©'doubtnut

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

COORDINATION COMPOUNDS

Jee Main And Advanced

1. Which one of the following complexes shows optical isomerism ?
A. cis $\left[\mathrm{Co}(e n){ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. trans $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Answer: A

2. The number of geometric isomers that can exist for square planar $\left[\mathrm{Pt}(\mathrm{C} 1)(\mathrm{py})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)^{+}\right]$is $(\mathrm{py}=$ pyridine $)$.
A. 2
B. 3
C. 4
D. 6

Answer: B

Watch Video Solution
3. Which of the following complex species is not expected to exhibit optical isomerism ?
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]^{+}$

Answer: C

- Watch Video Solution

4. As per IUPAC nomenclature, the name of the complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}_{3}$ is
A. tetraaquadiaminecobalt (III) chloride
B. tetraaquadiaminecobalt (III) chloride
C. Diaminetetraaquacobalt III) chloride
D. Diaminetetraaquacobalt III) chloride

Answer: D

5. Geometrical shapes of the complex formed by the reaction of Ni^{2+} with $\mathrm{Cl}^{\Theta}, C N^{\Theta}$ and $\mathrm{H}_{2} \mathrm{O}$ are :
A. octahedral, tetrahedral and square planar
B. tetrahedral, square planar and octahedral
C. square planar, tetrahedral and octahedral
D. octahedral, square planar and octahedral

Answer: B

- Watch Video Solution

6. The correct structure of ethylenediamineteraacetic acid ($E D T A$) is .
A. (a) $\mathrm{HOOCCH}_{2} \backslash \mathrm{NOOCCH}{ }_{2}>\mathrm{CH}=\mathrm{CH}-\mathrm{N}<\mathrm{CH}_{2} \mathrm{COOH}$
B. (b) $\mathrm{HOOC}_{\mathrm{HOOC}}^{\mathrm{HOOC}} \mathrm{N}-\mathrm{CH}-\mathrm{CH}-\mathrm{N}<\mathrm{COOH}^{\circ}$
c.

Answer: C

- Watch Video Solution

7. The ionisation isomer of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]\left(\mathrm{NO}_{2}\right)$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right] \mathrm{Cl}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

8. The IUPAC name of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{NiCl}_{4}\right]$ is
A. Tetrachloronickel (II) -tetraamminenickel (II)
B. Tetraamminenickel (II) -tetrachloronickel (II)
C. Tetraamminenickel (II) -tetrachloronickelate (II)
D. Tetrachloronickel (II) -tetraamminenickelate (0)

Answer: C

- Watch Video Solution

9. Which kind of isomerism is shown by $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br} 2 \mathrm{Cl}$?
A. Geometrical and ionisation
B. Optical and ionisation
C. Geometrical and optical
D. Geometrical only

Answer: A

10. The pair of coordination complex exhibiting the same kind of isomerism is .
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{+}$
C. $\left[\mathrm{CoBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$

Answer: B::D

- Watch Video Solution

11. The compound(s) that exhibits(s) geometrical isomerism is/are
A. $\left[P t(e n) C l_{2}\right]$
B. $\left[P t(e n)_{2}\right] C l_{2}$
C. $\left[P t(e n)_{2} C l_{2}\right] C l_{2}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Answer: C::D

- Watch Video Solution

12. Statement I The geometrical isomer of the complex $\left.\left[\mathrm{M}(\mathrm{NH})_{3}\right)_{4} \mathrm{CI}_{2}\right]$ are optically inactive

Satement II Both geometrical isomers of the complex $\left[M\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]$ possess axis of symmetry.
A. Statement I is ture, Statement II is true, Statement II is the correct
explanation of Statement I
B. Statement I is true, Statement II is true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true .

Answer: B

- Watch Video Solution

13. The coordination number of Ni^{2+} is 4
$N i C I_{2}+K C N$ (excess) gives A (cyano complex)
$N i C I_{2}+$ conc. HCI (excess) gives B (Chloro complex)
The $I U P A C$ name of A and B are.
A. potassium tetracyanonickelate (II), potassium tetrachloronickelate
(II)
B.tetracyanopotassiumnickelate (II), tetrachloropotassiumnickelate
(II)
C. tetracyanonickel (II), tetrachloronickel (II)
D. potassium tetracyanonickel (II), potassium tetrachloronickel (II)

Answer: A

14. The type of magnetism exhibited by $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion is \qquad .

- Watch Video Solution

15. The number of geometric isomers possible for the complex $\left[\mathrm{CoL}_{2} \mathrm{Cl}_{2}\right]^{-}\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}\right)$is

Watch Video Solution

16. Among the complex ions,

$$
\begin{aligned}
& {\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+},\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-}} \\
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+},\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-},} \\
& {\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+} \text { and }}
\end{aligned}
$$

that show(s) cis-trans isomerism is

- Watch Video Solution

17. The volume (in $m L$) of $0.1 \mathrm{MAgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to:

- Watch Video Solution

18. Total number of geometrical isomers for the complex $\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]$ is

- Watch Video Solution

19. Write the formulae of the following complex
(i) Pentamminechlorocobalt (III) ion
(ii) Lithium tetrahydridoaluminate (III)

- Watch Video Solution

20. Write the IUPAC name for $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{Cl}$

Watch Video Solution

21. Write the $I U P A C$ name for the following compounds
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{CI}_{2}$
(b) $K_{3}\left[C r(C N)_{6}\right]$.

- Watch Video Solution

22. On treatment of 100 mL of 0.1 M solution of $\mathrm{COCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ with excess of $\mathrm{AgNO}_{3}, 1.2 \times 10^{22}$ ions are precipitated. The complex is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$

Answer: D

23. The pair having the same magnetic moment is
[at. No. $C r=24, M n=25, F e=26$ and $C o=27]$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$

Answer: A

- Watch Video Solution

24.

Among
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}, \mathrm{Na} a_{3}\left[\mathrm{CoF}_{6}\right], \mathrm{Na}_{2} \mathrm{O}_{2} \quad$ and CsO_{2}, the total number of paramagnetic compounds is
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

25. The colour of KMnO_{4} is due to
A. $M \rightarrow L$ charge transfer transition
B. $d \rightarrow d$ transition
C. $L \rightarrow M$ charge transfer transition
D. $\sigma \rightarrow \sigma$ transition

Answer: C

26. The equation which is balanced and represents the correct product(s) is.
A. $\mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{K}_{2} \mathrm{O}$
B. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{+}+5 \mathrm{H}^{+} \rightarrow \mathrm{Co}^{2+}+5 \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
C.
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+(E D T A)^{4-} \xrightarrow{\text { Excess } \mathrm{NaOH}}[\mathrm{Mg}(E D T A)]^{2+}+6 \mathrm{H}_{2}$
D. $\mathrm{CuSO} \mathrm{H}_{4}+4 \mathrm{KCH} \rightarrow \mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

27. The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red,green, yellow and bule, respectively The increasing order of ligand strengh of the four ligands is
A. $L_{4}<L_{3}, L_{2}<L_{1}$
B. $L_{1}<L_{3}<L_{2}<L_{4}$
C. $L_{3}<L_{2}<L_{4}<L_{1}$
D. $L_{1}<L_{2}<L_{4}<L_{3}$

Answer: B

- Watch Video Solution

28. Consider the follwing complexes ion P, Q and R
$P=\left[\mathrm{FeF}_{6}\right]^{3-}, Q=\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin only magnetic moment values (inBM) is .
A. $R<Q<P$
B. $Q<R<P$
C. $R<P<Q$
D. $O<P<R$

Answer: B

- Watch Video Solution

29. $\left[\mathrm{NiCl}_{2}\left\{P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right]$ exhibits temperature dependent magnetic behaviour. The coordination geometries of $N i^{2+}$ in the paramagnetic and diamagnetic states are:
A. tetrahedral and tetrahedral
B. square planar and square planar
C. tetrahedral and square planar
D. square planar and tetrahedral

Answer: C

- Watch Video Solution

30. Among the following complexes : $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$, $N a_{3}\left[\mathrm{Co}(o x)_{3}\right],\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}, \quad \mathrm{~K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \quad$ and $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}\right]$

The diamagnetic are .
A. K, L, M, N
B. K, M, O, P
C. L, M, O, P
D. L, M, N, O

Answer: C

Watch Video Solution

31. The complex showing a spin-magnetic momnet of $2.82 B M$ is .
A. $\mathrm{Ni}(\mathrm{CO})_{4}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2}$
C. $N i\left(P P h_{3}\right)_{4}$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: B

- Watch Video Solution

32. The spin only magnetic moment value (in Bohr magnetion units) of $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. 2.84
C. 4.9
D. 5.92

Answer: A

33. Among the following , the coloured compound is
A. CuCl
B. $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
C. CuF_{2}
D. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}$

Answer: C

- Watch Video Solution

34. Both $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic. The hybridisations of nickel in these complexes respectively, are
A. $s p^{3}, s p^{3}$
B. $s p^{3}, d s p^{2}$
C. $d s p^{2}, s p^{3}$
D. $d s p^{2}, d s p^{2}$

- Watch Video Solution

35. Among the following metal carbonyls the $C-O$ bond order is lowest in.
A. $\left[M n(C O)_{6}\right]^{+}$
B. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
C. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
D. $\left[V(C O)_{6}\right]^{-}$

Answer: B

- Watch Video Solution

36. If the bond length of CO bond in carbon monoxide is $1.128 \AA$, then what is the value of CO bond length in $\mathrm{Fe}(\mathrm{CO})_{5}$?
A. $1.15 \AA$
B. $1.128 \AA$
C. $1.72 \AA$
D. $1.118 \AA$

Answer: A

- Watch Video Solution

37. Spin only magnetic moment of the compound $\mathrm{Hg}\left[\mathrm{CO}(S C N)_{4}\right]$ is

- Watch Video Solution

38. The compound having tetrahedral geometry is
A. $\left[N i(C N)_{4}\right]^{2-}$
B. $\left[P d(C N)_{4}\right]^{2-}$
C. $\left[P d C l_{4}\right]^{2-}$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

39. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $X+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are
A. $0.01,0.01$
B. $0.02,0.01$
C. 0.01, 0.02
D. $0.02,0.02$

Answer: A

40. The complex ion which has no 'd'-electrons in the centre metal atom is
A. $\left[\mathrm{MnO}_{4}\right]^{-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[F e(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

D Watch Video Solution

41. The geometries of $N i(C O)_{4}$ and $N i\left(P P h_{3}\right)_{2} C l_{2}$ are .
A. both square planar
B. tetrahedral and square plana, respectively
C. both tetrahedral
D. square planar and tetrahedral, respectively

Answer: C

- Watch Video Solution

42. Which of the following is formed when excess of KCN is added to an aqueous solution of copper sulphate?
A. $C u(C N)_{2}$
B. $K_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
C. $K\left[C u(C N)_{2}\right]$
D. $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$

Answer: D

- Watch Video Solution

43. Among the following ions, which one has the highest paramgentism ?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

44. Among $\mathrm{Ni}(\mathrm{CO})_{4},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and NiCI_{4}^{2-}, dimagnetic complex are: .
A. $\mathrm{Ni}(\mathrm{CO})_{4}$ and NiCl_{4}^{2-} are diamagnetic and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is paramagnetic
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right.$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic and $\mathrm{Ni}(\mathrm{CO})_{4}$ is
C. $\mathrm{NI}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic
D. $\mathrm{Ni}(\mathrm{CO})_{4}$ is diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are paramagnetic

Answer: C

- Watch Video Solution

45. Amongst the following, the lowest degree of paramgnetism per mole of the compound at 298 K will be shown by
A. $\mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
46. Statement I $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is paramagnetic

Statement II The Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ has three unpaired electrons
A. Statement I is ture, Statement II is true, Statement II is the correct explanation of Statement I
B. Statement I is true, Statement II is true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true .

Answer: A

- Watch Video Solution

47. The coordination number of $N i^{2+}$ is 4 .
$N i \mathrm{Cl}_{2}+K C N($ excess $) \rightarrow A($ cyano comples $)$
$\mathrm{NiCl}_{2}+$ conc. HCl (excess) $\rightarrow B$ (chloro complex $)$
Predict the magnetic nature of A and B.
A. Both are diamagnetic
B. A is diamagnetic and B is paramagnetic with one unpaired electron
C. A is diamagnetic and B is paramagnetic with two unpaired electrons
D. Both are paramagnetic

Answer: C

- Watch Video Solution

48. The coordination number of $N i^{2+}$ is 4 .
$\mathrm{NiCl}_{2}+K C N($ excess $) \rightarrow A($ cyano comples $)$
$\mathrm{NiCl}_{2}+$ conc. HCl (excess) $\rightarrow B$ (chloro complex)
The hybridisation of A and B are
A. $d s p^{2}, s p^{3}$
B. $s p^{3}, s p^{3}$
C. $d s p^{2}, d s p^{2}$
D. $s p^{3} d^{2}, d^{2} s p^{3}$

Answer: A

- Watch Video Solution

49. Match each coordination compound in Column I with an appropriate pair of characteristics from Column II and select the correct answer using the codes given below the Column (en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, atomic
number : $T i=22, C r=24, C o=27, P t=78$)

Column I
(A) $\quad\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ Column II

1. Paramagnetic and exhibits ionisation isomerism
(B) $\quad\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2} \quad$ 2. Diamagnetic and exhibits cis-trans isomerism
(C) $\quad\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3} \quad$ 3. Paramagnetic and exhibits cis-trans isomerism
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}$ 4. Diamagnetic and exhibits ionisation isomerism
A B C D
A.
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$

A B C D
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
A B C D
C.
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
A B C D
D.
$\begin{array}{llll}1 & 3 & 4 & 2\end{array}$

Answer: B

Watch Video Solution

50. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is........
51. Both potassium ferrocyanide and potassium ferricyanide are diamagnetic.

- Watch Video Solution

52. The electron density in the $x y$ plane in $3 d_{x^{2}-y^{2}}$ orbital is zero

- Watch Video Solution

53. For the octahedral complexes of Fe^{3+} in SCN^{-}(thiocyanato -S) and in $C N^{-}$ligand environments, the difference between the spin only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is [atomic number of $F e=26$]

- Watch Video Solution

54. In the comples acetylbromidodicarbonylbis (triethylphosphine) iron (II), the number of $F e-C$ bond (s) is

- Watch Video Solution

55. $E D T A^{4-}$ i9s ethylenediamine tetraacetate ion The total number of $N-C O-O$ bond angles in $[C o(E D T A)]^{-1}$ complex ion is .

- Watch Video Solution

56. NiCI_{2} in the presence of dimethy1 glyoxime $(D M G)$ gives a complex which precipitates in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ giving a bright red colour
(a) Draw its structure and show H bonding
(b) Give the oxidation state of Ni and its hybridisation
(c) Predict whether it is paramagnetic or dimagnetic .
57. Write the IUPAC name of the compound $K_{2}\left[\operatorname{Cr}(\mathrm{NO})(\mathrm{CN})_{4}\left(\mathrm{NH}_{3}\right)\right]$. Spin magnetic moment of the complex $\mu=1.73 B M$. Given the structure of anion.

- Watch Video Solution

58. Deduce the structures of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ considering the hybridisation of the metal ion. Calculate the magnetic moment (spin only) of the species.

- Watch Video Solution

59. A metal complex having composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2} \mathrm{Br}$ has been isolated in two forms A and B The A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute queous ammonia, whereas B gives a pale-yellow precipitate soluble in concentrated ammonia Write the formula of A and B and state the hybridisation of chromium in each. Calculate their magnetic moment (spin only value).

(D) Watch Video Solution

60. Draw the structures of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ Write the hybridisation of atomic orbitals of the transition metal in each case.

- Watch Video Solution

61. Identify the complexes which are expected to be coloured.
a. $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$, b. $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right]^{\oplus} \mathrm{BF}_{4}{ }^{\ominus}$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{\ominus}$, d. $\mathrm{K}_{3}\left[V F_{6}\right]$
A. $\left[\operatorname{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$
B. $\left[\mathrm{Cu}\left(\mathrm{NCH}_{3}\right]^{+} \mathrm{BF}_{4}\right.$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $K_{3}\left[V F_{6}\right]$

Answer: A

Watch Video Solution

62. Give reasons in two or three sentences only for the following "The species $\left[\mathrm{CuCl}_{4}\right]^{2-}$ exists, while $\left[\mathrm{CuI}_{4}\right]^{2-}$ does not" .

- Watch Video Solution

63. What is the relationship between the following two square planar complex ions? The complex ions are

A. linkage isomers
B. coordination isomers
C. geometric isomers
D. the same

Answer: D

- Watch Video Solution

Physics

1. Addition of excess aqueous ammonia to a pink coloured aqueous solution of $\mathrm{MCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{X})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as $1: 3$ electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is $3.87 B . M$., whersas it is zero for complex Y.

Among the following options, which statement (s) is (are) correct ?
A. The hybridisation of the central metal ion in Y is $d^{2} s p^{3}$
B. Addition of silver nitrate to Y given only two equivalents os silver chloride
C. When X and Y are in equilibrium at $0^{\circ} \mathrm{C}$, the colour of the solution is pink
D. Z is a tetrahedral complex

Answer: A::B::D

- View Text Solution

2. Match the complexes in Column I with their properties listed in Column II

Column I

Column II
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2} \quad$ p. Geometrical isomers
(B) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \quad$ q. Paramagnetic
(C) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl} \quad$ r. Diamagnetic
(D) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \quad$ s. Metal ion with +2
oxidation state
A B C D
A.
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
A B C D
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
C. $\begin{array}{cccc}\text { A } & \text { B } & \text { C } & \text { D } \\ 2 & 1 & 3 & 4\end{array}$
D. $\begin{array}{llll}\text { A } & \text { B } & \text { C } & \text { D } \\ 1 & 3 & 4 & 2\end{array}$

Answer: A::B::C::D

- View Text Solution

3. A, B and C are three complexes of chromium (III) with the empirical formula $\mathrm{H}_{2} \mathrm{O}_{6} \mathrm{Cl}_{3} \mathrm{Cr}$. All the three complexes have water and chloride ion as ligands.

Complex A does not react with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, whereas complexes B and C lose 6.75% and 13.5% of their original mass, respectively, on treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Identify A, B and C

- View Text Solution

4. Which of the following are all features of isomers of $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$? Isomers are
A. superimosable mirror images with identical chemical forumulae and the same chemical reactivities with other compounds that are not optical isomers
B. non-superimosable mirror images with identical chemical formulae and the same chemical reactivities with other compounds that are not optical isomers
C. non-superimposable mirror images with dissimilar chemical formulae but similar chemical reactivities with other compounds that are not optical isomers
D. superimposable mirror images with identical chemical formulae and similar physical properties

Answer: B

5. What is the relationship between the following two complex ions ?
(I) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]^{+}$
(II) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{ONO}) \mathrm{Cl}\right]^{+}$

The complex ions are
A. coordination isomers
B. optical isomers
C. linkage isomers
D. geometric isomers

Answer: C

- View Text Solution

6. Which of the following complexes have doubtful existence ?
A. $\left[\mathrm{Fe}\left(\mathrm{CO}_{5}\right)\right]$
B. $\left[S c(C O)_{6}\right]^{3+}$
c. $\left[\mathrm{Co}(\mathrm{CO})_{6}\right]$
D. $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{4+}$

Answer: B::D

- View Text Solution

7. The paramagnetic complexes is (are)
A. $\left[C r(C N)_{6}\right]^{4-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[F e(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{CoCl}_{6}\right]^{3-}$

Answer: A::C::D

8. Complexes expected to be coloured in solution is/are
A. $K_{5}\left[C r F_{6}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $K_{3}\left[F e C l_{6}\right]$
D. $\mathrm{K}_{3}\left[\mathrm{CoCl}_{6}\right]$

Answer: B::D

- View Text Solution

9. In case of octahedral compex, if the e_{g} orbitals $\left(d_{x^{2}-y^{2}}\right.$ and $\left.d_{z^{2}}\right)$ are asymmetricaaly filled, their degeneracy is destroyed and the ligands approaching along $+Z$ and $-Z$ directions experiences different amount of repulsions than the ligands approaching along the $+X,-X,+Y$ and $-Y$ directions. As a result, the symmetrical nature of such complexes is lost and either elongation or compression along Z -axis taken place. Answer the following three questions based on
the above situation.
In which of the following case, no such elongation or compressions are expected?
A. d^{4} - weak ligands
B. d^{5} - weak ligands
C. d^{7} - strong ligands
D. d^{9} - strong or weak ligands

Answer: B

- View Text Solution

10. In case of octahedral compex, if the e_{g} orbitals $\left(d_{x^{2}-y^{2}}\right.$ and $\left.d_{z^{2}}\right)$ are asymmetricaaly filled, their degeneracy is destroyed and the ligands approaching along $+Z$ and $-Z$ directions experiences different amount of repulsions than the ligands approaching along the $+X,-X,+Y$ and $-Y$ directions. As a result, the symmetrical nature of such complexes is lost and either elongation or compression
along Z-axis taken place. Answer the following three questions based on the above situation.

Which of the following is incorrect regarding $\mathrm{K}_{4}\left[\mathrm{CrF}_{6}\right]$?
A. It has two long and four short $C r-F$ bonds
B. It has four long and two short $C r-F$ bonds
C. spin only magnetic moment of the complex is approximately 4.9 Bm
D. If $C r$ is replaced by $C u$, similar types of deformation in the regular octahedral geometry are observed

Answer: B

- View Text Solution

11. In case of octahedral compex, if the e_{g} orbitals $\left(d_{x^{2}-y^{2}}\right.$ and $\left.d_{z^{2}}\right)$ are asymmetricaaly filled, their degeneracy is destroyed and the ligands approaching along $+Z$ and $-Z$ directions experiences different amount of repulsions than the ligands approaching along the $+X,-X,+Y$ and $-Y$ directions. As a result, the symmetrical
nature of such complexes is lost and either elongation or compression along Z-axis taken place. Answer the following three questions based on the above situation.

Select the coorect statement.
A. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is tetrahedral
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar
C. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ is square planar
D. $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{2-}$ is tetrahedral

Answer: B

- Watch Video Solution

 coloured.

Reason $d-d$ transition is not possible in $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{4}$
A. Both assertion and reason are correct and reason is the correct explanation of the assertion.
B. Both assertion and reason are correct but reason is not the correct explantion
C. Assertion is correct but reason is incorrect
D. Assertion is incorrect but reason is correct

Answer: D

- View Text Solution

13. Assertion $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ has longer $\mathrm{C}-\mathrm{O}$ bond length than the same in $\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]$

Reason There is greater extent of $d \pi-\rho \pi$ back bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ than in $\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]$

- View Text Solution

14. Match the quantity of Column I with the quantity of Column II

Column I
(A) Form coloured aqueous p solution
(B) Paramagnetic q
(C) Can show both linkage and r cis-trans isomerism
(D) Has effective atomic $\mathrm{s} \quad \mathrm{Na}_{2}\left[\mathrm{CrCl}_{4}\right]$ number of a noble gas

Column II
$\mathrm{K}_{4}[\mathrm{Fe}(\mathrm{CN})]_{6}$
$\mathrm{Ca}[\mathrm{Ni}(\mathrm{CN})]_{4}$
$\mathrm{K}_{2}[\mathrm{Cu}(\mathrm{CN})]_{4}$

$$
\mathrm{Na}_{2}\left[\mathrm{CrCl}_{4}\right]
$$

- View Text Solution

15. How many stereoisomers exist for the complex $\left[\mathrm{Co}(e n)_{2} \mathrm{ClNO}_{2}\right] \mathrm{Br}$?

- View Text Solution

16. The complex $C a_{2}[M(C N)]_{6}$ has spin only magnetic moment $2.83 B M$ and the complex $K_{2}\left[M C l_{4}\right]$ has spin only magnetic moment of 4.9 BM . How many electrons were present in valence shell d-orbital of the neutral gaseous atom on M ?
