©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - IIT-JEE PREVIOUS YEAR (CHEMISTRY)

THERMODYNAMICS AND THERMOCHEMISTRY

Jee Main And Advanced

1. δU is equal to
A. Isochoric work
B. isobaric work
C. adiabatic work
D. isothermal work

- Watch Video Solution

2. one mole of an ideal gas at 300 k in themal contact with surroundings exponds isothermally from 1.0 L to 2.0 L against a constant presses of 3.0 atm . In this process. The change in entrogy of surrroundings (ΔS) in J^{-1} is
($1 \mathrm{~L} \mathrm{~atm}=101.3 \mathrm{~J})$
A. 5.763
B. 1.013
C. -1.013
D. -5.763

Answer: c

- Watch Video Solution

3. The standed free energy of fromation of $\mathrm{NO}(\mathrm{g})$ is $86.6 \mathrm{kj} / \mathrm{mol}$ at 298 K what is the standed free energy of fromation of $\mathrm{NO}^{2} g$
at $298 \mathrm{k} ? K_{p}=1.6 \times 10^{12}$
A. $R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)-86600$
B. $866000+R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)$
C. $866000+\frac{1.6 \times 10^{12}}{R(298)}$
D. $0.5\left[2 \times 86600-R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)\right]$

Answer: d

- Watch Video Solution

4. For the process, $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$
A. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surrounding }}>0$
B. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surrounding }}<0$
C. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surrounding }}<0$
D. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surrounding }}<0$

Answer: b

- Watch Video Solution

5.

For
the
process
$\mathrm{H}_{2} \mathrm{O}(l)(1 \mathrm{bar}, 373 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(1 \mathrm{bar}, 373 \mathrm{~K})$ the correct set of thermodynamic parameters is
A. $\Delta G=0, \Delta S=+$
B. $\Delta G=0, \Delta S=-$
C. $\Delta G=+\quad \Delta S=0$
D. $\Delta G=-\quad \Delta S=+$

Answer: a

(D) Watch Video Solution

6. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given:
$\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 K}^{\Theta}=10 \mathrm{JK}^{=1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100

D Watch Video Solution

7. The direct conversion of A to B is difficult, hence it is carried out as
$A \rightarrow C \rightarrow D \rightarrow B$

Given,
$\Delta S_{(A \rightarrow C)}=50 e U, \Delta S_{(C \rightarrow D)}=30 e U, \Delta S_{(B \rightarrow D)}=20 e U$,
where $e U$ is entropy unit. Thus the change in entropy in $(A \rightarrow B)$ is:
A. +100 eu
B. $+60 e u$
C. -100 eu
D. $-60 e u$

- Watch Video Solution

8. A monoatomic ideal gas undergoes a process in which the ratio of P to V at any istant is constant and equal to unity. The molar heat capacity of the gas is
A. $\frac{4 R}{2}$
B. $\frac{3 R}{2}$
C. $\frac{5 R}{2}$
D. 0

Answer: a

9. One mole of monoatomic ideal gas at $T(K)$ is exapanded from $1 L$ to $2 L$ adiabatically under constant external pressure of 1 atm. The final tempreture of gas in kelvin is
A. T
B. $\frac{T}{(2)^{\frac{5}{3}-1}}$
С. $T-\frac{2}{3 \times 0.082}$
D. $T+\frac{2}{3 \times 0.082}$

Answer: c

- Watch Video Solution

10. Two moles of an ideal gas expanded isothermally and reversibly from $1 L$ to $10 L$ at $300 K$. What is the enthalpy

change?

A. 4.98 kJ
B. 11.45 KJ
C. $-11.45 k J$
D. 0 kJ

Answer: d

- Watch Video Solution

11. Spontaneous adsorption of a gas on solid surface is an exothermic process because
A. ΔH increases for system
B. ΔS increases for system
C. Δs decreases for gas
D. ΔG increases for system

Answer: c

- Watch Video Solution

12. One mole of a non-ideal gas undergoes a change of state $(2.0 \mathrm{~atm}, 3.0 L, 95 \mathrm{~K}) \rightarrow(4.0 \mathrm{~atm}, 5.0 L, 245 \mathrm{~K})$

With a change in internal energy $\Delta E=30 L$ atm. The change in enthalpy (ΔH) in the process in L-atm is
A. 40
B. 42
C. 44
D. non defined, becouse pressure is not system

- Watch Video Solution

13. Which of the following statements is flase?
A. Work is a state function
B. Temperature is a state function
C. Change in the state is completely defined when the initial
and final states are specified
D. Work appears at the boundary of the system

Answer: a

14. In thermodynamics, a process is called reversible when
A. surroundings and sysytem change of the each other
B. there is no boundary between system and surroundings
C. the surroundings are always in equilibrium with the system
D. the System changes into the boundary surroundings spontaneously

Answer: c

- Watch Video Solution

15. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. less than (ΔH)
B. zero
C. more than (ΔH)
D. equal to (ΔH)

Answer: c

- Watch Video Solution

16. The difference between the heats of reaction at constant pressure and a constant volume for the reaction $2 C_{6} H_{6}(l)+15 O_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$ at $25^{\circ} \mathrm{C}$ in $k J$ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

Answer: a

D Watch Video Solution

17. An ideal gas in thermally insulated vessel at internal $($ pressure $)=P_{1},($ volume $)=V_{1} \quad$ and \quad absolute temperature $=T_{1}$ expands irreversiby against zero external, pressure, as shown in the diagram,

The final internal pressure, volume and absolute temperature of
the gas are p_{2}, V_{2} and T_{2}, respectively. For this expansion

A. $q=0$
B. $T_{2}=T_{1}$
C. $p_{2} V_{2}=p_{1} V_{1}$
D. $P_{2} V_{2}^{\gamma}=P_{1} V_{2}^{\gamma}$

Answer: a,b,c

18. Benzene and naphthalene form an ideal solution at room temperature. For this process, the true statement(s) is (are)
A. ΔG is positive
B. $\Delta G_{\text {system }}$ is positive
C. $\Delta S_{\text {surroundings }}=0$
D. $\Delta H=0$

Answer: b,c,d

- Watch Video Solution

19. The reversible expansion of an ideal gas under adiabatic and isothermal conditions is shown in the figure. Which of the
following statement(s) is (are) correct?

A. $T_{1}=T_{2}$
B. $T_{3}>T_{1}$
C. $W_{\text {isothemal }}>W_{\text {adiabatic }}$
D. $\Delta U_{\text {isothemal }}>\Delta U_{\text {adiabatic }}$

Answer: a,c,d
20. For an ideal gas, consider only $P-V$ work in going from an initial state X to the final state Z. The final state Z can be reached by either of the two paths shown in the figure. Which of the following choice(s) is (are) correct? [Take ΔS as change in entropy and w as work done]

A. $\Delta S_{X} \rightarrow_{z}=\Delta S_{X} \rightarrow_{Y}+\Delta S_{Y} \rightarrow_{Z}$
B. $W_{X} \rightarrow_{z}=W_{X} \rightarrow_{Y}+W_{Y} \rightarrow_{Z}$
C. $W_{X} \rightarrow_{z} \rightarrow_{Z}=W_{X} \rightarrow_{Y}$
D. $\Delta_{X} \rightarrow_{Y} \rightarrow_{Z}=\Delta S_{X} \rightarrow_{Y}$

Answer: a,c,d

- Watch Video Solution

21. Among the following, the intensive property is (properties are) :
A. molar conductivity
B. electromotive force
C. resistance
D. heat capacity

- Watch Video Solution

22. Among the following , the state funcation (s) is (are)
A. internal energy
B. irreversible expansion work
C. reversible expansion work
D. molar enthalpy

Answer: a,c,d

- Watch Video Solution

23. Identify the extensive quantities from the following
(i) refractive
(ii) volume
(iii) temperature
(iv) enthalpy
A. enthalpy
B. temperature
C. volume
D. refracative index

Answer: b,d

D Watch Video Solution

24. Assertion (A) : There is a natural asymmetry between converting work to heat and converting heat of work.

Reason (R): No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
A. statement I is true, Statement II is true, Statement II is the correct explanation of Statement I
B. Statement I is true, statement II is true, Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: b

D Watch Video Solution

25. Assertion (A): For every chemical reaction at equilibrium, standard Gibbs enegry of the reaction is zero.

Reason (R): At constant temperature and pressure chemical reactions are spontaneous in the direction of the decreasing

Gibbs energy.
A. statement I is true, Statement II is true, Statement II is the correct explanation of Statement I
B. Statement I is true, statement II is true, Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: d
26. Assertion: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.
A. statement I is true, Statement II is true, Statement II is the correct explanation of Statement I
B. Statement I is true, statement II is true, Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true
27. A fixed mass m of a gas is subjected to transfromation of states from K to L to M and back to K as shown in the figure.

The pair of isochoric processes among the transfromation of states is
A. K to L and L to M
B. L to M and N to K
C. L to M and M to N

Answer: b

- Watch Video Solution

28. A fixed mass m of a gas is subjected to transformation of state: K to L to M and back to K as shown in the figure.

The succeeding operations that enabel this transformation of
state are

A. heating, cooling, heating, cooling
B. cooling , heating , cooling , heating
C. heating,cooling , cooling, heating
D. cooling , heating , heating , cooling

Answer: c

29. Match the thermodynamic processes given under column I

 with the expressions given under column II.| | Column I | | Column II |
| :--- | :--- | :--- | :--- |
| A. | Freezing of water at 273 K
 and 1 atm | p. | $q=0$ |
| B. | Expansion of 1 mole of an
 ideal gas into a vacuum
 under isolated conditions | q. | $W=0$ |
| C. | Mixing of equal volumes of
 two ideal gases at constant
 temperature and pressure in
 an isolated container | r. | $\Delta S_{\text {sys }}<0$ |
| D. | Reversible heating of $\mathrm{H}_{2}(g)$
 at 1 atm from 300 K to 600
 K, followed by reversible
 cooling to 300 K at 1 atm | s. | $\Delta U=0$ |
| | t. | $\Delta G=0$ | |

- Watch Video Solution

30. Match the transformations In column I with appropriate

A.	$\mathrm{CO}_{2}(s) \longrightarrow \mathrm{CO}_{2}(g)$	p.Phase transition		
B. $\quad$$\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaO}(s)$ $+\mathrm{CO}_{2}(g)$	q.Allotropic change			
C. $\quad 2 \mathrm{H} \bullet \longrightarrow \mathrm{H}_{2}(g)$	r. ΔH is positive			
D.	$\mathrm{P}_{\text {(white, solid) }} \rightarrow \mathrm{P}_{\text {(red, solid) }}$	s.		ΔS is positive
:---	:---			

D Watch Video Solution

31. Enthalpy is an property.

D Watch Video Solution

32. When $F e_{S}$ is dissovled in aqueous hydrochloric acid in a closed vessel the work done is \qquad

- Watch Video Solution

33. The heat content of the products is more than that of the reactants in an \qquad reaction.

- Watch Video Solution

34. A system is said to be...........if it can neither exchange matter nor energy with the surrounding's.

- Watch Video Solution

35. $C_{P}-C_{V}$ for an ideal gas is
36. The total energy of 1 mol of an ideal monatomic gas at $27^{\circ} C$ is.

- Watch Video Solution

37. The first law of thermodynamics is not adequate in predicting the direction of a process.(True/False)

D Watch Video Solution

38. The heat capacity of a diatomic gas is higher than that of a mono-atomic gas. (True/False)
39. For the reaction
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}=-560 \mathrm{~kJ}$,
2 mol of CO and 1 mol of O_{2} are taken in a container of volume
$1 L$. They completely form 2 mol of CO_{2}. The gaseous deviate appreciably from ideal behaviour. If the pressure in the vessel changes from 70 to 40 atm , find the magnetic (absolute) value of $\Delta U a t 500 K .(1 L-a t m=0.1 k J)$

(Watch Video Solution

40. 100 mL of a liquid is contained in an insulated container at a pressure of 1bar. The pressure is steeply increased to 100bar. The volume of the liquid is decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.
41. Two moles of a perfect gas undergo the following process:
(a) A reversible isobaric expansion from (1.0 atm, 20.0 litre) to (
1.0 atm, 40.0 litre). (b) A reversible isochoric change of state from (1.0 atm, 40.0 litre) to (1.0 atm, 40.0 litre). (b) A reversible isochoric change of state from (1.0 atm, 40.0 litre) to (0.5 atm ,
40.0 litre). (c) A reversible isothermal compression from (0.5atm,
40.0 litre) to (1.0 atm, 20.0 litre). (i) Sketch with labels each of the process on the same $P-V$ diagram. (ii) Calculate the total work (W) and the total heat change (q) involved in the above process. (iii) What will be the value of $\Delta U, \Delta H$ and ΔS for the overall process?

- Watch Video Solution

42. When 1pentyne (A) is treated with $4 N$ alcoholic $K O H$ at
$175^{\circ} C$, it is slowly converted into an equilibrium mixture of
1.3% of 1pentyne $(A), 95.2 \%$ 2-pentyne (B) and 3.5% of 1,2 -pentandiene (C). The equilibrium was maintained at $175^{\circ} C$. calculate ΔG^{Θ} for the following equilibria:
$B \Leftrightarrow A, \Delta G^{\Theta}={ }_{1} ?$
$B \Leftrightarrow C, \Delta G^{\Theta}={ }_{2} ?$
From the calculated value of $\Delta G^{\Theta}{ }_{1}$ and $\Delta G^{\Theta}{ }_{2}$, indicate the order of stability of A, B and C.

(D) Watch Video Solution

43. Show that the reaction
$\mathrm{CO}(g)+(1 / 2) \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
at $300 K$ is spontaneous and exothermic, when the standard entropy change is $-0.094 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The standard Gibbs free energies of formation for CO_{2} and CO are -394.4 and $-137.2 \mathrm{kJmol}^{-1}$, respectively.
44. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. $C_{v m}$ for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

45. A gas mixture of $3.67 L$ of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.
46. An athelete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to $1560 k J$. He utilises 50% of this gained enegry in the event. In order to avoid storage of enegry in the body, calculate the weight of water he would need to perspire. The enthalpy of evaporation of water is $441 \mathrm{~kJ} / \mathrm{mol}$.

- Watch Video Solution

47. The following statement is true only under some specific conditions. Write the conditions for the following statement in not more than two sentences.

The heat energy q absorbed by a gas is ΔH.

- Watch Video Solution

48. With the help of thermochemical equations given below, determine $\Delta_{r} H^{\Theta}$ at $298 K$ for the following reaction:
$C($ graphite $)+2 H_{2}(g) \rightarrow C H_{4}(g), \Delta_{r} H^{\Theta}=?$
C (graphite) $+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta_{r} H^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta_{r} H^{\Theta}=-285.8 \mathrm{kJmol}^{-1}$.
$\mathrm{CO}_{2}(2)(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)$,
$\Delta_{r} H^{\Theta}=+890.3 \mathrm{kJmol}^{-1}$.
A. $+78.8 \mathrm{kJmol}^{-1}$
B. $+144.0 \mathrm{kJmol}^{-1}$
C. $-74.8 \mathrm{kJmol}^{-1}$
D. $-144.0 \mathrm{kJmol}^{-1}$
49. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and $-282.5 \mathrm{KJmol}^{-1}$ respectivaly. The enthalpy of formation of carbon monoxide per mole is:
A. 676.5
B. -676.5
C. -110.5
D. 110.5

Answer: c

- Watch Video Solution

50. For the complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ the amount of heat produced as measured in bomb calorimeter is $1364.47 \mathrm{~K} \mathrm{Jmol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming ideality, the enthalpy of combustion, ΔH_{C}, for the reaction will be

$$
\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]
$$

A. $-1366.95 \mathrm{KJmol}^{-1}$
B. $-1361.95 \mathrm{~K} \mathrm{Jmol}^{-1}$
C. $-1350.50 \mathrm{KJmol}^{-1}$
D. $-1350.50 \mathrm{kJmol}^{-1}$

Answer: a

- Watch Video Solution

51. The standard enthalpies fo formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(1)$, and glucose (s) at $25^{\circ} \mathrm{C}$ are $-400 \mathrm{kJmol}^{-1},-300 \mathrm{kJmol}^{-}$, and $-1300 \mathrm{kJmol}^{-1}$, respectively. The standard enthalply of combustion per gram of glucose at $25^{\circ} \mathrm{C}$ is
A. $+2900 k J$
B. $-2900 K j$
C. $-16.11 K j$
D. $+16.11 K j$

Answer: c

- Watch Video Solution

52. Using the data provided, calculate the multiple bond energy $\left(\mathrm{kJmol}^{-1}\right)$ of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take
the bond energy of a $C-H$ bond as $350 \mathrm{kJmol}^{-1}$).

$$
\begin{aligned}
& 2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta=225 \mathrm{kJol}^{-1} \\
& \left.2 C_{(s)} \rightarrow 2 C_{g}\right), \Delta H=1410 \mathrm{kJmol}^{-1} \\
& H_{2(g)} \rightarrow 2 H_{(g)}, \Delta H=330 \mathrm{kJmol}^{-1}
\end{aligned}
$$

A. 1165
B. 837
C. 865
D. 815

Answer: d

- Watch Video Solution

53. The species which by definition has zero standard molar enthalpy of formation at 298 K is
A. $B r_{2}(g)$
B. $C l_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(g)$
D. $\mathrm{CH}_{4}(g)$

Answer: b

- Watch Video Solution

54. The bond energy (in kcal mol^{-1}) of a $C-c$ single bond is approximately
A. 1
B. 10
C. 100
D. 1000

Answer: c

- Watch Video Solution

55. $\Delta_{v a p} H=30 \mathrm{kJmol}^{-1}$ and $\Delta_{\text {vap }} S=75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. Find the temperature of vapour, at 1 atm.
A. 400 K
B. 350 K
C. 298 K
D. 250 K

Answer: a

56. Which of the reaction defines $\Delta_{f} H^{\circ}$?
A. $C_{(\text {diamond })}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
D. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$

Answer: b

D Watch Video Solution

57. ΔH_{1}° for $\mathrm{CO}_{2}(g), \mathrm{CO}(g)$ and $\mathrm{H}_{2} \mathrm{O}(g)$ are $-393.5,-110.5$ and $-241.8 \mathrm{kJmol}^{-1}$ respectively. Standard enthalpy change for the reaction
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is
A. 524.1
B. ${ }^{`}+41.2$
C. -262.5
D. -41.2

Answer: b

- Watch Video Solution

58. The following is (are) endothermic reaction (s)
A. Combustion of methane
B. Decompostion of water
C. Dehydrogenation of ethane to ethylene
D. Conversion of graphite to diamond

Answer: b,c,d

- Watch Video Solution

59. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from $298.0 K \rightarrow 298.45 K$ due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 k J K^{-1}$, find the numerical value for the enthalpy of combustion of the gas in $k \mathrm{Jmol}^{-1}$

D Watch Video Solution

60. The standard heat of formation values of $S F_{6}(g), S(g)$, and $F(g)$ are $-1100,275$, and $80 \mathrm{kJmol}^{-1}$, respectively. Then the
average $S-F$ bond enegry in $S F_{6}$

- Watch Video Solution

61. From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K . The enthalpy of formation of $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ and Propene $_{(g)}$ are $-393,-285.8$ and $20.42 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

62. Compute the heat of formation of liquie methyl alcohol is
kilojoule per mol using the following data. Heat of vaporisation of liquid methyl alcohol $=38 \mathrm{~kJ} / \mathrm{mol}$. Heat of formation of gaseous atoms from the elements in their standard states
$: H=218 \mathrm{~kJ} / \mathrm{mol}, C=715 \mathrm{~kJ} / \mathrm{mol}, O=249 \mathrm{~kJ} / \mathrm{mol}$.
Average bond energies:
$C-H 415 k J / m o l, C-O 356 k J / m o l, O-H 463 k J / m o l$.

- Watch Video Solution

63. The standard molar enthalpies of formation of cyclohexane
(I) and benzene (I) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{kJmol}^{-1}$, respectively. The standard enthaly of hydrogenation of cyclohenxene (I) at $25^{\circ} \mathrm{C}$ is $-119 \mathrm{kJmol}^{-1}$ Use this data to estimate the magnitude of the resonance enegry of benzene.

(D) Watch Video Solution

64. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When n has a large integral value. Given theat the average
enthalpies of bond dissociation for $C=C$ and $C-C$ at $298 K$
are +590 and $+331 \mathrm{kJmol}^{-1}$ respectively, calculate the enthalpy of polymerisation per mole of ethylene at $298 K$.

- Watch Video Solution

65. In order to get maximum calorific output a burner should have an optimum fuel to oxygen ratio which corresponds to three times as much oxygen as is required theorectically for complete combusion of the fuel A burner which has been adjused for methane as fuel (with $x L h^{-1}$ of $C H_{4}$ and $\left.6 x \mathrm{Lh}^{-1} o f \mathrm{CO}_{2}\right)$ is to be readjusted for butane $C_{4} H_{10}$ in order to get the same calorific output what should be the rate of supply to butane and oxygen? Assume that losses due to incomplete combustion etc are the same for both fuels and
that the gases behave ideally Heats of combusion
$C H_{4}=809 \mathrm{kJmol}^{-1}, C_{4} H_{10}=2878 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

66. Determine enthalpy change for,
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{CH}_{4(\mathrm{~g})}$
at $25^{\circ} \mathrm{C}$ using heat of combustion values under standard condition.

Compounds $\quad H_{2(g)} \quad C H_{4(g)} \quad C_{2} H_{6(g)} \quad C_{(\text {Graphite })}$
$\Delta H^{\circ} \mathrm{inkJ} / \mathrm{mol}-285.8-890.0-1560.0-393.5$
The standard heat of formation of $C_{3} H_{8(g)}$ is $-103.8 \mathrm{kJmol}^{-1}$

- Watch Video Solution

67. Using the data (all vaues in kcalmol $^{-1} a t 25^{\circ} \mathrm{C}$) given below, calculate bond energy of $C-C$ and $C-H$ bonds.
$C_{(s)} \rightarrow C_{(g)}, \Delta H=172$
$H_{2} \rightarrow 2 H, \Delta H=104$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H=-68.0$
$C_{(s)}+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-94.0$
Heat of combustion of $C_{2} H_{6}=-372.0$
Heat of combustion of $C_{3} H_{8}=-530.0$

- Watch Video Solution

68. The enthalpy of combustion of H_{2}, cyclohexene $\left(C_{6} H_{10}\right)$ and cyclohexane $\left(C_{6} H_{12}\right)$ are $-241,-3800$ and $-3920 K J$ per mol respectively. Heat of hydrogenation of cyclohexene is
69. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture.

Heats of formation and densities are as follows:

$$
H_{f\left(A I_{2} O_{3}\right)}^{\Theta}=-399 k^{c a l m o l}{ }^{-1}, H_{f\left(\mathrm{Fe}_{2} O_{3}\right)}^{\Theta}=-199 \mathrm{kcalmol}^{-1}
$$ Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=4.0 \mathrm{gcm}^{-3}$, Density of $\mathrm{Al}=2.0 \mathrm{gcm}^{-3}$

- Watch Video Solution

70. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are $-21.1,-94.1$, and $-68.3 k c a l$, respectively. Calculate the standard molar heat of combustion of ethane.

- Watch Video Solution

71. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58 and $103 \mathrm{kcalmol}^{-1}$ respecitvely. Calculate the enthalpy of formation for HCl gas.

- Watch Video Solution

72. Given the following standard heats of reactions:
(a) heat of formation of water $=-68.3 \mathrm{kcal}$, (b) heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}=-310.6 \mathrm{kcal}$, (c) heat of combustion of ethylene $=-337.2 k c a l$. Calculate the heat of reaction for the hydrogenation of acetylene at constant volume and at $25^{\circ} C$.

- Watch Video Solution

73. Given that:
i. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-94.05 \mathrm{kcal}$
ii. $H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H=-68.32 k c a l$
iii.
$\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l), \Delta H=-310.62 \mathrm{kcal}$
The heat of formation fo acetylene is

- Watch Video Solution

74. The standared enthalpies of formation at $298 K$ for $\mathrm{CC} 1(g), \mathrm{H}_{2} \mathrm{O}(g), \mathrm{CO}_{2}(g) \quad$ and $\quad \mathrm{HC1}(g) \quad$ are
$-106.7,-241.8,-393.7$, and $-92.5 \mathrm{kJmol}^{-1}$, respectively.
Calculate $\Delta H^{\Theta}{ }_{298 K}$ for the reaction
$\mathrm{CC1}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}_{2}(g)+4 \mathrm{HCI}_{g}$
75. The enthalpies for the following reactions $\left(\Delta H^{\Theta}\right)$ at $25^{\circ} C$ are given below.
a. $\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{OH}(g)$
$\Delta H=10.06 k c a l$
b. $H_{2}(g) \rightarrow 2 H(g), \Delta H=104.18 \mathrm{kcal}$
c. $O_{2}(g) \rightarrow 2 O(g), \Delta H=118.32 k c a l$

Calculate the $O-H$ bond energy in the hydroxyl radical.

(D) Watch Video Solution

76. the standed reaction free energy for
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} i s \Delta G^{\circ}=+4.73 \mathrm{kJmol}^{-1}$ at 298 K. What is value of ΔG and what is the spontaneous direction of the reaction when the partical pressure fo the gases are $P_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.80 \mathrm{~atm}$ and $P_{\mathrm{NO}_{2}}=2.10 \mathrm{~atm} ?$
A. ${ }^{`}+6.83 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1),($ "towards reactant")
B. `-8.96 kJ mol^(-1), ("towards product") C. ` $+8.96 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1)$, ("towards product")
D. `+8.96 kJ mol^(-1), ("towards reactant")

Answer:

- Watch Video Solution

77. we consider a grwing plant. Limting our system to plant itself, to be an exmple of decreasing entropy, small molecules,like carbon dioxide, CO_{2} and water $\mathrm{H}_{2} \mathrm{O}$ are built into complex but orderly arroangements of macromolecules, which one of the follwing statement applies?
A. The second law of thermodynamics, that the entropy of
the unicerse is increasing, is being violated
B. Plant growth is so complex that the laws of thermodynamics cannot be applied successfully
C. The second law thermodynamics is not being violated because the entropy of the plant's surroundings is increasing
D. The second law of themodynamics is not being violated because the entropy of the plant's surrounding is dereasing

Answer:

- Watch Video Solution

78. One mole of a monationc ideal gas intially at a pressure of 2.00 bar and a temperature of 300 K is taken to a final pressure of 4.00 bar by a reversible path defined by $P / V=$ cons $\tan t . T a k \in g C_{v}$ to be equal to
$12.5 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ The correct dedution for this process is (are)
A. final $T=1092 \mathrm{~K}$
B. $E=10.2 \mathrm{~kJ}$
C. $\mathrm{W}=-3.4 \mathrm{~kJ}$
D. $Q=6.8 \mathrm{~kJ}$

Answer:

79. How much heat flows into the system along path ADB it the work done by the system is 10 J ?

When a system is taken from state A to state B along the parth
ACB in the figure below, 80 j of heat flows into the system and the system does 30 J of work.

A. 40 J
B. 60 J
C. 80 J
D. Insufficient infromation

Answer:

D Watch Video Solution

80. When the system is retuned form state B to A along the curved path, the work doen on the system is 20 J Does the system absorb ro liberate heat, and how much?

When a system is taken from state A to state B along the parth
ACB in the figure below, 80 j of heat flows into the system and the system does 30 J of work.

A. -70 J , heat is liberated
B. `-60J , heat is liberated
C. 70 j , heat is absorbed
D. 60 J , heat is absorbed

Answer:

- Watch Video Solution

81. Assertion All reversible reaction proceeds in direction of lower Gibbs' energy.

Reson Reversible reaction proceeds spontaneously towards a state of equilibrium where the Gibbs' energy is minimum
82. Assertion Isothemal expansion of ideal gas againt vacuum must be simultaneously adiabatic.
reason The work done by system in the above process is zero.

- Watch Video Solution

83. Match the statements of column I with values of column II.

	Column I		Column II	
A. An extensive properties	p.	Work done in reversible process.		
B. An intensive properties	q.	ΔH°		
C. A state function	r.	ΔS°		
D.This can be known if two other parameters from column II are known at a given temperature.	s.	K eqm		

- Watch Video Solution

1. The standard state Gibba free energies of formations of

C("graphite") and ("diamond") at T = 298k are
$\Delta f G^{\circ}\left[C(\right.$ graphite $)=\mathrm{O} \mathrm{kJmol}^{-1}$
$\Delta f G^{\circ}\left[C(\right.$ graphite $)=0 \quad k J m o l 6^{-1}$
The standed state means that the presses should be 1 bar, and substance of graphite [C(graphite)] to diamond [C(diamond)] reduces its volume by $2 \times 10^{10} \mathrm{~m}^{-1}$ If C (graphite) is converted to C(diamond) isothemally at $\mathrm{T}=298 \mathrm{k}$ the pressure at which $\mathrm{C}($ graphite) is in equilibrium with C(diamond), is
[useful infromation : $1 J-K g m^{2} s^{-2}$
$\left.1 p a=1 \mathrm{kgm}^{-1} \mathrm{~s}^{-2}: 1^{-}=10^{5} \mathrm{pa}\right]$
A. 58001 bar
B. 1450 bar
C. 14501 bar
D. 29001

- View Text Solution

2. A piston filled with 0.04 mole of an ideals gas expands revesrsiby from 50.0 mL to 375 ml at a canstant heat. The values of q and w for the process will be
$(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ in $7.5=2.01)$
A. $q=+208 j, W=-208$
B. $q=-208 j, W=-208$
C. $q=-208 j, W=+208$
D. $q=+208 j, W=+208 J$

Answer: a

3. An ideal gas is expanded form $\left(P_{1} V_{1} T_{1}\right)$ to $\left(p_{2}, V_{2} T_{2}\right.$ used different conditions. The correct statement (s) among the following is (are)
A. The work done by the gas is less when it is expanded revesibly from $V_{1},(\rightarrow) V_{2}$ under abiabitc conditions as compared to that when expanded reversibly form $v_{1}(\rightarrow) V_{2}$ under isothemal conditions.
B. The change in internal energy of the gas is (i) zero , if it is expanded reversibly with $T_{1}=T_{2}$ and (ii) positive if it is expaned reversiby under abiabatic conditions with

$$
T_{1} \neq T_{2}
$$

C. If the expansion is carried out freely, it is simultaneously both isothermal as well as adiabatic
D. The work done on the gas is maximum when it is compressed irrversibly from $\left(p_{2} V_{2}\right)$ to (P_{1}, V_{1}) against constant pressen P_{1}

Answer: a,c,d

- View Text Solution

4. For a reaction taking place in a container in equilibrium with its surroundings the effect of temperature on its equilibrium constant K in terms of change in entrogy is described by
A. with increase in temperature, the value of K for endothermic reaction increases beacouse unfavourable
change in entrogy of the surroundings decreases
B. With increase in temperature , the value of K for exothermic reactions decreause becacuse favourable change in entropy of the surrounding decreases
C. With increase in temperature, the value of K endothermic
rection increases becouse the entrogy change of the
system is negative
D. With increase in temperature, the value of K for endothemic reaction increses because the entrogy change of the system is positive

Answer: a,b

- View Text Solution

5. One mole of an ideal gas is taken from a to b along two parths dented by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is W_{s} and that along the dotted line path is W_{d} then the interger closet to the ratio
W_{d} / W_{s} is

D View Text Solution

6. C_{v} value of He is always $3 \frac{R}{2} b u t C_{v}$ valueof $\mathrm{H}_{2} i s 3 \frac{R}{2}$ at low temperature and $5 \frac{R}{2}$ at moderate temperature and more than $5 \frac{R}{2}$ at higher temperature. Explain in two or three lines.
7. Diborane is a potenial rocket fuel which undergoes combustion according to the diborane.
$2 B(s)+\frac{3}{2} O_{2}(g) \rightarrow B_{2} O_{3}, \Delta H=1273 \mathrm{~mol}^{-1}$
$H_{2}(g) \frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H=-286 \mathrm{KJmol}_{-1}$
$2 B(s)+3 H_{2}(g) \rightarrow B_{2} H_{6}(g), \Delta H=36 \mathrm{kJmol}^{-1}$

D View Text Solution

