©゙’ doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

CHEMICAL BONDING

Jee Main And Advanced

1. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is
A. ion-ion interaction
B. ion-dipole interaction
C. London force
D. hydrogen bond

Answer: B

D Watch Video Solution

2. The nodal plane is the pi -bond of ethene is located in :
A. the molecular plane
B. a plane parallel to the molecular plane
C. a plane perpendicular to the molecular plane which bisects the
carbon-carbon σ-bond at right angle
D. a plane perpendicular to the molecular plane which contains the carbon-carbon σ-bond

Answer: a

- Watch Video Solution

3. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with the highest boiling point is:
A. $\mathrm{H}_{2} \mathrm{O}$ because of hydrogen bonding
B. $\mathrm{H}_{2} \mathrm{Te}$ because of higher molecular weight
C. $\mathrm{H}_{2} \mathrm{Se}$ because of lower molecular weight
D.

Answer: a

- Watch Video Solution

4. Arrange the following compounds in order of increasing dipole moment.

Toluene (I) m-dichlorobenzene ($I I$) o-dichlorobenzene (III) . P-dichlorobenzene (IV).

$$
\text { A. } I<I V<I I<I I I
$$

B. $I V<I<I I<I I I$
C. $I V<I<I I I<I I$
D. $I V<I I<I<I I I$

Answer: b

- Watch Video Solution

5. The number and type of bonds between two carbon atoms in CaC_{2} are:
A. one sigma (σ) and one pi (π) bonds
B. one sigma (σ) and two pi (π) bonds
C. one sigma (σ) and one half pi (π) bonds
D. one sigma (σ) bonds

Answer: b
6. The molecule which has zero dipole moment is
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. $B F_{3}$
C. NF_{3}
D. ClO_{2}

Answer: b

D Watch Video Solution

7. Element X is strongly electropositive and element Y is strongly electronegative. Both are univalent. The compound formed would be
A. $X^{+} Y^{-}$
B. $X^{-} Y^{+}$
C. $X-Y$
D. $X \rightarrow Y$

Answer: a

- Watch Video Solution

8. Which of the following compound is covalent?
A. H_{2}
B. CaO
C. KCl
D. $N a_{2} S$

Answer: a

9. The total number of electrons that take part in forming the bond in
N_{2} is .
A. 2
B. 4
C. 6
D. 10

Answer: c

D Watch Video Solution

10. The compound which contains both ionic and covalent bonds is
A. CH_{4}
B. H_{2}
C. $K C N$
D. KCl

Answer: c

D Watch Video Solution

11. Dipole moment is shown by
A. 1,4- dichlorobenzene
B. cis-1,2-dichloroethene
C. trans-1,2-dichloroetene
D. trans-1,2-dichoro-2-pentene

Answer: b,d

D Watch Video Solution

12. Statement I LiCl is predomionantly a covalent compound. Statement II Electronegatvity difference between Li and Cl is too small
A. Statement I is true: Statement II is true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: c

- Watch Video Solution

13. There are π bonds in a nitrogen molecule
14. All molecules with polar bonds have dipole moment.

- Watch Video Solution

15. Linear overlapping of two atomic p - orbitals leads to a sigma bond.

- Watch Video Solution

16. Arrange the following ions in order of their decreasing ionic radii.
$L i^{\oplus}, K^{\oplus}, M g^{2+}, A l^{3+}$

- Watch Video Solution

17. Between Na^{+}and Ag^{+}which is stronger Lewis acid and why?
18. In the reaction $I^{-}+I_{2} \rightarrow I_{3}$, which is the Lewis acid?

- Watch Video Solution

19. Explain the difference in the nature of bonding in LIF and LiI

- Watch Video Solution

20. The dipole moment of $K C I$ is $3.36 \times 10^{-29} \mathrm{Cm}$ The interatomic distance between K^{\oplus} and $C I^{\Theta}$ in this unit of $K C I$ is $2.3 \times 10^{-10} \mathrm{~m}$ Calculate the percentage ionic character of $K C I$.

- Watch Video Solution

21. Give reasons in two or three sentences only for the following
"The species $\left[\mathrm{CuCl}_{4}\right]^{2-}$ exists, while $\left[\mathrm{CuI}_{4}\right]^{2-}$ does not" .
22. State four major physical properties that can be used to distinguish between covalent and ionic compounds. Mention the distinguishing features in each case.

D Watch Video Solution

23. The group having isoelectronic species is
A. $O^{2-}, F^{-}, M g^{2+}$
B. $O^{-}, F^{-}, N a, M g^{+}$
C. $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}, \mathrm{Mg}^{2+}$
D. $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$

Answer: a

24. The correct statement for the molecule, CsI_{3} is
A. it is a covalent molecule
B. it contains Cs^{+}and I_{3}^{-}ions
C. it contains Cs^{3+} and I^{-}ions
D. it contains Cs^{+}, I^{-}and lattice I_{2} molecule

Answer: b

(D) Watch Video Solution

25. The species having pyramidal shape is
A. SO_{2}
B. BrF_{3}
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer: d

D Watch Video Solution

26. Assuming that Hund's rule is violated the bond order and magnetic
nature of the diatomic molecle B_{2} is
A. 1 and diamagnetic
B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: a

27. The species having bond order different from that in $C O$ is
A. NO^{-}
B. NO^{+}
C. $C N^{-}$
D. N_{2}

Answer: a

D Watch Video Solution

28. Among the following, the paramagnetic compound is:
A. $N a_{2} O_{2}$
B. O_{3}
C. $\mathrm{N}_{2} \mathrm{O}$
D. KO_{2}

Answer: d

- Watch Video Solution

29. Which species has the maximum number of lone pair of electrons on the central atom ?
A. ClO_{3}^{-}
B. $X e F_{4}$
C. $S F_{4}$
D. I_{3}^{-}

Answer: d

- Watch Video Solution

30. Number of the pairs (s) in XeOF_{4} is/are
A. 0
B. 1
C. 2
D. 3

Answer: b

D Watch Video Solution

31. Which of the following are isolectronic and iso-structural ?
$\mathrm{NO}_{3}^{\Theta}, \mathrm{CO}_{3}^{2-}, \mathrm{CIO}_{3}^{\Theta}, \mathrm{SO}_{3}$.
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: a

- Watch Video Solution

32. Among the following, the molecule with the highest dipole moment is :
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{3}
D. $\mathbb{C} l_{4}$

Answer: a

- Watch Video Solution

33. Which of the following molecular species has unpaired electrons(s)
?.
A. N_{2}
B. F_{2}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: c

- Watch Video Solution

34. Specify the co-ordination geometry around and hybridisation of N and B complex of NH_{3} and BF_{3},
A. N : tetrahedral, $s p^{3}, B$: tetrahedral, $s p^{3}$
B. N : pyraidal, $s p^{3}, B$: pyramidal, $s p^{3}$
C. N : pyramidal, $s p^{3}, B$: planar, $s p^{2}$
D. N : pyramidal, $s p^{3}, B$: tetrahedral, $s p^{3}$

Answer: a

D Watch Video Solution

35. The correct order of hybridisation of the central atom in the following species $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is :
A. $d s p^{2}, d s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{2}, s p^{3} d$ and $s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3}$ and $d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}$ and $d s p^{3}$

Answer: b

36. The common features among the species $\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+} are :
A. bond order three and isoelectronic
B. bond order three and weak field ligands
C. bond order two and acceptors
D. isoelectronic and weak field ligands

Answer: a

- Watch Video Solution

37. The hybridization of atomic orbitals of nitrogen is $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$, and NH_{4}^{+}respectively are
A. $s p, s p^{3}$ and $s p^{2}$ respectively
B. $s p, s p^{2}$ and $s p^{3}$ respectively
C. $s p^{2}, s p$ and $s p^{3}$ respectively
D. $s p^{2}, s p^{3}$ and $s p$ respectively

Answer: b

- Watch Video Solution

38. In the compound
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$ the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond is of
A. $s p-s p^{2}$
B. $s p^{3}, s p^{3}$
C. $s p-s p^{3}$
D. $s p^{2}-s p^{3}$

Answer: d

39. The geometry of $H_{2} S$ and its dipole moment are :
A. angular and non-zero
B. angular and zero
C. linear and non-zerO
D. linear and zero

Answer: a

D Watch Video Solution

40. The geometry and the type of hybrid orbitals present about the central atom in $B F_{3}$ is :
A. linear, $s p$
B. trigonal planar, $s p^{2}$
C. tetrahedral $s p^{3}$
D. pyramidal $s p^{3}$

Answer: b

Watch Video Solution
41. Which of the following compounds has $s p^{2}$-hybridisation?
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. CO

Answer: b
42. Among $\mathrm{KO}_{2}, \mathrm{ALO}_{2}^{\Theta}, \mathrm{BaO}_{2}$ and NO_{2}^{+}, unpaired electrons is present in .
A. NO_{2}^{+}and BaO_{2}
B. KO_{2} and AlO_{2}^{-}
C. only KO_{2}
D. only BaO_{2}

Answer: c

- Watch Video Solution

43. The cyanide ion $C N$ and N_{2} are isoelectronic, but in contrast to
$C N^{-}, N_{2}$ is chemically inert, because of
A. low bond energy
B. absence of bond polarity
C. unsymmetrical electron distribution
D. presence of more number of electron in bonding orbitals

Answer: b

- Watch Video Solution

44. Among the following species, identify the isostuctural pairs
$\mathrm{NF}_{3} . \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}, \mathrm{HN}_{3}$
A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{~N}_{3} \mathrm{H}\right]$ and $\left[\mathrm{NO}_{3}^{-}, B F_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{N}_{3} \mathrm{H}, B F_{3}\right]$

Answer: c

45. Which one of the following molecules is planar?
A. $N F_{3}$
B. NCl_{3}
C. PH_{3}
D. $B F_{3}$

Answer: d

- Watch Video Solution

46. The maximum possible number of hydrogen bonds a water molecule can form is
A. 2
B. 4
C. 3
D. 1

Answer: b

Watch Video Solution

47. The type of hybrid orbitals used by the chlorine atom in CIO_{2} - is
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. None of these

Answer: a

- Watch Video Solution

48. The species which has pyramidal shape is
A. $P C l_{3}$
B. SO_{3}
C. CO_{3}^{2-}
D. NO_{3}^{-}

Answer: a

D Watch Video Solution

49. Which of the following is paramagnetic?
A. O_{2}^{-}
B. $C N^{-}$
c. CO
D. NO^{+}
50. The $C I-C-C I$ angle in $1,1,2,2$, tetrachloroethone and tetrachloromethane respectively will be about:
A. 120° and 109.5°
B. 90° and 109.5°
C. 109° and 90°
D. 109.5° and 120°

Answer: a

Watch Video Solution
51. The melecule that has linear structure is:
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. SiO_{2}

Answer: a

D Watch Video Solution

52. The species in which the cantral atom uses $s p^{2}$ hybrid orbital in its bonding is:
A. PH_{3}
B. NH_{3}
C. CH_{3}^{+}
D. SbH_{3}

Answer: c

53. Which of the following will have zero dipole moment?
A. 1,1-dichloroethylene
B. cis -1,2-dichloroethylene
C. trans-1,2,-dichloroethylene
D. none of the above

Answer: c

(D) Watch Video Solution

54. The hybridisation of sulphur in sulphur dioxide is
A. $s p$
B. $s p^{3}$
C. $s p^{2}$
D. $d s p^{2}$

Answer: C

- Watch Video Solution

55. The bond between two identical non-metal atoms has a pair of electrons:
A. unequally shared between the two
B. transferred fully from one atom to another
C. with identical spins
D. equally shared between them

Answer: d

56. One hybridization of one s and one p orbital we get
A. two mutually perpendicular orbitals
B. two orbitals at 180°
C. four orbitals directed tetrahderally
D. three orbitals in a plane

Answer: b

- Watch Video Solution

57. Carbon tetrachloride has no net dipole moment because of
A. its planar structure
B. its regular tetrahedral structure
C. similar sizes of carbon ad chlorine atoms
D. similar electron affinities of carbon and chlorine

Answer: b

- Watch Video Solution

58. The ion that is isoelectronic with $C O$ is
A. $C N^{-}$
B. O_{2}^{+}
C. O_{2}^{-}
D. N_{2}^{+}

Answer: a

D Watch Video Solution
59. Among the following, the linear molecule is
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. ClO_{2}

Answer: a

- Watch Video Solution

60. If molecule $M X_{3}$ has zero dipole moment, the sigma bonding orbitals used by M (atomic number <21) are
A. pure p
B. $s p$-hybridised
C. $s p^{2}$-hybridised
D. ${ }^{\prime} \mathrm{sp}^{\wedge}(3)$-hybridised

Answer: c

61. The molecule (s) that will have dipole moment is/are:
A. 2,2-dimethyl propane
B. trans -2-pentene
C. cis-3-hexene
D. 2,2,3,3-tetrametyl butane

Answer: b,c

(D) Watch Video Solution

62. Which of the following has //have identical bond order ?
A. $C N^{-}$
B. O_{2}^{-}
C. NO^{+}
D. $C N^{+}$

Answer: a,c

- Watch Video Solution

63. The linear struture is assumed by :
A. SnCl_{2}
B. $C S_{2}$
C. NO_{2}^{+}
D. NCO^{-}

Answer: b,c,d
64. CO_{2} is isostructural with
A. HgCl_{2}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. SnCl_{2}
D. NO_{2}

Answer: a,b

- Watch Video Solution

65. Match the orbital overlap figures shown in Column I with the description given in Column II and select the correct answer using the
codes given below the Columns.

Column I
Column II

1. $\quad p-d \pi$ antibonding
2. $d-d \sigma$ bonding
B.

3. $d-d \sigma$ antibonding

A $A \quad B \quad C \quad D$
A.
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
c. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}2 & 3 & 1 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 1 & 2 & 3\end{array}$

Answer: $A \rightarrow 2 ; B \rightarrow 3 ; C \rightarrow 1 ; D \rightarrow 4$

Watch Video Solution
66. Among $\mathrm{N}_{2} \mathrm{O}, \mathrm{SO}_{2}, I_{3}^{+}$and I_{3}^{-}, the linear species are \qquad and

(D) Watch Video Solution

67. When N_{2} goes to N_{2}^{+}, the $N-N$ bond distance, and when
O_{2} goes to O_{2}^{+}the $O-O$ bond distance........

- Watch Video Solution

68. The two types of bonds present in $B_{2} H_{6}$ are covalent and \qquad .

- Watch Video Solution

69. The kind of delocalisation involving sigma bond orbitals is called.......

- Watch Video Solution

70. The valence atomic orbital on C in silver acetidc is \qquad hybridised.

- Watch Video Solution

71. The shape of CH_{3}^{+}is \qquad

- Watch Video Solution

72. \qquad hybrid orbitals of nitrogen atom are involved in the formation of ammonium ion.

- Watch Video Solution

73. Pair of molecules which forms strongest intermolecular hydrogen bonds is (SiH_{4} and SiF_{4}, acetone and CHCl_{3}, formic acid and acetic acid)
74. The angle between two covalent bonds is maximum in $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)$

- Watch Video Solution

75. The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

76. $\mathrm{H}_{2} \mathrm{O}$ molecule is linear
77. The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.

- Watch Video Solution

78. $s p^{3}$ hybrid orbitalos have equal s and p character.

- Watch Video Solution

79. In benzene, carbon uses all the three p - orbitals for hybridisation.

- Watch Video Solution

80. SnCl_{2} is a non-linear molecule.

- Watch Video Solution

81.

$\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{lCl}_{2}^{-}, l_{3}^{-}$and XeF_{2}, the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d - orbitals (s) is [atomic number of $S=16, C l=17, I=53$ and $X e=54]$

- Watch Video Solution

82. A list of species having the formula of $X Z_{4}$ is given below $\mathrm{XeF}_{4}, S F_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{Br} \mathrm{F}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$

Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is

D Watch Video Solution

83. The total number of lone-pair of electrons in melamine is
84. Based on VSEPR theory, the number of $90^{\circ} F-B r-F$ angles in $B r F_{5}$ is

- Watch Video Solution

85. Predict whether the following molecules are isostructural or not. Justify your answer.
(i) $N M e_{3}$ (ii) $N\left(\mathrm{SiMe}_{3}\right)_{3}$

- Watch Video Solution

86. On the basis of ground state electronic configuration, arrange the following molecules in increasing $O-O$ bond length order. $K O_{2}, O_{2}, O_{2}\left[A s F_{6}\right]$
87. Draw the shape of $X e F_{4}$ and $O S F_{4}$ according to VSEPR theory. Show the lone pair of electrons on the central atom.

- Watch Video Solution

88. Using VSEPR theory, draw the shape of $P C L_{5}$ and $\mathrm{Br} \mathrm{F}_{4}$.

- Watch Video Solution

89. Draw the molecular structures of $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and $\mathrm{XeO}_{2} \mathrm{~F}_{2}$, indicating the location of lone pair(s) of electrons.

- Watch Video Solution

90. Interpret the non-linear shape of $H_{2} S$ molecule and non-planar shape of PCl_{3} using valence shell electron pair repulsion (VSEPR)
theory.
(Atomic number : $H=1, P=15, S=16, C l=17$)

D Watch Video Solution

91. Using the VSEPR theory, identify the type of hybridisation and draw the structure of $O F_{2}$. What are the oxidation states of O and F ?

- Watch Video Solution

92. Which of the following species is not paramagnetic?
A. $N O$
B. $C O$
C. O_{2}
D. B_{2}
93. Assuming $2 s-2 p$ mixing is not operative, the paramagnetic species among the following is
A. $B e_{2}$
B. B_{2}
C. C_{2}
D. N_{2}

Answer: c

D Watch Video Solution

94. Stability of the species $L i_{2}, L i_{2}^{-}$and $L i_{2}^{+}$increases in the order of
A. $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
B. $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$
C. $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$
D. $L i_{2}^{-}<L i_{2}<L i_{2}^{+}$

Answer: b

D Watch Video Solution

95. In the of the following pairs of molecules/ions both the species are not likely to exist?
A. $\mathrm{H}_{2}^{+}, \mathrm{He}_{2}^{2-}$
B. $H_{2}^{-}, H e_{2}^{2-}$
C. $H_{2}^{2+}, H e_{2}$
D. $H_{2}^{-}, H e_{2}^{2+}$

Answer: c

96. Hyperconjugation involves overlap of which of the following orbitals?
A. $\sigma-\sigma$
B. $\sigma-p$
C. $p-p$
D. $\pi-\pi$

Answer: b

(D) Watch Video Solution

97. According to $M O$ theory,
A. O_{2}^{+}is paramagnetic and bond order greater than O_{2}
B. O_{2}^{+}is paramagnetic and order less than O_{2}
C. O_{2}^{+}is diamagnetic and bond order is less than O_{2}
D. O_{2}^{+}is diamagnetic and bond order is more than O_{2}

Answer: a

D Watch Video Solution

98. Molecular shape of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
A. the same, with 2,0 and 1 lone pair of electrons respectively
B. the same, with 1,1 and 1 lone pair of electrons respectively
C. different, with 0,1 and 2 lone pair of electrons respectively
D. different with 1,0 and 3 lone pair of electrons respectively

Answer: c

- Watch Video Solution

99. In compounds of type $E C l_{3}$ where $E=B, P, A s, B i$. The angles
$C l-E-C l$ for different E are in the order :
A. $B>P=A s=B i$
B. $B>P>A s>B i$
C. $B<P=A s=B i$
D. $B<P<A s<B i$

Answer: b

- Watch Video Solution

100. The correct order of increasig $C-O$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: d

- Watch Video Solution

101. Which contains both polar and non-polar bonds?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. HCN
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: c

102. Which one among the following does not have the hydrogen bond?
A. Phenol
B. Liquid NH_{3}
C. Water
D. HCl

Answer: d

- Watch Video Solution

103. According to molecular orbital theory, which of the following statements is (are) correct?
A. C_{2}^{2-} is expected to be diamagnetic
B. O_{2}^{2+} is expected to have a longer bond length than O_{2}
C. N_{2}^{+}and N_{2}^{-}have the same bond order
D. He_{2}^{+}has the same energy as two isolated He atoms

Answer: a,c

(D) Watch Video Solution

104. Hydrogen bonding plays a central role in which of the following phenomena?
A. Ice floats in water
B. Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions
C. Formic acid is more acidic than acetic acid
D. Dimenrisation of acetic acid in benzene
105. Which one of the following molecules is expected to exhibit diamagnetic behaviour?
(i) N_{2} (ii) O_{2}
(iii) S_{2} (iv) C_{2}
A. C_{2}
B. N_{2}
C. O_{2}
D. S_{2}

Answer: a,b

106. Statement I The electronic structure of O_{3} is

Statement II

structure is not allowed because octet around O cannot be expanded.
A. Statement I is true: Statement II is true, Statement II is the correct explanation of Statement I .
B. Statement I is true, Statement II is true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: a

D Watch Video Solution

107. Among $\mathrm{H}_{2}, \mathrm{He}_{2}^{+}, \mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}^{-}$and F_{2}, the number of diamagnetic species is
(Atomic numbers:
$H=1, H e=2, L i=3, B e=4, B=5, C=6, N=7, O=8, F=9$
)

- Watch Video Solution

108. Write the $M O$ electron distribution of O_{2}.Specify its bond order and magnetic property.
109. Arrange the following as stated.
"Increasing strength of hydrogen bonding $(X-H-X)$
$O, S, F, C l, N$

- Watch Video Solution

Match The Columns

1. Match each of the diatomic molecules in Column I with its property
properties
in
Column
II

A.	\mathbf{B}_{2}	\mathbf{p}.	Paramagnetic
B	\mathbf{N}_{2}	\mathbf{q}	Undergoes oxidation
C.	$\boldsymbol{\sigma}_{2}$	r.	Undergoes reduction
D.	$\mathbf{O}_{\mathbf{2}}$	s.	Bond order ≥ 2
		t.	Mixing of ' s ' and ' p ' orbitals

A. A
$A \quad B$
C
D
$q, r, s \quad q, r, s, t \quad q, r, t \quad p, q, t$
B. $\begin{array}{llll}A & B & C & D\end{array}$
$p, q, r, t \quad q, r, s, t \quad p, q, r, t \quad p, r, s, t$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$q, r, s, t \quad p, q, r \quad r, s, t \quad p, q, r, t$
D. $\begin{array}{llll}A & B & C & D \\ q, r, s & q, r, s, t & q, r, t & p, q, t\end{array}$

Answer: `Atop,q,r,t;Btoq,r,s,t;Ctop,q,r,t;Dtop,r,s,t

- View Text Solution

1. The sum of the number of lone pairs of electrons on each central atom in the following species is
$\left[\mathrm{TeBr}_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{+}, S N F_{3}$ and $\left[\mathrm{XeF}_{3}\right]^{-}$
(Atomic numbers

$$
N=7, F=9, S=16, B r=35, T e=52, X e-54)
$$

- View Text Solution

Subjective Type

1. Write the Lewis dot structural formula for each of the following. Give also, the formula of a neutral molecule, which has the same geometry and the same arrangement of the boding electrons as in each of the following. An example is given below in the case of $\mathrm{H}_{3} \mathrm{O}^{+}$and NH_{3}.

(i) O_{2}^{2-} (ii) CO_{3}^{2-}
(iii) $C N^{-}$(iv) $N C S^{-}$
A. O_{2}^{2-}
B. CO_{3}^{2-}
C. $C N^{-}$
D. $N C S^{-}$

Answer: NA

View Text Solution

1. Match the reactions in Column I with nature of the reactions/type of the products in Column II

Column I		Column II
A.	$\mathrm{O}_{2}^{-} \longrightarrow \mathrm{O}_{2}+\mathrm{O}_{2}^{2-}$	1.
B.Redox reaction $\mathrm{CrO}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow$	2.One of the products has trigonal planar structure	
$\mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-}$ $+\mathrm{H}^{+} \longrightarrow$	3.Dimeric bridged tetrahedral metal ion	
$\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4}$ $+\mathrm{Fe}^{2+} \longrightarrow$	4.	Disproportionation

A. $\begin{array}{llll}A & B & C & D \\ 2 & 1,4 & 3 & 4\end{array}$
${ }_{B} \begin{array}{llll}A & B & C\end{array}$
$\begin{array}{llll}1,4 & 3 & 1,2 & 1\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 2 & 3 & 1 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}3 & 4 & 2,3 & 1\end{array}$

Answer: $A \rightarrow 1,4 ; B \rightarrow 3 ; C \rightarrow 1,2 ; D \rightarrow 1$

