©゙ doubtnut

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

CHEMICAL AND IONIC EQUILIBRIUM

Jee Main And Advanced

1. The equilibrium constant at $298 K$ for a reaction,
$A+B \Leftrightarrow C+D$ is 100 . If the initial concentrations of all
the four species were $1 M$ each, then equilibirum concentration of D (in $\operatorname{mol} L^{-1}$) will be
B. 1.818
C. 1.182
D. 0.182

Answer: B

D Watch Video Solution

2. The standard Gibbs energy change at $300 K$ for the reaction $2 A \Leftrightarrow B+C$ is 2494. $2 J$. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the
$(R=8.314 J K / \mathrm{mol} e=2.718)$
A. forward direction because $Q>K_{e}$
B. reverse direction because $Q>K_{e}$
C. forward direction because $Q<K_{e}$
D. reverse direction because $Q<K_{e}$

Answer: B

- Watch Video Solution

3. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$ if $K_{p}=K_{C}(R T)^{x}$ where, the symbols have usual meaning, then the value of x is (assuming ideality)
A. -1
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

4. The species present in solution when CO_{2} is dissolved in water
A. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{30^{2-}}$
C. $\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}$
5. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

Which is correct statement if N_{2} is added at equilibrium condition?
A. The equilibrium will shift to forward direction because according to IInd law of thermodynamics, the entropy must increases in the direction of
spontaneous reaction

> B. The condition for equilibrium is $$
G\left(N_{2}\right)+3 G\left(H_{2}\right)=2 G\left(N H_{3}\right) \text { where } G \text { is Gibbs }
$$

free energy per mole of the gaseous species
equilibrium is unaffected by the use of catalyst, which increases the rate of both the forward and backward reactions to the same extent
C. The catalyst will increase the rate of forward reaction by α and that of backward reaction by β
D. Catalyst will not alter the rate of either of the reaction

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 6. } A g^{+}+N H P(3) \Leftrightarrow\left[A g\left(N H_{3}\right)\right]^{+}, K_{1}=3.5=10^{-3} \\
& {\left[A g(N H)_{3}\right]^{+}+N H_{3} \Leftrightarrow\left[A g\left(N H_{3}\right)_{2}\right]^{+}, K_{2}=1.7 \times 10^{-3}}
\end{aligned}
$$

then the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is
A. 6.08×10^{-6}
B. 6.08×10^{6}
C. 6.08×10^{-9}
D. None of these

Answer: A

- Watch Video Solution

7. Consider the following equilibrium in a closed container
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following
statements hold true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α)?
A. Neigther K_{p} nor α changes
B. Both K_{p} and α change
C. K_{p} changes but α does not change
D. K_{p} does not change but α changes

Answer: D

- Watch Video Solution

8. At constant temperature, the equilibrium constant K_{p}
for by $K_{p}=\frac{4 x^{2} p}{\left(1-x^{2}\right)}$, where $p=$ pressure $x=$ extent of
decomposition. Which one of the following statement is

true?

A. K_{p} increases with increase of p
B. K_{p} increases with increase of x
C. K_{p} increases with decreases of x
D. K_{p} remains constant with change in p and x

Answer: D

- Watch Video Solution

9. When two reactants A and B are mixed to give products,
C and D, the reaction quotient (Q) at the initial stages of the reaction
A. is zero
B. decreases with time
C. is independent of time
D. increases with time

Answer: D

D Watch Video Solution

10. For the reversible reaction
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) h \mathrm{Ar} 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} C$ the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmosphere. The corresponding value of K_{e} with concentration in $\mathrm{mol} / \mathrm{L}$ is
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 73)^{-2}}$
C. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{2}}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Answer: D

- Watch Video Solution

11. For the chemical reaction,
$3 x(g)+Y(g) \Leftrightarrow X_{3} Y(g)$
the amount of $X_{3} Y$ at equilibrium is affected by
A. temperature and pressure
B. temperature only
C. pressure only
D. temperature, pressure and catalyst

Answer: A

- Watch Video Solution

12. For the reaction,
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \quad$ at \quad a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
A. adding a suitable catalyst
B. adding an inert gas
C. decreasing the volume of the container

D. increasing the amount of $C O(g)$

Answer: D

- Watch Video Solution

13. One mole of $N_{2} O(g)$ at $300 K$ is kept in a closed container under one atmosphere. It is heated to $600 K$ when 20% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ decomposes of $\mathrm{NO}_{2}(g)$. The resultant pressure
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

- Watch Video Solution

14. An example of a reversible reaction is
A.

$$
\begin{aligned}
& \qquad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaI}(a q)=\mathrm{PbI}_{2}(s)+2 \mathrm{NaNO}_{3}(a q) \\
& \text { B. } \mathrm{AgNO}_{3}(a q)+\mathrm{HCl}(a q)=\mathrm{AgCl}(s)+\mathrm{HNO}_{3}(a q) \\
& \text { C. } 2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)=2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g) \\
& \text { D. } \mathrm{KNO}_{3}(a q)+\mathrm{NaCl}(a q)=\mathrm{KCl}(a q)+\mathrm{NaNO}_{3}(a q)
\end{aligned}
$$

Answer: D
15. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
A. K_{p} does not change significantly with pressure
B. α does not change with pressure
C. concentration of NH_{3} does not change with pressure
D. concentration of hydrogen is less than that of nitrogen

Answer: A

16. For the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$
the equilibrium constant K_{p} changes with
A. total pressure
B. catalyst
C. the amount of H_{2} and I_{2} present
D. temperature

Answer: D

- Watch Video Solution

17. The \% yield of ammonia as a function of time in the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)^{\prime} \Delta H<0$
at $\left(p, T_{1}\right)$ is given below

If this reaction is conducted at $\left(p, T_{2}\right)$, with $T_{2}>T_{1}$ the $\%$
yield by of ammonia as a function of time is represented by
A.

B.
(b)

C.
Time
D.

Answer: B

- Watch Video Solution

18. The thermal dissociation of equilibrium of $\mathrm{CaCo}_{3}(s)$ is studied under different conditions
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
For this equilibrium, the correct statement (s) is/are
A. ΔH is dependent on T
B. K is independent of the initial amount of CaCO_{3}
C. K is dependent of the pressure of CO_{2} at a given T
D. ΔH is independent of the catalyst, if any

Answer: A::B::D

- Watch Video Solution

19. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid $(H A, 1 M)$ is $1 / 100$ th of that of a strong acid $(H X, 1 M)$, at $25^{\circ} C$. The $K_{a}(H A)$ is
A. 1×10^{-4}
B. 1×10^{-5}
C. 1×10^{-6}
D. 1×10^{-3}

Answer: A

- Watch Video Solution

20. The equilibrium
$2 C u^{1} \Leftrightarrow C u^{0}+C u^{11}$
in aqueous medium at $25^{\circ} \mathrm{C}$ shifts towards the left in the
presence of
A. NO_{3}^{-}
B. Cl^{-}
C. $S C N^{-}$
D. $C N^{-}$

Answer: B::C::D

- Watch Video Solution

21. For the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ the forward reaction at constant temperature is favoured by
A. introducing an inert gas at constant volume
B. introducing chlorine gas at constant volume
C. increasing the volume of the container
D. introducing PCl_{5} at constant volume
22. The equilibrium ${S O_{2} C l}_{2}(g) \Leftrightarrow S O_{2}(g)+C l_{2}(g)$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium is introduced. Which of the following statements are correct?
A. Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change
B. More chlorine is formed
C. Concentration of SO_{2} is reduced
D. None of the above

Answer: D

23. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and NaNO_{2} is left behind. At equilibrium
A. addition of NaNO_{2} favours reverse reaction
B. addition of NaNO_{3} favours forward reaction
C. increasing temperature favours forward reaction
D. increasing pressure favours reverse reaction

Answer: C::D

D Watch Video Solution

24. For the gas phase reaction,
$C_{2} H_{4}+H_{2} \Leftrightarrow C_{2} H_{6}(\Delta H=-32.7$ kcal) carried out in a
vessel, the equilibrium concentration of $C_{2} H_{4}$ can be increased by
A. increasing the temperature
B. decreasing the pressurre
C. removing some H_{2}
D. adding some $\mathrm{C}_{2} \mathrm{H}_{6}$

Answer: A: B:: C::D

- Watch Video Solution

25. For a gaseous reaction $2 B \rightarrow A$,the equilibrium constant K_{p} isto/than K_{c}
26. A ten-fold increase in pressure on the reaction, $N_{2}(g)+3 H_{2}(g) h A r 2 \mathrm{NH}_{3}(g)$ at equilibrium, results inin K_{p}

- Watch Video Solution

27. For a given reversible reaction at a fixed temperature, equilibrium constants K_{p} and K_{c} are related by \qquad

(Watch Video Solution

28. The rate of an exothermic reaction increases with increasing temperature.True or False?
29. Catalyst makes a reaction more exothermic.True or False?

- Watch Video Solution

30. If equilibrium constant for the reaction
$A_{2}+B_{2} \Leftrightarrow 2 A B$ is k , then for the backward reaction
$A B \Leftrightarrow 1 / 2 A_{2}+1 / 2 B_{2}$ the equilibrium constant k^{\prime} is $1 / K$.
31. When a liquid and its vapour are at equilibrium and the pressure is suddenly decreased, cooling occurs.True or false?

- Watch Video Solution

32. (a) In the following equilibrium $N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$ when 5 moles of each are taken, the temperature is kept at $298 K$ the total pressure was found to be 20 bar. Given that
$\Delta G_{f}^{\circ}\left(N_{2} O_{4}\right)=100 k J, \Delta G_{f}^{\circ}\left(N O_{2}\right)=50 k J$
(i) Find ΔG of the reaction.
(ii) The direction of th reaction in which the equilibrium shifts.
(b) A graph is plotted for a real gas which follows van der

Waals' equation with $p V_{m}$ taken on Y-axis and p on X-axis.
Find the intercept of the ine where V_{m} is molar volume.

- Watch Video Solution

33. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a twolitre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate K_{c} and K_{p} for the reaction at $27^{\circ} C$.
(ii) What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

34. The degree of dissociation is 0.4 at $400 K$ and 1.0 atm
for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at $400 K$ and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

- Watch Video Solution

35. The progress of reaction
$A \Leftrightarrow n B$
with time, is represented in fig use given below.

Determine:
(i) the value of n
(ii) the equilibrium constant, K and
(iii) the initial rate of conversion of A
36. When 0.15 mol of CO taken in a 2.5 L flask is maintained at 750 K along with a catalyst, the following reaction takes place
$\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed.

Calculate
a. K_{p} and K_{c}
b. The final pressure, if the same amount of CO and H_{2} as before are used, but with no catalyst so that the reaction does not take place.
37. For the reaction

$$
\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)
$$

Hydrogen gas is introduced into a five-litre flask at $327^{\circ} \mathrm{C}$, containing 0.2 mol of $C O(g)$ and a catalyst, untill the pressure is 4.92 atm . At this point, 0.1 mol of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is formed. Calculate the equilibrium constants K_{p} and K_{c}.

- Watch Video Solution

38. The equilibrium constant K_{p} of the reaction:
$2 \mathrm{SO}_{2}+O_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining SO_{3} and O_{2} having initial pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at $800 K$ at equilibrium.

- Watch Video Solution

39. N_{2} - (4) is 25% dissociated at $37^{\circ} \mathrm{C}$ and one atmosphere pressure. Calculate (i) K_{p} and (ii) the percentage dissociation at 0.1 atm and $37^{\circ} \mathrm{C}$

- Watch Video Solution

40. At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is

16 for the reaction,
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}_{g}$
If we take one mole each of all the four gases in a one litre container, what would be the equilibrium concentrations of NO and NO_{2} ?
41. The equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ at $100^{\circ} C$ is 50 . If a one litre flask containing one mole of A_{2} is connected to a two litre flask containing two moles of B_{2}, how many moles of $A B$ will be formed at $373 K$?

D Watch Video Solution

42. 1 mol of $C l_{2}$ and 3 mol of $P C l_{5}$ are placed in a $100 L$ vessel heated to $227^{\circ} \mathrm{C}$. The equilibrium pressure is 2.05
atm. Assuming ideal behaviour, calculate the degree of dissociation for PCl_{5} and K_{p} for the reaction.
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

- Watch Video Solution

43. 1 mol of nitrogen is mixed with 3 mol of hydrogen in a $4 L$ container. If 0.25% of nitrogen is converted to ammonia by the following reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
then calculate the equilibrium constant K_{c} in concentration units. What will be the value of K_{c} for the following equilibrium?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)$

- Watch Video Solution

44. Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes place according to the following equation:
$X(g) \Leftrightarrow 2 X(g)$
The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus $\beta_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar.

Consider the gases to behave ideally.
[Given, $R=0.083 L$ bar $K^{-1} \mathrm{~mol}^{-1}$)
The equilibrium constant K_{p} for this reaction at $298 K$, in terms of $\beta_{\text {equilibrium }}$ is
A. $\frac{8 \beta^{2}-(\text { equilibrium })}{2-\beta_{\text {equilibrium }}}$
B. $\frac{8 \beta^{2}-(\text { equilibrium })}{4-\beta_{\text {equilibrium }}}$
C. $\frac{4 \beta^{2}-(\text { equilibrium })}{2-\beta_{\text {equilibrium }}}$
D. $\frac{4 \beta^{2}-(\text { equilibrium })}{4-\beta_{\text {equilibrium }}}$

Answer: D

D Watch Video Solution

45. Thermal decomposition of gaseous X_{2} to gaseous X at

298 K takes place according to the following equation:
$X(g) \Leftrightarrow 2 X(g)$
The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus $\beta_{\text {equilibrium }}$ is the
number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
[Given, $R=0.083 L$ bar $K^{-1} \mathrm{~mol}^{-1}$)

The incorrect statement among the following for this reaction, is
A. Decrease in the total pressure will result in the
formation of more moles of gaseous X
B. At the start of the reaction, dissociation of gaseous
X_{2} takes place spontaneously
C. $\beta_{\text {equilibrium }}=0.7$
D. $K_{C}<1$
46. $p K_{a}$ of a weak acid $(H A)$ and $p B_{b}$ of a weak base $(B O H)$ are 3.2 and 3.4 respectively. The $p H$ of their salt
(AB) solution is
A. 7.2
B. 6.9
C. 7.0
D. 1.0

Answer: B
47. How many litres of water must be added to $1 L$ of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with $p H$ of 2 ?

A. $0.1 L$
B. 0.9 L
C. 2.0 L
D. 9.0 L

Answer: D

48. The solubility product constant $\left(K_{s p}\right)$ of salts of types
$M X, M X_{2}, \quad$ and $\quad M_{3} X$ at temperature T are
$4.0 \times 10^{-8}, 3.2 \times 10^{-14}$, and 2.7×10^{-15}, respectively. The solubilities of the salts at temperature T are in the order
A. $M X>M X_{2}>M_{3} X$
B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{3} X>M X$
D. $M X>M_{3} X>M X_{2}$

Answer: D

Watch Video Solution

49. 2.5 mL of $\frac{2}{5}$ weak monoacidic base $\left(K_{b}=1 \times 10^{-12}\right.$ at $25^{\circ} \mathrm{C}$) is tittrated with $\frac{2}{15} M H C I$ in water at $25^{\circ} \mathrm{C}$. The
concentration of H^{+}at equivalence point is:

$$
\left(K_{w}=1 \times 10^{-14} a t 25^{\circ} C\right)
$$

A. $3.7 \times 10^{-13} M$
B. $3.2 \times 10^{-7} M$
C. $3.2 \times 10^{-2} M$
D. $2.7 \times 10^{-2} M$

Answer: D

- Watch Video Solution

50. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[\mathrm{H}^{+}\right]$in solution is
A. 1.6×10^{-11}
B. 8×10^{-11}
C. 5×10^{-5}
D. 8×10^{-2}

Answer: B

D Watch Video Solution

51. $H X$ is a weak acid $\left(K_{a}=10^{-5}\right)$. If forms a salt $N a X(0.1 M)$ on reacting with caustic soda. The degree of hydrlysis of $N a X$ is
A. 0.01%
B. 0.0001%
C. 0.1%
D. 0.5%

Answer: A

- Watch Video Solution

52. A solution which is $10^{-3} M$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$, and Hg^{2+} it treated with $10^{-16} \mathrm{M}$ sulphide ion. If the $K_{s p}$ of $M n S, F e S, Z n S$ and $H g S$ are $10^{-15}, 10^{-23}, 10^{-20}$, and 10^{-54}, respectively, which one will precipitate first?
A. $F e S$
B. $M g S$
C. HgS
D. $Z n S$

Answer: C::D

- Watch Video Solution

53. Indentify the correct order of solubility in aqueous medium
A. $C u S>Z n S>N a_{2} S$
B. $Z n S>N a_{2} S>C u S$
C. $N a_{2} S>C u S>Z n S$
D. $N a_{2} S>Z n S>C u S$

- Watch Video Solution

54. For a sparingly soluble salt $A_{p} B_{q}$, the relationship of its solubility produce $\left(L_{s}\right)$ with its solubility (S) is
A. $L_{S}=S^{p+q} \cdot p^{p} . q^{q}$
B. $L_{s}=S^{p+q} \cdot p^{q} \cdot q^{p}$
C. $L_{s}=S^{p q} \cdot p^{p} \cdot q^{q}$
D. $L_{s}=S^{p q} .(p . q)^{(p+q)}$

Answer: A
55. The $p H$ of $0.1 M$ solution of the following salts decreases in the order

A. $\mathrm{NaCl}<\mathrm{NH}_{4}<\mathrm{NaCN}<\mathrm{HCl}$
B. $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
D. $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$

Answer: B

- Watch Video Solution

56. Which solutionwill have pH closer to 1.0 ?
A. 100 mL of $(\mathrm{M} / \mathrm{10}) \mathrm{HCl}+100 \mathrm{~mL}$ of $(\mathrm{M} / \mathrm{10}) \mathrm{NaOH}$
B. $55 m L$ of $(M / 10) \mathrm{HCl}+45 m L$ of $(M / 10) \mathrm{NaOH}$

C. 10 mL of $(\mathrm{M} / 10) \mathrm{HCl}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$

D. $75 m L$ of $(M / 5) \mathrm{HCl}+25 m L$ of $(M / 5) \mathrm{NaOH}$

Answer: D

- Watch Video Solution

57. Amongst the following hydroxides, the one which has the lowest value of $K_{s p}$ is:
A. $\mathrm{Mg}(\mathrm{OH})_{2}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{Ba}(\mathrm{OH})_{2}$
D. $\mathrm{Be}(\mathrm{OH})_{2}$

- Watch Video Solution

58. Which of the following is the strongest acid?
A. $\mathrm{ClO}_{3}(\mathrm{OH})$
B. $\mathrm{ClO}_{2}(\mathrm{OH})$
C. $\mathrm{SO}(\mathrm{OH})_{2}$
D. $\mathrm{SO}_{2}(\mathrm{OH})_{2}$

Answer: A
59. When equal volumes of following solution are mixed, precipitation of AgCl ?
($\left.K_{s p}=1.8 \times 10^{-10}\right)$ will occur only with
A. $10^{-4} M\left(A g^{+}\right)$and $10^{-4} M\left(C l^{-}\right)$
B. $10^{-5} M\left(\mathrm{Ag}^{+}\right)$and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
C. $10^{-6} M\left(\mathrm{Ag}^{+}\right)$and $10^{-6} M\left(\mathrm{Cl}^{-}\right)$
D. $10^{-10} M\left(A g^{+}\right)$and $10^{-10} M\left(C l^{-}\right)$

Answer: A

Watch Video Solution

60. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH
in the small intestine is about 8 . Aspirin will be:
A. unionised in the small intestine and in the stomach
B. completely ionised in the small intestine and in the stomach
C. ionised in the stomach and almost unionised in the small intestine
D. ionised in the small intestine and almost unionsied in theh stomach

Answer: D

- Watch Video Solution

61. The compound that is not a Lewis acids is
A. $B F_{3}$
B. AlCl_{5}
C. $B e C l_{2}$
D. $S n C l_{4}$

Answer: C::D

D Watch Video Solution

62. The conjugate acid of amide ion $\left(\mathrm{NH}_{2}^{-}\right)$is
A. NH_{3}
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NH_{4}^{+}

Answer: A

- Watch Video Solution

63. The best indicator for detection of end point in titration of a weak acid and a strong base is
A. methyl orange (3 to 4)
B. methyl red (5 to 6)
C. bromothymol blue (6 to 7.5)
D. phenolphthalein (8 to 9.6)
64. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
A. 1.0×10^{-4}
B. 1.0×10^{-10}
C. 1.0×10^{10}
D. 1.0×10^{-14}

Answer: C::D

65. A certain buffer solution contains equal concentartion of X^{Θ} and $H X$. The K_{b} for X^{Θ} is 10^{-10}. The $p H$ of the buffer is
A. 4
B. 7
C. 10
D. 14

Answer: A
66. The precipitate of $C a F_{2}\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
A. $10^{-4} M C a^{2+}+10^{-4} M F^{-}$
B. $10^{-2} M C a^{2+}+10^{-3} M F^{-}$
C. $10^{-5} M C a^{2+}+10^{-3} M F^{-}$
D. $10^{-3} M C a^{2-}+10^{-5} M F^{-}$

Answer: B

- Watch Video Solution

67. An acidic buffer solution can be prepared by mixing solution of
A. acetate and acetic acid
B. ammonium chloride and ammonium hydroxide
C. sulphuric acid and sodium sulphate
D. sodium chloride and sodium hydroxide

Answer: A

D Watch Video Solution

68. Of the given anions, the strongest base is
A. ClO^{-}
B. ClO_{2}^{-}
C. ClO_{3}^{-}
D. ClO_{4}^{-}

Answer: A

- Watch Video Solution

69. At $90^{\circ} \mathrm{C}$ pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$as $10^{-6} \mathrm{molL} L^{-1}$.

What is the value of K_{w} at $90^{\circ} C$?
A. 10^{-6}
B. 10^{-12}
C. 10^{-14}
D. 10^{-8}
70. The pH of $10^{-8} \mathrm{M}$ solution of HCl in water is
A. 8
B. -8
C. between 7 and 8
D. between 6 and 7

Answer: D

- Watch Video Solution

71. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12} at 298 K . The solubility (in mol /L) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{MAgNO}_{3}$

solution is

A. 1.1×10^{-11}
B. 1.1×10^{-10}
C. 1.1×10^{-12}
D. 1.1×10^{-9}

Answer: B

D Watch Video Solution
72. Aqueous solution of $\mathrm{HNO}_{3}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COOK}$ of identical concentrations are given. The pair
(s) of the solution which may form a buffer upon mixing is
(are):
A. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
B. KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
C. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: C::D

- Watch Video Solution

73. A buffer solution can be prepared from a mixture of
A. sodium acetate and acetic acid in water
B. sodium acetate and HCl in water
C. ammonia and ammonium chloride in water
D. ammonia and sodium hydroxide in water

Answer: A::B::C

- Watch Video Solution

74. $\left(\mathrm{CH}_{3}(\mathrm{OH})_{2}^{1}\right)$ is..acidic than $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right)$.

- Watch Video Solution

75. In the reaction, $I^{-}+I_{2} \rightarrow I_{3}^{-}$the Lewis acid is.....
76. Silver chloride is sparingly soluble in water because its lattice energy is greater than \qquad

- Watch Video Solution

77. An element which can exist as a positive ion in acidic solution and also as a negative ion in basic solution is said to be.....

- Watch Video Solution

78. The conjugate base of HSO_{4}^{-}in aqueous solution is.
79. The following species are in increasing order of their acidic proporty: $\mathrm{ZnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{MgO}$

- Watch Video Solution

80. The solubility of sodium hydroxide increases with increase of temperature.

- Watch Video Solution

81. Aluminium chloride $\left(\mathrm{AlCl}_{3}\right)$ is a Lewis acid because it can donate electrons.
82. The molar conductivity of a solution of a weak acid $H X(0.01 M)$ is 10 times smaller than the molar conductivity of a solution of a weak acid $H Y(0.10 M)$. If $\lambda_{X^{-}}^{\circ}=\lambda_{Y^{-}}^{\circ}$, the difference in their $p K_{a}$ values, $p K_{a}(H X)-p K_{a}(H Y)$, is (consider degree of ionisation of both acids to be $\ll 1$):

- Watch Video Solution

83. $M X_{2}$ dissociates into M^{2+} and X^{-}ions in an aqeous solution, with a degree dissociation (α) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
84. In 1L saturated solution of
$A g C I\left[K_{S P}(A g C I)=1.6 \times 10^{-10}\right], 0.1$ mole of CuCl $\left[K_{S P}(C u C I)=1.0 \times 10^{-6}\right]$ is added. The resulrant concentration of Ag^{+}in the solution is 1.6×10^{-x}. The value of x is:

D Watch Video Solution

85. The total number of diprotic acids among the following
is
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{BO}_{3}$
$\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$
86. Amonst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is:
$K C N$ $\mathrm{K}_{2} \mathrm{SO}_{4}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCI}$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN

- Watch Video Solution

87. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of 0.01 M solution of its sodium salt is

Watch Video Solution

88. $0.1 M N a O H$ is titrated with $0.1 M H A$ till the end point. K_{a} of HA is 5.6×10^{-6} and degree of hydrolysis is less compared to 1 . Calculate pH of the resulting solution at the end point ?

- Watch Video Solution

89. 500 mL of $0.2 M$ aqueous solution of acetic acid is mixed with 500 mL of 0.2 HCI at $25^{\circ} \mathrm{C}$.
a. Calculate the degree of dissociation of acetic acid in the resulting solution and $p H$ of the folution.
b. If $6 g$ of NaOH is added to the above solution determine the final $p H .\left[K_{a}\right.$ of $\mathrm{CH}_{3} \mathrm{COOH}=2 \times 10^{-5}$.
90. The average concentration of SO_{2} in the atmosphere over a city on a cetrain day is 10 ppm , when the average temperature is 298 K . Given that the solubility of SO_{2} in water at 298 K is 1.3653 mol litre $^{-1}$ and the $p K_{a}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is 1.92 , estimate the pH of rain on that day.

- Watch Video Solution

91. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$.

Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $p H=8$.
92. Find the solubility product of a saturated solution of
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water at 298 K , if the $E M F$ of the cell :
$A g\left|A g^{\oplus}\left(s a t A g_{2} C r O_{4} s o l\right)\right||A g(0.1 M)| A g i s 0.164 V \quad$ at $298 K$.

- Watch Video Solution

93. A sample of AgCl was treated with 5.00 mL of $1.5 M$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ solubility to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution contained $0.0026 \mathrm{gofCI}{ }^{-}$per litre. Calculate the solubility product of
$\left(K_{S P} f\right.$ or $\left.A g_{2} C O_{3}=8.2 \times 10^{-12}\right)$
(D) Watch Video Solution
94. An acid type indicator, H In differs in colour from its conjugate base (In^{-}). The human eye is sensitive to colour differences only when the ratio $\left[\mathrm{In}^{-}\right] /[H I n]$ is greater than 10 or smaller than 0.1 . What should to observe a complete colour change ? $\left(K_{a}=1.0 \times 10^{-5}\right)$

- Watch Video Solution

95. The ionization constant of $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$ ion in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$. The rate constant the reaction of $\stackrel{\oplus}{N} \mathrm{H}_{4}$ and $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ion to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$. Calculate the rate constant for proton transfer form water to NH_{3}.
96. What is the pH of a 0.50 M aqueous NaCN solution ?

$$
\left(p K_{b} o f C N^{-}=4.70\right)
$$

D Watch Video Solution

97. Calculate the pH of an aqueous solution of 1.0 M ammonium formate assuming complete dissociation. $\left(p K_{a}\right.$ of formic acid $=3.8$ and $p K_{b}$ of ammonia $=4.8$)

- Watch Video Solution

98. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is
4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO_{3}.

- Watch Video Solution

99. An aqueous solution of a metal bromide $M B r_{2}(0.05 M)$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate ? $K_{S P}$ for $M S=6.0 \times 10^{-21}$. Concentration of saturqated
$H_{2} S=0.1 M, K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13} \quad$ for $H_{2} S$.

- Watch Video Solution

100. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentrations. What volume of 5 M NaHCO 3 solution, shnould be mixed with 10 mL sample of blood, which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of $7.4\left(K_{a} f\right.$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood $=$ $\left.7.8 \times 10^{-7}\right)$

- Watch Video Solution

101. The $K_{S P} o f C a(O H)_{2} i s 4.42 \times 10^{-5} a t 25^{\circ} C$. A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of $0.4 M N a O H$. How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is preciptated ?
102. A 50 mL solution of weak base BOH is titrated with 0.1 NHCI solution. The pH of solution is found to be 10.04 and 9.14 after the addition of 5.0 mL and 20.0 mL of acid respectively. Find out K_{b} for weak base.

- Watch Video Solution

103. The $K_{S P}$ of $A g_{2} C_{2} O_{4}$ at $25^{\circ} \mathrm{C}$ is $1.29 \times 10^{-11} \mathrm{~mol}^{3} L^{-3}$. A solution of $K_{2} C_{2} O_{4}$ containing
0.152 mole in 500 mL water is shaken at $25^{\circ} \mathrm{C}$ with excess
of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ till the equilbirium is reached.
$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3}$

Ar equilibrium the solution contains 0.0358 mole of
$\mathrm{K}_{2} \mathrm{CO}_{3}$. Assuming degree of dissociation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to be same, calculate $K_{S P}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

104. What is the pH of 1 M solution of acetic acid ? To what volume one litre of this solution be diluted so that pH of the resulting solution will be twice of the original value ?

$$
\left(K_{a}=1.8 \times 10^{-5}\right)
$$

- Watch Video Solution

105. Freshly precipiteated Al and Mg hydroxides are stirred vigorously in a buffer solution containing $0.25 M$ of $\mathrm{NH}_{4} \mathrm{CI}$ and 0.05 M of $\mathrm{NH}_{4} \mathrm{OH}$. Calculate $\left[\mathrm{Al}^{3+}\right]$ and $\left[\mathrm{Mg}^{2+}\right]$ in solution. K_{b} for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5} \mathrm{~K}_{S P}$ of

$$
\begin{aligned}
& A l(O H)_{3}=6 \times 10^{-32} \\
& M g(O H)_{2}=8.9 \times 10^{-12}
\end{aligned}
$$

- Watch Video Solution

106. How many mole of HCl will be required to prepare one litre of buffer solution (containing $N a C N+H C I$) of pH8.5 using 0.01 g formula weight of NaCN ? $\left.K_{H C N}=4.1 \times 10^{-10}\right)$

- Watch Video Solution

107. What is the $p H$ of the solution when 0.20 mol of HCI is added to $1 L$ of a solution containing
a. $1 M$ each of acetic acid and acetate ion.
b. 0.1 Meach of aceta acid and acetate ion.

Assume the total volume is $1 L . K_{a}$ for acetic acid is 1.8×10^{-5}.

- Watch Video Solution

108. The solubility of $M g(O H)_{2}$ in pure water is $9.57 \times 10^{-3} \mathrm{~g}$ litre ${ }^{-1}$. Calculate the pH of its saturated solution. (Assume 100% ionisation)

- Watch Video Solution

109. The concentration of hydrogen ions in a $0.2 M$ solution of formic acid is $6.4 \times 10^{-3} \mathrm{molL} L^{-1}$. To this solution, sodium formate is added so as to adjust the concentration
of sodium formate to $1 \mathrm{molL}^{-1}$. What will be the pH of this solution? The dissociation constant of formic acid is 2.4×10^{-4} and the degree of dissociation fo sodium formate is 0.75 .

- Watch Video Solution

110. A solution contains a mixture of $\mathrm{Ag}^{+}(0.10 M)$ and $H g_{2}^{2+}(0.10 M)$ which are to be separated by selective precipitation. Calculate the miximum concentreation of iodide ion at which one of them gets precipitated almost completely. What \% of that metal ion is precipitated ?

$$
\begin{aligned}
& \left(K_{S P} \text { of AgI }=8.5 \times 10^{-17} \quad \text { and } \quad K_{S P} \quad\right. \text { of } \\
& \left.H g_{2} I_{2}=2.5 \times 10^{-26}\right)
\end{aligned}
$$

111. The dissociation constant of weak acid $H A$ is 4.9×10^{-8}. After making the necessary approximations, calculate $p H$ in $0.1 M$ acid.

D Watch Video Solution

112. Given reason for the statement that the $p H$ of an aqueous solution of sodium acetate is more than 7 .

- Watch Video Solution

113. 20 ml of 0.2 MNaOH is added to 50 ml , of $0.2 \mathrm{MCH}_{3} \mathrm{COOH}$ to give 70 ml , of the solution. What is
the $p H$ of the solution? The ionization constant of acetic acid is 2×10^{-5}

- Watch Video Solution

114. What amount of solution propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid ($K_{a}=1.0 \times 10^{-5}$ at $25^{\circ} C$) to obtain a buffer solution of pH 6

- Watch Video Solution

115. When 100 mL of 1.0 MHCl was mixed with 100 mL of 1.0 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the
beaker and its contents (Expt.1). Because the enthalpy of neutralisation of a strong acid with a strong base is constant $\left(-57.0 \mathrm{kJmol}^{-1}\right)$ this experiment couldbe used to measure the calorimeter constant. In a second experiment (Expt.2), 100 mL of $2.0 M$ acetic acid $\left.K_{a}=2.0 \times 10^{-5}\right)$ was mixed with 100 mL of 1.0 MNaOH
(under identical conditions to Expt. 1) where a temperature rise of $5.6^{\circ} C$ was measured.

Enthalpy of dissociation (in kJmol^{-1}) of acetic acid obtained from the Expt. 2 is
A. 1.0
B. 10.0
C. 24.5
D. 51.4

- Watch Video Solution

116. When 100 mL of 1.0 MHCl was mixed with 100 mL of 1.0 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt.1). Because the enthalpy of neutralisation of a strong acid with a strong base is constant $\left(-57.0 \mathrm{kJmol}^{-1}\right)$ this experiment couldbe used to measure the calorimeter constant. In a second experiment (Expt.2), 100 mL of 2.0 M acetic acid $K_{a}=2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 MNaOH
(under identical conditions to Expt. 1) where a temperature
rise of $5.6^{\circ} C$ was measured.

The $p H$ of the solution after Expt. 2 ils
A. 2.8
B. 4.7
C. 5.0
D. 7.0

Answer: D

D Watch Video Solution
117. Consider the equilibrium in the right margin.

Eclipse

Anti
A. The change is exothermic and increasing temperature decreases the equilibrium amount of eclipse form
B. The change is exothermic and increasing temperature increases the equilibrium amount of anti form
C. The change is exothermic and decreasing
temperature decreases the equilibrium amount of eclipse form
D. The change is endothermic and increasing temperature decreases the equilibrium amount of anti form

Answer: C

- Watch Video Solution

118. The equation for the reaction in the figure given below
is

$A B_{5}(g)+H e a t \Leftrightarrow A B_{3}(g)+B_{2}(g)$
At time three minutes what change was imposed into the equilibrium?
A. Pressure was increased
B. Temperature was increased
C. B_{2} was added to the system
D. $A B_{3}$ was added to the system

- Watch Video Solution

119. Which of the following mixtures would result in a buffered solution?
A. Mixing 100.0 mL of 0.100 MHCl with 100.0 mL of 0.100 MNaOH
B. Mixing 100.0 mL of $0.100 \mathrm{MNH}_{3}$ with 100.0 mL of 0.100 MNaOH
C. Mixing 100.0 mL of 0.100 MHCl with 100.0 mL of
$0.100 \mathrm{MNH}_{3}$
D. Mixing 50.0 mL of 0.100 MHCl with 100.0 mL of 0.100MNHP(3)

Answer: D

- Watch Video Solution

120. 0.03 M aqueous solution of a weak monobasic acid solution $\left(K_{a}=10^{-12}\right)$ is titrated against a 0.01 MNaOH solution. What is the $\left[\mathrm{H}^{+}\right]$at the end point?
A. $1.15 \times 10^{-12} M$
B. $2 \times 10^{-12} M$
C. $5 \times 10^{-12} M$
D. $4 \times 10^{-12} M$

Answer: B

- Watch Video Solution

121. The reaction for which $K_{C}>K_{P}$ at a given temperature is (are)
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Hl}(\mathrm{g})$
B. $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{~s})$
C. $\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
D. $3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$

Answer: B::C::D
122. Which of the following solution will have $p H$ greater than 7 at $25^{\circ} \mathrm{C}$?

A. $10 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{COOH}+6 \mathrm{~mL} 0.1 \mathrm{MNaOH}$
 B. $5 m L 0.1 \mathrm{MCH}_{3} \mathrm{COOH}+5 \mathrm{mL0.05MCa}(\mathrm{OH})_{2}$

C. $10 m L 0.1 \mathrm{MNH}_{3}+5 \mathrm{~mL} 0.1 \mathrm{MHCl}$
D. $10 \mathrm{~mL} 0.1 \mathrm{MNa} \mathrm{CO}_{3}+5 \mathrm{~mL} 0.1 \mathrm{MHCl}$

Answer: B::C::D

- Watch Video Solution

123. Assertion: To a system at equilibrium addition of inert gas at constant pressure and temperature drive the
reaction to the side where larger number of active species is present.

Reason: Addition of inert gas at constant temperature and pressure increases the equilibrium volume.
A. Both Assertion and Reason are correct and Reason is
the correct explanation on the Assertion.
B. Both Assertion and Reason are correct but Reason is
not the correct explanation of Assertion
C. Assertion is correct but Reason is incorrect
D. Assertion is incorrect but Reason is correct

Answer: D

D Watch Video Solution

124. A $50 \mathrm{~mL} 10^{-3} \mathrm{MHCl}$ solutions is mixed with $50 \mathrm{~mL} 8 \times 10^{-4} \mathrm{MNaOH}$ solution. What would be the $p H$ of resulting solution?

- Watch Video Solution

Objective Type

1. Which of the following statement(s) is (are) correct?
A. The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
B. The conugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
C. Autoprotolysis constant of water increases with
D. When a solution of a weak monoprotic acid is titrated
against a strong base, at half-neutralisation point

$$
p H=\left(\frac{1}{2}\right) p K_{a}
$$

Answer: B::C

D View Text Solution

2. The salts $A g X, A g Y$ and $A g Z$ are all equally soluble in water (and none are very soluble at all). When each saltis added to separate beakers of 100 mL of $1.0 \mathrm{MHNO}_{3}$, you notice that $A g Y$ is much more soluble than $A g Z$ in acid.

The salt $A g X$ is no more soluble in strong acid than it is in water. Which of the following best explains this?
A. $H X, H Y$ and $H Z$ are all weak acids
B. $H X$ is a weak acid and $H Y$ and $H Z$ are strong acids
C. $H Y$ and $H Z$ are weak acids and $H X$ is a strong acid,
$H Y$ is a stronger acid than $H Z$
D. $H Y$ and $H Z$ are weak acids and $H X$ is a strong acid
$H Z$ is a stronger acid than $H Y$

Answer: D

View Text Solution

3. Solubility of which of the following salts can be increased by adding some HNO_{3} solution?
A. $B a F_{2}$
B. $\mathrm{CH}_{3} \mathrm{COOAg}^{2}$
C. BaSO_{4}
D. PbS

Answer: A::B::D

- View Text Solution

Comprehension Type

1. To determine molar solubility of an unknown metal hydroxide, $M(O H)_{3}$ in $0.00101 M N a O H$, Jane adds 0.250 g of $\mathrm{M}(\mathrm{OH})_{3}$ solid to 200 mL of a 0.00101 MNaOH solution and stirred for a long time.A cloudy solution is formed. The undissolved hydroxide is separated from the
solution by filtratin 25.00 mL of filtrate is pipetted into a
flask 30 mL of water is added adn then the solution is titrated with 0.00444 MHCl solution 13 mL of HCl is used for this titration.

The molar concentration of hydroxide ion in filtrate solution is
A. 0.0015 M
B. 0.0023 M
C. $0.00333 M$
D. $0.00462 M$

Answer: B
2. To determine molar solubility of an unknown metal hydroxide, $M(O H)_{3}$ in $0.00101 M N a O H$, Jane adds 0.250 g of $\mathrm{M}(\mathrm{OH})_{3}$ solid to 200 mL of a 0.00101 MNaOH solution and stirred for a long time.A cloudy solution is formed. The undissolved hydroxide is separated from the solution by filtratin 25.00 mL of filtrate is pipetted into a flask 30 mL of water is added adn then the solution is titrated with 0.00444 MHCl solution 13 mL of HCl is used for this titration.

The solubility product of $\mathrm{M}(\mathrm{OH})_{3}$ is
A. 4.8×10^{-9}
B. 5.6×10^{-11}
C. 2.1×10^{-11}
D. 5.34×10^{-12}

- View Text Solution

3. To determine molar solubility of an unknown metal hydroxide, $\mathrm{M}(\mathrm{OH})_{3}$ in 0.00101 MNaOH , Jane adds 0.250 g of $\mathrm{M}(\mathrm{OH})_{3}$ solid to 200 mL of a 0.00101 MNaOH solution and stirred for a long time.A cloudy solution is formed. The undissolved hydroxide is separated from the solution by filtratin 25.00 mL of filtrate is pipetted into a flask 30 mL of water is added adn then the solution is titrated with 0.00444 MHCl solution 13 mL of HCl is used for this titration.

If Jane carelessly added 20 mL of water tothe flask instead of 30 mL how would this affect the determination of
solubility product ($K_{\text {sp }}$) and molar solubility?
(1) The value of $K_{s p}$ determined by Jane would be same as true value
(2) The value of $K_{s p}$ determined by Jane would be higher than the true value.
(3) The value of $K_{s p}$ determined by Jane would be lower as true value.
(4) The molar solubility of $\mathrm{M}(\mathrm{OH})_{3}$ determined by Jane woud be same as true value.
(5) The molar solubility of $\mathrm{M}(\mathrm{OH})_{3}$ determined by Jane would be higher than true value.
(6) The molar solubililty of $\mathrm{M}(\mathrm{OH})_{3}$ determined by Jane would be lower than the true value
A. 1 and 4
B. 2 and 5
C. 3 and 6
D. 1 and 6

Answer: A

- View Text Solution

Ar Type

1. Assertion: Addition of $N a C N$ to a saturated solution of
$A g C N$ increases the solubility of $A g C N$
Reason: $N a C N$ produces common ion effect when added to a saturated solution of $A g C N$
A. Both Assertion and Reason are correct and Reason is the correct explanation on the Assertion.
B. Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion
C. Assertion is correct but Reason is incorrect
D. Assertion is incorrect but Reason is correct

Answer: B

View Text Solution

Match The Column

1. Match the column I and Column II

	Column 1	Column II
A.	Addition of small amount of HCl decreases the solubility of sparingly soluble salt	p. A saturated solution of AgCl $\left(K_{\mathrm{sp}}=2 \times 10^{-10}\right)$
	Addition of small amount of NaOH decreases solubility of sparingly soluble salt.	q. A saturated solution of PbCl_{2} $\left(K_{\mathrm{sp}}=4 \times 10^{-6}\right)$
	Addition of small amount of HCl increases solubility of sparingly soluble salt.	r. HCl solution saturated with AgCl
	Addition of small amount of $\mathrm{AgNO}_{3}(\mathrm{~s})$ increases solubility of sparingly soluble salt.	s. NaOH solution saturated with $\begin{aligned} & \mathrm{Mg}(\mathrm{OH})_{2} \\ & \left(\mathrm{~K}_{\mathrm{sp}} \text { of } \mathrm{Mg}(\mathrm{OH})_{2}=4 \times 10^{-7}\right) \end{aligned}$

- View Text Solution

Integer Type

1. Consider the following reversible system:

$A(g)+2 B(g) \Leftrightarrow C(g)+2 D(g)$

At equilibrium there are 1.0 mole of A and 2.0 moles of each
B, C and D present. If 2.0 moles of B is added so that moles
of A and D do not change?

- View Text Solution

