©゙"doubtnut

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

SOME BASIC CONCEPTS OF CHEMISTRY

Jee Main And Advanced

1. The most abundant elements by mas in the body of a healthy human adult are Oxygen (61.4%), Carbon (22.9%). Hydrogen (10.0) \%), and Nitrogen (2.6%). The weight which a 75 kg person would gain if all . ${ }^{1} \mathrm{H}$ atoms are replaced by . ${ }^{2} H$ atoms is
A. 15 kg
B. 37.5 kg
C. 7.5 kg
D. 10 kg

Answer: C

- Watch Video Solution

2. 1 g of a carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on treatment with excess HCl produces 0.01186 mole of CO_{2}. The molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in gmol^{-1} is
A. 1186
B. 84.3
C. 118.6
D. 11.86

Answer: D

- Watch Video Solution

3. At 300 K and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires 375 mL air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion. After combustion, the gases occupy 330 mL . Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is
A. $C_{3} H_{8}$
B. $\mathrm{C}_{4} \mathrm{H}_{8}$
C. $C_{4} H_{10}$
D. $C_{3} H_{6}$

Answer:

- Watch Video Solution

4. The molecular formula of a commercial resin used for exchanging ions in water softening is $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \mathrm{Na}(\mathrm{mol}$. Wt . 206) . What would be the
maximum uptake of $C a^{2+}$ ions by the resin when expressed in mole per gram resin?
A. $\frac{1}{103}$
B. $\frac{1}{206}$
C. $\frac{2}{309}$
D. $\frac{1}{412}$

Answer: D

- Watch Video Solution

5. $3 g$ of actived chacoal was added to 50 mL of acetic acid solution $(0.06 \mathrm{~N})$ in a flask. After an hour it was filterred and the strength of the filtrate was found to be 0.042 N . The amount of acetic adsorbed (per gram of charcoal) is:
A. $18 m g$
B. $36 m g$
C. $42 m g$
D. $54 m g$

Answer: D

- Watch Video Solution

6. A gases mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. Therefore, the ratio of the number of molecules is:
A. 1: 4
B. 7: 32
C. 1: 8
D. 3: 16

Answer: B

7. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
A. $0.875 M$
B. 1.00 M
C. 1.75 M
D. 0.0975 M

Answer: A

- Watch Video Solution

8. Dissolving $120 g$ of urea $(M w=60)$ in $1000 g$ of water gave a solution of density $1.15 \mathrm{gmL} L^{-1}$. The molarity of solution is:
A. $1.78 m$
B. 2.00 M
C. $2.05 M$

- Watch Video Solution

9. Given that the abundacne of isotopes $.{ }^{54} \mathrm{Fe}, .{ }^{56} \mathrm{Fe}$, and.${ }^{57} \mathrm{Fe}$ is 5%, 90% and 5% respectively. The atomic mass of Fe is
A. 55.85
B. 55.95
C. 55.75
D. 56.05

Answer: B

10. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $X+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are
A. $0.01,0.01$
B. $0.02,0.01$
C. $0.01,0.02$
D. $0.02,0.02$

Answer: A

- Watch Video Solution

11. Which of the following has the maximum number of atoms?
A. $24 g$ of $C(12)$
B. $56 g$ of $F e(56)$
C. $27 g$ of $A l(27)$
D. $108 g$ of $A g(108)$

Answer: A

- Watch Video Solution

12. How many moles of electrons weigh 1 kg ?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{31}$
C. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

13. The normality of 0.3 M phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: D

- Watch Video Solution

14. In which mode of expression, the concentration of a solution remains independent of temperature?
A. Molarity
B. Normality
C. Formality
D. Molality

Answer: D

- Watch Video Solution

15. A molal solution is one that contains one mole of a solute in:
A. 1000 g of solvent
B. 1.0 L of solvent
C. 1.0 L of solution
D. $22.4 L$ of solution

Answer: A

D Watch Video Solution

16. If 0.50 mol of BaCl_{2} is mixed with 0.20 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $B a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is
A. 0.70
B. 0.50
C. 0.20
D. 0.10

Answer: D

- Watch Video Solution

17. When $2.76 g$ of silver carbonate is strongly heated, it yields a residue weighing
A. $2.16 g$
B. $2.48 g$
C. $2.32 g$
D. $2.64 g$
18. When the same amount of zinc is treated separately with excess of sulphric acid and excess of sodium hydroxide, the ratio of volume of hydrogen evolved is
A. 1:1
B. 1: 2
C. 2:1
D. 9: 4

Answer: A

Watch Video Solution

19. The largest number of molecules in
A. 36 g of water
B. $28 g$ of $C O$
C. $46 g$ of ethyl alcohol
D. $54 g$ of nitrogen pentaoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$

Answer: A

- Watch Video Solution

20. The total number of electrons in one molecular of carbon dioxide is
A. 22
B. 44
C. 66
D. 88

Answer: A

21. A gases mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. Therefore, the ratio of the number of molecules is:
A. 1:4
B. 1: 8
C. 7: 32
D. 3: 16

Answer: C

- Watch Video Solution

22. The weight of 1×10^{22} molecules of $\mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

23. Three grams of salt of molecular weight 30 is dissolved in $250 g$ of water. The molality of the solution is....
24. The total number of electrons present in $18 m L$ of water is

- Watch Video Solution

25. The modern atomic mass unit if based on the mass of \qquad

- Watch Video Solution

26. The mole fraction of a solute in a solutions is 0.1 . At 298 K molarity of this solution is the same as its molality. Density of this solution at 298 K is
$2.0 \mathrm{gcm}^{-3}$. The ratio of the molecular weights of the solute and solvent, $\frac{M W_{\text {solute }}}{M W_{\text {solvent }}}$ is
27. A compound $\mathrm{H}_{2} \mathrm{X}$ with molar mass of 80 g is dissolved in a solvent having density of $0.4 g m L^{-1}$. Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is

- Watch Video Solution

28. $29.2 \%(W / W) H C l$ stock solution has density of $1.25 \mathrm{gmL}^{-1}$. The molar mass of HCl is $36.5 \mathrm{gmol}^{-1}$. The volume (mL) of stock solution required to prepare a 200 mL solution of 0.4 MHCl is

- Watch Video Solution

29. Around 20% surface sites have adsorbed N_{2}. On heating N_{2} gas evolved form sites and were collected at 0.001 atm and 298 K in a container of volume $2.46 \mathrm{~cm}^{3}$ the density of surface sites is $6.023 \times 10^{14} \mathrm{~cm}^{-2}$ and surface area is $1000 \mathrm{~cm}^{2}$ find out the number of surface sites occupied per molecule of N_{2}.
30. $1 g$ charcoal is placed in 100 mL of $0.5 \mathrm{MCH}_{3} \mathrm{COOH}$ to form an adsorbed mono-layer of acetic acid molecule and thereby the molarity of $\mathrm{CH}_{3} \mathrm{COOH}$ reduces to 0.49 . Calculate the surface area of charcoal adsorbed by each molecule of acetic acid. Surface are of charocal $=3.01 \times 10^{2} \mathrm{~m}^{2} / \mathrm{g}$.

- Watch Video Solution

31. Calculate the molarity of water if its density is $1000 \mathrm{kgm}^{-3}$

- Watch Video Solution

32. A plant virus is found to consist of uniform cylindrical particle of $150 \AA$
 If the virus is considered to be a single particle, find its molar mass.
33. $8.0575 \times 10^{-2} \mathrm{~kg}$ of Glauber's slat is dissolved in water to obtain $1 \mathrm{dm}^{3}$ of a solution of density $1077.2 \mathrm{kgm}^{-3}$. Calculate the molarity, molality and mole fraction of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in solution.

- Watch Video Solution

34. Upon mixing 50.0 mL of 0.1 M lead nitrate solution with 50.0 mL of $0.05 M$ chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also, calculate the molar concentration of the species left behind in the final solution. Which is the limiting reagent?

- Watch Video Solution

35. Calculate the molality of 1 L solution of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Weight/volume)

The density of the solution is $1.84 g$.
36. A solid mixture $5 g$ consists of lead nitrate and sodium nitrate was heated below $600^{\circ} \mathrm{C}$ until weight of residue was constant. If the loss in weight is 28% find the amount of lead nitrate and sodium nitrate in mixture.

- Watch Video Solution

37. n-butane is produced by the monobromination of ethane followed by Wurtz reaction. Calculate the volume of ethane at $N T P$ to produce $55 g$ n-butane if the bromination takes place with 90% yield and the Wurtz reaction with 85% yield.

- Watch Video Solution

38. A sugar syrup of weight $214.2 g$ contains $34.2 g$ of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

Calculate
a. the molal concentration.
b. the mole fraction of the sugar in the syrup.

D Watch Video Solution

39. An organic compound contains 69.77% carbon, 11.63% hydrogen, and rest oxygen. The molecular mass of the compound is 86 . It does not reduce Tollens reagent but forms an aditional compound with sodium hydrogensulphite and gives positive iodoform test. On vigorous oxidation, it gives ethanoic and propanoic acid. Write the possible structure of the compound.

- Watch Video Solution

40. The density of $3 M$ sodium of thiosulphate solution $\left(N a_{2} S_{2} O_{3}\right)$ is
$1.25 g m L^{-1}$. Calculate
a. The precentage by weight of sodium thiosulphate.
b. The mole fraction of sodium thiosulphate.
c. The molalities of $N a^{\oplus}$ and $S_{2} O_{3}^{2-}$ ions.

(D) Watch Video Solution

41. One litre of mixture of CO and CO_{2} is passed through red hot charcoal in tube. The new volume becomes 1.4 litre. Find out \% composition of mixture by volume. All measurements are made at same P and T

Watch Video Solution

42. Five millilitires of a gas (A) containing only C and H was mixed with an excess of oxygen (30 ml) and the mixture was exploded by means of an electric spaek. After the explosion, the remaining volume of the mixed gasses was 25 ml . On adding a concentrated solution of KOH , the volume further diminished to 15 ml . The residual gas being pure oxyges.

$$
\operatorname{Gas}(\mathrm{A})+\mathrm{Gas}(\mathrm{~A}) \xrightarrow{h \nu} \mathrm{~B} \xrightarrow{\mathrm{Cl}_{2}+h \nu} \mathrm{C} \xrightarrow[\substack{\mathrm{Acidic} \\ \text { KMnO} \\ \mathrm{CMnO}_{4} \\ \mathrm{CH}_{2} \mathrm{~N}_{2}}]{\mathrm{KOH}} \mathrm{D}
$$

The molecular formula of gas (A) is:
43. IN the analysis of $0.5 g$ sample of feldspar, a mixture of chlorides of sodium and potassium is obtained which weighs 0.1180 g . Subsequent treatment of the mixed chlorides with silver nitrate gives 0.2451 g of silver chloride. What is the percentage of sodium oxide and potassium oxide in the sample?

- Watch Video Solution

44. The vapour density of a mixture consisting of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at 275 K . The number of moles of NO_{2} in the mixture:

- Watch Video Solution

45. Account for the following. limit your answer to two sentences: 'Atomic weight of most of the elements are fractional'.
46. Naturally occurring boron consists of two isotopes whose atomic weight are 10.01 and 11.01 . The atomic weight of the natural boron is 10.81. Calculate the percentage of each isotopes in natural boron.

- Watch Video Solution

47. From the following statements regarding $\mathrm{H}_{2} \mathrm{O}_{2}$, choose the incorrect statements:
A. It can act only as an oxidising agent
B. It decomposed on exposure to light
C. It has to be stored in plastic or wax lined glass bottles in dark
D. It has to be kept away from dust

Answer: A

48. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is:
A. 3
B. 4
C. 5
D. 6

Answer: D

Watch Video Solution

49. In the neutralization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by idometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. (molecular weight)/2
B. (molecular weight)/6
C. (molecular weight)/3
D. same as molecular weight

Answer: B

- Watch Video Solution

50. The reaction
$3 \mathrm{ClO}^{\ominus}(a q) \rightarrow \mathrm{ClO}_{3}(a q)+2 \mathrm{Cl}^{\ominus}(a q)$
is an example of
A. oxidation reaction
B. reduction reaction
C. disproportionation reaction
D. decomposition reaction

Answer: C

51. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise $10 m L$ of this solution is
A. $40 m L$
B. $20 m L$
C. $10 m L$
D. $4 m L$

Answer: A

- Watch Video Solution

52. Among the following, identify the species with an atom in +6 oxidation state.
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

53. The oxidation number of S in $S_{8}, S_{2} F_{2}$, and $H_{2} S$, respectively, are
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

54. The number of mole of KMnO_{4} that will be needed to react completely with one mole of ferrous oxalate in acidic solution is:
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. 1

Answer: B

- Watch Video Solution

55. The number of moles of KMnO_{4} that will be needed to react with 1 mol of sulphite ion in acidic solution is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. 1

Answer: A

- Watch Video Solution

56. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
2
25
16
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
C. $\begin{array}{lll}16 & 5 & 2 \\ \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+}\end{array}$
$\begin{array}{lll}5 & 16 & 2 \\ \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+} \\ 2 & 16 & 5\end{array}$

Answer: A
57. The volume strength of $1.5 \mathrm{NH}_{2} \mathrm{O}_{2}$ solution is
A. 4.8
B. 8.4
C. 3.0
D. 8.0

Answer: B

- Watch Video Solution

58. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +3
B. +2
C. +1
D. -1

Answer: C

D Watch Video Solution

59. The equivalent weight of MnSO_{4} is half its molecular weight when it is converted to
A. $M n_{2} O_{3}$
B. MnO_{2}
C. MnO_{4}^{-}
D. MnO_{4}^{-}

Answer: B

- Watch Video Solution

60. For the reaction: $I^{\Theta}+\mathrm{ClO}_{3}^{\Theta}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{\Theta}+\mathrm{HSO}_{4}^{\Theta}+\mathrm{I}_{2}$

The correct statement(s) in the balanced equation is/are
A. stoichiometric coefficient of HSO_{4}^{-}is 6
B. iodide is oxidised
C. sulphur is reduced
D. $\mathrm{H}_{2} \mathrm{O}$ is one of the products

Answer: A::B::D

- Watch Video Solution

61. Assertion: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

Reason: Two moles of HCl are required for the complete neutralisation of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A. Statement I is true, Statement II is true, Statement II is the correct explanation of Statement I.
B. Statement I true, Statement II is true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true.

Answer: B

D Watch Video Solution

62. The compound $Y b a_{2} C u_{3} O_{7}$ which shows super conductivity has copper in oxidation state \qquad . Assume that the rare earth element yttrium is in its usual +3 oxidation state.

D Watch Video Solution

63. The difference in the oxidation numbers of two types of sulphul atoms in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is.....
64. Among the following, the number of elements showing only one nonzero oxidation state is:
$O, C, F, N, P, S n, T l, N a, T i$

- Watch Video Solution

65. A student of performs a titration with different burettes and finds titre values of $25.2 m L, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is ...

- Watch Video Solution

66. Calculate the amount of calcium oxide required when it reacts with $852 g$ of $P_{4} O_{10}$.

- Watch Video Solution

67. Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of $\mathrm{KMnO}_{4}(20 \mathrm{~mL})$ acidified with dilute of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The same volume of the KMnO_{4} solution is just decolourised by 10 mL of MnSO_{4} in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_{2}. The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. Write the balanced equations involved in the reactions and calculate the molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$.

- Watch Video Solution

68. Calculate the volume of $0.5 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to dissolve 0.5 g of copper (II) carbonate $\left(\mathrm{CuCO}_{3}\right)$.

- Watch Video Solution

69. An aqueous solution containing $0.10 \mathrm{~g} \mathrm{KIO}_{3}$ (formula weight $=214.0$) was treated with an excess of KI solution the solution was acidified with

HCl . The liberated I_{2} consumed 45.0 m mL of " thiosulphate solution to decolourise the blue starch-iodine complex. Calculate the molarity of the sodium thosulphate solution.

- Watch Video Solution

70. To a $25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ solution excess of an acidified solution of potassium iodide was added. The iodine liberated required 20 " mL of " 0.3 N sodium thiosulphate solution Calculate the volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.

- Watch Video Solution

71. A 3.0 g sample containing $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and an inert impure substance is treated with excess of $K I$ solution in presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The entire iron is converted to Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 mL . A 20 mL of dilute solution requires 11.0 mL of $0.5 M N a_{2} S_{2} O_{3}$ solution to reduce the iodine present. $A 50 \mathrm{~mL}$ of the diluted solution, after complete extraction of iodine requires 12.80 mL of $0.25 \mathrm{MKMnO}_{4}$ solution in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
medium for the oxidation of Fe^{2+}. Calculate the percentage of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in the original sample.

- Watch Video Solution

72. A 20 mL mixture of $\mathrm{CO}, \mathrm{CH}_{4}$, and Helium (He) gases is exploded by an electric discharge at room temperature with excess of oxygen. The volume contraction is found to be 13 mL . A further contraction of 14 mL occurs when the residual gas is treated wityh KOH solution. Find out the composition of the gaseous mixture in terms of volume percentage.

- Watch Video Solution

73. A 5.0 mL of solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ liberates 0.508 g of iodine from acidified KI solution. Calculate the strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution in terms of volume strength at $S T P$.

- Watch Video Solution

74. 1 g sample of AgNO_{3} is dissolved in 50 mL of water, It is titrated with $50 m L$ of $K I$ solution. The Aglpercipitated is filtered off. Excess of $K I$ filtrate is titrated with $\mathrm{M} / 10 \mathrm{KIO}_{3}$ in presence of 6 MHCl till all I^{-} converted into $I C I$. It requires 50 mL of $\mathrm{M} / 10 \mathrm{KIO}_{3}$ solution. 20 mL of the same stock solution of KI requires 30 mL of $\mathrm{M} / 10 \mathrm{KIO}_{3}$ under similar conditions. Calculate $\%$ of AgNO_{3} in sample. The reaction is $\mathrm{KIO}_{3}+2 \mathrm{KI}+6 \mathrm{HCl} \rightarrow 3 \mathrm{ICl}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

75. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is gently heated till the evolution of CO_{2} ceases. The volume of CO_{2} at 750 mmHg pressure and at 298 K is measured to be 123.9 mL . A 1.5 g of the same sample requires 150 mL of $(M / 10) \mathrm{HCl}$ for complete neutralisation. Calculate the percentage composition of the components of the mixture.

- Watch Video Solution

76. A $1 g$ sample of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100 mL . An aliquot of 25 mL of this solution requires $17 m L$ of $0.0167 M$ solution of an oxidant for titration. Calculate no.of electrons taken up by oxidant in the above titration.

- Watch Video Solution

77. A solution of $0.2 g$ of a compound containing Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions on titration with $0.02 \mathrm{MKMnO}_{4}$ in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ consumes 22.6 mL oxidant. The resulting solution is neutralized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$, acidified with dilute $\mathrm{CH}_{3} \mathrm{COOH}$ and titrated with excess of $K I$. The liberated I_{2} required $11.3 \mathrm{mLof} 0.05 M N a_{2} S_{2} O_{3}$ for complete reduction. Find out mole ratio of Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2+}$ in compound.

- Watch Video Solution

78. A mixture of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ weighing $2.02 g$ was dissolved in water and the solution made uptp one litre. 10 mL of this solution required 3.0 mL of 0.1 NNaOH solution for complete neutralization. In another experiment 10 mL of same solution in hot dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ medium required $4 m L$ of $0.1 \mathrm{NKMnO}_{4} \mathrm{KMnO}_{4}$ for compltete neutralization.

Calculate the amount of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ in mixture.

- Watch Video Solution

79. An equal volume of reducing agent is titrated separately with $1 \mathrm{MKMnO}_{4}$ in acid, neutral and alkaline medium. The volumes of KMnO_{4} required are $20 \mathrm{~mL}, 33.3 m L$ and 100 mL in acid, neutral and alkaline medium respectively. Find out oxidation state of $M n$ in each reaction product. Give balance equation. Find the volume of $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ consumed if same volume of reductant is titrated in acid medium.
80. A sample of hydrazine sulphate $\left(\mathrm{N}_{2} \mathrm{H}_{6} \mathrm{SO}_{4}\right)$ was dissolved in 100 mL water. 10 mL of this solution was reacted with excess of FeCl_{3} solution and warmed to complete the reaction. Ferrous ions formed were estimated and it required 20 mL of $\mathrm{M} / 50 \mathrm{KMnO}_{4}$ solutions. Estimate the amount of hudrazine sulphate in one litre of solution.

Given $4 \mathrm{Fe}^{3+}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+4 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+}$
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

81. 5 mL of $8 \mathrm{NHNO}_{3}, 4.8 \mathrm{~mL}$ of 5 NHCl and a certain volume of $17 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and made upto 2 litre. 30 mL of this acid mixture exactly neutralizes 42.9 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution containing $1 g \mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{Oin} 100 \mathrm{~mL}$ of water. Calculate the amount of sulphate ions in g present in solution.

- Watch Video Solution

82. 2.68×10^{-3} moles of solution containing anion A^{n+} require 1.61×10^{-3} moles of MnO_{4}^{-}for oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?

- Watch Video Solution

83. 4.08 g of a mixture of BaO and an unknown carbonate MCO_{3} was heated strongly. The residue weighed 3.64 g . This was dissolved in 100 mL of 1 NHCl . The excess of acid required of 16 mL of 2.5 NNaOH for complete neutralisation. Identify the metal M.

- Watch Video Solution

84. In the titration of a certain $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, 60 mL of 5.0 MNaOH solution was used to completely neutralise $75 m L$ of the acid. The molarity of the acid solution may be expressed as
A. $\frac{5 M \times 60 m L}{2 \times 75 m L}$
B. $\frac{5 M \times 75 m L \times 2}{60 m L}$
C. $\frac{75 \mathrm{~mL} \times 2}{5.0 \times 60 \mathrm{~mL}}$
D. $\frac{60 m L \times 75 m L \times 2}{5.0 M}$

Answer: A

- Watch Video Solution

85. 20 mL of a solution containing equal moles of $\mathrm{Na}_{\circ} \mathrm{CO}_{3}$ and NaHCO 3 required 16 mL of 0.16 MHCl solution to reach the phenolphthalein end point. What volume of a $0.10 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution would have been required had methyl orange been used as indicator?
A. 38.40 mL
B. 24.60 mL
C. 19.20 mL
D. 0.30 mL

Answer: C

- Watch Video Solution

86. When aqueous solution of $N a_{2} S$ is titrated with dilute and acidified KMnO_{4} solution, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is formed. In this reaction, moles of KMnO_{4} reduced per mole of $N a_{2} S$ is
A. 0.833
B. 1.2
C. 1.50
D. 1.8

Answer: B

87. For the following metals A, B, C, D react with each other: (NR = No reaction)

$$
\begin{array}{ll}
A+B^{+} \rightarrow N R & B+C^{+} \rightarrow N R \\
B+D^{+} \rightarrow B^{+}+D & C+D^{+} \rightarrow C^{+}+D \\
A^{+}+C \rightarrow C^{+}+A & D+A^{+} \rightarrow D^{+}+A
\end{array}
$$

Which is the order of the metals in increasing reducing strength?
A. $B<D<a<C$
B. $C<B<D<A$
C. $A<D<B<C$
D. $<C<A<B$

Answer: C

- Watch Video Solution

88. $40 \mathrm{~mL} L 0.05 M$ solution of sodium sesquicarbonate dehydrate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{NaHCO}_{3} .2 \mathrm{H}_{2} \mathrm{O}\right)$ is titrated against 0.05 MHCl solution, $x m L$ of acid is required to reach the phenolphthalein end point while mL
of same acid were required when methyl organe indicator was used in a separate titration. Which of the following is (are) correct statements?
A. $y-x=80 m L$
B. $y+x=160 m L$
C. If the titration is started with phenolphthalein indicator and methyl
orange is added at the end point, $2 x m L$ of HCl would be required
further to reach the end point
D. If the same volume of same solution is titrated against
$0.10 \mathrm{MNaOH}, x / 2 m L$ of base would be required

Answer: A::B::C::D

- Watch Video Solution

89. Which of the following regarding oxalate compound is/are true?
A. Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ can be estimated by titratin against either KOH or KMnO_{4} solution.
B. $K H C_{2} O_{4}$ can be extimated by titrating against either $K O H$ or $\mathrm{K}_{2} \mathrm{CrO}_{4}$ and in both analyses equivalent weight of $\mathrm{KHC}_{2} \mathrm{O}_{4}$ is 64 .
$\left(M W\right.$ of $\left.K H C_{2} O_{4}=128\right)$
C. $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ can be estimated by titrating against either HCl or KClO_{3} and in both analyses equivalent weight of $K_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is 83.
$\left(M W\right.$ of $\left.K_{2} C_{2} O_{4}=166\right)$
D. If 10 mL of a $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution required 8.0 mL of a 0.12 MHCl solution, $10 m L$ of the same $K_{2} C_{2} O_{4}$ solution would require 9.60 mL of a 0.02 M acidified KMnO_{4} solution.

Answer: A::C::D

- Watch Video Solution

90. Assertion If certain volume of a basic solution require $x m L$ of $\mathrm{HCl}, 2 x \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of same molarity would be required.

Reason HCl is a monobasic acid while $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a diabasic acid.
A. Both assertion and reason are correct and reason is the correct explanation of the assertion,
B. Both assertion and reason are correct but reason is not the correct
explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: D

- Watch Video Solution

91. Assertion If 10 mL of a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution required 8.00 mL of 0.02 M acidified KMnO_{4} solution for complete oxidation, 12.50 mL of same
$\mathrm{H}_{2} \mathrm{O}_{2}$ will oxidise completely to 5.00 mL of $0.10 \mathrm{MNa} a_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution.
Reason $\mathrm{H}_{2} \mathrm{O}_{2}$ act as both oxidising as well as reducing agent.
A. Both assertion and reason are correct and reason is the correct explanation of the assertion,
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: B

- Watch Video Solution

92. The alkenes are compounds of carbon and hydrogen with the general formula $C_{n} H_{2 n}$. If $0.561 g$ of any alkene is burned in excess oxygen, what number of moles of $\mathrm{H}_{2} \mathrm{O}$ is formed ?
B. 0.0600 mol
C. 0.0800 mol
D. 0.400 mol

Answer: A

- Watch Video Solution

93. The density (ingmL L^{-1}) of a 3.60 M sulphuric acid solution that is $29 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Molar mass $=98 \mathrm{gmol}^{-1}$) by mass will be:
A. 1.22
B. 1.45
C. 1.64
D. 1.88

Answer: A

94. Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, can be converted into metallic iron by heating with carbon monoxide as represented by this equation:
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
The kilograms of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ which must be processed in this way to obtain 5.00 kg of iron, if the process is 85% efficient is closest to? $[M:=F e=56]$
A. 6.92 kg
B. 8.15 kg
C. 20.8 kg
D. 24.4 kg

Answer: B

- Watch Video Solution

95. How many $\mathrm{H}_{2} \mathrm{O}$ molecules are there in a snowflake that weighs $4.0 \times 10^{-4} g ?$
A. 1.3×10^{19}
B. 2.4×10^{20}
C. 2.2×10^{-5}
D. 6.02×10^{23}

Answer: A

- Watch Video Solution

96. Atomic weight of an element X is 120 when one amu is defined as $1 / 18$ th part by weight of an element of C^{12}. On the same scale, atomic weight of another element Y is 72 . Which of the following statement regarding X and is (are) correct?
A. On conventional scale, atomic weight of X is 80
B. On conventional scale, atomic weight of Y is 108
C. On a scale when an amu is defined to be $1 / 30 t h$ of the weight of an atom of C^{12}, atom of C^{12}, atomic weight of $\times 200$
D. On a scale when an amu is defined to be $1 / 15 t h$ of the weight of an atom of C^{12}, atomic weight of Y is 90

Answer: B::C

- Watch Video Solution

97. Which of the following statement regarding Avogadro number is(are) correct?
A. It is 6.023×10^{23}
B. It is the number of atoms present in exactly $12 g$ of $C-12$ isotope
C. It is the number of atoms present in 1.0 mole on any substance
D. It is the number of atoms of deuterium present in its 2.0 g

D Watch Video Solution

98. 4.0 g of a mixture of NaCl and an unknown metal iodide $M I_{2}$ was dissolved in water to form its aqueous solution. To this aqueous solution,
aqueous solution of AgNO_(3)
wasadded ∇ uallysotŝilverhalidesare $\prec i \pi t a t e d$. The $\prec i \pi t a t e s w e r e w e i$.

AgNO_(3)

addedwasobta \in ed. Withtheknow $\leq d \geq$ ofthefacttĥalidesare $\prec i \pi t a t$ \in thesolution, answerthefollow \in gquestions : (Molarmassof
$\left.A g=108, I=127, \mathrm{Na}=23^{\prime}\right)$.

What is the approximate mass percentage of $M l_{2}$?
A. 25
B. 40
C. 60
D. 75

Answer: D
99. 4.0 g of a mixture of NaCl and an unknown metal iodide MI_{2} was dissolved in water to form its aqueous solution. To this aqueous solution, aqueous solution of AgNO_(3) wasadded ∇ uallysotŝilverhalidesare $\prec i \pi t a t e d$. The $\prec i \pi t a t e s w e r e w e i$.

AgNO_(3)
addedwasobta \in ed. Withtheknow $\leq d \geq$ ofthefacttĥalidesare $\prec i \pi t a t$ \in thesolution, answerthefollow \in gquestions: (Molarmassof $\mathrm{Ag}=108, \mathrm{I}=127, \mathrm{Na}=23^{\prime}$).

What is the approximate molarity of AgNO_{3} solution?
A. 0.1
B. 0.5
C. 1.0
D. 1.5

Answer: C

- Watch Video Solution

100. 4.0 g of a mixture of NaCl and an unknown metal iodide MI_{2} was dissolved in water to form its aqueous solution. To this aqueous solution, aqueous solution of AgNO_(3) wasadded ∇ uallysotŝilverhalidesare $\prec i \pi t a t e d$. The $\prec i \pi t a t e s w e r e w e i$

AgNO_(3)

addedwasobta \in ed. Withtheknow $\leq d \geq$ ofthefacttĥalidesare $\prec i \pi t a t$ \in thesolution, answerthefollow \in gquestions: (Molarmassof
$\left.A g=108, I=127, \mathrm{Na}=23^{\prime}\right)$.

What is the approximate molar mass of unknown metal M ?
A. 20
B. 40
C. 56
D. 60

Answer: B
101. Assertion: The average mass of one Mg atom is $24.305 a \mu$, which is not actual mass of one Mg atom.

Reason: Three isotopes, $24 M g, 25 M g$ and $26 M g$, of Mg are found in nature.
A. Both assertion and reason are correct and reason is the correct explanation of the assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: A

- Watch Video Solution

102. Assertion A $8.0 g N_{2} H_{4}(M=32)$ has more atoms than $6.0 g H_{2} \mathrm{O}$.

Reason : $N_{2} H_{4}$ has more atoms per molecule than water.
A. Both assertion and reason are correct and reason is the correct explanation of the assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: B

- Watch Video Solution

103. Match the statements of column I with values of Column II

Column I
Column II
A. Different number of atoms p. $4.25 \mathrm{gNH}_{3}$ an
B. Same number of molecules q. 2.20 gCO and
C. Same numbers of atoms as well as molecules $\quad r .4 .0 \mathrm{gCH} \mathrm{Cl}_{3} \mathrm{Cl}$ a
D. Different numbers of atoms as well as molecules $\quad s .4 .80 g O_{2}$ anc

- Watch Video Solution

104. On a conventional scale, atomic weight of sulphur is 32 . If on a new scale, an amu is defined as one atom of $\mathrm{C}-12$ isotope, what would be the atomic weight of sulphur on this new scale?

Watch Video Solution

105. If equal volumes of $3.5 \mathrm{MCaCl}_{2}$ and 3.0 MNaCl are mixed, what would be the molarity of chloride ion in the final soluton?

- Watch Video Solution

1. A is a binary compound of a univalent metal. $1.422 g$ of A reacts completely with $0.321 g$ of sulphur in an evacuated and sealed tube to give $1.743 g$ of a white crystalline solid B , that forms a bydrated double salt, C with $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Identify A, B and C .

- View Text Solution

2. An organic compound X on analysis gives 2.90 g silver choride with acidified silver nitrate solution. The compound X may be represented by two isomeric structures Y and Z . Y on treatment with aqueous potassium hydroxide solution gives a dihydroxy compound while Z on similar treatment gives ethanal. Find out the molecular formula of Z and gives the structure of ${ }^{\prime} Y$ and Z.
