©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

STATES OF MATTER

Jee Main And Advanced

1. Two closed vessels of equal volume containing air at pressure P_{1} and temperature
T_{1} are connected to each other through a narrow tube. If the temperature in one of the
vessels is now maintained at T_{1} and that in
the other at T_{2}, what will be the pressure in
the vessels?

$$
\begin{aligned}
& \text { A. } 2 p_{i}\left(\frac{T_{1}}{T_{1}+T_{2}}\right) \\
& \text { B. } 2 p_{i}\left(\frac{T_{2}}{T_{1}+T_{2}}\right) \\
& \text { C. } 2 p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right) \\
& \text { D. } p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)
\end{aligned}
$$

Answer: B
2. If Z is a compressibility factor, van der Waals' equation at low pressure can be written as

$$
\begin{aligned}
& \text { А. } Z=1+\frac{R T}{p b} \\
& \text { в. } Z=1-\frac{a}{V R T} \\
& \text { С. } Z=1-\frac{p b}{R T} \\
& \text { D. } Z=1+\frac{p b}{R T}
\end{aligned}
$$

Watch Video Solution

3. For gaseous state, if most probable speed is denoted by C^{*} average speed by \bar{C} and root square speed by C, then for a large number of molecules, the ratios of these speeds are

$$
\begin{aligned}
& \text { A. } C^{*}: \bar{C}: C=1.225: 1.128: 1 \\
& \text { B. } C^{*}: \bar{C}=1.128: 1.225: 1 \\
& \text { C. } C^{*}: \bar{C}: C=1: 1.128: 1.225 \\
& \text { D. } C^{*}: \bar{C}: C=1: 1.225: 1.128
\end{aligned}
$$

Answer: C

- Watch Video Solution

4. For one mole of a van der Waals' gas when
$b=0$ and $T=300 K$, the $p V v s 1 / V$ plot is
shown below. The value of the vander Waals'
constant $a\left(\mathrm{~atm} \mathrm{Lmol}^{-2}\right)$

A. 1
B. 4.5

C. 1.5

D. 3

Answer: C

D Watch Video Solution

5. The term that corrects for the attractive
forces present in a real gas in the van der
Waal's equation is
A. $n b$
B. $n^{2} a / V^{2}$
C. $-\left(n^{2} a / V^{2}\right)$
D. $-n b$

Answer: B

- Watch Video Solution

6. The given graph represents the variations of compressibility factor $Z=P V / n R T$ vs P for three real gases A, B, and C.

Identify the incorrect statements.
A. For the gas $A, a=0$ and its
dependence on p is linear at all pressure
B. For the gas $B, b=0$ and its dependence
on p is linear at all pressure
C. For the gas C which is typical real gas
for which neither a nor $b=0$. By knowing the minima and the point of intersection, with $Z=1, a$ and b can be calculated

D. At high pressure, the slope is positive for

all real gases

Answer: B

D Watch Video Solution

7. For a monatomic gas, kinetic energy $=E$.

The relation with $r m s$ velocity is

$$
\begin{aligned}
& \text { A. } u=\left(\frac{2 E}{m}\right)^{1 / 2} \\
& \text { B. } u=\left(\frac{3 E}{2 m}\right)^{1 / 2}
\end{aligned}
$$

С. $u=\left(\frac{E}{2 m}\right)^{1 / 2}$
D. $u=\left(\frac{E}{3 m}\right)^{1 / 2}$

Answer: A

D Watch Video Solution

8. Positive deviation from ideal behaviour takes place because of
A. molecular interaction between atom and

$$
p V / n R T>1
$$

B. molecular interaction between atom and

$$
p V / n R T<1
$$

C. finite size of atoms and $p V / n R T>1$
D. finite size of atoms and $p V / n R T<1$

Answer: A

D Watch Video Solution

9. Which of the following volume-temperature
($V-I$) plots represents the behaviour of

1mole of an ideal gas at the atmospheric

pressure?

C.

D.

Answer: C

10. The root mean square velocity of an ideal gas to constant pressure varies with density (d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

Answer: D
11. The compressibility of a gas is less than unity at $S T P$, therefore,
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. $V_{m}=44.8 L$

Answer: B

- Watch Video Solution

12. The rms velocity of hydrogen is $\sqrt{7}$ times
the rms velocity of nitrogen. If T is the temperature of the gas, then

$$
\begin{aligned}
& \text { A. } T\left(H_{2}\right)=T\left(N_{2}\right) \\
& \text { B. } T\left(H_{2}\right)>T\left(N_{2}\right) \\
& \text { C. } T\left(H_{2}\right)<T\left(N_{2}\right) \\
& \text { D. } T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

13. A gas will approach ideal behaviour at
A. low temperature and low pressure
B. low temperature and high pressure
C. high temperature and low pressure
D. high temperature and high pressure

Answer: C

D Watch Video Solution

14. According to Graham's law, at a given temperature, the ratio of the rates of diffusion r_{A} / r_{B} of gases A and B is given by
A. $\left(\frac{p_{A}}{p_{B}}\right)\left(\frac{M_{A}}{M_{B}}\right)^{\frac{1}{2}}$
B. $\left(\frac{M_{A}}{M_{B}}\right)\left(\frac{p_{A}}{p_{B}}\right)^{\frac{1}{2}}$
C. $\left(\frac{p_{A}}{p_{B}}\right)\left(\frac{M_{B}}{M_{A}}\right)^{\frac{1}{2}}$
D. $\left(\frac{M_{A}}{M_{B}}\right)\left(\frac{p_{B}}{p_{A}}\right)^{\frac{1}{2}}$

Answer: C

15. The compressibility factor for an ideal gas

 isA. 1.5
B. 1.0
C. 2.0
D. ∞

Answer: B

- Watch Video Solution

16. The ratio between the root mean square speed of H_{2} at 50 K and that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $\frac{1}{4}$

Answer: C
(Watch Video Solution
17. Equal weights of ethane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is
A. $1: 2$
B. $1: 1$
C. $1: 16$
D. $15: 16$

Answer: D
18. At constant volume, for a fixed number of moles of a gas, the pressure of the gas increases with the rise in temperature due to
A. increase in average molecular speed
B. increase rate of collisions amongst molecules
C. increase in molecular attraction
D. decrease in mean free path
19. According to kinetic theory of gases, for a datomic molecule.
A. the pressure exerted by the gas is proportional to mean velociyt of the molecule
B. the pressure exerted by the gas is proportional to the root mean velocity
C. the root mean square velocity of the molecule is inversely proportional to the temperature
D. the mean translational kinetic energy of
the molecule is proportinal to the absolute temperature

Answer: D

D Watch Video Solution

20. The rate of diffusion of methane at a given
temperature is twice that of a gas X. The molecular weight of X is
A. 64
B. 32
C. 4
D. 8

Answer: A

D Watch Video Solution
21. The density of neon will be highest at
A. $S T P$
B. $0^{\circ} C, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

D. $273{ }^{\circ} \mathrm{C}$, 2 atm

Answer: B
22. The value of van der Waals constant a for the gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$, and CH_{4} are 1.360, 1.390, 4.170 , and $2.253 L^{2} \mathrm{atmmol}^{-2}$, respectively. The gas which can most easily be liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C

- Watch Video Solution

23. A bottle of dry ammonia and a bottle of dry
hydrogen chloride connected through a long tube are opened simultaneously at both ends.

The white ammonium chloride ring first formed will be
A. at the centre of the tube
B. near the hydrogen chloride bottle
C. near the ammonia bottle

D. throughout the length of the tube

Answer: B

D Watch Video Solution

24. In van der Waals equation of state for a non-ideal gas, the term that accounts for intermolecular forces is

$$
\text { A. }(V-b)
$$

B. $R T$
C. $\left(p+\frac{a}{V^{2}}\right)$
D. $(R T)^{-1}$

Answer: C

- Watch Video Solution

25. The average veloctiy of an ideal gas
molecule at $27^{\circ} C$ is $0.3 m s^{-1}$. The average
velocity at $927^{\circ} \mathrm{C}$ will be
A. $0.6 \mathrm{~m} / \mathrm{s}$
B. $0.3 \mathrm{~m} / \mathrm{s}$
C. $0.9 \mathrm{~m} / \mathrm{s}$
D. $3.0 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

26. The rate of diffusion of a gas is
A. direction proportional to its density
B. directly proportional to its molecular weight
C. directly proportinal to the square root of its molecular weight
D. inversely proportional to the square
root of its molecular weight

Answer: D

D Watch Video Solution

27. Equal weights of methane and hydrogen
are mixed in an empty container at $25^{\circ} \mathrm{C}$. The
fraction of the total pressure exerted by hydrogen is

> A. $\frac{1}{2}$
> B. $\frac{1}{9}$
> C. $\frac{1}{9}$
> D. $\frac{16}{17}$

Answer: B
28. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules
A. are above the inversion temperature
B. exert no attractive forces on each other
C. do work equal to loss in kinetic energy
D. collide without loss of energy

Answer: B
29. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. two times that of a hydrogen molecule
B. same as that of a hydrogen molecule
C. four times that of a hydrogen molecule
D. half that of a hydrogen molecule

- Watch Video Solution

30. Equal weights of methane and oxygen are
mixed in an empty container at $25^{\circ} \mathrm{C}$. The
fraction of the total pressure exerted by
oxygen is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3} \times 273298$

Answer: A

D Watch Video Solution

31. The temperature at which a real gas obeys
the ideal gas laws over a wide range of pressure is called
A. critical temperature
B. Boyle temperature
C. inversion temperature
D. reduced temperature

Answer: B

D Watch Video Solution

32. The ratio of root mean square velocity of average velocity of a gas molecule at a particular temperture is
A. $1.085: 1$
B. 1:1.086
C. $2: 1.086$
D. 1.086: 2

Answer: A

D Watch Video Solution

33. One mole of a monoatomic real gas satisfies the equation $p(V-b)=R T$ where b is a constant. The relationship of interatomic potential $V(r)$ and interatomic distance r for gas is given by
A.

Answer: C

D Watch Video Solution

34. According to kinetic theory of gases:
A. collisions are always elastic
B. heavier molecules transfer more momentum to the wall of the container
C. only a small number of molecules have
very high velocity
D. between collisions, the molecules move in straight lines with constant velocities

Answer: A

- Watch Video Solution

35. A gas described by van der Waals equation
A. behaves similar to an ideal gas in the
limit of large molar volumes
B. behaves similar to an ideal gas in the
limit of large pressures
C. is characterised by van der Waals'
coefficients that are dependent on the
idenitty of the gas but are independent
of the temperature

D. has the pressure that is lower than the

 pressure exerted by the same gas behaving ideally
Answer: A::C

- Watch Video Solution

36. If a gas expended at constant temperature
A. the pressure decreases
B. the kinetic energy of the molecules
remains the same
C. the kinetic energy of the molecules
decreases
D. the number of molecules of the gas
increases

Answer: A::B

D Watch Video Solution
37. Assertion: The pressure of a fixed amount of an ideal gas is proportional to its temperature.

Reason: The Frequency of collisions and their impact both increase in proportion of the square root of temperature.
A. Statement I is true: Statement II is true,

Statement II is the correct explanation of

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: D

D Watch Video Solution

38. Assertion: The value of van der Waals
constant a is larger for ammonia than for nitrogen.

Reason: Hydrogen bonding is present in ammonia.
A. Statement I is true: Statement II is true,

Statement II is the correct explanation of

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not the correct

explanation of Statement I.

C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

D Watch Video Solution

39. X and Y are two volatile liquids with molar weights of $10 \mathrm{gmol}^{-1}$ and $40 \mathrm{gmol}^{-1}$ respectively. Two cotton plugs, one soaked in
X and the other soaked in Y, are
simultaneously placed at the ends of a tube of
length $L=24 \mathrm{~cm}$, as shown in the figure.

The tube is filled with an inert gas at 1 atm pressure and a temperature of 300 K . Vapours of X and Y react to form a product whichh is first observed at a distance $d \mathrm{~cm}$ from the plug soaked in X.

Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and two vapours.

The experimental value of d is found to be smaller than the estimate obtained using

Graham's law. This is due to
A. larger mena free path for X as a compared of that of Y
B. larger mean free path for Y as
compared to that of X
C. increased collision frequency of Y with
the inert gas as compared to that of X
with the inert gas

D. increased collision frequency of X with

 the inert gas as compared to that of Y with the inert gas
Answer: D

D Watch Video Solution

40. X and Y are two volatile liquids with molar weights of $10 \mathrm{gmol}^{-1}$ and $40 \mathrm{gmol}^{-1}$ respectively. Two cotton plugs, one soaked in
X and the other soaked in Y, are
simultaneously placed at the ends of a tube of
length $L=24 \mathrm{~cm}$, as shown in the figure.

The tube is filled with an inert gas at 1 atm pressure and a temperature of 300 K . Vapours of X and Y react to form a product whichh is first observed at a distance $d \mathrm{~cm}$ from the plug soaked in X.

Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and two vapours.

The value of d in cm (shown in figure), as estimated from Graham's law, is
A. 8
B. 12
C. 16
D. 20

Answer: C
(Watch Video Solution
41. The absolute temperature of an ideal gas
is..... to/than the average kinetic energy of the gas molecules.

D Watch Video Solution

42. $8 g$ each of oxygen and hydrogen at $27^{\circ} C$
will have the total kinetic energy in the ratio of
43. The value of $P V$ for $5.6 L$ of an ideal gas is
........ $R T$ at $N T P$.

- Watch Video Solution

44. The rate of diffusion of a gas is...............proportional to both And square root of molecular mass.

- Watch Video Solution

45. $C_{P}-C_{V}$ for an ideal gas is

- Watch Video Solution

46. The total energy of 1 mol of an ideal monatomic gas at $27^{\circ} C$ is

- Watch Video Solution

47. A mixture of ideal gases is cooled up to
liquid helium temperature $(4.22 K)$ to form an
ideal solution. Is this statement true or false?

Justify your answer in not more than two lines.

D Watch Video Solution

48. In the van der Waals equation
$\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$
the constant a reflects the actual volume of the gas molecules.

D
 Watch Video Solution

49. A gas in a closed container will exert much
higher pressure due to gravity at the bottom than at the top.

D Watch Video Solution

50. Kinetic energy of a molecule is zero at $0^{\circ} C$

- Watch Video Solution

51. The diffusion coefficient of an ideal gas is proportional to its mean free path and mean speed. The absolute temperature of an ideal gas is increased 4 times and its pressure is increased 2 times.As a result, the diffusion coefficient of this gas increases x times. The value of x is.

- Watch Video Solution

52. A closed vessel with rigid walls contains 1 mole of ${ }_{92}^{238} U$ and 1 mole of air at 298 K .

Considering complete decay of ${ }_{92}^{238} U$ to ${ }_{.82}^{206} \mathrm{~Pb}$ the ratio of the final pressure to the initial pressure of the system at 298 K is

D Watch Video Solution

53. If the value of Avogadro numberis $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the vaueof Boltzmann constant is $1.380 \times 10^{-23} \mathrm{JK}^{-1}$, then the
number of significant digits in the calculated value of the universal gas constant is

D Watch Video Solution

54. To an evacuated vessel with movable piston under external pressure of 1 atm 0.1 mole of He and 1.0 mole of an unknown compound vapour pressure 0.68 atm at $0^{\circ} C$ are introduced Considering the ideal gas behaviour the total volume (in litre) of the gases at $0^{\circ} C$ is close to .
55. At 400 K the root mean square (rms) speed of a gas x (mol. wt. $=40$) is equal to the most probable speed of gas y at 60 K Find the molecular weight of gas y.

- Watch Video Solution

56. The average velocity of gas molecules is $400 \mathrm{~ms}^{-1}$. Calculate their $r m s$ velocity at the same temperature.

- Watch Video Solution

57. The density of the vapour of a substance at 1 atm pressure and 500 K is $0.36 \mathrm{kgm}^{-3}$. The vapour effuses through a small hole at a rate of 1.33 times faster than oxygen under the same condition.
(a) Determine (i) molecular weight, (ii) molar volume (iii) compression factor (Z) of the vapour, and (iv) which forces among the gas molecules are dominating, the attractive or the repulsive?
(b) If the vapour behaves ideally at $1000 K$, determine the average translational kinetic energy of a molecule.

- Watch Video Solution

58. The compressibility factor for definite amount of van der Waals' gas at $0^{\circ} \mathrm{C}$ and 100 atm is found to be 0.5 . Assuming the volume of gas molecules negligible, the van der Waals' constant a for gas is
59. Calculate the pressure exerted by one mole of CO_{2} gas at 273 K van der Waals constant $a=3.592 \mathrm{dm}^{6} \mathrm{atmmol}^{-2}$. Assume that the volume occupied by CO_{2} molecules is negligible.

- Watch Video Solution

60. (a) One mole of nitrogen gas at 0.8 atm takes $38 s$ to diffuse through a pinhole, whereas one mole of an unknown compound
of xenon with fluorine at 1.6 atm takes 57 s to diffuse through the same hole. Calculate the molecular formula to the compound.
(b) The pressure exerted by $12 g$ of an ideal gas
at temperature $t^{\circ} C$ in a vessel of volume
Vlitre is 1 atm . When the temperature is increased by $10^{\circ} \mathrm{C}$ at the same volume, the pressure increases by 10%. Calculate the temperature t and volume V. (Molecular weight of the gas is 120 .)
61. Using van der Waals equation, calculate the constant a when 2 mol of a gas confined in a
$4 L$ flasks exerts a pressure of 11.0 atm at a temperature of $300 K$. The value of b is $0.05 \mathrm{Lmol}^{-1}$.

D Watch Video Solution

62. An evacuated glass vessel weighs $50.0 g$ when empty, $148.0 g$ when filled with a liquid of density $0.98 g m L^{-1}$, and $50.5 g$ when filled
with an ideal gas at 760 mmHg at 300 K .

Determine the molar mass of the gas.

D Watch Video Solution

63. A mixture of ideal gases is cooled up to
liquid helium temperature $(4.22 K)$ to form an
ideal solution. Is this statement true or false?

Justify your answer in not more than two lines.
64. The composition of the equilibrium mixture $\left(\mathrm{Cl}_{2} 2 \mathrm{Cl}\right)$, which is attained at $1200^{\circ} C$, is determined by measuring the rate of effusion through a pin hole. It is observed that a 1.80 mmHg pressure, the mixture effuses $1.16 \times$ as fact as krypton effuses under the same conditions. Calculate the fraction of chlorine molecules dissociated into atoms (atomic weight of $K r$ is 84).
65. A mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene
$\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ occupies 40 L at 1.00 atm and at 400 K
. The mixture reacts completely with 130 g of
O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixture.

- Watch Video Solution

66. An $L P G$ cylinder weighs 14.8 kg when empty. When full it weighs 29.0 kg and the weight of the full cylinder reduces to 23.2 kg .

Find out the volume of the gas in cubic metres
used up at the normal usage conditions and
the final pressure inside the cylinder. Assume
$L P G$ to be n-butane with normal boiling point of $0^{\circ} C$.

D Watch Video Solution

67. A $4: 1$ molar mixture of He and CH_{4} is contained in vessel at 20 per pressure. Due to
a hole in the vessel the gas mixture leakes out.

What is the compostion of mixture effusing out initially.

D Watch Video Solution

68. A gas bulb of $1 L$ capacity contains
2.0×10^{11} molecules of nitrogen exerting a pressure of $7.57 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the
root mean square (rms) speed and the temperature of the gas molecules. If the ratio of the most probable speed to the root mean
square is 0.82 , calculate the most probable speed for these molecules at this temperature.

D Watch Video Solution

69. At room temperature, the following reaction proceeds nearly to completion:
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$

The dimer, $N_{2} O_{4}$, solidfies at 262 K . A 250 mL
flask and a 100 mL flask are separated by a stopcock. At $300 K$, the nitric oxide in the larger flask exerts a pressure of 1.053 atm and
the smaller one contains oxygen at 0.789 atm .

The gase are mixed by opening the stopcock and after the end of the reaction the flasks are cooled to $220 K$. Neglecting the vapour pressure of the dimer, find out the pressure and composition of the gas remaining at $220 K$. (Assume the gases to behave ideally)

D Watch Video Solution

70. At $27^{\circ} C$, hydrogen is leaked through a tiny hole into a vessel for 20 min . Another
unknown gas at the same temperature and pressure as that of hydrogen is leaked through the same hole for 20 min . After the effusion of the gases, the mixture exerts a pressure of 6 atm . The hydrogen content of the mixture is 0.7 mol . If the volume of the container is $3 L$, what is the molecular weight of the unknown gas?

Watch Video Solution

71. Calculate the volume occupied by 5.0 g of

 acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mm pressure.
- Watch Video Solution

72. The average velocity of CO_{2} at the temperature T_{1} Kelvin and the most probable veloctiy at T_{2} Kelvin is $9.0 \times 10^{4} \mathrm{cms}^{-1}$.

Calculate the values of T_{1} and T_{2}.

- Watch Video Solution

73. A spherical ballon of 21 cm diameter is to be filled with hydrogen at $S T P$ from a cylinder containing the gas at 20 atm and $27^{\circ} \mathrm{C}$. If the cylinder can hold $2.82 L$ of water, calculate the number of balloons that can be filled up .

- Watch Video Solution

74. Calculate the root mean square velocity of ozone kept in a closed vessel at $20^{\circ} \mathrm{C}$ and 82 cmHg pressure.
75. Give reasons for the following in one or two sentences.
(a) A bottle of liquor ammonia should be cooled before open it the stopper.
(b) Equal volumes of gases contain equal number of moles.
76. Oxygen is present in a $1 L$ flask at a pressure of $7.6 \times 10^{-10} \mathrm{mmHg}$. Calculate the number of oxygen molecules in the flask at $0^{\circ} C$.

- Watch Video Solution

77. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is
found to be $1 a t m$. If $3 g$ of another gas B is
then heated in the same flask, the total
pressure becomes 1.5 atm . Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.

D Watch Video Solution

78. At room temperature, ammonia gas at

1atm pressure and hydrogen chloride gas at
Patm pressure are allowed to effuse through identical pin holes from opposite ends of a glass tube of $1 m$ length and of uniform crosssection. Ammonium chloride is first formed at
a distance of 60 cm from the end through which HCl gas is sent in. What is the value of P ?

- Watch Video Solution

79. Calculate the average kinetic energy (in joule) per molecule in 8.0 g of methane at $27^{\circ} C$.
80. The pressure in a bulb dropped from 2000 to 1500 mm Hg in 47 min when the contained oxygen leaked through a small hole. The bulb was then evacuated. A mixture of oxygen and another gas of molecular weight 79 in the molar ratio of $1: 1$ at a total pressure of 4000 mm of mercury was introduced. Find the molar ratio of the two gases remaining in the bulb after a period of 74 min .
81. A hydrocarbon contains $10.5 g$ of carbon per gram of hydrogen. $1 L$ of vapour of the hydrocarbon at $127^{\circ} \mathrm{C}$ and 1 atm pressure weighs 2.8 g . Find the molecular formula of the hydrocarbon.

D Watch Video Solution

82. If 3.7 g of a gas at $25^{\circ} \mathrm{C}$ occupies the same
volume as 0.814 g of hydrogen at $17^{\circ} \mathrm{C}$ and at
the same pressure, then what is the molecular weight of the gas?

Watch Video Solution

83. When $4.215 g$ of a metallic carbonate was heated in a hard glass tube, the CO_{2} evolved was found to measure 1336 mL at $27^{\circ} \mathrm{C}$ and 700 mm pressure. What is the equivalent weight of the metal?

D Watch Video Solution

84. Calculate the density of NH_{3} at $30^{\circ} \mathrm{C}$ and

5 atm pressure.

- Watch Video Solution

85. The equalitative sketches I, II and III given
below show the variation of surface tension
with molar concentration of three diferent aqueous solutions of $\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+} \quad$ at room
temperature.

The correct assignment of the sketches is
A.

$$
\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}
$$

B.

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{KCl}
$$

C. $\mathrm{KCl}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}, \mathrm{CH}_{3} \mathrm{OH}$
D.

$$
\left.\mathrm{CH}_{3} \mathrm{OH}, \mathrm{KCl}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{1}\right) \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}
$$

Answer: D

D Watch Video Solution

86. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ steam at this temperature is
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$
87. The critical temperature of water is higher
than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has
A. fewer electrons than O_{2}
B. two covalent bonds
C. V-shape
D. dipole moment
88. A liquid is in equilibrium with its vapour at
its boiling point. On average, the molecules in
the two phases have equal
A. inter-molecular forces
B. potential energy
C. kinetic energy
D. total energy

- Watch Video Solution

89. For gaseous reactions, the rate is expressed in terms of $d P / d t$ instead of $d c / d t$ or $d n / d t$ (where c is the concentration and n the number of mol). What is the relation among these expresisons ?

$$
\begin{aligned}
& \text { A. } \frac{d C}{d t}=\frac{1}{V}\left(\frac{d n}{d t}\right)=\frac{1}{R T}=\left(\frac{d p}{d t}\right) \\
& \text { B. } \frac{d C}{d t}=\left(\frac{d n}{d t}\right)=\left(\frac{d p}{d t}\right) \\
& \text { C. } \frac{d C}{d t}=\frac{1}{V}\left(\frac{d n}{d t}\right)=\frac{V}{R T}\left(\frac{d p}{d t}\right)
\end{aligned}
$$

D. none of the above is correct

Answer: A

D Watch Video Solution

90. Compressibility factor (Z) for a van der Waals real gas at critical point is
A. 1
B. $3 / 8$
C. $9 / 8$

D. $8 / 9$

Answer: B

- Watch Video Solution

Objective Type

1. If helium and methane are allowed to difuse
out of the container under the similar conditions of temperature and pressure, then
the ratio of rate of diffusion of helium to
methane is
A. 2
B. 1
C. 0.5
D. 4

Answer: A
(D) View Text Solution

2. If $2 L$ of $C l_{2}$ gas and $2 L$ of $C l F_{3}$ gas react to

form $6 L$ of a pure gaseous compound at the same conditions of temperature and pressure, what is the molecular formula of the compound formed?
A. $C l F$
B. $C l_{2} F_{2}$
C. $C l_{3} F_{3}$
D. $C l_{2} F_{5}$

Answer: A

- View Text Solution

3. In the following figure, when the two stopcocks are opened, the total pressure inside the flask will be

A. 1.41 atm

B. 2.41 atm

C. 3.41 atm
D. 1.12 atm

Answer: A

D View Text Solution

4. Which of the following is/are correct?
(I) If liquid "kryptonite"(from Superman's home planet), wilth a denisty twice that of mercury is
used in a barometer on earth, one standard
atmosphere of pressure would sport a column of mercury 380 mm in height.
II. At constant volume and number of moles of gas, the pressure exhibited by an ideal gas is directly proportional to its absolute temperature.

III At standard temperature and pressure
(STP), the volume of a mixture of gases containing 0.400 mole $H_{2}, 0.600$ mole N_{2} and 1.00 mole of O_{2} is 44.8 L and the mole fraction of N_{2} is 0.300 .
A. Only II
B. Only III

C. II and III

D. All are correct

Answer: D

D View Text Solution

5. Which of the following is(are) true for real gases? (C represents some constant value of R represents molar gas constant).
A. $\lim _{p \rightarrow 0}(p V)=C$ at constant temperature
B. $\lim _{V \rightarrow 0}(p V)=C \mathrm{~s}$ at constant
temperature
C. $\lim _{P \rightarrow 0}\left(\frac{p V}{R T}\right)=1$
D. $\lim _{V \rightarrow 0}\left(\frac{p V}{R T}\right)=R$

Answer: A::C

D View Text Solution

6. Which of the following statements is (are) correct?
A. The ratio of the average speed to the rms speed is independent of the temperature
B. The square of the mean speed of the
molecules is equal to the mean squared
speed at a certain temperature
C. Mean kinetic energy of the gas molecules at any given temperature is independent of the mean speed
D. The difference between rms speed and
average speed at ay temperature for different gases diminishes as larger and
yet larger molar masses are considered

Answer: A::C::D

D View Text Solution
7. Knowing that average kinetic energy of an ideal gas (X) is directly proportinal to absolute temperature, if $T_{1}=273 \mathrm{~K}$, which statements describe the other curves?

A. Curve A is for heavier gas but at same
temperature
B. Curve B is for the same gas but at ${ }^{`} 373 \mathrm{~K}$
C. Curve A is for the same gas but at ${ }^{`} 373 \mathrm{~K}$ D. Curve B is for lighter gas but a same temperature

Answer: A::B::D

D View Text Solution

8. For a non-ideal gas, the compressibility factor (Z) is defined as:
$Z=\frac{p V_{m}}{R T}, V_{m}=$ Molar volume
Compressibility of an unknown gas at $600 K$
and 1.0 atm was found to be 1.2 Also this gas
was found to effuse 1.58 times slower than the
pure methane gas under identical condition.
Answer the following three questions based on the above mentioned information and the information provided in an individual question.

Molar volume of the gas in the given experimental condition is
A. 40.8 L
B. 39.2 L
C. 58.8 L

D. $27.2 L$

Answer: C

D View Text Solution

9. For a non-ideal gas, the compressibility
factor (Z) is defined as:
$Z=\frac{p V_{m}}{R T}, V_{m}=$ Molar volume
Compressibility of an unknown gas at $600 K$ and 1.0 atm was found to be 1.2 Also this gas
was found to effuse 1.58 times slower than the
pure methane gas under identical condition.

Answer the following three questions based
on the above mentioned information and the information provided in an individual question.

The value of the Virial coefficient ' B ' in the Virial equation is,
(Ignore the higher terms from equation during calculation)

Virial
equation
$Z=1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\frac{D}{V_{m}^{3}}+\ldots \ldots \ldots, V_{m} \quad$ is the molar volume
A. $8.16 \mathrm{Lmol}^{-1}$
B. $7.84 \mathrm{Lmol}^{-1}$
C. $11.76 \mathrm{~mol}^{-1}$
D. $5.44 \mathrm{Lmol}^{-1}$

Answer: C

- View Text Solution

Match The Column

1. Match the gases under specified conditions

listed in Column I with their properties /laws

in Column II

Column I	Column II	
A.Hydrogen gas $(p=200 \mathrm{~atm}$, $T=273 \mathrm{~K})$	p.compressibility factor $\neq 1$	
B. Hydrogen gas $(p \sim 0, T=273 \mathrm{~K})$	q.	attractive forces are dominant
C.CO $(p=1 \mathrm{~atm}, T=273 \mathrm{~K})$ r. $p V=n R T$ I). Real gas with very large molar s. $p(V-n b)=n R T$		

D View Text Solution

Comprehension Type

1. For a non-ideal gas, the compressibility
factor (Z) is defined as:
$Z=\frac{p V_{m}}{R T}, V_{m}=$ Molar volume
Compressibility of an unknown gas at $600 K$
and 1.0 atm was found to be 1.2 Also this gas
was found to effuse 1.58 times slower than the
pure methane gas under identical condition.

Answer the following three questions based on the above mentioned information and the information provided in an individual question.

Density of the gas in the above mentioned experimental condition is
A. $0.98 g L^{-1}$
B. $0.68 g L^{-1}$
C. $1.02 g L^{-1}$
D. $1.47 g L^{-1}$

Answer: B

- View Text Solution

1. Assertion Ammonia has higher critical temperature than CO_{2}

Reason Ammonia forms intermolecular hydrogen bonds while CO_{2} does not.

D View Text Solution

2. Assertion At same temperature if equal number of molecules is considered, O_{2} has greater fractions of molecules moving with most probable than CO_{2}

Reason Most probable speed is inversely related to square root of molar mass.

D View Text Solution

Match The Columns

1. Match the statements of Columnl with
values of Column II

	Column I		Column II
A.	Average kinetic energy	p.	Depends on mo mass
B.	Most probable speed	q.	Depends on van der W constants a and b
C.	Rate of effusion	r.	Dcpends on temperature
D.	Boyle temperaiure	S.	Is characteristic of a gas.

- View Text Solution

Integer Type

1. A gaseous mixture of methane and heptane
is 8.25 ratio (by weight) respectively is allowed
to effuse through a pin ole in the flask. How
many methane molecules would come out by the time when the first molecule of heptane is out?

D View Text Solution

2. Consider and ideal gas at same temperature, separated initially as shown below in the diagram

When the valve is opened, the equilibrium
pressure is found to be $20 / 7$ atmosphere.

What was the initial pessure in the smaller flask?

D View Text Solution

