©゙"doubtnut

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

CHEMICAL KINETICS

Jee Main And Advanced

1. Two reactions R_{2} and R_{2} have identical pre - exponential factors.

Activations enery of R_{1} exceeds that of R_{2} by $10 \mathrm{~kJ} \mathrm{~mol}_{-1}$. If k_{1} and k_{2} are rate constants for rate constants for reactions R_{1} and R_{2} respectively at 300k, then $\ln \left(\frac{k_{2}}{k_{1}}\right)$ is equal to $\left(R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. 8
B. 12
C. 6
D. 4

Answer: d

- Watch Video Solution

2. Decompsition of $\mathrm{H}_{2} \mathrm{O}_{2}$ follows a frist order reactions. In 50 min the concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ decreases from 0.5 to 0.125 M in one such decomposition. When the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ reaches 0.05 M , the rate of fromation of O_{2} will be
A. $6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}$
B. $2.66 L \mathrm{~min}^{-1}$ atSTP
C. $1.34 \mathrm{xx} 10^{\wedge}(-2) \mathrm{mol} \mathrm{min}^{\wedge}(-1)^{`}$
D. $6.93 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$

Answer: a

3. Higher order (>3) reaction are rare due to :
A. low probability id simultanceoues of all the reacting
B. increase in entropy and activation energy as more molecules are involved
C. shifting of equilibrium towards reactants due to elastic collisions
D. loss of active species on cillision

Answer: a

- Watch Video Solution

4. For the elementary reaction $M \rightarrow N$, the rate of disappearance of M increases by a factor of 8 upon doubling the concentration of M. The order of the reaction will respect to M is
A. 4
B. 3
C. 2
D. 1

Answer: b

- Watch Video Solution

5. For the non-stoichiometric reaction $2 A+B \rightarrow C+D$

The following kinetic data were obtained in theee separate experiment, all at 98 K

Initial concentration (A)	Initial concentration (B)	Initial rate of forma
$0.1 M$	$0.1 M$	1.2×10^{-3}
$0.1 M$	$0.2 M$	1.2×10^{-3}
$0.2 M$	$0.1 M$	2.4×10^{-3}

The rate law for the formation of C is:
A. $\frac{d C}{d t}=K[A][B]$
B. $\frac{d C}{d t}=K[A]^{2}[B]$
c. $\frac{d C}{d t}=K[A][B]^{2}$
D. $\frac{d C}{d t}=K[A]$

- Watch Video Solution

6. In the reaction, $P+Q \rightarrow R+S$
the time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the figure. The overall order of the reaction is

A. 2
B. 3
C. 0
D. 1

Answer: d

- Watch Video Solution

7. The rate of a reaction doubles when its temperature changes form 300 K to 310 K . Activation energy of such a reaction will be:
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.$ and $\left.\log 2=0.301\right)$
A. $53.6 \mathrm{kJmol}^{-1}$
B. $48.6 \mathrm{kJmol}^{-1}$
C. $58.5 \mathrm{kJmol}^{-1}$
D. $60.5 \mathrm{kJmol}^{-1}$

Answer: a

8. Plots showing the variation of the rate constant (k) with temperature
(T) are given below. The plot that follows the Arrhenius equation is
(a)

B.
(b)

C.

D.
(d)

9. For a first order reaction $A \rightarrow P$, the temperature (T) dependent rate constant (k) was found to follow the equation $\log k=-2000(1 / T)+6.0$. The pre-exponential factor A and the activation energy E_{a}, respective, are
A. $1.0 \times 10^{6} s^{-1}$ and $9.2 k \mathrm{Jmol}^{-1}$
B. $6.0 \mathrm{~s}^{-1}$ and $16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $1.0 \times 10^{6} \mathrm{~s}^{-1}$ and $16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $1.0 \times 10^{6} \mathrm{~s}^{-1}$ and $38.3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

Answer: d

- Watch Video Solution

10. Under the same reaction conditions, the intial concentration of $1.386 \mathrm{moldm}^{-3}$ of a substance becomes half in $40 s$ and $20 s$ theough first
order and zero order kinetics, respectively.
The ratio $\left(k_{1} / k_{0}\right)$ of the rate constants for first order $\left(k_{1}\right)$ and zero order $\left(k_{0}\right)$ of the reaction is
A. $0.5 \mathrm{~mol}^{-1} \quad d \mathrm{~m}^{3}$
B. $1.0 \mathrm{~mol} \quad d m^{-3}$
C. $1.5 \mathrm{~mol} \quad d m^{-3}$
D. $1.5 \mathrm{~mol}^{-1} \quad d \mathrm{~m}^{3}$

Answer: a

D Watch Video Solution

11. Conisder a reaction $a G+b H \rightarrow$ Products. When concentration of both the reactants G and H is doubled, the rate increases eight times. However, when the concentration of G is doubled, keeping the concentration of H fixed, the rate is doubled. The overall order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: d

- Watch Video Solution

12. which one of the following statements (s) in incorrect about order of reduction?
A. Order of reaction is detemined experimentally
B. Order of reaction is equal to sum of the power of concentration
terms in differential rate law
C. It not affected with stoichiometric coeffecient of the reactants
D. Order cannot be fractional

- Watch Video Solution

13. A follows first order reaction.
$(A) \rightarrow$ Product
The concentration of A changes form $0.1 M$ to $0.025 M$ in 40 min . Find the rate of reaction of A when the concentration of A is $0.01 M$.
A. $3.47 \times 10^{-4} M \min ^{-1}$
B. $3.47 \times 10^{-5} \mathrm{M} \mathrm{min}$
C. $1.73 \times 10^{-4} M \min$
D. $1.73 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$

Answer: a

14. In a first order reaction, the concentration of the reactant decreases form $800 \mathrm{~mol} \mathrm{dm}^{-3}$ to $50 \mathrm{~mol} \mathrm{dm}^{-3}$ in $2 \times 10^{4} s$. The rate constant of the reaction (in s^{-1}) is
A. 2×10^{4}
B. 3.45×10^{-5}
C. 1.386×10^{-4}
D. 2×10^{-4}

Answer: c

- Watch Video Solution

15. Conisder the chemical reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The rate of this reaction can be expressed in terms of time derivatives of the concentration of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$, or $\mathrm{NH}_{3}(\mathrm{~g})$. Identify the correct relationship among the rate expresisons.
A. Rate $=-\frac{d\left[N_{2}\right]}{d t}=-\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[N H_{3}\right]}{d t}$
B. Rate $=-\frac{d\left[N_{2}\right]}{d t}=-3 \frac{d\left[H_{2}\right]}{d t}=2 \frac{d\left[N H_{3}\right]}{d t}$
C. Rate $=-\frac{d\left[N_{2}\right]}{d t}=\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[N H_{3}\right]}{d t}$
D. Rate $=-\frac{d\left[N_{2}\right]}{d t}=-\frac{d\left[H_{2}\right]}{d t}=\frac{d\left[N H_{3}\right]}{d t}$

Answer: a

- Watch Video Solution

16. If I is the intenisty of an absorbed light and c is the concentration of $A B$ for the photochemical process. $A B+h v \rightarrow A B^{*}$, the rate of formation of $A B^{*}$ is directly proportional to
A. C
B. 1
C. I_{2}
D. C.I

- Watch Video Solution

17. The rate constant for the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ is $3.0 \times 10^{-5} s^{-1}$. If the rate is $2.40 \times 10^{-5} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$, then the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}\left(\right.$ (in molL^{-1}) is
A. 1.4
B. 1.2
C. 0.04
D. 0.8

Answer: d

18. The half - life periof of a radioactive element is 140 days. After 560 days, one gram of the element will reduce to
A. $\frac{1}{2}(g)$
B. $\frac{1}{4}(g)$
C. $\frac{1}{8}(g)$
D. $\frac{1}{16}(g)$

Answer: d

- Watch Video Solution

19. A catalyst is a substance which
A. increses the equilibrium concentration of the product
B. changes the equilibrium constant of the reaction
C. shortens the time to reach equilibrium
D. supplies energy to the reaction

Answer: c

D Watch Video Solution

20. The specific rate constant of a first order reaction depends on the
A. concentration of the reactant
B. concentration of the product
C. time
D. temperature

Answer: d

- Watch Video Solution

21. The rate constant of a reaction depends on
A. temperature
B. intial concentration of the reactants
C. time of reaction
D. extent of reaction

Answer: a

- Watch Video Solution

22. According to the Arrhenius equctions
A. a high acitvation energy usually implies a fast reaction
B. rate constant increases with increase in temperature. This is due to a greater number of collisions whose energy exceeds the activation energy
C. higher the magnitude ofa activation energy. Stronger is the temperature dependence of the rate constant
D. the pre- exponential factor is a measure of the rate at which collisions occur, irrespective of their energy collisions occur, irrespective of their energy

Answer: b,c,d

D Watch Video Solution

23. For the first order reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
A. the concentration of the reactant decreases exponentially with time
B. the half-life of the reaction decreaases with increasing
C. the half- life of the reaction decreases with increasing temperature
D. the half - life of the reaction deponds on the initial concentration of the reactant

Answer: a,b,d

24. the following statement (s) is are correct
A. A plot of $\log K_{p} v s \frac{1}{p}$ is linear
B. A plot of $\log [\mathrm{X}]$ vs time is linear for a first order reaction , $X \rightarrow P$
C. A plot of $\log p v s \frac{1}{T}$ is linear at constant volume
D. A plot of $p v s \frac{1}{V}$ is livear at constant temperature

Answer: a,b,d

- Watch Video Solution

25. A catalyst
A. increases the average kinetic energy of reacting molecules
B. decreases the activation energy
C. alters the reaction mechanism
D. increases the frequency of collisions of reacting species

Answer: b,c

- Watch Video Solution

26. What should be the age of fossil for meaningful determination of its age?
A. 6 yr
B. 6000 yr
C. 60,000 yr
D. It can be used to calculate any age

Answer: b

- Watch Video Solution

27. A nuclear explosion has taken place leading to increase in concentration of C^{14} in nearby areas. C^{14} concentration is C_{1} in nearby areas and C_{2} in areas far away. If the age of the fossil is determind to be T_{1} and T_{2} at the places respectively then
A. the age of fossil will increase at the place where explosion has
taken place and $T_{1}-T_{2}=\frac{1}{\lambda} \operatorname{In} \frac{C_{1}}{C_{2}}$
B. the age of fossil will decrease at the place where explosion has taken place and $T_{1}-T_{2}=\frac{1}{\lambda} \operatorname{In} \frac{C_{1}}{C_{2}}$
C. the age of fossil will be determined to be the same
D. $\frac{T_{1}}{T_{2}}=\frac{C_{1}}{C_{2}}$

Answer: a

- Watch Video Solution

28. In the Arrhenius equation, $k=A \exp ^{-E a / R T}$, A may be termed as the rate constant at \qquad .

- Watch Video Solution

29. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, under certain conditions of temperature and partial pressure of the reactants, the rate of formation of NH_{3} is $0.001 \mathrm{kgh}^{-1}$. The same rate of converison of hydrogen under the same condition is.................kgh ${ }^{-1}$.

- Watch Video Solution

30. The hydroliss of ethyl acetate in \qquad medium is a. \qquad order reaction.

- Watch Video Solution

31. The rate of chemical change is directly proportional to

- Watch Video Solution

32. For a first order reaction, the rate of the reaction doubles as the concentration of the rection (S)doubles.

- Watch Video Solution

33. An organic compound undergoes first decompoistion. The time taken for its decompoistion to $1 / 8$ and $1 / 10$ of its initial concentration are $t_{1 / 8}$ and $t_{1 / 10}$, respectively. What is the value of $\frac{\left[t_{1 / 8}\right]}{\left[t_{1 / 10}\right]} \times 10$? $\left(\log _{10} 2=0.3\right)$

- Watch Video Solution

34. $2 X(g) \rightarrow 3 Y(g)+2 Z(g)$

Time (in min) $0 \quad 100 \quad 200$

| Partial pressure of $\mathrm{X}(\mathrm{mm} \mathrm{Hg})$ | $800 \quad 400 \quad 200$ |
| :--- | :--- | :--- | :--- |

Assuming ideal gas condition, calculate
(a) Order of reaction
(b) Rate constant
(c) Time taken for 75% completion of reaction
(d) Total pressure when $p_{x}=700 \mathrm{~mm}$

- Watch Video Solution

35. For the given reaction
$A+B \rightarrow$ Products,
the following data are given.

Initial concentration $\left(\mathbf{m o l ~ L}^{-1}\right)$		Initial rate $\left(\mathbf{m o l ~ L}^{-1} \mathbf{s}^{\mathbf{- 1}}\right)$
$[\mathbf{A}]_{\mathbf{0}}$	$[\mathbf{B}]_{\mathbf{0}}$	-
0.1	0.1	0.05
0.2	0.1	0.1
0.1	0.2	0.05

(a) Write the rate equation.
(b) Calculate the rate constant.

- Watch Video Solution

36. The rate of first order reaction is $0.04 \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ at 10 min and $0.03 \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ at 20 min after initiation. Find the half life of the reaction.

- Watch Video Solution

37. A hydrogenation reaction is carried out at 500 K . If the same reaction is carried out in the presence of a catalyst at the same rate, the
temperature required is 400 K . Calculate the activation energy of the reaction if the catalyst lowers the activation barrier by $20 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

38. The rate constant for an isomerization reaction, $A \rightarrow B$ is $4.5 \times 10^{-3} \mathrm{~min}^{-1}$. If the initial concentration of A is $1 M$, calculate the rate of the reaction after $1 h$.

- Watch Video Solution

39. the rate constant of a reaction is

$$
1.5 \times 10^{7} s^{-1} a t 50^{\circ} \mathrm{C} \text { and } 4.5 \times 10^{7} \mathrm{~s}^{-1} a t 100^{\circ} \mathrm{C} \text {. Evaluate the }
$$

Arrhenius paraments A and E^{a}.
(ii) for the reaction $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ calculate the mole fractions $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ decomposed at a constant valume and temperature, if the initial pressses os 600 mm Hg and the pressure at any time is 960 mm Hg Assume ideal gas behaviour.
40. The rate constant for the first order decompoistion of a certain reaction is described by the equation

$$
\log k\left(s^{-1}\right)=14.34-\frac{1.25 \times 10^{4} K}{T}
$$

(a) What is the energy of activation for the reaction?
(b) At what temperature will its half-life periof be 256 min ?

- Watch Video Solution

41. One of the hazards of nuclear explosion is the generation of ${ }^{90} \mathrm{Sr}$ and its subsequent incorporation in bones. This nuclide has a half-life of 28.1 year. Suppose one micro-gram was absorbed by a new-born child, how much $S r^{90}$ will remain in his bones after 20 year?

- Watch Video Solution

42. At $380^{\circ} \mathrm{C}$, the half-life periof for the first order decompoistion of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 360 min . The energy of activation of the reaction is $200 \mathrm{kJmol}^{-1}$. Calculate the time required for 75% decompoistion at $450^{\circ} \mathrm{C}$.

- Watch Video Solution

43. form the following data for the reaction between A and B,

$\begin{gathered} {[\mathrm{A}]} \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$	$\begin{gathered} {[B]} \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$	Initial rate ($\left.\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{1}\right)$ at	
		300 K	320 K
2.5×10^{-4}	3.0×10^{-5}	5.0×10^{-4}	$2.0 \times 10^{-}$
5.0×10^{-4}	6.0×10^{-5}	4.0×10	-
1.0×10^{-3}	6.0×10^{-5}	1.6×10^{-2}	-

(a) Calculate the order of the reaction with respect to A and with respect to B.
(b) Calculate the rate constant at 300 K .
(c) Calculate the pre-expontential factor.
44. The gas phase decomposition of dimethyl ether follows first order kinetics.

$$
\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

The reaction is carried out in a constant volume container at $500^{\circ} \mathrm{C}$ and has a half life of 14.5 min . Initially, only dimethyl ether is present at a pressure 0.40 atm . What is the total pressure of the system after 12 min ? (Assume ideal gas behaviour)

- Watch Video Solution

45. A first order reaction $A \rightarrow B$ requires activation energy of $70 \mathrm{kmol}^{-1}$. When a 20% solution of A was kept at $25^{\circ} \mathrm{C}$ for 20 min , 25% decomposition took place. What will be the percentage decomposition in the same time in a 30% solution maintained at $40^{\circ} \mathrm{C}$? (Assume that activation energy remains constant in this range of temperature)
46. Two reaction, $(I) A \rightarrow$ Products and $(I I) B \rightarrow$ Products, follow first order kinetics. The rate of reaction (I) is doubled when the temperature is raised form 300 K to 310 K . The half life for this reaction at 310 K is 30 min . At the same temperature B decomposes twice as fast as A. If the energy of activation for reaction $(I I)$ is twice that of reaction (I), (a) calculate the rate of constant of reaction $(I I)$ at 300 K .

- Watch Video Solution

47. The nuclide ratio, ${ }_{1}^{3} H$ to.${ }_{1}^{1} H$ in a sample of water is $8.0 \times 10^{-18}: 1$ Tritium undergoes decay with a half-life period of $12.3 y r$ How much tritium atoms would 10.0 g of such a sample contains 40 year after the original sample is collected?

- Watch Video Solution

48. The decompoistion of $N_{2} O_{5}$ according to the equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is a first order reaction. After 30 min , form the start of the decompoistion in a closed vessel, the total pressure developed is found t be 284.5 mmHg . On complete decompoistion, the total pressure is 584.5 mmHg . Calculate the rate constant of the reaction.

- Watch Video Solution

49. In a Arrhenius equation for a certain reaction, the values of A and E_{a} (energy of activation)are $4 \times 10^{13} \mathrm{~s}^{-1}$ and $98.6 \mathrm{~K} \mathrm{Jmol}^{-1}$, respectively. If the reaction of first order at, what temperature will its life periof be 10 min.
A.
B.
C.
D.

Answer: 311.34K

50. AN experiment requires minimum beta activity produced at the rate of 346 beta particles per minute. The half- life period of _ (42) $M o^{99}$, which is a beta emitter, is 66.6 h . Find the minimum amount of _ (42) $M o^{99}$ required to carry out the experiment in 6.909 h .

- Watch Video Solution

51. A first order gas reaction has $k=1.5 \times 10^{-6} s^{-1}$ at $200^{\circ} \mathrm{C}$. If the reaction is allowed to run for $10 h$, what have changed in the Product? What is the half-life of this reaction?

- Watch Video Solution

52. While studying the decompoistion of gaseous $\mathrm{N}_{2} \mathrm{O}_{5}$, it is observed that a plot of logarithm of its partial pressure versus time is linear. What kinetic parameters can be obtained form this observation?
53. Radioactive decay is a first - order process. Radioactive carbon in wood sample decays with a half - life of 5770 years. What is the rate constant (in years) for the decay ? What fraction would remains after 11540 years ?

- Watch Video Solution

54. Calculating time requireed to complete a definite fraction of first order reaction : A first order reaction is 20% complete in 10 minutes. Calculate the time taken for the reaction to go to 75% completion.

Stratagy : First calculate the rate constant (k) using frist data and then calculate the required time to complete 75% of the reaction by using the value of rate constant :
55. Rate of a reaction $A+B \rightarrow$ Product, is given as a function of different initial concentration of A and B.

$[A]\left(\mathrm{molL}^{-1}\right)$	$(B)\left(\mathrm{molL}^{-1}\right)$	Initial rate $\left(\mathrm{molL}^{-1} \mathrm{~min}^{-1}\right)$
0.01	0.01	0.005
0.02	0.01	0.010
0.01	0.02	0.005

Determine the order of the reaction with respect to A and with respect to B. What is the half life of A in the reaction?

- Watch Video Solution

56. The activity of a radioactive isotope is 3000 count per minute at a certai time and 2736 count per minute after 48 h later. The half-life of this isotope is
A. 831 h
B. 521 h
C. 361 h
D. 1.44 h

- Watch Video Solution

57. For a reaction, $A \rightarrow$ Product, half life measured for two different values of inital concentrations $5 \times 10^{-3} M$ and $25 \times 10^{-4} M$ are 1.0 and 8.0 h respectively. If the initial concentration is adjusted to $1.25 \times 10^{-3} M$, the new half-life would be
A. 16 h
B. 32 h
C. 64 h
D. 256 h

Answer:

58. In a consecutive reaction : $A \rightarrow B \rightarrow C$ starting with only A
A. Concentration of B 1st increases and becomes constant after sometime
B. Concentration of C increases in the beginning and then start decreasing
C. Concentration of B attains a maxima and then start decreasing
D. All of the species A, B and C are present at every stage of reaction

Answer:

- Watch Video Solution

59. For a first order chemical raction, which of the following describe the plot of logarithmic of friction of uncreated reactant vs time?
(a)

A.
(b)

B.

C.

D.

Answer:

60. For a general nth order process, $A \rightarrow P$ with initial concentration of reactant "a" and rate constant, the expression for time for 75% completion of reaction is
A. $\frac{1}{n-1}\left(\frac{2^{n-1}-2}{a^{n-1}}\right)$
B.
C. $\frac{1}{n-2}\left(\frac{2^{2 n-2}-2}{a^{n-1}}\right)$
D. $\frac{1}{n-2}\left(\frac{2^{2 n-2}-1}{a^{n-1}}\right)$

Answer:

- Watch Video Solution

61. Which of the following is (are) correct for variation of rate constant with temoperature?
(a)

(b)

B.

C.
(d)

D.

Answer:

D Watch Video Solution

62. Which of the following is (are) true for the rate constant of a chemical reaction?
A. It depends only on temperature and catalyst
B. It always increase with temperature
C. It is linearly related to rate of a reaction
D. It is same for the both direction in a reversible reaction

Answer:

- Watch Video Solution

63. Assertion : In a chemical reaction, rate of reaction always decreases with time.

Reason In a chemical reation, the amount of reactant remaining always decreases with time.

- Watch Video Solution

64. Assertion: A catalyst increases the rate of a given reaction by greater factor if added at lower temperature than at higher temperature.

Reason Rate of reaction always increases on increasing temperature.
65. Match the statemens of Column I with values of Column II.

Column I

Column II

p. Rate of riaction increases with temperature
4. Riate of reaction lepends only on temprerature and catalyst

1. Hall-lite depends only on temperature and catalyst
s. No reactive intermudiates are involved
t. Products have a fixed molar ratio at a given temperuture

D Watch Video Solution

66. Consider the following parallel first order reactions:

Half-life of the overall decay of A is 2 ys while half-life for the formation of B is 3yr. Half-life for the formation for C (in years) is :

Others

1. In a bimolecular reaction. The steric factor P was experimentally determined to be 4.5. the correct option(s) among the following is (are)
A. The activation energy of the reaction is unaffected by the value of the steric factor.
B. Experimentally determined value of frequency factor is higher than that predicated by Arrhenius equcation
C. The value of frequency factor predicated by Arrhenius equction is higher than that determined experimentally
D. Since $P=4.5$, the reaction will not proceed uncles as effective catayst is used

Answer: a,c

2. For the first order reaction,
A. the degee of dissociations is equal to $\left(1-e^{-k t}\right)$
B. a plot of reciprocal concentration of the reactant vs time gives a straight line
C. the time taken for the completion of 75% reaction is thrice the $\frac{1}{2}$ of the reaction
D. the pre- exponential factor in the Arrhenius equction has the dimension of time , T^{-1}

Answer: a,d

- View Text Solution

3. which of the following option is correct?
A. In living organisms, circulation of ^ $14 C$ from atmosphere is high so the carbon content is content in organism
B. Carbon dating can be used to find out the age of earth crust and rocks
C. Radioactive absorption due to cosmic radiation is equal to the rate of radioactive decay, hence the carbons content remains constant in living organisms
D. Carbon dating cannot be used to determine concentration of

- $14 C$ in dead beings

Answer: c

- View Text Solution

4. The concentration of R in the reaction $R \rightarrow P$ was measured as a funcation of time and the following data is obtained:
5. ${ }^{\wedge} 64 C u$ (half - life $=12.8 \mathrm{~h}$) decays by β emission (38%) , β^{+}emission (19%) and electron capture (43%) Write the decay products and calculate partial half-lives for each of the decay processes.
