in the sample are, respectively,

A. $60\,\%$ and $40\,\%$

B. 70~% and 30~%

C. $80\,\%$ and $20\,\%$

D. 20~% and 80~%

Answer: C

37. The specific rotation of a pure enantiomers is $+12^\circ$. What will be its observed rotation if it is isolated form a reaction with $20\,\%$ racemization and $80\,\%$ retention.

A.
$$+9.6^{\circ}$$

$$B.-9.6^{\circ}$$

$$\mathsf{C.} + 2.4^\circ$$

D.
$$-2.4^{\circ}$$

Answer: A

Watch Video Solution

 ${f 38.}$ According to CIP sequence rule, the correct arrangement in order of decreasing priority is

$$\mathsf{A.} - COOH > - CHO > - CH_2OH > - OH$$

$$\mathsf{B.}-COOH>-OH>-CHO>-CH_2OH$$

$$C.-OH > -COOH > -CHO > -CH_2OH$$

$$D.-OH > -CH_2OH > -CHO > -COOH$$

Answer: C

Watch Video Solution

39. Which of the following structures has the R-configuration at the chiral centre?

(1)
$$H \xrightarrow{OH} CH_3$$

 CH_2CH_3

(2)
$$CH_3 \xrightarrow{H} CH_2CH_3$$

B. Br

(3)
$$CH_3 \xrightarrow{OH} H$$
 CH_2CH_3

$$\begin{array}{c|c} CH_3 \\ \hline (4) & H & OH \\ \hline D. & COOH \end{array}$$

Answer: A

Watch Video Solution

40. Which of the following structures has the S- configuration at the chiral centre?

$$(1) \begin{array}{c} H_3C & H \\ OH \end{array}$$

A.

(2)
$$HO_{H}^{\text{min}} C CH_3$$

$$(3) \operatorname{Br} \overset{\operatorname{Cl}}{\underbrace{\hspace{1cm}}}$$

Answer: B

Watch Video Solution

41. Which of the following structures has the D-configuration

(1)
$$H_3C$$
 OH OH

(2)
$$H - CH_2OH$$
 OH CHO

(3)
$$H \xrightarrow{OH} CH_2CH_3$$

C.

OH (4)
$$H \longrightarrow CHO$$
 CH_2OH

Answer: C

Watch Video Solution

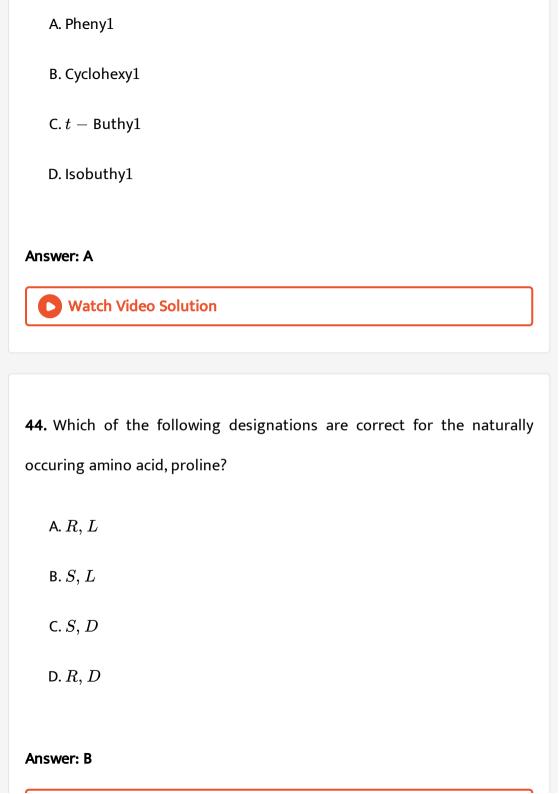
42. Which of the following assignment of priorities is not correct?

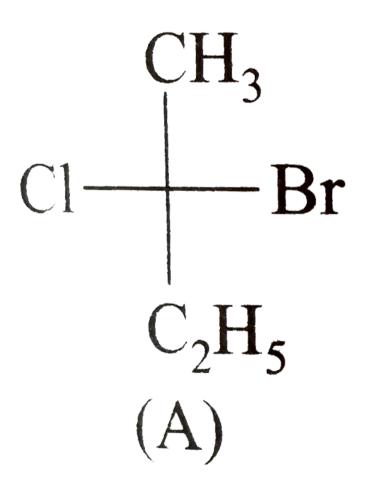
A. $(CH_3)_3C$ — has higher priority than $(CH_3)_2CH$ —

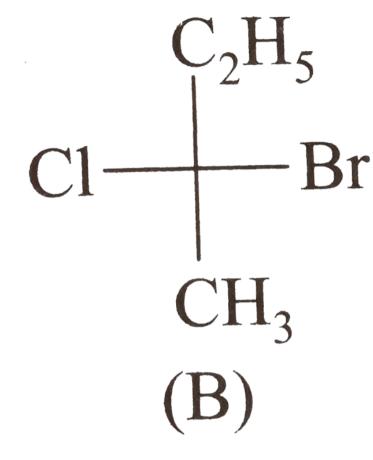
B. $C_2 = CH - \mathsf{has}$ higher priority than $(CH_3)_2 CH - \mathsf{has}$

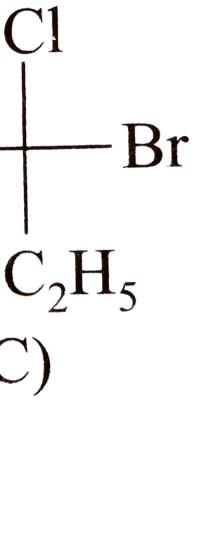
C. $(CH_3)_3C$ — has higher priority than HC=C —

 ${\rm D.} - CH = O \ {\rm has \ higher \ priority \ than} \ HC = C -$


Answer: C


Watch Video Solution


43. Which of the following ligands has the highest priority according to

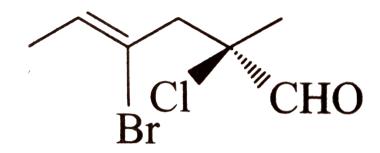

CIP sequence rule?

45. Consider the following structures (A), (B), (C) and (D).

(C)

 H_3C

$$\begin{array}{c|c}
C1 \\
C_2H_5 & CH_3 \\
Br \\
(D)
\end{array}$$


Which of the following statements is not correct?

- A. (A) and (C) are enantiomers
- B. (A) and (B) are enantiomers
- $\mathsf{C}.\,(B)$ and (D) are enantiomers
- D. (B)and (C)are identical

Answer: C

46. The correct IUPAC name of

is

A. (2S,4E)-4- bromom-2-chlor-2-metyhy1hex-4-enal

B. (2R,4Z)-4- bromo-2-chlor-2-methy1hex-4-enal

C. (2Z, 5R) - 3 — bromo-5-chlor-5-formy1hex-2-ene

D. (2R,4E)-4- bromo-2-chloro-2-methy1hex-4-enal

Answer: B

Watch Video Solution

47. The interchange of two groups (Br and CH_3 at the chiral centre of the projection formula (A) yields the fromula (B),while the interchange

of another set of two groups $(C_2H_5$ and CI) of (A) yields the projection formula (C).

Which of the following statemenets is not correct about the structures (A), (B) are (C)?

- A. (A) and (B) are enantiomers
- B. (A) and (C) are enantiomers
- $\mathsf{C.}\,(B)\mathsf{and}(C)$ are identical
- D. (B)and (C) are enantiomers

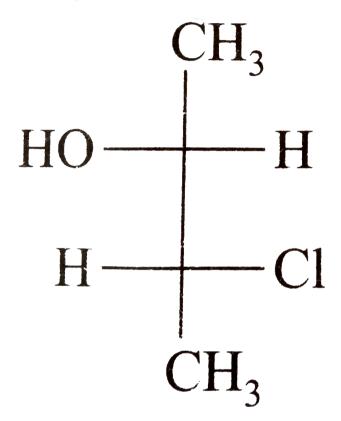
Answer: D

Watch Video Solution

48. Which of the following pairs of structures represent enantiomers?

C.
$$\begin{array}{c|cccc} & & & \text{OH} & & \text{OH} \\ & & & & \text{HO} & & \text{H} & \text{and} & \text{H} & & \text{OH} \\ \hline & & & & & & & \text{COOH} \\ \end{array}$$

Answer: A



Watch Video Solution

- **49.** How many steroisomers are possible for 3- chloropentan2- ol?
 - A. Three
 - B. Two
 - C. Four
 - D. Infinite

Answer: C

50. In the configuration

the configuration at the chiral centres are

 $\mathsf{A.}\ 2S,\ 3S$

B. 2R, 3R

C. 2R, 3S

D	2S,	3R
υ.	۷υ,	$o_{I}\iota$

Answer: B

Watch Video Solution

51. How many steroisomers of butane -2, 3 — diol,

$CH_3CH(OH)CH(OH)CH_3$, are possible.

A. Two

B. Four

C. Six

D. Three

Answer: D

52. Which of the following compounds may posses a meso stereosiemer?

A. $CH_3CHCICHBrCHCICH_3$

 $\mathsf{B.}\,CICH_2CHBrCH_2CI$

C. $BrCH_2CHCICH_2CI$

 $\mathsf{D.}\,CH_3CHBrCHCICHCICH_3$

Answer: A

Watch Video Solution

53. Meso butane -2, 3 — diol is optically inactive because

A. it is an equal mixture of two enantiomers

B. it is an equal mixture of two diasteroemers

C. it is an equal mixture of an enantiomer and diadteromer

D. at least one conformer has either a plane or a point of symmetry which makes it superposable upon its mirror image

Answer: D

Watch Video Solution

54. Which of the following compounds are known as threose and erythrose?

- A. C_4 sugars
- B. C_3 sugars
- C. C_5 sugars
- D. C_6 sugars

Answer: A

Which of the following configuration represents **55.** an

erythrostereoisomer?

$$CO_2H$$
 H
 Br
 MeO
 H
 CH_2OH

A.

В.

$$CO_2Me$$
 H
 Br
 H
 H
 OMe
 CH_2Br

C.

(4)
$$Br \xrightarrow{CH_3} H$$
 $H \xrightarrow{C_2H_5} Br$ D.

Answer: C

Match Video Colution

Watch video Solution		
56. How many optically active isomers of $2,3-$ dibromosuccinic acid are		
there?		
A. Two		
B. Four		
C. Three		
D. Just one		
Answer: A		
Allswei. A		
Watch Video Solution		
57. How many forms to tartaric acid exist in neture?		
A. Three		
B. Two		

C. Only one	
D. Four	
Answer: D	
Watch Video Solution	
58. How many enantiomeric forms are p	possible for $2,3,4-{\sf tri}$ -
hydroxypentanedioic acid?	
A. Eight	
B. Four	
C. Six	
D. Two	
Answer: B	
Watch Video Solution	

59. Which of the following conformations of meso-tartaric acid has a centre of symmetry?

A.

В.

Answer: C

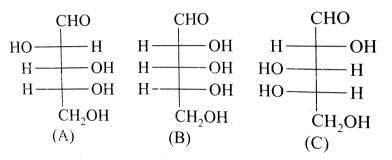
60. Which of the following compounds does not have diastereomers?

- A. But-2-ene
- B. Butane-2, 3 diol
- C. 2, 3 Dibromopentane
- D. Butan -2 ol

Answer: D

Watch Video Solution

61. Which of the following statements is not correct?


- A. All geometrical isomers are diastereomers
- B. All diastereomers are chiral and optically active
- C. Diasteromers are not necessairly chiral and optically active
- D. Enantiomers are essenticallty chiral and optically active.

Answer: B

Watch Video Solution

62. Consider the following compounds

The correct statement about the compounds (A), (B) and (C) is

- A. A and B are epimers
- ${\operatorname{B.}}\,B$ and Care epimers
- C. A and C are diastereomers
- D. A and C are identical

Answer: A

63. What is the sterostructure of the monochlobutanes obtained form the free radical chlorination of butane?

- (i) (+) 2 Chlorbutane
- (ii) (-) 2 Chlorobutane
- (ii) $(\pm)-2$ Chlorobutane
- (iv) Achiral -1 Chlorobutane
 - A. (i),(ii),(iii),(iv)
 - B. `(i),(iv)
 - C. `(ii),(iv)
 - D.(iii),(iv)

Answer: D

64. Isopentane is allowed to undergo free-radical chlorination and the reaction mixture is separated. How many optically active fractions of formula $C_5H_{11}CI$ would you expect to collect?

- A. Zero
- B. Two
- C. One
- D. Four

Answer: A

Watch Video Solution

65. Consider the reaction

$$(R)-CH_3CHICH_2CH_3+^{137}T^-
ightarrow CH_3CHICH_2CH_3 \ lpha_{obs}=-15.90^\circ
ightarrow containing 2~\%~137T^- \ lpha_{obs}=-15.26^\circ$$

The percentage of racemic from in the product is

A. $10\,\%$

B.8%

 $\mathsf{C.}\,4\,\%$

D. 12%

Answer: C

View Text Solution

66. Which of the following reactions occurs with reacemization?

A.

 $CH_3CH_2CHH(OH)CH_2Br+OH^ightarrow CH_3CH_2CH(OH)CH_2OH$

В.

 $CH_3CH_2CH = CH = CH_2 + D_2 \xrightarrow{catalyst} CH_3CH_2CH(D)CH_2D$

C.

 $CH_3CH_2CH(OH)CH(CH_3)_2 + CH_3COCI
ightarrow CH_3CH_2CH(OCOC)$

D.

 $CH_3CH(NH_2)COOH + NaOH
ightarrow CH_3CH_2(NH_2)COO^-Na^+ +$

Answer: B

Watch Video Solution

67. Which of the following compounds exsits as a nonresolvable racemic mixture?

A.
$$CH_3CH(OH)COOH$$

B.
$$C_2H_5 \mathop{N}\limits_{|C_6H_5}^{+|C_6H_5} - CH(CH_3)_2Br^-$$

C. $CH_3CH_2NHCH_3$

D. $CH_3CH_2CHOHCH_3$

Answer: C

68. Which of the following compounds will undergo racemization on prolonged digestion of either of its enantiomers with a dilute acid or base?

A.
$$CH_3CH_2CHCICH_3$$

 $\mathsf{B.}\,CH_3CH_2CHBrCH_3$

$$\mathsf{C.}\,\mathit{CH}_{3}\mathit{CH}_{2}\mathit{CH}\mathit{CH}(\mathit{CH}_{3})_{2}$$

 CH_3

D. $CH_3CH(OH)COOH$

Answer: D

Watch Video Solution

69. What happens when an optically pure (+)-1- chlorenthylbenzne $(C_6H_5CHCICH_3)$ is treated with $SbCI_5$?

A. It forms $1-\mathsf{pheny1ethene}$ as the sole product

B. If propduces (-)-1 – chloreothy1benzene

C. If remains unchanged

D. If recemizes

Answer: D

View Text Solution

70. Which of the following reaction could safely be used to relate configuration?

(i)
$$(+) - CH_3CH_2CHOHCH_3 \stackrel{Na}{\longrightarrow}$$

$$CH_3CH_2CH(ONa)CH_3 \stackrel{C_2H_5Br}{\longrightarrow} C_2H_5 - O - CH(CH_3)CH_2CH_3$$

(ii)

$$(\ +\)-CH_3CH_2C-.^{18}\ OCH(CH_3)C_2H_5+OH^-
ightarrow CH_3CH_2COO^-$$
 -

(iii)
$$(+) - CH_3CH(OH)CH_2Br + NaCN
ightarrow CH_3CH(OH)CH_2CN$$

(iv)

$$(-)-C_6H_5CH(OC_2H_5)CH_2OH+Hbr
ightarrow C_6H_5(OC_2H_5)CH_2Br$$

A. (i),(ii),(iii)

B. (i),(ii),(iii),(iv)

C. (i),(iii)

D. (ii),(iv)

Answer: B

View Text Solution

71. Which of the following is true for the given reaction?

$$\stackrel{: \dddot{O}:^-}{|} {OCH_3} \ (S) - C_2H_5CHCH_3 + CH_3I
ightarrow \stackrel{OCH_3}{|} {C}_2H_5CHCH_3 + I^-$$

- A. The configuration is unchanged and the product is S
- B. The configuration is chnaged and the product is ${\it R}$
- C. The configuration is chnaged and product is S
- D. The configuration is unchanged and the product is R

Answer: A

View Test Calution

View lext Solution

72. Which of the folloiwng statements is true?

A. When an chiral molecule reacts to given a chiral molecule the product is always recemic.

B. In chemical reactions the change from $\operatorname{an}(S)$ reactant to an (R) product always signals an inversion of configuration

C. An optically inavtice substance must be achiral

D. An achiral compound can have chiral centers

Answer: D

View Text Solution

- 73. Which of the following statements is false?
- (i) AD enantiomers rotates the plane of polarized light to the right and an L enantiomer to the left

(ii) Conversion of an erythro to a threo stereoisomer always occurs by

inversion at one chiral C.

(iii) A racemate can be distinguished from a maso or an achiral compound by an attempted resolution

(iv) Racemizatio of an enantiomer can only occur by breacking of a least one bond to the chiral center

(v) A reaction catalyzed by an enzyme always gives an optically active product.

A. (i),(ii),(iii),(iv),(v)

B. (i),(iii),(v)

C.(i),(v)

D. (ii),(iii),(iv)

Answer: C

View Text Solution

A. (\pm) - 2, 3 - dibromobutane

B. meso2, 3 - dibromobutane

C. (+) - 2, 3 — dibromobutane

D. (-) - 2, 3 - dibromobutane

Answer: A

View Text Solution

75. 1, 2 — Dimethy1cyclohexene reacts with HBr in CCI_4 to form mainly

A. $E-1-\mathsf{bromo}-1, 2-\mathsf{dimethy1}$ cyclohexene

B. meso-1 - bromo-1, 2 - dimethy1cyclohexane

C. (\pm)Z-1- bromo-1,2- dimethy1cyclohexane

D. (\pm)E-1- bromo-1,2- dimethy1cyclohexane

Answer: C

View Text Solution

76. Addition of HBr to but -1 — ene yields

- ${\rm A.}\ 2-bromobutane$
- B. (+)-2- bromobutane
- $\mathsf{C.}\left(\,-\,
 ight) 2 \mathsf{bromobutane}$
- D. $(\pm)-2$ bromobutane

Answer: D

Watch Video Solution

77. Cyclohexene on reaction with HOCI yields

- A. (\pm)cis-2 chlorocyclohexanol
- B. (\pm)trnas-2 chlorocyclohexanol
- $\mathsf{C.}\,1-\mathsf{chlorocyclohexanol}$

 ${\rm D.}\ 2-{\rm chlorocyclohexanol}$

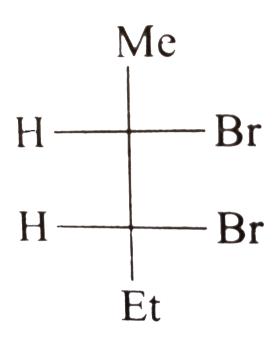
Answer: B

Watch Video Solution

78. cis-But-2 — ene on reaction with cold dilute $KMnO_4$ solution yields

A. (+) — butane—2, 3-diol

B. (-) butane-2, 3-diol


C. (\pm)butane-2,3- diol

D. $\operatorname{meso-butane} -2, 3-\operatorname{diol}$

Answer: D

79. An alkene on reaction with Br_2/CCI_4 produces the following products:

and its enantiomer in equal amounts. The alkene is

A. trans-pent-2-ene

B. pent-1 - ene

C. cis-pent -2 — ene

D. $2 - \mathsf{methylbut} - 2 - \mathsf{en}$

Watch Video Solution

80. $\operatorname{cis-But}-2-\operatorname{ene}$ reacts with D-N=N-D to yield the major product

A. meso-2, 3-dideuteriobutane

B. (+)-2,3- dideuteriobutane

C. (-)-2,3- dideuterionutane

D. (+) - 2, 3 — dideuteriobutane

Answer: A

View Text Solution

81. ${\sf meso-2,3-Dibromobutane}$ is treated with NaI in acetone. The mojor compound formed is

- A. $\operatorname{cis-but}-2$ -ne
- ${\tt B.\,2-bromo-3-iodobutane}$
- C. trans-but -2 ene
- D. $\mathsf{meso}\!-\!2,3-\mathsf{diiodobutane}$

View Text Solution

Follow Up Test 2

- 1. The device that is used for measuring the effect of plane polarized light on optically active compounds is known as
- A. polariscope
 - B. polarimeter
 - $\mathsf{C.}\,\mathsf{both}(1)\mathsf{and}(2)$
 - D. periscope

Watch Video Solution

Follow Up Test 3

- 1. Who first observed that crystals with mirror images of each other exist?
 - A. Louis Pasteur
 - B. Jean Baptiste Biot
 - C. Hermann Kolbe
 - D. van't Hoff

Answer: A

- **1.** Enantiomers are compounds that are__of each other
 - A. mirror images
 - B. superposable mirror images
 - C. nonsuperposable mirror images
 - D. not mirror images

Watch Video Solution

Follow Up Test 5

- 1. Which of the following generla rules for switching ligands or rotaing
- Fischer structures is incorrect?
 - A. An even number of switches results in no change in the
 - configuration

B. An odd number of switches changes the configuration to that of the enantiomer C. The structure cannot be rotated out of the plane of the paper D. The structure can be rotated in the plane through 90°

Answer: D

Watch Video Solution

Follow Up Test 6

- 1. What is the maximum number of steroismers possible fro a compound having four different chiral centers?
 - A. 16
 - B. 8
 - C. 4
 - D. 10

Answer: A

Watch Video Solution

Follow Up Test 7

- **1.** What is the following things happens when an enantiomer undergoes a chimal reaction at a site other than the chiral carbon atom?
 - A. The reaction occurs with inversion
 - B. The reaction proceeds with retantion
 - C. The reaction takes place with complete recemization
 - D. The reaction proceeds with parital racemization

Answer: B

1. Which of the following capital letters is chiral?

 $\mathsf{A.}\ Y$

 $\mathsf{B}.\,B$

 $\mathsf{C}.\,P$

D. A

Answer: C

Watch Video Solution

2. The priority sequence of the alky1 groups is

A. $CH_3>1^{\circ}>2^{\circ}>3^{\circ}$

B. $CH_3>1^{\circ}>3^{\circ}>2^{\circ}$

C. $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3$

D.
$$3^{\circ} > 1^{\circ} > 2^{\circ} > CH_3$$

Watch Video Solution

- ${f 3.}\ Cis$ and trans isomers generally
 - A. contain a triple bond
 - B. contain double bonded carbon atoms
 - C. are enantiomers
 - D. rotate the plane of plane-polarized light

Answer: B

Watch Video Solution

4. Geometrical isomers differ in

- A. length if carbon atoms
 - B. position of atoms
 - C. spatial arrangement of atoms
- D. position of fuctional group

Watch Video Solution

- 5. A similarity between optical and geometrical isomerism is that
 - A. they have no similarity
 - B. both are included in stereoisomerism
 - C. if in a compound, one is present than so is the other
 - D. each forms equal number of isomers for a given compound

Answer: B

6. An oranic compound will show optical isomerism if in its molecule							
A. all the ligands bonded to caron atom are identical							
B. two ligands bonded to carbon atom are different							
C. three groups bonded to carbon atom are different							
D. four groups bonded to carbon atom are different							
Answer: D							

7. Optically active isomers but not mirror images are callled

Watch Video Solution

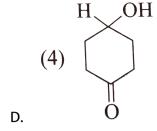
A. mesomers

B. enantiomers

C. diastereomers

D. tautomers

Answer: C



Watch Video Solution

Level Ii

1. Which of the following compounds possesses a chiral centre?

$$(1) \sum_{A}^{Cl} Br$$

Answer: C

- 2. In which of the following properties may enantiomers differ?
 - A. Refractive index
 - B. Odour
 - C. Solubility
 - D. Melting point

Answer: B

View Text Solution

 ${f 3.}$ According to CIP sequence rule, the correct arrangement in order of decreasing priority is

$$\mathsf{A.}\mathit{OH} > \mathit{COOH} > \mathit{CH}(\mathit{OH})\mathit{CH}_3 > \mathit{CH}_2\mathit{OH}$$

$$\operatorname{B.}\mathit{COOH} > \mathit{OH} > \mathit{CH}_2\mathit{OH} > \mathit{CH}(\mathit{OH})\mathit{CH}_3$$

$$\mathsf{C.}\,OH > CH_2OH > COOH > CH(OH)CH_3$$

$$\mathtt{D.}\,\mathit{CH}(OH)\mathit{CH}_3 > \mathit{COOH} > \mathit{OH} > \mathit{CH}_2\mathit{OH}$$

Answer: A

- 4. An enantiomer and its racemic form have
 - A. equal and opposite rotation
 - B. unequal and oppoiste rotations
 - C. equal and identical rotations
 - D. none of these

Answer: D

Watch Video Solution

5. Which of the following compounds can exist both as a cis pair of enantiomers and a trans pair of enantiomers?

A.
$$CH_2 = CHCHCICH = C(CH_3)_2$$

B.
$$CH_3CHCICH = CH_2$$

$$C.CH_3CHCICH = CHCH_3$$

$$\mathsf{D}.\,CH_2=CHCH(OH)CH=CH_2$$

Answer: C

Watch Video Solution

6. Which of the folloiwng is true for the given reaction?

$$C(S)-C_3H_7CH(OH)CH=CH_2+H_2\stackrel{Pt}{\longrightarrow} C_3H_7CH(OH)CH_2CH_3$$

A. The configuration is unchanged and the product is R

B. The configuration is chnaged and the product is S

C. The configuration is chnaged and product is R

D. The configuration is unchanged and the product is S

Answer: A

Watch Video Solution

7. trans-But -2 — en on reaction with Br_2 in CCI_4 forms

A. (+) - 2, 3 — dibromobutane

B. (-) - 2, 3 - dibrombutane

C. $(\pm) - 2, 3$ — dibromobutane

D. meso-dibromobutane

Answer: D

Watch Video Solution

8.	The	alkene	that	axhibits	geometrical	isomeris	sm is
٠.	1110	uncirc	ciiac	axinbits	Scometi icai	150111611.	3111 13

A. but -2 — ene

B. propene

 $\mathsf{C.}\,2-\mathsf{methy1but}\!-\!2\mathsf{-ene}$

D. 2- methy1propene

Answer: A

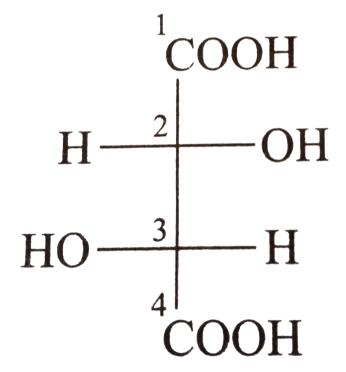
Watch Video Solution

9. What type of isomerism is possible for 1 - chloro - 2 - nitroethene?

A. Optical isomerism

B. E/Z isomerism

C. Position isomerism


D. Functional group isomerism

Answer: B

Watch Video Solution

10. In the compound

configurations at the chiral carbons are

- A.R,RB. S, S
- $\mathsf{C}.\,S,\,R$
- D.R,S

Answer: A

Watch Video Solution

- - A. 1, 4 Dichlropent 1 ene

B. 1, 1 — Dichlropent — 1 — ene

11. Which of the following does not show geometrical isomerism?

- C. 1, 3 Dichlropent 2 ene
- D. 1, 2 Dichlropent 1 ene

Answer: B

Watch Video Solution

- 12. Which of the following compounds is not chiral?
 - A. 2- Chloropentane
 - B. 1 Chloro 2 methy1pentane
 - C.3 Chloro 2 methy1pentane
 - D. 1 Chloropentane

Answer: D

Watch Video Solution

13. Consider the following organic compound

$$\overset{1}{C}H_{3}\overset{2}{C}H_{2}\overset{3}{C}H_{2}\overset{4}{C}H_{2}\overset{5}{C}H_{2}\overset{6}{C}H_{2}\overset{7}{C}H_{3}$$

To make it a chiral compound, the attack should be on carbon

- A. 7
- B. 3

- C. 4
- D. 1

Answer: B

Watch Video Solution

14. The compound without a chiral atom is

A. $OHCCH(OH)CH_2OH$

 CH_3

B. $HOOCCH_2^{'}CHCOOH$

CH₃

C. $CH_3CH_2CHCH_2Br$

 CH_3

 $\mathsf{D.}\,BrH_2CHCH_2Br$

Answer: D

Watch Video Solution

- 15. A molecule is said to chiral if it
 - A. contains no chiral carbons
 - B. contains chiral carbons
 - C. cannot be superposed on its mirrot image
 - D. contains a plane of symmetry

Answer: C

Watch Video Solution

- 16. Which of the following compounds will show geometric isomerism?
 - A. Cyclohexene
 - B. Hex-2-ene
 - C. $\mathrm{Hex}{-3}-\mathrm{yne}$
 - D. 1, 1 Diphenylethylene

Answer: B

Watch Video Solution

17. The most important chemical method of resolve a racemic mixture makes use of the formation of

A. a meso compound

B. enantiomers

C. diastereomers

D. racemates

Answer: C

Watch Video Solution

18. The process of separating of a racemic mixture into d and lenantiomers is called

A. dehydrogenation

B. revolution

C. dehydration

D. resolution

Answer: D

Watch Video Solution

19. The geometrical isomerism is exhibited by

A.

В.

Answer: D

Watch Video Solution

20. Which of the following is a chiral compound?

A. 2, 3, 4 -trimethylhexane

B. n - hexane

C. methane

D. n- butane

Answer: A

Watch Video Solution

21. Which is a pair of geometrical isomers?

(i)
$$Cl$$
 $C = C$
 Br
 $C = C$
 CH_3
(iii) Cl
 $C = C$
 CH_3
(iii) Cl
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3

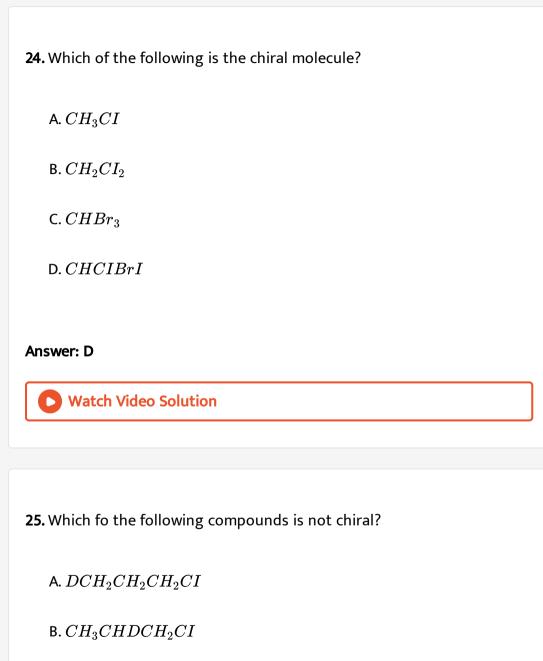
A. (i) and (ii)

B. (i) and (iii)

C. (i) and (iv)

D. (iii) and (iv)

Answer: C


Watch Video Solution

22. How many carbon atoms in the molecule

 $HOOC - (CHOH)_2 - COOH$

are asymmetric?

A. 1 B. 2 C. 3 D. None of these **Answer: B** Watch Video Solution 23. Which of the following will exhibit geometrical ismoerism? A. 1 - Pheny1but - 2 - eneB.3 - Pheny1but - 1 - ene $\mathsf{C.}\,2-\mathsf{Pheny1but}{-}1-\mathsf{ene}$ D. 1, 1 — Dipheny1prop — 1 — ene Answer: A **Watch Video Solution**

C. $CH_3CHCICH_2D$

D. CH_3CH_2CHDCI

Answer: A

Watch Video Solution

Level lii

- 1. Which of the followig objects possess a center of symmetry?
- (i) Tree (ii) Six-pointed star
 - (iii) Five-pointed star (iv) Dumbbell
- (v) Nail
 - A. (ii),(iv)
 - B. (iv),(v)
 - C. (i),(ii)
 - D. (ii),(iii)

2. Optical isomerism is not exhibited by

A. tartaric acid

B. lactic acid

C. succinic acid

D. dibromosuccininc acid

Answer: C

Watch Video Solution

3. (+) — Butan—2 — ol has $[\alpha]_D^{20} = +13.9^\circ$.a sample of butane2 — ol contianing both the enantiomers was found to have a specific rotation value of -3.5° under similar conditions. The percentages of the (+) and (-) enantiomers present in the mixture are, respectively,

- A. $37.4\,\%$ and $62.6\,\%$
- B. $35.5\,\%$ and $64.5\,\%$
- C. $42.2\,\%$ and $57.8\,\%$
- D. $62.6\,\%$ and $37.4\,\%$

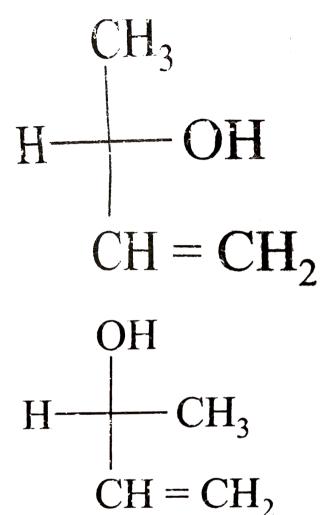
Answer: A

Watch Video Solution

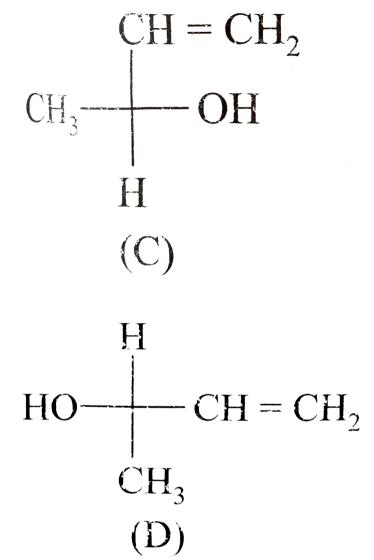
- **4.** The specific rotation of a pure enantiomers is $+12^\circ$. What will be its observed rotation if it is isolated form a reaction with $80\,\%$ racemization and $20\,\%$ inversion.
 - A. $+2.4^{\circ}$
 - B. -9.6°
 - $\mathrm{C.} + 9.6^{\,\circ}$
 - D. -2.4°

Answer: D

Watch Video Solution


- **5.** Which of the following opertions performed on the figuration of (S)-butan-2-ol has no effect?
 - A. Exchaging ligands acorss the horizontal bond
 - B. Exchanging ligands acorss the vertical bond
 - C. Making both switches (1) and (2)
 - D. Exchanging a vertical and horizotanl ligand

Answer: C



View Text Solution

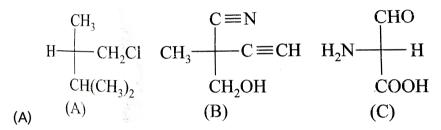
6. Consider the following configurations $(A),\,(B),\,(C)$ and (D)

(A)

which of the following statements is not correct?

A. (A) and (C) are enantiomers

B. (A) and (B) are enantiomers


- C.(A) and (D) are enantiomers
- $\mathsf{D}.\,(B)$ and (D) are identical

Answer: A

View Text Solution

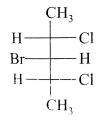
7. Consider the following configuration (A), (B) and (C).

Which of the following statements is correct?

- A. (A) and R- configuration
- B. (C) has R configuration
- $\mathsf{C}.\left(B\right)$ has R- configuration
- D. All (A), (B) and (C) have (S) configuration

Answer: B

View Text Solution


- 8. The chemical properties of enantiomer are the same towards achiral
- (i) reagnets (ii) solvents
- (iii) catalysts (iv) conditions
 - A. (i), (ii), (iii) and (iv)
 - B. (i),(ii)
 - C. (i),(iii)
 - D. (i),(ii) and (iii)

Answer: A

Watch Video Solution

9. Which fo the following stereosimers represent meso compounds?

A.

В.

 CH_3 H OH Cl H OH CH_3

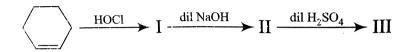
C1
$$CH_{3} \xrightarrow{CH_{2}} H$$

$$CH_{3} \xrightarrow{CH_{2}} H$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

D. All of these

Answer: D



Watch Video Solution

10. (S)-sec Buty1 chloride is subjected to free-radical chlorination followed by fractional distillation to isolate the various isomeric products.

How many frecations are isolated? A. Four B. Five C. Six D. Three **Answer: B Watch Video Solution 11.** Cyclohexene on reaction with Br_2 in CCI_4 yields A. meso-1, 2-dibromocyclohexene B. (\pm)trans-1, 2 — dibromocyclohexene C. cis-1, 2 — dibromocyclohexene D. trans-1, 2 — dibromochclohexane **Answer: B**

12. Consider the following reaction sequence

The final product (III) is

- A. (\pm)-trans-1,2- cychlohexanediol
- B. epoxychlohexane
- $\mathsf{C.}\ 2-\mathsf{chloroc}\ \mathsf{hclochexanol}$
- D. (\pm) cis-1, 2 cyclohexandiol

Answer: A

Watch Video Solution

13. trans-But -2- ene reacts with cold dilute $KMnO_4$ solution to yield

A. butane -2, 3 — dione

B. (\pm)butan-2 — ol

C. meso-butane $2-,3-{\sf diol}$

D. (\pm)butane-2, 3 — diol

Answer: D

Watch Video Solution

14. trans-But-2 — ene reacts with D_2 in the presence of Ni as catayst.

The product formed is

A. meso-2, 3-dideuterobutane

B. rac-2, 3 — dideuterobutane

C. (+) - 2, 3 – dideuterobutane

D. (-) – 2, 3 – dideuterobutane

Answer: B

15. Geometrical isomerism is exihibited by

A. aspartic acid

B. butyric acid

C. cinnamic acid

D. palmiltic acid

Answer: C

16. The smallest ketone and its next homologue are reacted with

 H_2NOH to form oxime

A. all oximers are optically active

B. three differe oximers are formed

C. two oximers are optially active

D. two different oximers are formed

Answer: B

Watch Video Solution

17. Which of the following Fischer's projection formula is identical to

$D-\mathsf{gluceraldehyde}?$

$$(1) \begin{array}{c|c} H \\ \hline + CH_2OH \\ \hline CHO \end{array}$$

A.

(2)
$$H \longrightarrow CH_2OH$$
 OH

В.

CH
$$_2$$
OH (4) H——OH CHO

Answer: C

Watch Video Solution

18. Among the following four structures I to IV

$$C_{2}H_{5}-C_{H}^{CH_{3}}-C_{3}H_{7}\,CH_{3}^{CCHC_{2}}H_{5} \ H-C_{1}^{CH_{3}}-C_{2}H_{5}-C_{1}^{CH_{3}}-C_{2}H_{5} \ H-C_{1}^{CCHC_{2}}H_{5}-C_{2}H_{5} \ H_{III}$$

it is ture thate

A. all four are chiral compounds

B. only II and IV are chiral compounds

C. only III is a chiral compound

D. only I and II are chiral compounds

Answer: D

Watch Video Solution

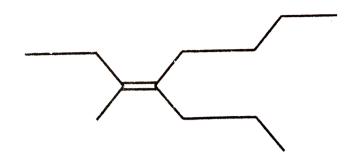
19. The number of isomers for the compound with moelecular formula

 $C_2BrCIFI$ is

A. 5

B. 4

C. 6


D. 3

Answer: C

Watch Video Solution

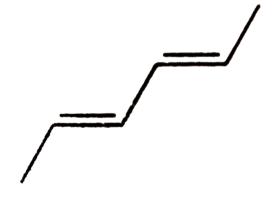
20. Give the IUPAC name of the alkene

- A. $Z-3-{\sf Methyl}-4-{\sf propyloct}-3-{\sf ene}$
- B. $E-3-{\mathsf{Methyl}}-4-{\mathsf{propyloct}}-3-{\mathsf{ene}}$
- C. $E-4-{\sf Butyl}-3-{\sf Methylhept}-3-{\sf ene}$
- D. E-2- Ethyl-3- propylhept-2- ene

Answer: A

Watch Video Solution

21. When NH_2OH reacts with an usymmetrical ketone then numver of products formed is


- A. 4
- B. 3
- C. 2
- D. 1

Answer: C

Watch Video Solution

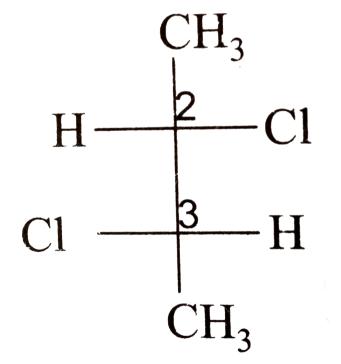
22. The name of the formed

is

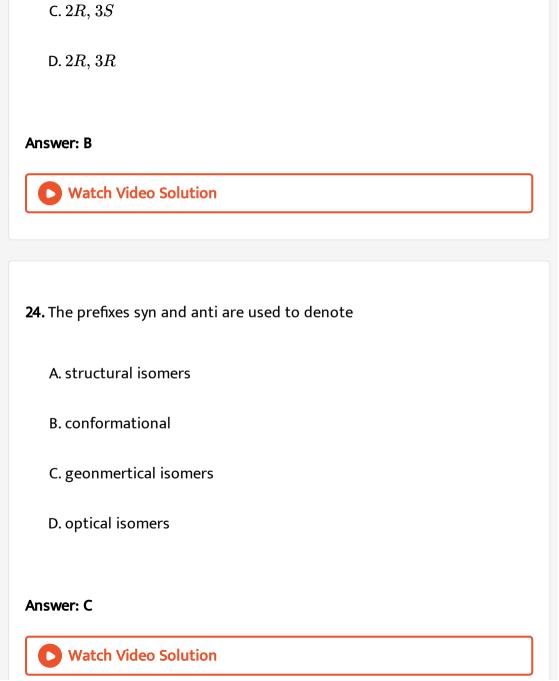
A. (2Z,4Z)hexa-2,4- diene

B. (2Z,4E)hexa-2,4- diene

C. (2E, 4Z)hexa-2, 4 — diene

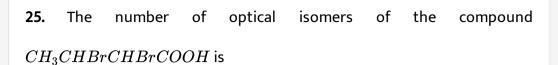

D. (2E,4E)hexa-2,4- diene

Answer:



Watch Video Solution

23. The absolute configuration of the configuration compound



is

A. 2S, 3R

B. 2S, 3S

- **A.** 0
- **B.** 1
- **C**. 3
- D. 4

Answer: D

Watch Video Solution

Level Iv

1. Which of the following is not corrrect?

A. A teriary amine $\left(R^1R^2R^2N
ho.\right)$ exsits as a pair of enantiomers

B. A carbonion $\left(R^1R^2R^3C^{\,-}:
ight)$ exists as a pair of enantiomers

C. both (1) and (2)

D. Tricovalent S and P compounds can be isolated as enantiomers

Answer: C

Watch Video Solution

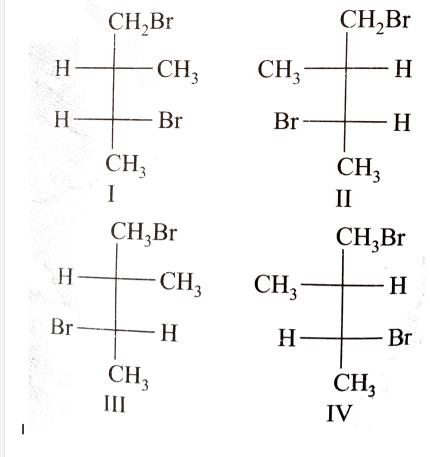
2. Which of the following is incorrect?

A. The naturally occurring amino acids, the building blocks of protins, are all D-amino acids

B. The D,L method for assiging relative configurations (used mainly for sugas) uses glyceraldehyde as the reference molecule.

C. Esterification of $(\,-\,)$ - Lactic acid with methanol gives $(\,+\,)$ -

methy1 lacate.


D. sign of rotation is a molecular property unrelated to configuration

Answer: A

Watch Video Solution

3. The compound 1, 3-ibromo-2 — methy1 butane, $CH_3CHBrCH(CH_3)CH_2Br$, has two dissimilar chiral carbons (C-2) and (C-3). Its four stereoisomers are shown below

Which of the following has (2R,3R) designation?

A. ${\it I}$

 $\mathsf{B}.\,II$

C. III

D. IV

4. Which of the following configuration represents a therosteroisomer?

$$\begin{array}{c|c} & CH_3 \\ H & OH \\ \hline \\ (1) & H & CH_3 \end{array}$$

$$\begin{array}{c|c}
CH_{3} \\
H \longrightarrow OH \\
Br \longrightarrow H \\
CH_{3}
\end{array}$$

$$\begin{array}{c|c} CH_3 \\ H \longrightarrow OH \\ CH_3 \end{array}$$

(4)
$$H \longrightarrow CH_3$$
 OH $H \longrightarrow Br$ CH_3

В.

5. Which of the following moleules possesses a peseudoasymmetric carbon atom?

A. CH₃CHOHCHOHCHOHCOOH

 ${\tt B.}\ HOOCCHOHCHOHCHOHCHOHCOOH$

 ${\tt C.}\, HOOCCHOHCHOHCHOHCOOH$

 $\mathsf{D}.\,HOOCCHoHCHOHCOOH$

Answer: C

Watch Video Solution

6. Which of the following molecules has a pro-chiral centre?

A. CH_3CH_2COOH

B. $HOOCCH_2COOH$

 $C.(CH_3)_2CHCOOH$

D. $CH_3CHOHCOOH$

Answer: A

Watch Video Solution

7. How may $2,\,3,\,4,\,5$ -terahydroxyadipic acids are possible?

A. Eight

B. Six

C. Ten

D. Four

Answer: C

8. How many optically active stereoisomers are possible for tri-sec-
buty1methane?
A. Eight
B. Four
C. Six
D. Two
Answer: B
Watch Video Solution
Watch Video Solution
Watch Video Solution 9. How many steroisomers are possible for tetra-sec-buty1 methane?
9. How many steroisomers are possible for tetra-sec-buty1 methane? A. Five

Answer: A

Watch Video Solution

10. Which of the following molecules is chiral?

A.
$$CH_3CH = C = CHCH_3$$

$$\mathsf{B.}\,CH_3CH=CHCH=CH_2$$

$$C. CH_3CH_2CH = C = CH_2$$

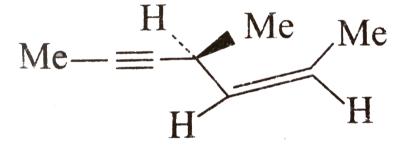
$$\mathsf{D.}\,CH_2=CHCH_2CH_2$$

Answer: A

Watch Video Solution

11. Cyclohexene on raction with cold dilute $KMnO_4$ solutioon gives

A. (
$$\pm$$
) $-$ trans $-1, 2$ -cyclohexanediol


- $\mathsf{B.}\,1,\,2-\mathsf{cyclohexanediol}$
- C. $\operatorname{cis} -1$, $2-\operatorname{cyclohexanediol}$
- D. trans`-1,2-cyclohexanediol

Answer: C

Watch Video Solution

12. Hydrogenation of the compound

with \mathcal{H}_2 in the presence of Lindle catayst gives

- A. an optically inactive compound
- B. an optically active compound
- C. a diasteromeric mixture

D. a racemic mixture

Answer: A

Watch Video Solution

- 13. Cyclohexene on reaction with m chloroperoxbenzpic acid forms a compound (X) which on treatement with dilute H_2SO_4 produces a compound (Y). The compound (Y) is
 - A. (+) cis-1, 2-cyclohexanediol
 - B. (\pm)trans-1,2- cyclohexanediol
 - C. cyclohexanol
 - D. cyclohexanone

Answer: B

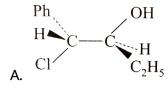
14. Consider the following sequence of reactions

$$\begin{array}{ccc}
& \xrightarrow{H^{+}} & [A] & \xrightarrow{Br_{2}/CCl_{4}} & C_{4}H_{8}Br_{2} \\
& & \text{(five products)}
\end{array}$$

How many structures of [A] are possible?

- A. 6
- B. 5
- C. 2
- D. 3

Answer: D



Watch Video Solution

15. In the reaction

$$Ph \atop H \subset C = C \xrightarrow{H} + HOC1 \longrightarrow$$

the major product formed is

Answer: C

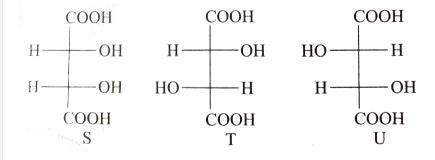
Watch Video Solution

16. Which one of the following conformations of cyclohexane is chiral?

A. Chiral

B. Twist boat

C. Boat


D. Rigid

Answer: B

Watch Video Solution

17. P and Q are isomers of dicarboxylic acid $C_4H_4O_4$. Bothdecolorize Br_2/H_2O . On heating, P forms the cyclic anhydride. Upon treatment with dilute alkaline $KMnO_4$, P as well as Q could produce one or more than one forms S, T and U.

Compounds

formed from P and Q are, respectively

A. optically inactive pair (T, U) and optically inactive S

B. optically active pair (T, U) and optically active S

C. optically inactive S and optically inactive pair (T, U)

D. optically active S and optically inactive pair (T, U)

Answer: C

- **18.** Which of the following is correct?
- (i) The smallest alkene which can show optical isomerism possesses 7 carbon atoms
- (ii) The smallest alkanes which can exist in the enantiomertic forms are
- -2- methy1lexane and 2,3- dimethy 1pentane
- (iii) The smallest alkane which has a meso steroisomer possesses 6 carbons
- (iv) 3, 4-Dimethy1lexane has a mseo steroisomer.
 - A. (i)and (iii)
 - B. (ii) and (iv)

C. (i),(ii),(iii),(iv) D. (i),(ii),(iv) **Answer: C** View Text Solution 19. The total number of acylic isomers (including steroisomers) of

 C_4H_7CI is

A. 10

B. 9


C. 12

D. 13

Answer: C

1. In which of the following moleucles, all atoms are coplanar?

A.

В.

$$C$$
. H_3C $C = C$ CN

Answer: A

Watch Video Solution

2. The correct corresponding order of names four aldoles with configuration given below

respectively, is

A. $L-{\sf erythrose}$, $L-{\sf threose}$, $L-{\sf erythrose}$, $D-{\sf threose}$

B. $D-{\sf threose}$, $D-{\sf erythrose}$, $L-{\sf threose}$, $L-{\sf erythrose}$

C. $L-{\sf erythrose}$, $L-{\sf thresose}$, $D-{\sf erythrose}$, $D-{\sf thresose}$

D. D- erythrose,D- threose,L- erythrose,L- threose

Answer: D

Watch Video Solution

3. Which of the following bihphenyls is optically active?

A.

В.

C.

Answer: C

4. Two possible stereo-structures of $CH_3CHOHCOOH$, which are optically active are called

A. enantiomers

B. mesomers

C. diastereomers

D. atropisomers

Answer: A

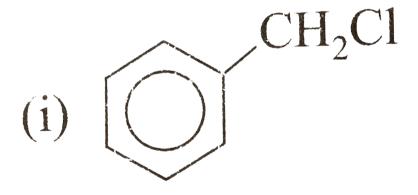
Watch Video Solution

5. In an S_N 1reaction on chiral centres, there is

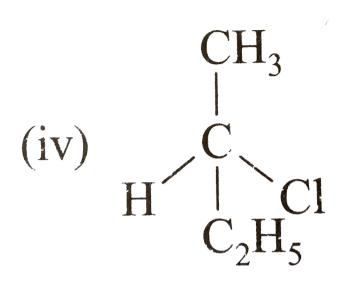
A. $100\,\%$ retention

 $\mathrm{B.}\,100\,\%$ inversion

 $\text{C.}\ 100\ \%\ \text{racemisation}$


D. inversion more than retention leading to partial racesmisation

Answer: D


Watch Video Solution

6. Which of the following compounds will undergo racemisation when solution of KOH hydroyses?

(ii) $CH_3CH_2CH_2CI$

 $\overset{CH_{3}}{\mid}$ (iii) $H_{3}C-CH-CH_{2}CI$

A. (i) and (ii)

B. (ii) and (iv)

C. (iii) and (iv)

D. (iv)

Answer: D

7. Which of the following acids does not exhibit optical isomerism?
A. Maleic acid
B. $lpha$ -aminoacids
C. Lactic acid
D. Tartaric acid
Answer: A
Watch Video Solution
8. How many steroisomers does this moelcules have? $CH_3CH = CHCH_2CHBrCH_3$
$CH_3CH=CHCH_2CHBrCH_3$
$CH_{3}CH=CHCH_{2}CHBrCH_{3}$ A. 2

Answer: B

Watch Video Solution

- **9.** If there is no rotation of plane polarized light by a compound in a specific solvent, through to be chiral, it may mean that:
 - A. there is no compound in the solvent
 - B. the compound may be a racemic mixture
 - C. the compound is certainly a chiral
 - D. the copound is certainly meso

Answer: D

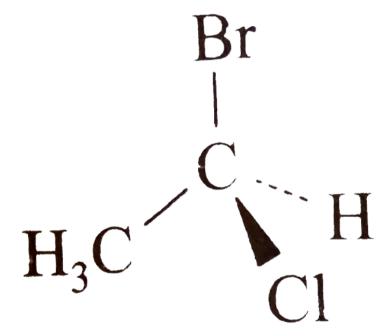
Watch Video Solution

10. $CH_3-CHCI-CH_2=CH_3$ has a chiral centre. Which one of the following represents its R configuration?

$$C_{2}H_{5} \ A.\ CI - C - CH_{3} \ H \ CH_{3} \ B.\ H - C - CI \ C_{2}H_{5} \ C_{2}H_{5} \ C.\ H_{3}C - C - CI \ H \ C_{2}H_{5} \ D.\ H - C - CH_{3} \ CI$$

Answer: A

11. Which of the following is not chiral?


- A. 2- Hydroxypropanoic acid
- ${\sf B.\,2-Butanol}$
- $\mathsf{C.}\,2,3-\mathsf{Dibromopentane}$
- D. 3- Bromopentane

Answer: D

Watch Video Solution

12. The chirality of the compound

is

- A.(R)
- $\mathsf{B.}\left(S\right)$
- $\mathsf{C}.\left(Z\right)$

 $\mathsf{D}.\left(E
ight)$

Answer: A

Watch Video Solution

13. Which of the following pairs of compounds are enantiomers?

A.

В.

C

Answer: A

14. Which one of the following pairs represnets steroeoisomeris?

A. Chain isomerism and rotational isomerism

B. structual isomerism and geomtrical isomerism

C. Kinkage isomerism and geomertical isomerism

D. optical isomerism and geometrical isomericm

Answer: D

Watch Video Solution

15. In the reaction

 $CH_3CHO + HCN o CH_3CH(OH)CN \xrightarrow{H_2O} CH_3CH(OH)COOH$ an asymmetric cabron is generated. The acid obtained would be

A. $D-{\sf isomer}$

 $\operatorname{B.}L-\operatorname{isomer}$

C. $50\ \%\ D$ and $50\ \%\ L$ isomer

D. $20\,\%\,D$ and $80\,\%\,L$ isomer

Answer: C

Watch Video Solution

16. A compound with molecular formula C_7H_{16} shows optical isomerism, the compound will be

A. $2,3-{\sf dimethy1pentane}$

 ${\tt B.\,2,\,2-dimethy1phentane}$

 ${\sf C.}\,2-{\sf methy1heptane}$

D. none of these

Answer: A

17. R and S paris of enantiomers differ form one another in

A. optical rotation of polarized light

B. solubility in racemic mixture

C. reaction will racemic mixture

D. none of these

Answer: A

