

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

P BLOCK ELEMENTS

Jee Main And Advanced

1. The increasing order of atomic radii of the following Group 13 element is

A. Al < Ga < In < Tl

 $\mathsf{B.}\,Ga < Al < In < Tl$

 $\mathsf{C.}\,Al < In < \text{ Ga It TI}$

D. Al < Ga < Tl < In

Answer: B

2. How can the following reaction be made to proceed in forward direction ?

 $B(OH)_3 + NaOH \Leftrightarrow Na[B(OH)_4].$

A. Addition of cis 1,2-diol

B. Addition of borax

C. Addition of trans 1,2-diol

D. Addition of Na_2HPO_4

3. H_3BO_3 is.

A. monobasic acid and weak Lewis acid

B. monobasic and weak Bronsted acid

C. monobasic and strong Lewis acid

D. tribasic and weak Bronsted acid

Answer: A

Watch Video Solution

4. In compounds of type ECl_3 where E = B, P, As, Bi. The angles Cl - E - Cl for different E are in the order :

A. B > P = As = Bi

 $\mathsf{B}.\,B > P > As > Bi$

 $\mathsf{C}.\,B < P = As = Bi$

D.
$$B < P < As < Bi$$

Answer: B

5. Moderate electrical conductivity is shown by

A. silica

B. graphite

C. diamond

D. None of the above

Answer: B

Watch Video Solution

6. Among the following, the correct statement (s) is (are)

A. $Al(CH_3)_3$ has the three-centre two-electron bonds in its

dimeric structure

- B. The Lewis acidity of BCl_3 is greater than that of $AlCl_3$
- C. $AlCl_3$ has the three-centre two-electron bonds in its dimeric

structure

D. BH_3 has the three-centre two-electron bonds in its dimeric

structure

Answer: A::B::C

7. The crystalline form of borax has

- A. tetranuclear $ig[B_4O_5(OH)_4ig]^{2-}$ unit
- B. all boron atoms in the same plane
- C. equal number of sp^2 and sp^3 hybridised boron atoms
- D. one terminal hydroxide per boron atom

Answer: A::C::D

- 8. The correct statement (s) for orthoboric acid is/are
 - A. It behaves as a weak acid in water due to self ionisation
 - B. Acidity of its aqueous solution increases upon addition of

ethylene glycol

C. It has a three-dimensional structure due to hydrogen

bonding

D. It is a weak electrolyte in water

Answer: B::D

9. In the following reaction.

 $2X+B_2H_6
ightarrow \left[BH_2(X)_2
ight]^\oplus \left[BH_4
ight]^{oldsymbol{\Theta}}$

The amine (s)x is /are.

A. NH_3

B. CH_3NH_2

 $\mathsf{C}.\,(CH_3)_2NH$

D. $(CH_3)_3 N$

Answer: A::B::C

Watch Video Solution

10. Boron always forms covalent compound.

The small size of B^{3+} favours formation of covalent compound.

A. Statement I is correct, Statement II is correct Statement II is

the correct explanation of Statement I

B. Statement I is correct, Statement II is correct Statement II is

no the correct explanation of Statement I

C. Statement I is correct, Statement II is incorrect

D. Statement I is incorrect, Statement II is correct

11. Statement I In water, orthoboric acid behaves as a weak monobasic acid.

Statement II In water, orthoboric acid acts as a proton donor.

A. Statement I is correct, Statement II is correct Statement II is

the correct explanation of Statement I

B. Statement I is correct, Statement II is correct Statement II is

no the correct explanation of Statement I

C. Statement I is correct, Statement II is incorrect

D. Statement I is incorrect, Statement II is correct

12. $Al(OH)_3$ is amphoteric is nature.

Al - O and O - H bonds can be borken with equal ease in $Al(OH)_3$.

A. Statement I is correct, Statement II is correct Statement II is

the correct explanation of Statement I

B. Statement I is correct, Statement II is correct Statement II is

no the correct explanation of Statement I

C. Statement I is correct, Statement II is incorrect

D. Statement I is incorrect, Statement II is correct

13. Match the following

	Column I		Column II
A.	$\operatorname{Bi}^{3+} \to (\operatorname{BiO})^+$	p.	Heat
B.	$[AlO_2]^- \rightarrow Al(OH)_3$	q.	Hydrolysis
С.	$\mathrm{SiO}_4^{4-} \rightarrow \mathrm{Si}_2\mathrm{O}_7^{6-}$	r.	Acidification
D.	$(B_4O_7^{2^-}) \rightarrow [B(OH)_3]$	s.	Dilution by water

Watch Video Solution

14. The two types of bonds present in B_2H_6 are covalent and _____.

Watch Video Solution

15. The basic nature of the hydroxides of group 13 decreases progessively down the group.

Watch Video Solution

16. All the Al - Cl bonds in Al_2Cl_6 are equivalent.

17. Three moles of B_2H_6 are completely reacted with methanol.

The number of moles of boron containing product formed is.

Watch Video Solution

18. The value of n in the molecular formula $Be_nAl_2SiO_{18}$ is

19. AIF_3 is insoluble in anhydrous HF but when little KF is added to the compound it becomes soluble On addition of BF_3 , AIF_3 precipitated Write the balanced chemical equations . **20.** How is boron obtained from borax ? Give the chemical reactions involved. Draw the structure of B_2H_6 and give its reaction with HCl.

21. Compound (X) on reduction with $LiAlH_4$ gives a hydride (Y) containing 21.72 % hydrogen along with other products. The compound (Y) reacts with air explosively resulting in formation of boron trioxide. Identify (X) and (Y).

Give balanced reactions involved in the formation of (Y) and its reaction with air. Give the structure of (Y).

22. Aluminium sulphide gives a foul odour when it becomes damp.

Write a balanced chemical equation for the reaction.

23. Anhydrous $AlCl_3$ is covalent. From the date given below, predict whether it would remain covalent or become ionic in aqueous solution. (Ionisation energy for Al is $1537kJmol^{-1}$)

$$\Delta_{
m hydration} f \,\, {
m or} \,\, Al^{3\,+} = \, - \, 4665 k Jmol^{-1}$$

$$\Delta_{
m hydration} f \, {
m or} \, Cl^{\,\Theta} = - \, 381 k Jmol^{-1}.$$

Watch Video Solution

24. The name of the structure of silicates in which three oxygen atoms of $[SiO_4]^{4-}$ are shared is

A. pyrosilicate

B. sheet silicate

C. linear chain silicate

D. three-dimensional silicate

Answer: A

25. Me_2SiCl_2 on hydrolysis will produce

A. $(Me)_2Si(OH)_2$

 $\mathsf{B.}\,(Me)_2Si=O$

C.
$$\left[-O - (Me)_2 Si - O -
ight]_n$$

D. $Me_2SiCl(OH)$

Answer: C

26. Identify the correct order of acidic strength of CO_2 , CuO, CaO and H_2O .

A. $CaO < CuO < H_2O < CO_2$

B. $H_2O < CuO < CaO < CO_2$

C. $CaO < H_2O < CuO < CO_2$

D. $H_2O < CO_2 < CaO < CuO$

Answer: A

Watch Video Solution

27. which one of the following oxides is neutral?

A. CO

 $\mathsf{B.}\,SnO_2$

 $\mathsf{C}.ZnO$

D. SiO_2

Answer: A

28. Which halide is stable and has doubtful existence?

A. CCl_4

B. GeI_4

C. SnI_4

D. PbI_4

Answer: D

29. With respect to graphite and diamond, which of the statements given below are correct?

(1) Graphite is harder than diamond.

- (2) Graphite has higher electrical conductivity than diamond.
- (3) Graphite has higher thermal conductivity than diamond.

(4)Graphite has higher C - C bond order than diamond.

A. Graphite is harder than diamond

B. Graphite has higher electrical conductivity than diamond.

C. Graphite has higher thermal conductivity than diamond.

D. Graphite has higher C - C bond order than diamond

Watch Video Solution

30. Assertion (A) $:Pb^{+4}$ compounds are stronger oxidiising agents than Sn^{4+} compounds .

Reason (R): The higher oxidation states for group 14 elements are more stable for the heavier members of the group due to inert pair effect .

A. Statement I is correct, Statement II is correct Statement II is

the correct explanation of Statement I

B. Statement I is correct, Statement II is correct Statement II is

no the correct explanation of Statement I

- C. Statement I is correct, Statement II is incorrect
- D. Statement I is incorrect, Statement II is correct

Answer: A

Watch Video Solution

31. Between $SiCl_4$ and CCl_4 , only $SiCl_4$ reacts with water.

 $SiCl_4$ is ionic and CCl_4 is covalent.

A. Statement I is correct, Statement II is correct Statement II is

the correct explanation of Statement I

B. Statement I is correct, Statement II is correct Statement II is

no the correct explanation of Statement I

- C. Statement I is correct, Statement II is incorrect
- D. Statement I is incorrect, Statement II is correct

Answer: C

32. A liquid which is permanently supercooled is frequently called		
a		
O Watch Video Solution		

33. One recently discovered allotrope of carbon $(e.\ g.\ C_{60})$ is

commonly known as,

Watch Video Solution

34. On controlled hydrolysis and condensation, R_3SiCl yields

Watch Video Solution

35. The hydrolysis of alkyl-substituted chlorosilanes gives

39. Carbon tetrachloride burns in air when lighted ti give phosgene.

40. Starting from $SiCl_4$ prepare the following in steps not exceeding the number give in parantheses (give reaction only) a. Silicon (1)

b. Linear silicon containing methyl groups only (4)

c. $Na_2SiO_3(3)$.

Watch Video Solution

41. Draw the structure of a cyclic silicate, $\left(Si_{3}O_{9}
ight)^{6-}$ with proper

labelling.

42. Write the balanced equation for the preparation of crystalline

silicon from $SiCl_4$.

43. Each entry in column X is in some way related to the entries in

column and Z. Match the appropriate entries.

Х	Y	Z	
Yeast	Fermentation	Ethanol	
Mica	Graphite	Abrasive	
Superphosphate	Crystalline cubic	Insulator	
Carbon fibres	Layer structure	Fertiliser	
Rock salt	Diamond structure	Reinforced plastics	
Carborundum	Bone ash	Preservative	

columns Y and Z. Match the appropriate entries.

Watch Video Solution

A. $B_2H_6+H_2O
ightarrow$

B. $B_2H_6 + HCl
ightarrow$

 $\mathsf{C.}\, Na_2B_4O_7 + H_2SO_4(aq) \rightarrow$

D. $Ca_{2}B_{6}O_{11}+SO_{2}(aq)
ightarrow$

Answer: B

Watch Video Solution

48. Which is incorrect statement regarding B_2H_6 ?

A. It is a strong reducing agent

B. On heating, gives amorphous boron

C. It is a planar molecule

D. With excess $(CH_3)_3N$, undergo symmetrical cleavage

Answer: C

Watch Video Solution

49. Which is not truw regarding silicones?

A. $(CH_3)_2SiCl_2$ on hydrolysis in excess of water gives a linear

chain silicone

B. $(CH_3)_2SiCl_2$ on hydrolysis in limited supply of water gives

mainly six membered cyclic silicone

C. $(CH_3)_2SiCl$ is added during synthesis of silicone to control

the molar mass

D. Silicones are all solid plastic at room temperature

Answer: D

50. Select the incorrect statement.

- A. In $Si_2O_7^{6-}$, there is one shared oxygen
- B. $Si_6O_{18}^{12-}$ represents a cyclic silicate with two shared oxygen

per silicon atom

C. Pyroxene is a liear chain silicate with two shared oxygen per

silicon atom

D. In three-dimensional network silicate, there are three shared

oxygen per silicone atom.

Answer: D

Watch Video Solution

51. Carbon monoxide is prepared by

A. heating formic acid with conc. H_2SO_4

B. heating potassium ferrocyanide with conc. H_2SO_4

C. heating malonic acid with P_4O_{10}

D. hydrolysis of Mg_2C_3

Answer: A::B

52. Which is/are correct ?

A. Al acts as a reducing agent

B. Al does not react with steam even at higher temperature

C. Al forms a number of alloys with other metals

D. Al is ionic in all its compounds

Answer: A::B::C

53. About $95\,\%$ of the earth's crust is composed of silicate minerals, alumino silicate clay r silica. Silicates are classified on the basis of bonding and the metal ions present in them. Some of the common categories of silicates are (I) orthosilicates, (II) pyrosilicates (III) cyclic silicates, (IV) chain silicates (V) amphiboles, (VI) sheet silicates (VII) three-dimensional network silicates Which of the following is not true regarding cyclic silicates?

A. Its general formula $(SiO_3)_n^{2n-}$

B. It has two shared oxygen per tetrahedron

C. Both $Ca_3[Si_3O_9]$ and $Be_3al_2[Si_6O_{18}]$ are cyclic silicates

D. Pyroxene is a chain silicate but do not contain cyclic

structure

Answer: D

54. About 95% of the earth's crust is composed of silicate minerals, alumino silicate clay r silica. Silicates are classified on the basis of bonding and the metal ions present in them. Some of the common categories of silicates are
(I) orthosilicates , (II) pyrosilicates
(III) cyclic silicates , (IV) chain silicates
(V) amphiboles , (VI) sheet silicates

(VII) three-dimensional network silicates

What is true regarding a double chain silicate 'Amphiboles' ?

A. It has two shared oxygen per tetrahedron

B. Its empirical formula is $(SiO_3)_n^{6n-1}$

C. It is formed by joining two single chain silicates through free

 O^{-} .

D. All the four oxygen of the tetrahedraon are shared.

Answer: B

Watch Video Solution

55. About 95% of the earth's crust is composed of silicate minerals, alumino silicate clay r silica. Silicates are classified on the basis of bonding and the metal ions present in them. Some of the common categories of silicates are

(I) orthosilicates , (II) pyrosilicates

(III) cyclic silicates , (IV) chain silicates

(V) amphiboles , (VI) sheet silicates

(VII) three-dimensional network silicates

Which is incorrect regarding three dimensional netwirk silicates ?

A. It is pure SiO_2

B. It has all four oxygen of tetrahedron shared

C. Feldspars, zeolites and ultramarines are the common

examples

D. It contains some isomorphously substituted $Al^{3\,+}$ ion

- **56.** Assertion: Al forms $[AIF_6]^{3-}$ but B does not from $[BF_6]^{3-}$ Reason: BF_3 on hydrolysis gives HBF_4 .
 - A. Both assertion and reason are correct and reason is the

correct explanation of the assertion.

B. Both assertion and reason are correct but reason is not the

correct explanation of assertion.

- C. Assertion is correct but reason is incorrect
- D. Assertion is incorrect but reason is correct.

Answer: B

57. Assertion Hydrolysis of $(CH_3)-(2)SiCl_2$ results in linear

chain silicates.

Reason Adding of some $(CH_3)_3SiCl_2$ control the molecular weight of silicones.

A. Both assertion and reason are correct and reason is the

correct explanation of the assertion.

B. Both assertion and reason are correct but reason is not the

correct explanation of assertion.

C. Assertion is correct but reason is incorrect

D. Assertion is incorrect but reason is correct.

Answer: B

58. Match the quantity of Column I with the quantity of Column II.

	Column I	Column II	
A	Colemanite	p.	Na 3 AIF6
Β.	Cryolite	q.	KAI(SO4)2 · 12H20
C.	Bauxite	r.	Ca ₂ B ₆ O ₁₁ 5H ₂ O
D.	Potash alum	S.	Na 2B407 · 10H20
E.	Borax	t.	Al ₂ O ₃ ·2H ₂ O

59. In borax $(Na_2B_4O_7.10H_2O)$ how many B - O - B bonds are

present?

60. Give the basicity of orthoboric acid.

- 1. Select correct statement (s).
 - A. Borax is used as a buffer
 - B.1M borax solution reacts with equal volumes of 2mHCl

solution

C. Titration of borax can be made using methyl orange as the

indicator

D. Coloured bead obtained in borax-bead test contains

metaborate

Answer: A::B::C::D

View Text Solution

2. Catalytic oxidation of NH_3 (passing a mixture of NH_3 and air over heated Pt gauge) gives.

A. NO

B. N_2O

 $\mathsf{C}.\,N_2O_3$

D. N_2O_5

Answer: a

O Watch Video Solution

3. Which is a wrong statement ?

A. Rhombic sulphur disproportionate in aqueous alkali

B. In $Na_2S_2O_3$, the two sulphur are in different oxidation

states

C. Passing H_2S gas through aqueous Na_2SO_3 gives $Na_2S_2O_3$

D. $2Na_2S_2O_3+Cl_2
ightarrow Na_2S_4O_6+2NaCl$

Answer: d

4. Which of the following reactions/product is wrongly matched?

A.
$$Cl_2 + HgO
ightarrow Cl_2O + HgCl_2$$
. HgO

B. $NaClO_3 + H_2C_2O_4
ightarrow CIO_2 + CO_2 + Na_2C_2O_4$

 $\mathsf{C}. \ CIO_4 + NaOH
ightarrow NaClO_3 + H_2O$

D. $Cl_2O_6 + NaOH
ightarrow NaClO_3 + NaClO_4 + H_2O$

Answer: c Watch Video Solution

- 5. The solubility of iodine in water is increased by
 - A. boiling the solution
 - B. adding $NaNO_3$
 - C. adding HI acid
 - D. addition of potassium iodide

Answer: d

6. XeF_4 reacts with SF_4 to give

A. $XeOF_4$ and SO_2

B. Xe and SF_6

C. XeF_2 and SF_6

D. SF_6 and XeO_3

Answer: b

7. Which of the following statement is/are true for XeF_6 ?

A. Its partial hydrolysis gives $XeOF_4$

B. Its reaction with silica gives $XeOF_4$

C. It is prepared by the reaction of XeF_4 and O_2F_2

D. Its reaction with XeO_3 gives $XeOF_4$

- 8. Phosphine is obtained by the reaction when
 - A. white phosphorus is heated with NaOH
 - B. Ca_3P_2 reacts with water
 - C. red phosphorus is heated with NaOH
 - D. phosphorus is heated in a current of hydrogen

Answer: a,b

9. Which of the following statement is /are true for sodium thiosulphate ?

A. It acts as an antichlor

B. It is used as an reducing agent in iodometric titration

C. It reacts with hydrochloric acid to form SO_2 and sulphur

D. It is used in photography as hypo to dissolve excess of AgBr

as soluble complex

Answer: a,b,c,d

Watch Video Solution

10. Ammonia is produced on large scale by Haber-Bosch process which involve the following reaction

 $N_2(g) + 3H_2 \Leftrightarrow 2NH_3 + ext{Heat...}(ext{i})$

The condition used are 200 atmosphere pressure, $450^{\circ}C$ and a catalst "Pormoted Iron".

Originally H2 required for the reaction was produced by electrolysis of water. This was expensive a cheaper method using coke and steam was then used. Now a days, the $H_2(g)$ is produced from hydrocarbons

 $CH_4 + 2H_2O \Leftrightarrow CO_2 + 4H_2$...(ii)

 $CH_4 + H_2O \Leftrightarrow CO + 3H_2$...(iii)

Some air is added the O_2 burns with some H_2 leaving behind $N_2(g)$ to give the required ratio of $N_2: H_2 = 1:3$ Answer the following questions based on the above information. Although the reaction is exothermic, it is being carried out at

higher temperature beacause

A. it remove the volatile impurities.

B. activate the catalyst

C. maintain a desirable rate of reaction.

D. to have the less proportion of CO.

Answer: c

11. Ammonia is produced on large scale by Haber-Bosch process which involve the following reaction

 $N_2(g) + 3H_2 \Leftrightarrow 2NH_3 + ext{Heat...}(i)$

The condition used are 200 atmosphere pressure, $450^{\circ}C$ and a catalst "Pormoted Iron".

Originally H2 required for the reaction was produced by electrolysis of water. This was expensive a cheaper method using coke and steam was then used. Now a days, the $H_2(g)$ is produced from hydrocarbons

 $CH_4+2H_2O \Leftrightarrow CO_2+4H_2$...(ii) $CH_4+H_2O \Leftrightarrow CO+3H_2$...(iii)

Some air is added the O_2 burns with some H_2 leaving behind $N_2(g)$ to give the required ratio of N_2 : $H_2 = 1$: 3

Answer the following questions based on the above information. CO produced in the reaction (iii) must be removed continuously during the reaction because.

A. it reacts with product ammonia

B. it poison the catalyst

C. it removes with H_2

D. it removes with N_2

Answer: b

12. Ammonia is produced on large scale by Haber-Bosch process

which involve the following reaction

 $N_2(g) + 3H_2 \Leftrightarrow 2NH_3 + ext{Heat...}$ (i)

The condition used are 200 atmosphere pressure, $450^{\circ}C$ and a catalst "Pormoted Iron".

Originally H2 required for the reaction was produced by electrolysis of water. This was expensive a cheaper method using coke and steam was then used. Now a days, the $H_2(g)$ is produced from hydrocarbons

 $CH_4 + 2H_2O \Leftrightarrow CO_2 + 4H_2$...(ii)

 $CH_4 + H_2O \Leftrightarrow CO + 3H_2$...(iii)

Some air is added the O_2 burns with some H_2 leaving behind $N_2(g)$ to give the required ratio of $N_2\colon H_2=1\colon 3$

Answer the following questions based on the above information. Besides the above process, there are several other methods of preparation of ammonia. All of the following producess ammonia except.

A. Hydrolysis of CaNCN

 $\texttt{B.}~(NH_4)_2SO_4 + Ba(OH)_2 \rightarrow$

C. $Ca_3N_2 + H_2O
ightarrow$

 $\mathsf{D.}\left(NH_{4}\right) _{2}Cr_{2}O_{7}\overset{heat}{\longrightarrow}$

Answer: d

Watch Video Solution

13. Statement-1 : Both H_3PO_3 and H_3PO_4 have the same number of hydrogen atoms but H_3PO_4 is a tribasic acid and H_3PO_3 is a dibasic acid.

Statement-2 : 1 mol of H_3PO_3 is neutralised by 2 mol of NaOH

while 1 mol of H_3PO_4 is neutralised by 3 mol of NaOH

A. Both asseration and reason are correct but reason is not the correct explanation.

B. Both asseration and reason are correct but reason is not the

correct explanation.

C. Asseration is correct but reason is wrong.

D. Asseration is wrong but reason is correct.

Answer: b

14. Assertion: A pink coloured solution of potassium permanganate turns green on passing O3 through it

Reason K_2MnO_4 is oxidised by O_3 to $KMnO_4$.

A. Both asseration and reason are correct but reason is not the

correct explanation.

B. Both asseration and reason are correct but reason is not the

correct explanation.

C. Asseration is correct but reason is wrong.

D. Asseration is wrong but reason is correct.

Answer: d

15. In S_3O_9 how many pi (π) bonds are present?

Watch Video Solution

16. In N_2O_5 , how many oxygen atoms are using all its 2p-orbitals in

hybridisation?.

1. The order of the oxidation state of the phosphours atom in $H_3PO_2, H_3PO_4, H_3PO_3$ and $H_4P_2O_6$ is

A.
$$H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$$

B. $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_2PO_2$

C. $H_3PO_2 > H_3PO_3 > H_4P_2P_6 > H_3PO_4$

D. $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$

Answer: B

2. The species in which the N-atom is in a state of sp hybridisation

is

A. NO_2^-

B. NO_3^-

 $\mathsf{C}.\,NO_2$

D. NO_2^+

Answer: D

Watch Video Solution

3. The pair in which phosphours atoms have a formed oxidation state of +3 is

A. phrophosphorous and hypophosphoric acids

B. orthophosphorous and hypophosphoric acids

C. pyrophosphorous and pyrophosphoric acids

D. orthophosphorous and pyrophosphorous acids

Answer: B

Watch Video Solution

4. The product formed in the reaction of $SOCl_2$ (thionyl chloride) with white phosphorous is.

A. PCI_3

 $\mathsf{B.}\,SO_2CI_2$

C. SCI_2

D. $POCI_3$

5. Which of the following properties is not shown by NO ?

A. It is paramagnetic in liquid state

B. It is a neutral oxide

C. It combines with oxygen to form nitrogen dioxide

D. Its bond order is 2.5

Answer: A

6. Concentrated HNO_3 , upon long standing, turns yellow-brown due to the formation of

A. NO

 $B.NO_2$

 $\mathsf{C}.\,N_2O$

D. N_2O_4

Answer: B

Watch Video Solution

7. Which of the following is the wrong statement?

A. ONCI and ONO^- are not isoelectronic

B. O_3 molecule is bent

C. Ozone is violet-black in solid state

D. Ozone is diamagnetic gas

Answer: C

Watch Video Solution

8. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reacation type, the oxidation states of phosphorus in phosphine and the other product are respectively:

A. redox reaction, -3 and -5

B. redox reaction, 3 and +5

C. disproportionation reaction, -3 and +5

D. disproportionation reaction , -3 and +3

Answer: C Watch Video Solution

9. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?

A. HNO_3, NO, NH_4CI, N_2

B. HNO_3, NO, N_2, NH_4CI

 $\mathsf{C}.\,HNO_3,\,NH_4CI,\,NO,\,N_2$

 $D. NO, HNO_3, NH_4CI, N_2$

Answer: B

10. Extra pure N_2 can be obtained by heating

A. NH_3 with CuO

B. NH_4NO_3

 $\mathsf{C.} \left(NH_4 \right)_2 Cr_2 O_7$

D. $Ba(N_3)_2$

Answer: D

11. The reaction of P with X leads selectively to P_4O_6 . X is

A. dry O_2

B. a mixture of O_2 and N_2

C. moist O_2

D. O_2 in the presence of aqueous NaOH

Answer: B

12. The percentage of p-character in the orbitals forming p-p bonds in P_4 is

A. 25

B. 33

C. 50

D. 75

Answer: D

13. Which of the following will not be oxidised by O_3 ?

A. *KI*

 $\mathsf{B.}\,FeSO_4$

C. $KMnO_4$

D. $K_2 MnO_4$

Answer: C

Watch Video Solution

14. Which gas is evolved when PbO_2 is treated with conc HNO_3 ?

A. NO_2

 $B.O_2$

 $\mathsf{C}.\,N_2$

Answer: B

15. Blue liquid which is formed at $-30\,^\circ C$ by mixing of two gases

is.

A. N_2O

B. N_2O_3

 $\mathsf{C.}\,N_2O_4$

D. N_2O_5

Answer: B

16. Thermodynamically most stable allotrope of phosphorus is :

A. Red

B. White

C. Black

D. Yellow

Answer: C

Watch Video Solution

17. Which of the following oxoacids of sulpher has -O-O- linkage ?

A. $H_2S_2O_6$

 $\mathsf{B}.\,H_2S_2O_8$

 $\mathsf{C}.\,H_2S_2O_3$

D. $H_2S_4O_6$

Answer: B

18. For H_3PO_3 and H_3PO_4 the correct choice is

A. H_3PO_3 is dibasic and reducing

B. H_3PO_3 is dibasic and non-reducing

C. H_3PO_4 is tribasic and reducing

D. H_3PO_3 is tribasic and non-reducing

Answer: A

19. Polyphosphates are used for softening agents because they

A. form soluble complexes with anionic species

B. precipitate anionic species

C. form soluble complexes with cationic species

D. precipitate cationic species

Answer: C

Watch Video Solution

20. The number of S-S bonds, in sulpher trioxide trimer (S_3O_9) is :

A. three

B. two

C. one

D. zero

Answer: D

21. Ammonia can be dried by :

A. conc. H_2SO_4

B. P_4O_{10}

 $\mathsf{C.}\, CaO$

D. anhydrous $CaCI_2$

Answer: C

22. Amongest H_2O , H_2S , H_2Se and H_2Te the one with highest boiling point is :

A. H_2O because of hydrogen bonding

B. H_2Te because of higher molecular weight

C. H_2S because of hydrogen bonding

D. H_2Se because of lower molecular weight

Answer: A

Watch Video Solution

23. The correct order of acidic strength is

A. $CI_2O_7 > SO_2 > P_4O_{10}$

 ${\rm B.}\, CO_2 > N_2O_5 > SO_3$

C. $Na_2O > MgO > AI_2O_3$

D. $K_2O > CaO > MgO$

Answer: A

Watch Video Solution

24. The number of P - O - P bonds in cyclic metaphosphoric

acid is.

A. zero

B. two

C. three

D. four

Answer: C

25. One mole of calciium phosphide on reaction with excess water gives

A. one mole of phosphine

B. two moles of phosphoric acid

C. two moles of phosphine

D. one mole of phosphorus pentaoxide

Answer: C

Watch Video Solution

26. Sodium thiosulphate is prepared by

A. reducing Na_2SO_4 solution with H_2S

B. boiling Na_2SO_3 solution with S in alkaline medium

C. neutralising $H_2S_2O_3$ solution with NaOH

D. boiling Na_2SO_3 solution with S in acidic medium

Answer: B

27. There is no S-S bond in

A. $S_2 O_4^{2-}$ B. $S_2 O_5^{2-}$ C. $S_2 O_3^{2-}$ D. $S_2 O_3^{2-}$

Answer: D

28. Which one of the following is the strongest base ?

A. AsH_3

B. NH_3

 $\mathsf{C}. PH_3$

D. SbH_3

Answer: B

Watch Video Solution

29. Among the trihalides of nitrogen, which is the least basic?

A. NF_3

B. NCI_3

C. NBr_3

D. NI_3

Answer: A

Watch Video Solution

30. Which of the followng oxides of nitrogen is a coloured gas ?

A. N_2O

 $\mathsf{B.}\,NO$

 $\mathsf{C}.\,N_2O_4$

D. NO_2

Answer: D

31. The bonds present in N_2O_5 are .

A. only ionic

B. covalent and coordinate

C. only covalent

D. covalent and ionic

Answer: B

Watch Video Solution

32. A gas that cannot be collected over water is.

A. N_2

 $B.O_2$

 $\mathsf{C}.\,SO_2$
D. PH_3

Answer: C

33. Ammonia gas can be dried by

A. conc H_2SO_4

B. P_2O_5

 $\mathsf{C.}\, CaCI_2$

D. quicklime

Answer: D

Watch Video Solution

34. Which of the following is incorrect statement ?

A. NO is heavier than O_2

B. The formula of heavy water is D_2O

C. N_2 diffuses faster than oxygen through an orifice

D. NH_3 can be used as a refrigerant

Answer: A

35. When chlorine reacts with cold and dilute solution of sodium

hydroxide, the products obtained are

A. CIO^- and CIO^-_3

B. CIO_2^- and CIO_3^-

C. $CI^{\,-}$ and $CIO^{\,-}$

D. CI^{-} and CIO_{2}^{-}

Answer: C

Watch Video Solution

36. Which among the following is the most reactive gt

A. CI_2

B. Br_2

 $\mathsf{C}.\,I_2$

 $\mathsf{D}.\,ICI$

Answer: D

Watch Video Solution

37. Which one has highest boiling point?

A. He

 $\mathsf{B.}\,Ne$

 $\mathsf{C}.\,Kr$

 $\mathsf{D}.\, Xe$

Answer: D

38. Under ambient condition , the total number of gases released products in the final step of the reaction scheme shown below is

Answer: C

39. Among the following oxioacids, the correct decreasing order of

acid strength is

A. $HOCI > HCIO_2 > HCIO_3 > HCIO_4$

B. $HCIO_4 > HOCI > HCIO_2 > HCIO_3$

 $\mathsf{C}.\,HCIO_4 > HCIO_3 > HCIO_2 > HOCI$

 $\mathsf{D}. HCIO_2 > HCIO_4 > HCIO_3 > HOCI$

Answer: C

Watch Video Solution

40. The shapes of XeO_2F_2 molecule is

A. trigonal bipyramidal

B. square planar

C. tetrahedral

D. see-saw

42. When I^{Θ} is oxidised by MnO_4^{Θ} in an alkaine medium, I^{Θ} converts into

A. $IO_3^{\,-}$

 $\mathsf{B}.\,I_2$

- $\mathrm{C.}\,IO_4^{\,-}$
- D. IO^-

Answer: A

Watch Video Solution

43. The correct order of acid strength is

A. $HCIO < HCIO_2 < HCIO_3 < HCIO_4$

 $\texttt{B.} HCIO_4 < HCIO_3 < HCIO_2 < HCIO$

 $\mathsf{C}.\,HCIO < HCIO_4 < HCIO_3 < HCIO_2$

 $\mathsf{D}.\,HCIO_4 < HCIO_2 < HCIO_3 < HCIO$

Answer: A

Watch Video Solution

44. Which of the following species is not a pseudo halide ?

A. CNO^{-}

B. $RCOO^-$

C. OCN^{-}

D. NNN^{-}

Answer: B

Watch Video Solution

45. The following acid have arrange in the order of decreasingstrength.Identifythecorrectorder.CIOH(I)BrOH(II)IOH(III)A. I > II > III

 $\mathsf{B.}\,II>I>III$

 $\mathsf{C}.\,III>II>I$

 $\mathsf{D}.\,I > III > II$

Answer: A

Watch Video Solution

46. KF combines with to form KHF_2 . The compound contains the species :

A. K^+, F^- and H^+

B. K^+, F^- and HF

C. K^+ and $[HF_2]^-$

D.
$$\left[KHF
ight]^+$$
 and F^+

Answer: C

Watch Video Solution

47. Bromine can be liberated form potassium bromide solution by

the action of

A. iodine solution

B. chlorine water

C. sodium chloride

D. potassium iodide

B. moisture

C. sunlight

D. pure oxygen

Answer: B

49. HBr and HI can reduce sulphurie acid, HCI can reduced $KMnO_4$ and HF can reduce.....

A. H_2SO_4

B. $KMnO_4$

 $\mathsf{C.}\,K_2 Cr_2 O_7$

D. None of these

Answer: A

Watch Video Solution

Objective Questions li

1. The nitrogen containing compound produced in the reaction of

 HNO_3 with P_4O_{10}

A. can also be prepared by reaction of P_4 and HNO_3

B. is diamagnetic

C. contains one N-N bond

D. reacts with Na metal producing a brown gas

Answer: B::D

2. The correct statement(s) about O_3 is/are

A. O - O bond lengths are equal

B. thermal decomposition of O_3 is endothermic

C. O_3 is diamagnetic in nature

D. O_3 has a bent structure

Answer: A::B::C

4. Ammonia, on reaction with hypochlorite anion, can form

A. NO

 $\mathsf{B.}\, NH_4CI$

 $\mathsf{C.}\,N_2H_4$

D. HNO_2

Answer: C

5. White phosphorus (P_4) has

A. six P - P single bonds

B. four P - P single bonds

C. four lone pairs of electrons

D. P-P-P angle of 60°

Answer: A::C::D

Watch Video Solution

6. Nitrozen (i) oxide is produced by

A. thermal decomposition of NH_4NO_3

B. disproportionation of N_2O_4

C. thermal decomposition of NH_4NO_2

D. interaction of hydroxylamine and nitrous acid

Answer: A::D

- 7. The correct statement(s) about the oxoacids, $HCIO_4$ and HCIO, is (are)
 - A. The central atom in both $HCIO_4$ and HCIO is sp^3 -hybridised
 - B. $HCIO_4$ is formed in the reaction between CI_2 and H_2O
 - C. The conjugate base of $HCIO_4$ is weaker base than H_2O
 - D. $HCIO_4$ is more acidic than HCIO because of the

resonance stabilisation of its anion

Answer: A::C::D

8. The colour of the X_2 molecules of group 17 elements changes

gradually from yellow to violet down the group. This is due to

A. decreases in $\pi * - \sigma *$ gap down the group

B. decrease in ionisation energy down the group

C. the physical state of X_2 at room temperature changes from

gas to solid down the group

D. decreases in HOMO - LUMO gap down the group

Answer: B::C

Watch Video Solution

9. The compound(s) with two lone pairs of electron on the central atom is (are)

A. BrF_5

B. CIF_3

 $\mathsf{C}. XeF_4$

Answer: B::C

10. The correct statement(s) regarding,

(i) $HCIO_{1}$, (ii) $HCIO_{2}$, (iii) $HCIO_{3}$ and (iv) $HCIO_{4}$ is (are)

A. the number of Cl = O bonds in (ii) and (iii) together is two

B. the number of lone pair of electrons on Cl in (ii) and (iii)

together is three

C. the hybridisation of Cl (in (iv) is sp^3

D. amongst (i) to (iv), the strongest acid is (i)

Answer: B::C

Assertion And Reason

 Statement I Nitrogen and oxygen are the main components in the atmosphere but these do not react to from oxides of nitrogen.
 Statement II the reaction between nitrogen and oxygen requires high temperature.

Watch Video Solution

2. Asseration: The elctronic structure of O_3 is:

Reason: structure is not allowed because octet around ${\cal O}$ cannot

be expanded

3. Statement I HNO_3 is a stronger acid than HNO_2 .

Statement II In HNO_3 , there are two nitrogen to oxygen bonds

whereas in HNO_2 there is only one.

4. Asseration:Although:Although PF_5 , PCl_5 and PBr_5 are known, the pentahalides of nitrogen have not been observed. Reason: Phosphorus has lower electronegative than nitrogen.

5. Upon heating $KCIO_3$ in presence of catalytic amount of MnO_2 , a gas W is formed. Excess amount of W reacts with white phosphours to given X. The reaction of X with pure HNO_3 gives Y and Z.

W and X are, respectively

A. O_2 and P_4O_{10}

B. O_2 and P_4O_6

C. O_3 and P_4O_6

D. O_3 and P_4O_{10}

Watch Video Solution

6. There are some deposits of nitrated and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. Which of the following statement is correct ?

A. Phosphates have no biological significance in humansB. Between nitrates and phosphates, phosphates are less abundant in earth's crust

C. Between nitrates and phosphates, nitrates are less

abundant in earth's crust

D. Oxidation of nitrates is possible in soil

Answer: C

7. There are some deposits of nitrated and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. Which of the following statement is correct ?

A. Between NH_3 and PH_3 , NH_3 is a better electron donor

because the lone pair of electrons occupies spherical 's' orbital and is less directional

B. Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair of electrons occupies sp^3 -orbital and is more directional

C. Between NH_3 and PH_3 , NH_3 is a better electron donor because the lone pair of electron occupies sp^3 -orbital and is more directional

D. Between NH_3 and Ph_3 , PH_3 is a better electron donor

because the lone pair of electrons occupied spherical 's'

orbital and is less directional

Answer: C

8. There are some deposits of nitrates and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. White phosphorous on reaction with NaOH gives PH_3 as one of

the products. This is a.

A. dimerisation reaction

B. disporportionation reaction

C. condensation reaction

D. precipitation reaction

Answer: B

Watch Video Solution

Passage Based Question

1. Upon heating $KCIO_3$ in presence of catalytic amount of MnO_2 , a gas W is formed. Excess amount of W reacts with white phosphours to given X. The reaction of X with pure HNO_3 gives Y and Z.

Y and Z are, respectively

A. N_2O_4 and HPO_3

B. N_2O_4 and H_3PO_3

C. N_2O_3 and H_3PO_4

D. N_2O_5 and HPO_3

Answer: A

Watch Video Solution

2. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

P and Q, respectively, are the sodium salts of

A. hypochlorous and chlorice acids

B. hypochlorous and chlorous acids

C. chloric and perchloric acids

D. chloric and hypochlorous acids

Watch Video Solution

3. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

R, S and T, respectively, are

A. SO_2CI_2, PCI_5 and H_3PO_4

B. SO_2CI_2, PCI_3 and H_3PO_3

C. $SOCI_2, PCI_3$ and H_3PO_2

D. $SOCI_2$, PCI_5 and H_3PO_4

Watch Video Solution

4. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry. 25mL of household bleach solution was mixed with 30mL of 0.50MKI and 10mL of 4N acetic acid. In the titration of the liberated iodine, 48mL of $0.25NNa_2S_2O_3$ was used to reach the

end point. The molarity of the household bleach solution is :

A. 0.48M

 $\mathsf{B}.\,0.96M$

 $\mathsf{C.}\,0.24M$

 ${\rm D.}\, 0.024M$

Answer: C

Watch Video Solution

5. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.
Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that oxoacid is:

A. CI_2O

 $\mathsf{B.}\,CI_2O_7$

 $\mathsf{C.}\,CIO_2$

D. CI_2O_6

Answer: A

6. The noble gases have closed-shell electronic cordigaration and are monatomic gases under normal condition .The low bolling points of the ligher noble gases aree due to the weak dispersion points of the ligher noble gases an due to the weak dispersion forces between the atoms and the alsence of other interalumic interactions.

The direct reaction of xenon with flarine loads to a series of compounds with water oxidation number +2, -4 and +6, XeF_4 reactsviolenatly with water to give XeO_2 . The compound of deduced axbibt nci strouchemistry and their goometries can be deduced considering the total number of electron puirs in the valence shell.

Argon is used in arc welding because of its

A. low reactivity with metal

B. ability to lower the melting point of metal

C. flammability

D. high calorific value

Answer: A

Watch Video Solution

7. The noble gases have closed-shell electronic cordigaration and are monatomic gases under normal condition .The low bolling points of the ligher noble gases aree due to the weak dispersion points of the ligher noble gases an due to the weak dispersion forces between the atoms and the alsence of other interalumic interactions.

The direct reaction of xenon with flarine loads to a series of compounds with water oxidation number +2, -4 and $+6, XeF_4$ reactsviolenatly with water to give XeO_2 .The compound of deduced axbibt nci strouchemistry and their goometries can be deduced considering the total number of electron puirs in the valence shell.

The structure of XeO_3 is

A. linear

B. planar

C. pyramidal

D. T-shaped

Answer: C

Watch Video Solution

8. Noble gases have compleately filled valance shall i.e. $m^2 s p^2$ exceps He (i.e) .Noble gases are monoomic under normal conductions .Law bolding point of the ligher noble gases are due

to weak van dor wads forces between the atoms and abance of any interature imaractions Xe reacts with F_2 so give a sourceof fouoxide mently XeF_2 , XeF_4 , XeF_4 , XeF_3 on complete hydrolyes gives $XeFe_3$,

 XeF_4 and XeF_4 are expected to be

A. oxidising

B. reducing

C. unreactive

D. strongly basic

Answer: B

Watch Video Solution

Match The Columns
The unbalanced chemical reactions given in Column I show missing reagent or condition (?) which are provided in Column II.
 Match Column I with Column II and select the correct answer using the codes gives below the Columns.

ColumnIColumnII
$$P. PbO_2 + H_2SO_4 \xrightarrow{?} PbSO_4 + O_2 + \text{other product}$$
 $1. NO$ $Q. Na_2S_2O_3 + H_2O \xrightarrow{?} NaHSO_4 + \text{other product}$ $2. I_2$ $R. N_2H_4 \xrightarrow{?} N_2 + \text{other product}$ $3. Warm$ $S. XeF_2 \xrightarrow{?} Xe + \text{other product}$ $4. CI_2$

A.	P	Q	R	S
	4	2	3	1
п	P	Q	R	S
р.	3	2	1	4
C.	P	Q	R	S
	1	4	2	3
P	P	Q	R	S
υ.	3	4	2	1

Answer: D

Watch Video Solution

2. All the compounds listed in Column I react with water. Match the result of the respective reactions with the appropriate options listed in Column II.

A.ColumnIColumnII $(CH_3)_2SiCl_2$ p. Hydrogen halide formationB.ColumnIColumnII XeF_4 q. Redox reactionC.ColumnIColumnII Cl_2 r. Reacts with glassColumnIColumnIID. VCl_5 sPolymerisation $t. O_2$ formation

Answer: A::B::C::D

Fill In The Blanks

oxygen under the influence of ____as catalyst.

Watch Video Solution
2. In P_4O_{10} , the number of oxygen atoms bonded to each phosphorus atom is
Watch Video Solution
3. The basicity of phosphorus acid (H_3PO_3) is
4. phosphorus is reactive because of its highly strained tetrahedral structure.

H - As - H bond angle in AsH_3 .

1. The total number of lone pair of electrons in N_2O_3 is

Watch Video Solution	

2. Among the following, the number of compounds that can react

with PCl_5 to give $POCl_3$ is $O_2, CO_2, SO_2, H_2O, H_2SO_4, P_4O_{10}$.

Watch Video Solution

3. Reaction of Br_2 with Na_2CO_3 in aquesous solution gives sodium bromide bromate with evolution of CO_2 gas. The number of sodium bromide molecules involved in the balanced chemical equation is:

1. Draw the structure of P_4O_{10} .

2. Arrange the following oxides in the increasing order of Bronsted basicity. CI_2O_7 , BaO, SO_3 , CO_2 , B_2O_3

Watch Video Solution

3. In the following sequence of reaction, identify the compounds (A), (B), (C) and (D):

$${N \over {
m Solution}} a_2 CO_3 \stackrel{SO_2}{\longrightarrow} (A) \stackrel{Na_2 CO_3}{\longrightarrow} (B) \stackrel{S}{\longrightarrow} (C) \stackrel{AgNO_3}{\longrightarrow} (D)$$

Watch Video Solution

4. Write the balanced equations for the reactions of the following

compounds with water:

(i) AI_4C_3 (ii) CaNCN (iii) BF_3 (iv) NCI_3 (v) XeF_4

5. Give reason, why elemental nitrogen exists as a diatomic molecule, whereas elemental phosphorus is a tetratomic molecule.

6. The Haber process can be represented as follows

7. In the following equation :

 $A+2B+H_2O
ightarrow C+2D$

 $A = HNO_2, B = H_2SO_3, C = NH_2OH$

Identify D. Draw the structure of A, B, C and D.

Watch Video Solution

8. Complete and balance the following chemical equations.

(i) $P_4O_{10}+PCI_5
ightarrow$

(ii) $SnCI_4 + C_2H_5CI + Na
ightarrow$

9. (a) Thionyl chloride can be synthesised by chlorinating SO_2 using PCI_5 . Thionyl chloride is used to prepare anhydrous ferric chloride startinh from its hexahydrated salt. Alternatively, from anhydrous ferric chloride can also be prepared from its hexahydrated salt by treating with 2,2-dimethoxypropane. Discuss all this using balanced chemical equations.

(b) Reaction of phosphoric acid with $Ca_3(PO_4)_2$ yields a fertiliser "triple superphosphate" represent the same through balanced chemical equation.

10. A soluble compound of a poisonous element M, when heated with Zn/H_2SO_4 , gives a colourless and extremely poisonous gaseous compound N, which of passing through a heated tube gives a silvery mirror of element M. Indentify M and N.

11. Write balanced equations for the following.

A. Phosphorus is treated with concentrated nitric acid.

B. Oxidation of hydrogen peroxide with potassium

permanganate in acidic medium

C. Manufacture of phosphoric acid from phosphorus.

D. Reation of a aluminium with aqueous sodium hydroxide.

Answer:

12. Draw the structure of P_4O_{10} and identify the number of single

and double P - O bonds.

٦

13. Account for the following :

(i)The experimentally determined N-F bond length in NF_3 is greater than the sum of the single bond covalent radii of N and F

(ii) Mg_3N_2 when reacted with water gives NH_3 but HCl is not obtained from $MgCl_2$ on reaction with water at room temperature.

(iii) $(SiH_3)_3N$ is a weaker base than $(CH_3)_3N$.

Watch Video Solution

14. Complete and balance the following reactions.

 $Ca_5(PO_4)_3F + H_2SO_4 + H_2O \xrightarrow{\text{Heat}} \dots + 5CaSO_4. 2H_2O + \dots$

Watch Video Solution

15. In the following reaction, identify the compounds A and B

 $PCI_5 + SO_2
ightarrow A + B$

Watch Video Solution

16. Complete and balance the following chemical reactions : Red phosphorus is reacted with iodine in the presence of water of form H_3PO_3 and HI.

 $2P+3I_2+6H_2O
ightarrow$.

Watch Video Solution

17. Given reaons in two or three sentences only. Sulphur dioxide is a more powerful reducing agent in the alkaline medium than in acidic medium.

18. Write two resonance structures of ozone which satisfy the

octet rule.

Watch Video Solution

19. Give reason in one or two sentences.

"Ammonium chloride is acidic in liquid ammonia solvent".

Watch Video Solution

20. Write the balanced chemical equations for the following.

(i) Sodium nitrite is produced by absorbing the oxide of nitrogen

in aqueous solution of washing soda.

(ii) Nitrogen is obtained in the reaction of aqueous ammonia with

potassium permanganata.

(iii) Elemental phosphorus reacts with concentrated HNO_3 to given phosphoric acid.

(iv) Sulphur is precipitated in the reaction of hydrogen sulphide with sodium bisulphite solution.

(v) Carbon dioxide is passed through a suspension of limestone in water.

21. Write the balanced chemical equations for the following reactions.

a. An aqueous solution of sodium nitrite is heated with zinc dust and caustic soda solution.

b. Sodium iodate is added to a solution of sodium bisulphite.

22. Write two resonance structure of N_2O that satisfy the octet

rule.

Watch Video Solution

23. Write balanced equation for

(i) The preparation of phosphine from CaO and white phosphorus.

(ii) The preparation of ammonium sulphate from gypsum, ammonia and carbon dioxide.

Watch Video Solution

24. Explain the following

- (i) H_3PO_3 is a dibasic acid.
- (ii) Phosphine has lower boiling point than ammonia.

25. Write the balanced chemical equations for the following.

Hypophosphorous acid is heated.

(ii) Sodium chlorate reacts with sulphur dioxide in dilute sulphuric

acid medium.

Watch Video Solution

26. Arrange the following as indicated.

 CO_2, N_2O_5, SiO_2 and SO_3 in the order of increasing acidic

character.

27. Give balanced equations for the following :

Phosphorous reacts with nitric acid to give equimolar ratio of

nitric oxide and nitrogen dioxide.

Watch Video Solution

28. "The valency of oxygen is generally two, whereas sulphur shows

valency of two, four, and six". Explain.

Watch Video Solution

29. Explain the following in one or two sentences.

A. Magnesium oxide is used for the lining of steel making

furnace.

B. The mixture of hydrazine and hydrogen peroxide with a

copper (II) catalyst is used as a rocket fuel.

- C. Orthophosphorous acid is not tribasic acid.
- D. The molecule of magnesium chloride is linear, whereas that

of stannous chloride is angular.

Answer:

Watch Video Solution

30. Write balanced equations for the following :

(i) Phosphorus is reacted with boiling aqueous solution of sodium

hydroxide in an inert atmosphere.

(ii) Dilute nitric acid is slowly reacted with metallic tin.

31. Complete and balance the following reactions.

(i) $S + OH^- \to S^{2-} + S_2 O_3^{2-} + ...$

(ii) $CIO_{3}^{-} + I^{-} + H_{2}SO_{4} \rightarrow CI^{-} + HSO_{4}^{-} + ... + ...$

32. Write down the balanced equations for the reaction when

calcium phosphate is heated with a mixture of sand and carbon.

33. Write the resonance structure of nitrous oxide.

> Watch Video Solution

34. Show with balanced equations what happens when the following are mixed: Aqueous solution of ferric sulphate and potassium iodide.

35. Write the matched set (of three) for each entry in Column A

A	В	C
Asbestos	Paramagnetic	Air pollutant
Lithium metal	Silicates of Ca and Mg	Electron donor
Nitric oxide	Reducing agent	

Watch Video Solution

36. Complete and balance the following reactions:

i. $HNO_3 + HCI
ightarrow NO + Cl_2$

іі. $Ce^{3+} + S_2O_8^{2-} o SO_4^{2-} + Ce^{4-}$

iii. $Cl_2 + OH^{\,\Theta}
ightarrow Cl^{\,\Theta} + CIO^{\,\Theta}$

Watch Video Solution

39. (a) Sulphur melts form a clear mobile liquid at $119^{\circ}C$ but on further heating to $180^{\circ}C$, it becomes viscous. Why ?

(b) $SOCl_2$ can act as a weak Lewis acid as well as a weak Lewis

base. Explain.

Watch Video Solution

40. Explan the following in not more than two sentances :

(i) Concentrated HNO_3 turns yellow in sunlight.

(ii) Bleaching powder loses its bleaching property when it is kept

in an open bottle for a long lime.

41. Write the balanced equation for the reaction of the following

compound with water. XeF_4 .

42. Draw the molecule structures of XeF_2 , XeF_4 and XeO_2F_2

indicating the location of lone pairs of electrons

Watch Video Solution					

43. Give an example of oxidation of halide by another halogen.

Explain the feasibility of the reaction.

Watch Video Solution

44. Work out the following using chemical equations:

'Chlorination of calcium hydroxide produces bleaching powder'.

45. Complete the following chemical equations:

 $KI + CI_2 \rightarrow$

 $KCIO_3 + I_2 \rightarrow$

Watch Video Solution

46. Given reasons in two or three sentences only for

(i) Bond dissociation energy of F_2 is less than that of CI_2 .

(ii) Sulphur dioxide is a more powerful reducing agent in the

alkaline medium than in acidic medium.

Watch Video Solution

47. Write the balanced chemical equation for the following: Sodium bromate reacts with fluorine in the presence of alkali. **48.** Arrange the following as indicated. $HOCI, HOCIO_2, HOCIO_3, HOCIO$ in increasing order of thermal stability

Watch Video Solution

49. Give balanced equations for the following: Iodate ion reacts

with bisulphite ion to liberate iodine.

Watch Video Solution

50. Mention the producs formed in the following: `"Chlorine gas is

bubbled through a solution of ferrous bromide."

Watch Video Solution

52. Arrange the following in the order of:

i. Increase bond strength: HCI, HBr, HF, HI

ii. Increasing oxidation number of iodine: I_2 , HI, HIO_4 , ICI

Watch Video Solution

53. Give reasons in one or two sentence for each of the following:

Fluorine can not be prepared form fluoride by chemical oxidation.

Watch Video Solution

54. Complete and balance the following reactions:

i. $HNO_3 + HCI \rightarrow NO + Cl_2$

іі.
$$Ce^{3+} + S_2O_8^{2-} o SO_4^{2-} + Ce^{4-}$$

iii. $Cl_2 + OH^{\Theta} \rightarrow Cl^{\Theta} + CIO^{\Theta}$

Watch Video Solution

55. Explan the following in not more than two sentances :

(i) Concentrated HNO_3 turns yellow in sunlight.

(ii) Bleaching powder loses its bleaching property when it is kept

in an open bottle for a long lime.

56. Give reason for the following within two sentences:

i. Hydrogen bromide cannot be prepared by the action of concentrated sulphuric acid on sodium bromide.

ii. When a blue litmus paper is dipped in a solution of hypochlorous acid, it first turns red then gets decolourised.

Watch Video Solution

57. Write the balanced equation involved in the preparation of

- (a) bleaching powder from slaked lime
- (b) nitric oxide from nitric acid
- (c) chlorine from sodium chloride.
 - A. bleaching powder from slaked lime
 - B. nitric oxide from nitric acid
 - C. chlorine from sodium chloride
 - D. anhydrous aluminium chloride from alumina

Answer:

1. Which of the following reactions is an example of redox reactions ?

A.
$$XeF_4 + O_2F_2
ightarrow XeF_6 + O_2$$

B.
$$XeF_2+PF_5
ightarrow [XeF]^+PF_6^-$$

$$\mathsf{C.} XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$$

D. $XeF_6 + 2H_2O
ightarrow XeO_2F_2 + 4HF$

Answer: A

