© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - GRB CHEMISTRY (HINGLISH)

MOLE CONCEPT, STOICHIOMETRY \& CONCENTRATION

TERMS

Straight objective type

1. If the atomic mass of sodium is 23 , the number of moles in 46 gm of sodium is:
A. 1
B. 2
C. 2.3
D. 4.6

Answer: B

- Watch Video Solution

2. The charge on 1 gram ions of $A I^{3+}$ is .
(a). $\frac{1}{27} N_{A} e$ coulomb
(b). $\frac{1}{3} N_{A} e$ coulomb
(c). $\frac{1}{9} N_{A} e$ coulomb
(d). $3 \times N_{A} e$ coulomb
A. $\frac{1}{27} N_{A^{e}}$ coulomb
B. $\frac{1}{3} N_{A^{e}}$ coulomb
C. $\frac{1}{9} N_{A^{e}}$ coulomb
D. $13 \times N_{A^{e}}$ coulomb

Answer: D

3. Which of the following contains the greatest number of atoms?
A. 1.0 g of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$
B. 1.0 g of nitrogen $\left(\mathrm{N}_{2}\right)$
C. 1.0 g of silver (Ag)
D. 1.0 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Answer: A

- Watch Video Solution

4. A gaseous mixture contains $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ in $2: 5$ ratio by mass. The ratio of the number of molecules of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ is:
A. $5: 2$
B. 2:5
C. $1: 2$
D. $5: 4$

Answer: B

- Watch Video Solution

5. A sample of aluminium has a mass of 54.0 g . What is the mass of the same number of magnesium atoms? (At. Wt. $A l=27, M g=24)$
A. 12 g
B. 24 g
C. 48 g
D. 96 g

Answer: C

- Watch Video Solution

6. The weight of a molecule of the compound $\mathrm{C}_{60} \mathrm{H}_{22}$ is:
A. $1.09 \times 10^{-21} g$
B. $1.24 \times 10^{-21} \mathrm{~g}$
C. $5.025 \times 10^{-23} g$
D. $16.023 \times 10^{-23} g$

Answer: B

- Watch Video Solution

7. Four 1-1 litre flasks are seperately filled with the gases H_{2}, He and O_{2} and O_{3} at the same temperature and pressure. The ratio of total number of atomsof these gases present in different flask would be:
A. 1:1:1:1
B. 1:2:2:3
C. 2:1:2:3
D. 3:2:2:1

Answer: C

- Watch Video Solution

8. which of the following expressions is correct ($\mathrm{n}=$ number of moles of the gas, $N_{A}=$ Avogadro constant, $\mathrm{m}=$ mass of 1 molecule of the gas, $\mathrm{N}=$ number of molecules of the gas)?
A. $n=m N_{A}$
B. $m=N_{A}$
C. $N=n N_{A}$
D. $m=n / N_{A}$

Answer: C

- Watch Video Solution

9. The volume of 1 mole of a gas at standard temperature and pressure is:
A. 11.35 litres
B. 22.7 litres
C. 100 litres
D. 22.4 litres

Answer: B

- Watch Video Solution

10. One mole of a gas is defined as:
A. the number of molecules in one litre of gas
B. the number of molecules in one formula weight of gas
C. the number of molecules contained in 12 grams of (12 C) isotope
D. the number of molecules in 22.7 litres of a gas at S.T.P.

Answer: D

11. if two moles of an ideal at 546 K occupies a volume of 44.8 litres, the pressure must be:
A. 2 atm
B. 3 atm
C. 4 atm
D. 1 atm

Answer: A

Watch Video Solution

12. A container consists of O_{2} gas at 4 atm pressure and 400K. If the volume of the container is 8.21 litre then calculte number of oxygen atoms present in the container.
A. 2
B. $1.5 \times N_{A}$
C. 6.023×10^{23}
D. 12.04×10^{23}

Answer: D

D Watch Video Solution

13. 2 moles of nitrogen atoms at STP occupy a volume of:
A. 11.35 L
B. 45.4 L
C. 22.7 L
D. 5.6 L

Answer: C

14. Under the same conditions, two gases have the same number of molecules. They must:
A. be noble gases
B. have equal volumes
C. have a volume of $22.4 \mathrm{dm}^{3}$ each
D. have an equal number of atoms

Answer: B

- Watch Video Solution

15. 3 g of a hydrocarbons on combusion in excess of oxygen produces 8.8 g of CO_{2} and 5.4 g of $\mathrm{H}_{2} \mathrm{O}$. The data illustrates the law of:
A. conservation of mass
B. multiple proportions
C. constant proportions
D. none of these

Answer: A

- Watch Video Solution

16. The mass of 1 mole of neutrons $\left(m_{n}=1.675 \times 10^{-27} \mathrm{~kg}\right)$ is:
A. 1.800×10^{-3}
B. $1.008 \times 10^{-4} \mathrm{~kg}$
C. $1.080 \times 10^{-3} \mathrm{~kg}$
D. $1.008 \times 10^{-3} \mathrm{~kg}$

Answer: D

- Watch Video Solution

17. 10^{21} molecules are removed from 200 mg of CO_{2}.

The moles of CO_{2} left are:
A. 2.88×10^{-3}
B. $28.2 \times 10^{-23} \mathrm{~g}$
C. $1.5 \times 10^{-23} \mathrm{~g}$
D. $2.5 \times 10^{-24} \mathrm{~g}$

Answer: A

- Watch Video Solution

18. If the mass of 0.25 moles of an element Xis 2.25 g , the mass of one atom of X is about:
A. $1.5 \times 10^{-24} \mathrm{~g}$
B. $2.5 \times 10^{-23} \mathrm{~g}$
C. $1.5 \times 10^{-23} \mathrm{~g}$
D. $2.5 \times 10^{-24} \mathrm{~g}$

Answer: C

- Watch Video Solution

19. From 392 mg of $\mathrm{H}_{2} \mathrm{SO}_{4}, 1.204 \times 10^{21}$ molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are removed. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are left?
A. 2×10^{-3}
B. 1.2×10^{-3}
C. 4×10^{-3}
D. 1.5×10^{-3}

Answer: A

20. The number of molecules of water in 333 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ is:
A. $18 \times 6.022 \times 10^{23}$
B. $9 \times 6.022 \times 10^{23}$
C. 18
D. 36

Answer: B

- Watch Video Solution

21. The atomic weight for a triatomic gas is a. The correct formula for the number of moles of gas in its $w g$ is:
A. $\frac{3 w}{a}$
B. $\frac{w}{3 a}$
C. 3wa
D. $\frac{a}{3 w}$

Answer: B

- Watch Video Solution

22. Which ofhte following will have maximum number of C atoms ?
A. 5.8 g of glyoxal $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}\right)$
B. 3.1g of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$
C. 11.6 g of fumaric (acid) $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$
D. 12 g of urea $\left(\mathrm{CON}_{2} \mathrm{H}_{4}\right)$

Answer: C

- Watch Video Solution

23. An organic compound contains 14 atoms of carbon per molecules. If mass \% of carbon in the compound is 22.4%, then molecular mass of the compound will be:
A. 3000
B. 750
C. 12000
D. 600

Answer: B

- Watch Video Solution

24. A sample of clay contains 50% silica and 10% water. The sample is partially dried by which it loses 8 gm of water. If the percentage of silica in the partially dried clay is 52 , what is the percentage of water is the partially dried clay?
A. 2.0 \%
B. 6.4%
C. 10.4 \%
D. 2.4 \%

Answer: B

- Watch Video Solution

25. which of the following samples must have molar mass greater than a mixture of CO and CO_{2} ?
A. Pure Ne
B. Mixture of CH_{4} and $\left(\mathrm{SO}_{3}\right)$
C. Mixture of O_{3} and SO_{2}
D. Pure O_{2}

Answer: C

26.1gm - $a \rightarrow m$ of nitrogen may represent:
A. $6.02 \times 10^{23} N_{2}$ molecules
B. 22.4litof N_{2} at 1 atm and $0^{\circ} \mathrm{C}$
C. 11.2 lit. of N_{2} at 1 atm and $0^{\circ} \mathrm{C}$
D. 22 g of nitrogen

Answer: C

- Watch Video Solution

27. The mass of CO_{2} that must be mixed with 20 gm of oxygen such that

27 ml of a samples of the resulting mixture would contain equal number of molecular of each gas:
B. 27.50 gm
C. 41.25 gm
D. 55 gm

Answer: B

- Watch Video Solution

28. The mass of 3.2×10^{5} atoms of an element is $8.0 \times 10^{-18} \mathrm{gm}$. The atomic mass of the element is about:
A. 2.5×10^{-22}
B. 15
C. 8.0×10^{-18}
D. 30

Answer: B

29. 132 amu of B_{12} will contain:
A. $12 N_{A}$ atoms of boron
B. 1 atom of boron
C. 1 molecule of boron
D. N_{A} molecules of boron

Answer: C

Watch Video Solution

30. which of the following contains largest number of atoms?
$[C=12, C a=40, C u=63.5, C d=1121]$
A. 4 gm carbon
B. 12 gm calcium
C. 6.356 gm copper
D. 22.4 gm cadmium

Answer: A

- Watch Video Solution

31. The only incorrect information related with 9.6 g ozone is:
A. contains 0.2 g molecules of ozone
B. contains 0.6 g atomsof oxygen
C. occupy 4.48 L at 273 K and 1 bar
D. occupy 4.48 L at $273^{\circ} \mathrm{C}$ and 2 atm

Answer: C

- Watch Video Solution

32. Total number of neutrons present in 4 g of heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$ is: (Where N_{A} represetns Avogadro's number)
A. $2.4 N_{A}$
B. $4 N_{A}$
C. $1.2 N_{A}$
D. $2 N_{A}$

Answer: D

- Watch Video Solution

33. 30 g of element x contains 18.069×10^{23} atoms of x . Calculate grammolecular mass of x_{2}
A. 20 amu
B. 10 amu
C. 10 g
D. 20 g

Answer: D

- Watch Video Solution

34. If a sample of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ contains 64 g . Calcualte mass of H present in sample. (S = 32)
A. 10 g
B. 20 g
C. 5 g
D. 40 g

Answer: B

- Watch Video Solution

35. Volume at STP of 0.44 gm of CO_{2} is the same as that of:
A. 0.02 gm of hydrogen gas
B. 0.085 gm of ammonia gas
C. 320 mgof sulphur dioxide gas
D. none of the above

Answer: A

- Watch Video Solution

36. The sodium salt of methyl orange has 7% sodium. What is the minimum molecular weight of the compound?
A. 420
B. 375
C. 329
D. 395

Answer: C

D Watch Video Solution

37. In the preceding problem, if the compound contains 12.8% nitrogen and 9.8% sulphur how many nitrogen and sulphur atoms are present per atomof sodium?
A. 2 and 1
B. 1 and 3
C. 1 and 2
D. 3 and 1

Answer: D

38. Which of the following will contain same number of atoms as 20 g of calcium?
A. 24 g magnesium
B. 12 g carbon
C. 8 g oxygen gas
D. 16g oxygen atom

Answer: C

- Watch Video Solution

39. A sample of ammonium phosphate $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ contains 3.18 mol of H atoms. The number of moles of O atoms in the sample is:
A. 0.265
B. 0.795
C. 1.06
D. 3.18

Answer: C

- Watch Video Solution

40. Cortiosone is a molecular substance containing 21 atoms of carbon per molecules. The mass percentage of carbon in cortisone is 69.98%. Its molar mass is:
A. 176.5
B. 0.795
C. 1.06
D. 3.18

Answer: D

- Watch Video Solution

41. The molar massof normal water is....as compared to heavy water.
A. 10° less
B. 10° high
C. 2° less
D. zero \% less

Answer: A

- Watch Video Solution

42. How many mole of magnesium phosphate $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
A. 0.02
B. 3.125×10^{-2}
C. 1.25×10^{-3}
D. 2.5×10^{-2}

Answer: B

D Watch Video Solution

43. Number of atoms in $560 \mathrm{gm}_{\mathrm{m}}$ of Fe (atomic mass $56 \mathrm{gm} \mathrm{mol}^{-1}$) is:
A. twice that of $70 \mathrm{~g} N$
B. half that of 20 g H
C. both a and b
D. none of these

Answer: C

- Watch Video Solution

44. If $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one one of a substance will:
A. decrease twice
B. increase two fold
C. remains unchanged
D. be a function of the molecular mass of the substance.

Answer: B

D Watch Video Solution

45. How many moles of electrons weigh one kilogram?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{31}$
C. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

46. Which has maximum number of atoms:
A. 24 gm of $\mathrm{C}(12)$
B. 56 g of $\mathrm{Fe}(56)$
C. 27 g of $\mathrm{Al}(27)$
D. 108 g of $\mathrm{Ag}(108)$

Answer: A

- Watch Video Solution

47. which of the following statement is correct?
A. 1 mole of electron has $1.6 \times 10^{-19} \mathrm{C}$ of charge
B. 1 mole of electrons weigh 0.548 mg
C. 1 mole of electrons weigh 5.48 mg
D. 1 mole of electrons weigh 0.548 kg

Answer: B

- Watch Video Solution

48. 5.85 g of NaCl is dissolved in 1 L of pure water. The number of ions in 1 ml of this solution is:
A. 6.02×10^{19}
B. 1.2×10^{22}
C. 1.2×10^{20}
D. 6.02×10^{20}

Answer: C

49. How many gram ions of SO_{4}^{-2} are present in 1 gram molecule of $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$?
A. 2
B. 3
C. 1
D. 4

Answer: D

- Watch Video Solution

50. If KOTA CLASSES is writtedn by a graphite pencil, it weighs 3.0×10^{-10} gm. How many carbon atoms are present in it? $\left(N_{A}=6 \times 10^{23}\right)$
A. 1.5×10^{13}
B. 5×10^{12}
C. 2×10^{33}
D. 1.5×10^{10}

Answer: A

- Watch Video Solution

51. A compound contains 7 carbon atoms, 2 oxygen atoms and 1.0×10^{-23} gmof other elements. The molecular mass of compound is : $\left(N_{A}=6 \times 10^{23}\right)$
A. 122
B. 116
C. 148
D. 154

Answer: A

52. Total number of electrons present in 4.4 gm oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}^{-2}\right)$ is:
A. $0.05 N_{A}$
B. $2.3 N_{A}$
C. $2.2 N_{A}$
D. $2.1 N_{A}$

Answer: B

- Watch Video Solution

53. Which of the following options correctly represent mass of 10 molecules of Marshall's acid?
A. 10 amu
B. 1940 amu
C. 1940 amu
D. 10 gm

Answer: B

- Watch Video Solution

54. Which of the following options consist of substances that will illustrate law of reciprocal proportions?
A. Water, carbon-di-oxdide and ethanol
B. Ammonia, water and di-nitrogen pentaoxide
C. Ferrous oxide, Ferric oxide and $\mathrm{Fe}_{3} \mathrm{O}_{4}$
D. Nitrous oxide, Nitric oxide and sulphur di-oxide.

Answer: B

D View Text Solution

55. Identify the option containing maximum number of atoms:
A. 18 mg of glucose
B. 2 mg of hydrogen gas
C. 10 mg of $\mathrm{H}_{2} \mathrm{O}$
D. 7.8 mg of benzene

Answer: A

- Watch Video Solution

56. 13.5 gmof aluminium when changes to Al^{+3} ion in solution, will lose:
$\left[A i=27, N_{A}=6 \times 10^{23}\right]$
A. 18.0×10^{23} electrons
B. 6.0×10^{23} electrons
C. 3.0×10^{23} electrons
D. 9.0×10^{23} electrons

Answer: D

57. One of the following combinations illustrate law of reciprocal proportions:
A. $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$
B. $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$
C. $\mathrm{CS}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$
D. $\mathrm{PH}_{3}, \mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$

Answer: C

- View Text Solution

58. The weight of 1×10^{22} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. 41.59 g
B. 415.9 g
C. 4.159 g
D. 0.4159 g

Answer: C

- Watch Video Solution

59. The largest number of molecules is in:
A. 34 g of water
B. 28 g of CO_{2}
C. 46 g of $\mathrm{CH}_{3} \mathrm{OH}$
D. 54 gm of $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A

- Watch Video Solution

60. A substance contains 7% by mass of N and 4% by massof oxygen.

Calcualte minimum possible molar mass of the substance.
A. 200
B. 300
C. 400
D. 600

Answer: C

- Watch Video Solution

61. Molar mass of electron is nearly : $\left(N_{A}=6 \times 10^{23}\right)$
A. $9.1 \times 10^{-31} \mathrm{kgmol}_{-1}$
B. $9.1 \times 10^{-31} \mathrm{gmmol}^{-1}$
C. $54.6 \times 10^{-8} \mathrm{gm} \mathrm{mol}^{-1}$
D. $54.6 \times 10^{-8} \mathrm{kgmol}^{-1}$

Answer: D

- Watch Video Solution

62. Which one of the following parts of gases contains the same number of molecules?
A. 16 g of O_{2} and 14 g of N_{2}
B. 8 g of O_{2} and 22 g of CO_{2}
C. 28 g of N_{2} and 22 g of CO_{2}
D. 32 g of CO_{2} and 32 gm of N_{2}

Answer: A

- Watch Video Solution

63. Calcualte the number of oxygen atoms and its weight in 50 gm of

CaCO_{3}

A. 6.02×10^{23} and 12 gm
B. 9.033×10^{23} and 24 gm
C. 9.033×10^{23} and 12 gm
D. 9.033×10^{23} and 12 gm

Answer: B

- Watch Video Solution

64. Equal masses of oxygen, hydrogen and methane are taken in identical conditions. What is the ratio of the volume of the gases under identical conditions?
A. $16: 1: 8$
B. 1:16:2
C. $1: 16: 8$
D. 2:16:1

Answer: B

- Watch Video Solution

65. Which of the following options correctly represent the increasing order of number of O atoms in the following samples?
(P) 1.8 gm of glucose
(Q) 1gm-atom of oxygen
(R) Mixture of ozone and oxygen gas having total millimoles of the two gases
(S) Mixture of CO_{g} and NO_{g} having total millimoles of the two gases.
A. R It S It P It Q
B. S It P It Q It R
C. Plt R It S It Q
D. S It R It Q ItP

Answer: A

- Watch Video Solution

66. If equal mass of following substance are taken the which will have maximum number of molecles.
A. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}$
D. CO_{2}

Answer: C

67. Law of multiple proportion is illustrated by:
A. Calcium carbonate and Barium carbonate
B. sodium chloride and potassium chloride
C. sulphur dioxide and sulphur trioxide
D. Carbon dioxide and sulphur dioxide

Answer: C

- Watch Video Solution

68. 1 atomof $X, 2$ atoms of Y and 3 atoms of Z combining together to give a molecule $\mathrm{XY}_{2} Z_{3}$. Now we take 16 gm of X and 2×10^{23} atoms of Y and 0.06 moles of Z in a container, to give 5.6 gm of $\mathrm{XY}_{2} Z_{3}$. What is the molar mass of Z ?

Given : $M_{X}=60 \mathrm{gm} / \mathrm{mol} M_{Y}=80 \mathrm{gm} / \mathrm{mol}$
A. 25
B. 24
C. 32
D. 20

Answer: D

- Watch Video Solution

69. 1.61gm of anhydrous ZnSO_{4} was placed in moist air after few days its weight was found to be 2.87 gm . What is the molecular formular by hydrated salt? [Zn = 65]
A. $\mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{ZnSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{ZnSO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Answer: C

70. A rock contains $1.02 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $1.80 \% \mathrm{SiO}_{2}$ by mass). Apart from free SiO_{2}, some SiO_{2} in the rock is present as kaolin $\left(\mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2}\right)$. All $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the rock is present as kaolin. The mass percentage of free SiO_{2} in the rock is: $(\mathrm{Al}=27, \mathrm{Si}=28)$
A. 1.2 \%
B. 0.6 \%
C. 1.8 \%
D. 0.8 \%

Answer: B

- Watch Video Solution

71. A gaseous mixture contains $\mathrm{SO}_{3}(\mathrm{~g})$ and $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ in a 16:15 ratio by mass. The ratio of total number of atoms present in $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ and $\mathrm{SO}_{3}(\mathrm{~g})$
is:
A. 2:5
B. 1:5
C. $5: 1$
D. 5:2

Answer: C

- Watch Video Solution

72. Haemoglobin $\mathrm{C}_{2952} \mathrm{H}_{4664} \mathrm{~N}_{812} \mathrm{O}_{832} \mathrm{~S}_{8} \mathrm{Fe}_{4}$, molar mass $=65248 \mathrm{~g} / \mathrm{mol}$ is the oxygen carrier in blood. An average adult has about 5.0L of blood. Every milliliter of blood has approximately 6.0×10^{9} erythrocytes, or red blood cells and every red blood cell has about 3×10^{8} haemoglobin molecules. The mass of haemoglobin molecules in an average adult is : $\left(N_{A}=6 \times 10^{23}\right)$
A. 978.72 gm
B. 652.48 gm
C. 434.99 gm
D. 0.015 gm

Answer: A

D Watch Video Solution

73. A sample of protein was analysed for metal content and analysis revealed that it contained magnesium and titanium in equal amounts, by mass. If these are the only metallic species present in the protein and it contains 0.008% metal by mass, the minimum possible molar mass of the protein is :
$[\mathrm{Mg}=24, \mathrm{Ti}=48]$
A. 1.2×10^{22}
B. 1.2×10^{25}
C. 7.2×10^{21}
D. 1.08×10^{22}

Answer: D

- View Text Solution

74. Total number of protons, neutrons and electrons present in 14 mg of ${ }_{\cdot 6} C^{14}$ is :
(Take $N_{A}=6 \times 10^{23}$)
A. 1.2×10^{22}
B. 1.2×10^{25}
C. 7.2×10^{21}
D. 1.08×10^{22}

Answer: A

75. Which of the following has the smallest number of molecules?
A. 22.7 mL of CO_{2} gas at STP
B. 22 g opf CO_{2} gas at STP
C. 11.35 L of CO_{2} gas at STP
D. 0.1 mole of CO_{2} gas

Answer: A

- Watch Video Solution

76. If a mole is defined to be 3×10^{21} (instead of Avogadro's Number, 6×10^{23}). What would be the mass of one mole of Argon atoms? [Atomic of zinc, Find gram atoms of aluminium in given mixture?]
A. 40 gm
B. 200 gm
C. 20 gm
D. 8 gm

Answer: B

- Watch Video Solution

77. 1.19gm mixture of Cu, Zn and Al contains $50 \mathrm{u} \%$ copper by weight and 3×10^{21} atoms of zinc. Find gram atoms of aluminum in given mixture?
(At. Mass of $\mathrm{Al}=27, \mathrm{Cu}=63.5, \mathrm{Zn}=65.0$)
$N_{A}=6 \times 10^{23}$
A. 0.001
B. 0.27
C. 0.01
D. 0.027

Answer: C

78. In the blood of an infant there are about 1.3×10^{12} red blood cells, which contain a total of 0.15 gm of iron ions. On an average, how many iron ions are present, in each red blood cell of an infant? $[\mathrm{Fe}=56]$
A. 8.8×10^{23}
B. 4.7×10^{13}
C. 1.2×10^{9}
D. 3.0×10^{19}

Answer: C

- Watch Video Solution

79. Ratio of number of protons to neutrons present in 27.83×10^{29} molecules of $N D_{4}^{+}$
(where D is ${ }_{1} H^{2}$)

$$
\text { A. } \frac{27.83 \times 10^{19}}{N_{A}}
$$

B. 1
C. 27.83
D. 27.83×10^{19}

Answer: B

- Watch Video Solution

80. At certain temperature, two moles of A combines with five moles of B to, produce two moles of C. If atomicity of A and B is 2 , the formula of compound C is :
A. $A B_{3}$
B. $A_{2} B_{5}$
C. $A B_{6}$
D. $A_{5} B_{2}$

Answer: B

81. Which of the following will occupy greater volume under the similar conditions of pressure and temperature?
A. 6gm oxygen
B. 0.98 gm hydrogen
C. 5.25 gm of nitrogen
D. 1.32 gm of helium

Answer: B

- Watch Video Solution

82. The number of electrons in $3.1 \mathrm{mg} \mathrm{NO}_{3}$ - is:
A. 32
B. 1.6×10^{-3}
C. 9.6×10^{20}
D. 9.6×10^{23}

Answer: C

- Watch Video Solution

83. The number of neutrons in 0.45 g water, assuming that all the hydrogen atoms are H^{1} atoms and all the oxygen atoms are O^{16} atoms, is:
A. 8
B. 0.2
C. 1.2×10^{23}
D. 4.8×10^{24}

Answer: C

84. The volume of one mole of water at 277 K is 18 ml . One ml of water contains 20 drops. The number of molecules in one drop of water will be:
A. 1.07×10^{21}
B. 1.67×10^{21}
C. 2.67×10^{21}
D. 1.67×10^{20}

Answer: B

- Watch Video Solution

85. 1.61 gm of $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ contains same number of oxygen atoms as present in:
A. $0.98 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $0.08 \mathrm{gm} \mathrm{SO}_{2}$
C. $1.78 \mathrm{gm} \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
D. $0.05 \mathrm{gm} \mathrm{CaCO}_{3}$

Answer: C

- Watch Video Solution

86. The number of hydrogen atoms in 0.9 gm glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is same as:
A. 0.048 gm hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$
B. 0.17 gm ammonia, NH_{3}
C. 0.30 gm ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
D. 0.03 gm hydrogen, H_{2}

Answer: C

87. Find the number of g-molecules of oxygen in $6.023 \times 10^{24} \mathrm{CO}$ molecules.
A. 1g molecule
B. 0.5 g of molecule
C. 5g molecule
D. 10 g molecule

Answer: C

- Watch Video Solution

88. One atomic mass unit in kilogram is:
A. $\frac{1}{N_{A}}$
B. $\frac{12}{N_{A}}$
C. $\frac{1}{1000 N_{A}}$
D. $\frac{1000}{N_{A}}$

Answer: C

- Watch Video Solution

89. Rearrange the following (P to S) in the order of increassing masses:
(P) 0.5 mole of O_{3}
(Q) 0.5 gm molecules of nitrogen
(R) 3.011×10^{23} molecule of O_{2}
(S) 11.35 L of CO_{2} at STP
A. $S<R<Q<P$
B. $Q<R<S<P$
C. $R<Q<P<S$
D. $P<Q<R<S$

Answer: B

90. Number of electrons in 36 mg of.$_{8}^{18} \mathrm{O}^{-2}$ ions are : (Take $N_{A}=6 \times 10^{23}$)
A. 1.2×10^{21}
B. 9.6×10^{21}
C. 1.2×10^{22}
D. 1.9×10^{22}

Answer: C

- Watch Video Solution

91. The number of g -atoms of nitrogen in its 7 gm is equal to number of g atoms in:
A. 6 gm Mg
B. 28 gm Fe
C. 30 gm Ca
D. 20 gm Hg

D Watch Video Solution

92. From 2 mg calcium, 1.2×10^{19} atoms are removed. The number of g atoms of calcium left is:
A. 5×10^{-5}
B. 2×10^{-5}
C. 3×10^{-5}
D. 5×10^{-6}

Answer: C

- Watch Video Solution

93. The shape of Tobacco Mosaic Virus (TMC) is cylindrical, having length and diameter $3000 \AA$ and $170 \AA$, respectively. The density of the virus is
$0.08 \mathrm{gm} / \mathrm{ml}$. The molecular weight of TMC is:
A. 3.28
B. 5.44×10^{-24}
C. 5.44×10^{-18}
D. 3.28×10^{6}

Answer: D

- Watch Video Solution

94. Same mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ contain:
A. same number of carbon atoms
B. same number of hydrogen atoms
C. same number of oxygen atoms
D. all of the above

Answer: D

D Watch Video Solution

95. 400 gm mixture of $A B$ and $A C_{2}$ contains 26.25% of A by mass. Select the correct statements. (Atomic masses of $A=15, B=25, C=22.5$)
A. \% mass of $A B$ is 10
B. Number of moles of $A C_{2}$ in the mixture is 4
C. Number of moles $A B$ is 1
D. Total moles of A atoms in mixture is 7

Answer: D

- Watch Video Solution

96. The numberof nitrogen atoms in 3.68 g of $K_{4}\left[F e(C N)_{6}\right]$ is: $\left[N_{0}=\right.$ Avogadro number]
A. 0.06
B. $0.01 N_{0}$
C. $0.06 N_{0}$
D. none of these

Answer: C

- Watch Video Solution

97. An unknown compound contains 8% sulphur by mass. Calculate :
(P) Least molecular weight of the compound and
(Q) Molecular weight if one molecule contains 4 atokms of S
A. 200,400
B. 300,400
C. 400,1600
D. 4001200

Answer: C

D Watch Video Solution

98. The ratio of the masses of methane and ethane in a gas mixture is $4: 5$
. The rate of number of their molecules in the mixture is:
A. $4: 5$
B. $3: 2$
C. 2:3
D. $5: 4$

Answer: B

D Watch Video Solution

99. How many surcose molecules $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ are present in 3.42 g sucrose? .
A. 6.0×10^{23}
B. 1.3×10^{23}
C. 3.8×10^{22}
D. 6.0×10^{21}

Answer: B

- Watch Video Solution

100. If 1.50 g of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were heated to drive of the water of hydration, how much anhydrous $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ would remain?
A. 0.34 g
B. 0.92 g
C. 1.07 g
D. 1.50 g

Answer: C

101. How many millimoles of methane, CH_{4} are present in 6.4 g of this gas?
A. 0.4
B. 4
C. 40
D. 4.0×10^{2}

Answer: D

D Watch Video Solution

102. Adipic acid, $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$, is used in making nylon. What is the total number of atoms in 1.0 g of adipic acid?

Molar mass g. mol ${ }^{-1}$
Adipic acid 146.26
A. 20
B. 4.1×10^{21}
C. 8.2×10^{22}
D. 7.2×10^{24}

Answer: C

D Watch Video Solution

103. How many moles are there in $2.24 m^{3}$ of any gas 190 torr and $273^{\circ} \mathrm{C}$?
A. 1.25 moles
B. 12.5 moles
C. 1.25×10^{-3} moles
D. 1.25×10^{3} moles

Answer: B

104. How many ozone molecules are iin 3.20 g of O_{3} ?
A. 4.0×10^{22}
B. 6.0×10^{22}
C. 1.2×10^{23}
D. 6.0×10^{23}

Answer: A

- Watch Video Solution

105. Number of neutrons in $5.5 \mathrm{gm} T_{2} \mathrm{O}$ (T is ${ }_{1} \mathrm{H}^{3}$) are.
A. $0.25 N_{A}$
B. $2.5 N_{A}$
C. $3 N_{A}$
D. $4 \times N_{A}$

Answer: C

- Watch Video Solution

106.80 gm of SO_{x} gas occupies 15 litre at 2atm and 300K. The value of x is
: (Given: R=0.08 L-atm/K-mole)
A. 3
B. 2
C. 1
D. none

Answer: B

- Watch Video Solution

107. Mass ratio of NH_{3} and (CO_{2} for maximum product formation as per reaction :
$2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \Rightarrow \mathrm{NHCOONH}_{4}$
A. $\frac{17}{22}$
B. $\frac{17}{44}$
C. $\frac{22}{17}$
D. $\frac{44}{17}$

Answer: A

- Watch Video Solution

108. How many moles of ptoton weigh 1 Kg ?
A. 10^{3}
B. N_{A}
C. $\frac{1}{N_{A}} \times 10^{3}$
D. $\frac{10^{8}}{9.11 \times 6.022}$

Answer: A

- Watch Video Solution

109. If mass \% of oxygen in monovalent metal carbonate is 48%, then the number of atoms of metal present in 5 mg of this metal carbonate sample is:
A. 3×10^{21}
B. 6×10^{19}
C. 30×10^{16}
D. 6.0×10^{18}

Answer: B

110. How many water molecules are in a 0.10 g sample of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{MM}=249.7) ?$
A. 1.2×10^{21}
B. 2.4×10^{21}
C. 2.4×10^{22}
D. 1.2×10^{23}

Answer: A

- Watch Video Solution

111. What is the mass of one molecule of water in grams?
A. 18
B. 1.1×10^{-21}
C. 3.0×10^{-23}
D. 1.7×10^{-24}

Answer: C

D Watch Video Solution

112. A 1.0 g sample of which substance contains the largest number of molecules?
A. HN_{3}
B. $\mathrm{N}_{2} \mathrm{H}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. HCl

Answer: B

D Watch Video Solution

113. The mass of a single molecule of an allotrope of sulphur is 3.20×10^{-22} g. How many sulphur atoms are present in a molecular of this
allotrope?
A. 4
B. 6
C. 8
D. 12

Answer: B

- Watch Video Solution

114. A 1.0 gram sample of which substance contains the largest number of molecules?
A. COCl_{2}
B. $C S_{2}$
C. $\mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$

Answer: C

- Watch Video Solution

115. The mass of one atom of an element is $1.71 \times 10^{-22} \mathrm{~g}$. What is the atomic mass of this element in $\mathrm{g}-\mathrm{mol}^{-1}$?
A. 101
B. 103
C. 105
D. 107

Answer: B

- Watch Video Solution

116. How do the number of molecules, n, in 1.0 L of each of the following gases, $\mathrm{CH}_{4}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$, compare at 1 atm and $25^{\circ} \mathrm{C}$?
A. $n_{\mathrm{CH}_{4}}<n_{\mathrm{CO}_{2}}<n_{\mathrm{N}_{2}}$
B. $n_{N_{2}}<n_{\mathrm{CO}_{2}}<n_{\mathrm{CH}_{4}}$
C. $n_{\mathrm{CO}_{2}}<n_{\mathrm{CH}_{4}}<n_{\mathrm{N}_{2}}$
D. $n_{\mathrm{CH}_{4}}=n_{\mathrm{CO}_{2}}=n_{N_{2}}$

Answer: D

- Watch Video Solution

117. How many neutrons are in 0.025 molof the isotope $\cdot{ }_{24}^{54} \mathrm{Cr}$?
A. 1.5×10^{22}
B. 3.6×10^{23}
C. 4.5×10^{23}
D. 8.1×10^{23}

Answer: C

118. A typical polyethylene bag froma grocery store weighs 12.4 g . How many molecules of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, must be polymerized to make such a bag?
A. 1.36×10^{24}
B. 6.02×10^{23}
C. 5.33×10^{23}
D. 2.67×10^{23}

Answer: D

- Watch Video Solution

119. How many atoms are in 4.0×10^{-5} gams of Al ?
A. 8.9×10^{17}
B. 2.4×10^{19}
C. 6.5×10^{20}
D. 2.0×10^{22}

Answer: A

D Watch Video Solution

120. What massof the compound $\mathrm{CrO}_{3}(\mathrm{M}=1000)$ contains 4.5×10^{23} oxygen atoms?
A. 2.25 g
B. 12.0 g
C. 25.0 g
D. 75.0 g

Answer: C

121. A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of hydration is removed. The dried sample weighted 52 g . The formular of the hydrated salt is: (Atomic mass, $\mathrm{Ba}=137 \mathrm{amu}, \mathrm{Cl}=$ $35.5 \mathrm{amu})$
A. $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{BaCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{BaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{BaCl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- View Text Solution

122. Vanillin, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~m}=152 \mathrm{~g} / \mathrm{mol})$, is the molecule responsible for the vanilla flavour in food. How many oxygen atoms are present in a 45.0 mg sample of vanillin?
A. 1.78×10^{20}
B. 5.35×10^{20}
C. 1.78×10^{23}
D. 5.35×10^{23}

Answer: B

- Watch Video Solution

123. Which of the following has maximum mass?
A. 0.1 g atom of C
B. 0.1 mole of NH_{3}
C. 6.02×10^{22} molecule of H_{2} gas
D. 1120 ml of CO_{2} at $1 \mathrm{~atm}, 273 \mathrm{~K}$

Answer: D

124. A metallocene derivates (molecular weight $=282$) has approximately $(100 / 3) \%$ sulphur by mass. Number of S atoms in 2.82 kg of metallocene derivative is:
$[\mathrm{S}=32],\left[N_{A}=6.022 \times 10^{23}\right]$
A. $10 N_{A}$
B. $3 N_{A}$
C. $30 N_{A}$
D. $6.6 N_{A}$

Answer: C

- Watch Video Solution

Density

1. Density of azone relative to oxygen is under the same temperature \&
A. 1
B. 3
C. 1.5
D. 2.5

Answer: B

- Watch Video Solution

2. Vapour density of a gas if its density is $0.178 \mathrm{~g} / \mathrm{L}$ at 1atm, 273 K is
A. 0.178
B. 2
C. 4
D. 0.089

Answer: B

3. A nuggest of gold and quartz was found to contain $x g$ of gold $y g$ of quartz and has density d . If the densities of gold and quartz are d_{1} and d_{2} respectively, then the correct relations is:
A. $\frac{x}{d_{1}}+\frac{y}{d_{2}}=\frac{x+y}{d}$
B. $x d_{1}+y d_{2}=(x+y) d$
C. $\frac{x}{d_{2}}+\frac{y}{d_{1}}=\frac{x+y}{d}$
D. $\frac{x+y}{d}+\frac{x}{d_{1}}+\frac{x}{d_{2}}=0$

Answer: A

- Watch Video Solution

4. The vapour density of a gas A is twice that of a gas B. If the molecular weight of B is M, the molecular weight of A will be:
A. M
B. 2 M
C. 3 M
D. $\frac{M}{2}$

Answer: B

- Watch Video Solution

5. The relative density of a gas A with respect to another gas B is 2 . The vapour density of the gas B is 20 , the vapour density of the gas A is:
A. 30
B. 40
C. 50
D. 60

Answer: B

6. The density of air is $0.001293 \mathrm{~g} / \mathrm{ml}$ at S.T.P. Its vapour density will be:
A. 10
B. 15
C. 1.468
D. 14.68

Answer: D

Watch Video Solution

7. Ethanol is the substance commonly called alcohol. The denisty of liquid alcohol is $0.8 \mathrm{gm} / \mathrm{ml}$ at 293 K . if 1.2 mole of ethanol are needed for a particular experiment, what volume of ethanol should be measured out?
A. 55.2 ml
B. 57.5 ml
C. 69 ml
D. 47.9 ml

Answer: C

- Watch Video Solution

8. Which of the following options represent correct composition of a gaseous mixture containing $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ and having vapour denisty equal to 19.5 ?
A. Mass \% of $\mathrm{CH}_{4}=25 \%$
B. Mole \% of $\mathrm{CH}_{4}=25 \%$
C. Mass \% of $\mathrm{CH}_{4}=75 \%$
D. Mole \% of $\mathrm{CH}_{4}=75 \%$

Answer: D

9. The density of water at $4^{\circ} \mathrm{C}$ is $1.0 \times 10^{3} \mathrm{kgm}^{-3}$. The volume occupied by one molecule of water is approximately $\left(N_{A}=6.0 \times 10^{23}\right)$:
A. $3.0 \times 10^{-23} \mathrm{ml}$
B. $6.0 \times 10^{-23} \mathrm{~mL}$
C. $4.0 \times 10^{-23} \mathrm{~mL}$
D. $9.0 \times 10^{-23} \mathrm{~mL}$

Answer: A

- Watch Video Solution

10. A sample of impure air contains $80 \% N_{2}, 10 \% \mathrm{O}_{2} 5 \% \mathrm{CO}_{2}$ and $5 \% \mathrm{Ar}$ by volume. The average (At wt. of $\mathrm{Ar}=40$)
A. 29.4
B. 29.8
C. 30
D. 29.6

Answer: B

- Watch Video Solution

11. One mole of a mixture of $\mathrm{N}_{2}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$, has a mean molar mass of 55.4. On heating to a temperature at which $\mathrm{N}_{2} \mathrm{O}_{4}$ may be dissociated $: \mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$, the mean molar mass tends to the lower value of 39.6.

What is the mole ratio of $\mathrm{N}_{2}: \mathrm{NO}_{2}: \mathrm{N}_{2} \mathrm{O}_{4}$ in the original mixture?
A. $0.5: 0.1: 0.4$
B. $0.6: 0.1: 0.3$
C. 0.5: 0.2:0.3
D. $0.6: 0.2: 0.2$

Answer: A

12. Find vapour density of mixture having 64% by mass of $\mathrm{CH}_{4}, 32 \%$ by mass of O_{2} and remaining H_{2}
A. 3.57
B. 0.07
C. 0.14
D. 7.14

Answer: D

- Watch Video Solution

13. The percentage by mole of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{NO}(\mathrm{g})$ having average molecular mass 34 is :
A. 0.25
B. 0.2
C. 0.4
D. 0.75

Answer: A

- Watch Video Solution

14. 113.5 mL of NO_{2} at STP was liquefied, the density of the liquid being $1.15 \mathrm{~g} \mathrm{~mL}{ }^{-1}$. Calculate the volume of NO_{2} and the number of molecules in the liquid NO_{2}. (At wt. $\mathrm{N}=14$)
A. 0.10 mL and 3.01×10^{22}
B. 0.20 mL and 3.01×10^{21}
C. 0.20 mL and 3.01×10^{23}
D. 0.40 mL and 6.02×10^{21}

Answer: B

15. Given that the abundacne of isotopes $.{ }^{54} \mathrm{Fe}, .{ }^{56} \mathrm{Fe}$, and.${ }^{57} \mathrm{Fe}$ is 5%, 90% and 5% respectively. The atomic mass of Fe is
A. 55.85
B. 55.95
C. 55.75
D. 56.05

Answer: B

(Watch Video Solution

16. The density of liquid (mol.wt. $=70$) is $1.2 g m L^{-1}$. If $2 m L$ of liquid contains 35 drops, the number of molecules of liquid in one drop are:
A. $\frac{1.2}{(35)^{2}} \times N_{A}$
B. $\frac{1}{35} \times N_{A}$
c. $\frac{1.2}{35} \times N_{A}$
D. $1.2 N_{A}$

Answer: C

- Watch Video Solution

17. The density of a pure liquid (molecular mass $=80$) is $1.5 \mathrm{gm} / \mathrm{ml}$. If 4 ml of liquiid contains 60 drops. Then the numberof molecules per drop of liquid is given by : [Given : $N_{A}=6 \times 10^{23}$]
A. 7.5×10^{20}
B. 1.33×10^{21}
C. 4×10^{23}
D. 2×10^{22}
18. The density of nitrogen gas is maximum at:
A. STP
B. 273 K and 1 atm
C. 546 K and 2 atm
D. 546 K and 4 atm

Answer: D

Watch Video Solution

19. A gas has a density of $1.25 \mathrm{gL}^{-1}$ at 1 atm and 273 K . Identify it:
A. NO_{2}
B. O_{2}
C. N_{2}
D. SO_{2}

Answer: C

- Watch Video Solution

20. 11.35L of a gas at STP weighs 14 g . The gas could be :
A. $\mathrm{N}_{2} \mathrm{O}$
B. N_{2}
C. CO
D. Both (b) and (C)

Answer: D

- Watch Video Solution

21. What is the molar mass of a gas that has a density of $5.66 \mathrm{gL} \mathrm{L}^{-1}$ at $35^{\circ} \mathrm{C}$ and 745 mm Hg ?
A. 127
B. 141
C. 143
D. 146

Answer: D

- Watch Video Solution

22. If molecular weight of glucose-1-phosphate is 260 and its density is $1.5 \mathrm{~g} / \mathrm{ml}$. What is the average volume occupied by 1 molecule of this compound?
A. $43 \times 10^{-23} \mathrm{ml}$
B. 0.67 ml
C. $0.17 \times 10^{23} \mathrm{ml}$
D. $29 \times 10^{-23} \mathrm{ml}$

Answer: D

- Watch Video Solution

23. A mixture weight of glucose-1-phosphate is 260 and its density is $1.5 \mathrm{~g} / \mathrm{ml}$. What is the average volume occupied by 1 molecular of this compound?
A. 24
B. 20
C. 26
D. 40

Answer: A

24. A container of gas X (mol.wt. 16) and gas Y (mol. Wt. 28) in the mole ratio a:b has a mean molecular weight 20 . What would be mean molecular weight if the gases are mixed in the ratio b:a under identical conditions (gases are non reacting)?
A. $0.25 \mathrm{dm}^{3}$
B. $0.5 d m^{3}$
C. $1 \mathrm{dm}^{3}$
D. $2 \mathrm{dm}^{3}$

Answer: D

- Watch Video Solution

25. The relative density of a mixture of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ w.r.t. gaseous hydrogen atoms is 30 . The $\mathrm{mol} \%$ of the CO_{2} is
A. $\frac{600}{13}$
B. $\frac{2400}{13}$
C. $\frac{2000}{13}$
D. none of these

Answer: A

- Watch Video Solution

26. Vapour density of a metal chloride is 6.6 . Its oxide contains 53% metal. The atomic weight of metal is:
A. 21
B. 54
C. 27
D. 37

Answer: C

27. Calculate percentage change in $M_{\text {avg }}$ of the mixture, if PCl_{5} undergo 50% decomposition.
$P C l_{5} \Rightarrow P C l_{3}+\mathrm{Cl}_{2}$
A. 0.5
B. 0.6666
C. 0.3333
D. zero

Answer: C

28. What is the density of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, at $25^{\circ} \mathrm{C}$ and 740 mmHg ?
A. $0.509 g L^{-1}$
B. $0.570 g L^{-1}$
C. $1.75 g L^{-1}$
D. $1.96 \mathrm{~g} \mathrm{~L}^{-1}$

Answer: C

- Watch Video Solution

29. Five pellets of a metal have a total mass of 1.25 g and a total volume of 0.278 mL . What is the density of the metal in $\mathrm{g} \mathrm{mL}^{-1}$?
A. 0.348
B. 0.9
C. 4.5
D. 22.5

Answer: C

30. What volume of liquid A has the same mass as $80.0 \mathrm{~cm}^{3}$ of liquid B ?

Densityg $/ \mathrm{cm}^{3}$
Liquid A 0.660
Liquid B $\quad 1.59$
A. $40.0 \mathrm{~cm}^{3}$
B. $160 \mathrm{~cm}^{3}$
C. $97.0 \mathrm{~cm}^{3}$
D. $11.7 \mathrm{gcm}^{-3}$

Answer: D

- Watch Video Solution

31. Naturally occuring thallium consists of two stable isotopes, $\mathrm{Tl}-203$ and TI-205 (atomic masses $=203.0$ and 205.0, respectively) and has an average atomic massof 204.4. What is the percentage of Tl-205?
A. 0.14
B. 0.7
C. 0.5
D. 0.647

Answer: D

- Watch Video Solution

32. When a 25.00 mL volumetric flask weighing 20.340 g is filled partially with metal shot, the mas is 119.691 g . The flask is then filled to the 25.00 mL mark with methanol $\left(d=0.791 \mathrm{gcm}^{-3}\right)$ and has a total mass of 130.410 g . What is the density of the metal?
A. $6.96 \mathrm{gcm}^{-3}$
B. $8.68 \mathrm{gcm}^{-3}$
C. $9.27 \mathrm{gcm}^{-3}$
D. $11.7 \mathrm{gcm}^{-3}$

Answer: B

33. The density of vapours of a particualr volatile diatomic species A_{2} was found to be $10 \mathrm{milligram} / \mathrm{ml}$ at 1 atm and 273 K . Its atomic weight is given by : [Assume ideal gas behaviour]
A. 20
B. 112
C. 224
D. 56

Answer: B

- Watch Video Solution

34. A gas has a density of $2.68 \mathrm{gL}^{-1}$ at 1 atm and 273 K . Identify it:
A. NO_{2}
B. Kr
C. COS
D. SO_{2}

Answer: C

- Watch Video Solution

35. A regular cube of metal measures exactly 10 cm on an edge and has density $8 \frac{g}{c} c$. If the cube contains 6×10^{25} atoms of the metal, determine atomic weight of metal? (Take $N_{A}=6 \times 10^{23}$)
A. 40
B. 60
C. 80
D. 100
36. A crystalline polymer molecule is uniform prismatic in shape with dimension as shown. If density of the polymer is $1.2 \frac{g}{c} m^{3}$. Find its molar

mass.
A. 939×10^{3}
B. 939×10^{-3}
C. 632×10^{3}
D. Insufficient data

Answer: A

- Watch Video Solution

Stoichiometry

1. 0.5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 0.2 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The maximum number of mole of CaSO_{4} formed is:
A. 0.2
B. 0.5
C. 0.4
D. 1.5

Answer: A

2. 100 g of impure CaCO_{3} on heating gives $5.675 \mathrm{it} . \mathrm{CO}_{2}$ gas at STP. Find the percentage of calcium in the lime stone sample. [At. Wt, $\mathrm{Ca}=40, \mathrm{C}=12$, $\mathrm{O}=16$]
A. 10
B. 20
C. 1
D. 30

Answer: A

- Watch Video Solution

3. 84 gm of iron (Fe) is required with sufficient amount of steam of produce $45.4 \mathrm{~L}, \mathrm{H}_{2}$ gas at S.T.P. according the following reaction, $a \mathrm{Fe}+b \mathrm{H}_{2} \mathrm{O} \Rightarrow c \mathrm{Ce}_{3} \mathrm{O}_{4}+d \mathrm{H}_{2}$. The stoichimetric coefficients of the reaction is (At. Wt., $\mathrm{Fe}=56, \mathrm{O}=16, \mathrm{H}=1$):
A. $4,3,1,4$
B. $3,4,1,4$
C. $1,4,2,3$
D. none of these

Answer: B

- Watch Video Solution

4. The number of moles of C and D produced on mixing 5 moles of A and 7 moles of B are respectively:
$(3 A+5 B \Rightarrow 7 C+9 D)$
A. 9 moles and 11 moles
B. 11.66 moles and 15 moles
C. 9.8 moles and 12.6 moles
D. 1 mole and 13 moles

Answer: C

- Watch Video Solution

5. when a mixture of aluminium powder and iron (III) oxide is ignited, it produces molten iron and aluminium oxide. In an experiment, 5.4 gm of aluminium was mixed with 18.5 gm of iron oxide. At the end of the reaction, the mixture contained 11.2 gm of iron, 10.2 gm of aluminium oxide and an undetermined amount of unreacted iron (III) oxide. No aluminium was left. What is the mass of the iron (III) oxide left?
A. 2.5 gm
B. 7.3 gm
C. 8.3 gm
D. 2.9 gm

Answer: A

6. Each moleof substance A (molar mass $=720$) requires 10 moles of water for complete hydrolysis and gives B, C and D as the hydrolysed products in a molar ratio of $2: 3: 2$. If molecular mass of B is 40 and it contributes 40° of total mass of hydrolysed product then moles pof C obtained will be
A. 9
B. 13.5
C. 3
D. 2

Answer: B

- Watch Video Solution

7. How many moles of $\mathrm{Zn}\left(\mathrm{FeS}^{2}\right)$ can be made from a mole zinc, 3 mole iron and 5 mole sulphur?
A. 2 mole
B. 3 mole
C. 4 mole
D. 5 mole

Answer: A

- Watch Video Solution

8. Equal weights of $X(A t . W t .=36)$ and $Y(A t . W t .=24)$ are reacted to form the compound $X_{2} Y_{3}$. Then:
A. X is the limiting reagent
B. Y is the limiting reagent
C. no reactant is left over and mass of $X_{2} Y_{3}$ formed is double the mass of X taken:
D. none of the above

Answer: C

D Watch Video Solution

9. 28 gm lithium is fixed with $48 \mathrm{gm} \mathrm{O} \mathrm{O}_{2}$ to react according to the following reaction
$\mathrm{Li}+\mathrm{O}_{2} \Rightarrow \mathrm{Li}_{2} \mathrm{O}$
The mass of $\mathrm{Li}_{2} \mathrm{O}$ formed is:
A. 30 gm
B. 15 gm
C. 45 gm
D. 95 gm

Answer: D

10. The mass of $70 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ required for neutralization of one mole of NaOH is:
A. 70 g
B. 35 g
C. 30 g
D. 95 gm

Answer: A

- Watch Video Solution

11. The number of moles of oxygen obtained by the electrolytic decomposition of 90 g water is:
A. 2.5
B. 5
C. 7.5
D. 10

Answer: A

- Watch Video Solution

12. To prepare a solution of concentration of $0.03 \mathrm{~g} / \mathrm{ml}$. of AgNO_{3}. What amount of AgNO_{3} should be added in 60 mL of solution?
A. 1.8g
B. 0.8 g
C. 0.18 g
D. None of these

Answer: A

- Watch Video Solution

13. 20 gm of CaCO_{3} on decomposition gives CO_{2} at STP:
A. 4.48 litre
B. 22.4 litre
C. 2.24 litre
D. 4.54 litre

Answer: D

- Watch Video Solution

14. The odour of skunk is caused by chemical compounds called thiols $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}\right)$. These can be deodorized by reaction with household bleach (NaOCl) according to following unbalanced reaction:

$$
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}+\mathrm{NaOCl}(\mathrm{aq}) \Rightarrow \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}_{2}+\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)
$$

How many gram of thiol can be deodorized by 74.5 gm of NaOCl ?
A. 90 gm
B. 45 gm
C. 180 gm
D. 22.5 gm

Answer: C

- Watch Video Solution

15. What will be the percentage loss in mass when NaHCO_{3} is heated at $300^{\circ} \mathrm{C}$?
A. 0.6
B. 0.455
C. 0.369
D. 0.7

Answer: C

16. Tungsten metal , W is used to make incandescent bulb filaments. The metal is produced from WO_{3} by reaction with hydrogen. [Atomic mass W $=184]$
$W \mathrm{O}_{3}+3 \mathrm{H}_{2} \Rightarrow \mathrm{~W}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Calcualte mass of WO_{3} required to produce 368 gm of W .
A. 928 gm
B. 464 gm
C. 232 gm
D. 116 gm

Answer: B

- Watch Video Solution

17. A typical polyethylene grocery bag weighs 12.4 g . How many metric tons of CO_{2} would be released into the atmosphere if the 102 billion bags
used in one year in Kota were bured ?
[1 metric ton $=1000 \mathrm{Kg}$]
A. 4.52×10^{4}
B. 1.99×10^{6}
C. 3.98×10^{6}
D. 3.98×10^{9}

Answer: C

- Watch Video Solution

18. 20 gmof a mixture of NaCl and NaOH exactly requires 7.3 gm HCL for complete reaction. The mass percent of NaCl in the original mixture is:
A. 0.4
B. 0.6
C. 0.5
D. 0.8

Answer: B

- Watch Video Solution

19. Three substances A, B and C can react to form D and E as shown :
$2 A+3 B+C \Rightarrow 4 D+2 E$
If molar masses of A, B, C and D are $40,30,20$ and 15 respectively and 285 gm of mixture of A, B and C is reacted then maximum mass of E which can be obtained will be:
A. 285 gm
B. 200gm
C. 195 gm
D. 100 gm

Answer: C

20. One mole of potassium chlorate ($\left.\mathrm{KClO}_{2}(3)\right)$ is thernally decomposed and excess of aluminum is aluminium oxide ($\mathrm{Al}_{-}(2) \mathrm{O}_{-}(3)$) are formed?
A. 1
B. 1.5
C. 2
D. 3

Answer: A

- Watch Video Solution

21. How many moles of potassium chlorate need to be heated to produce 11.35 litre oxygen at STP?
A. $1 / 2 \mathrm{~mol}$
B. $1 / 3 \mathrm{~mol}$
C. $1 / 4 \mathrm{~mol}$
D. $2 / 3 \mathrm{~mol}$

Answer: B

- Watch Video Solution

22. When x gm carbon is burnt with y gm oxygen in a closed vessel, no residue is left behind. Which of the following statement is correct regarding the relative amounts of oxygen and carbon?
A. $\frac{y}{x}$ must lie between 1.33 and 2.67
B. $\frac{y}{x}$ must be greater than or equal to 2.67
C. y / x must be less than or equal to 1.33
D. y / x must be greater than or equal to 1.33

Answer: D

23. If $1 \frac{1}{2}$ moles of oxygen combine with Al to form $\mathrm{Al}_{2} \mathrm{O}_{3}$ the weight of Al used in the reaction is ($\mathrm{Al}=27$)
A. 27 g
B. 54 g
C. 40.5 g
D. 81 g

Answer: B

- Watch Video Solution

24. Consider the following statements:
(1) If all the reactants are not taken in their stoichiometric ratio, then at least one reactant will be left behind.

2 moles of $\mathrm{H}_{2}(\mathrm{~g})$ and 3 moles of $\mathrm{O}_{2}(\mathrm{~g})$ produce 2 moles of water.
(3) Equal wt. of carbon and oxygen are taken to produce CO_{2} then O_{2} is
limiting reagent. (Assume 100\% yield in all cases)
The above statements (1), (2), (3) respectively are ($T=$ True, F=False):
A. TTT
B. FTF
C. FFF
D. TFT

Answer: A

- Watch Video Solution

25. In the reaction $4 A+2 B+3 C \Rightarrow A_{4} B_{2} C_{3}$ what will be the number of moles of product formed ? Starting from 2 moles of A, 1.2 moles of B and
1.44 moles of C .
A. 0.5
B. 0.6
C. 0.48
D. 4.64

Answer: C

- Watch Video Solution

26. 3 gm mixture of SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ on very strong heating leaves a residue weighing 2.92 gm because of conversion of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ liberating oxygen gas. What is the percentage by mass of SiO_{2} in original mixture?
A. 0.2
B. 0.8
C. 0.4
D. 0.6

Answer: A

- Watch Video Solution

27. A 1.50 gm samples of type metal (an alloy of $S_{n}, \mathrm{~Pb}, \mathrm{Cu}$ and Sb) is dissolved in nitric acid and metastannic acid, $\mathrm{H}_{2} \mathrm{SnO}_{3}$ precipitate. This is dehydrated by heating to Tin(IV) oxide, which is found to weigh 0.50 gm .

What percentage of tin was in the original type metal sample? ($\mathrm{Sn}=119$)
A. 0.3333
B. 0.2627
C. 0.2938
D. 0.5254

Answer: B

- View Text Solution

28. What mass of solid ammonium carbonate
$\mathrm{H}_{2} \mathrm{NCOONH}_{4}(\mathrm{~s}) \Rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g})$
A. 15.6 gm
B. 5.2 gm
C. 46.8 gm
D. 7.8 gm

Answer: B

D Watch Video Solution

29. 40 gm of a carbonate of an alkali metal or alkaline earth metal containg some insert impurities was made to react with excess HCl solution. The liberated CO_{2} occupied 12.315 litre at 1 atm and 300 K . The corrrect option is:
A. Mass of impurity of 1 gm and metal is Be
B. Mass of impurity is 3 gm and metal is Li
C. Mass of impurity is 6 gm and metal is Li
D. Mass of impurity is 2 gm and metal is Mg

Answer: B

30. Identify in which of the following case can the average molecular mass of the mixture be 150 at same instant in a reaction
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \Rightarrow \mathrm{PCl}_{5}(g)$
C. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{HCl}(\mathrm{g})$

Answer: B

- Watch Video Solution

31. Calcualte the mass \% of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a mixture having mass 206 gm which produces 24 litre of CO_{2} at 1 atm pressure and 300 K with excess of HCL. [R $=0.08 \mathrm{~atm} \mathrm{lit} / \mathrm{mol} \mathrm{K}]$
B. 0.515
C. 0.4
D. 0.6

Answer: B

- Watch Video Solution

32. Two elements A and B combine to form compound X and Y. For the fix mass of A, masses of B contained for the compounds X and Y are in 3:7 ratio. If in compound $\mathrm{X}, 4 \mathrm{gm}$ of A combines with 12 gm B , then in compound $\mathrm{Y}, 8 \mathrm{gm}$ of A will combine with... gm of B .
A. 24
B. 56
C. 28
D. 8

D Watch Video Solution

33. 1.0 mole of Fe reacts completely with 0.65 mole of O_{2} to give a mixture of only FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ the mole ratio of ferrous oxide to ferric oxide is
A. $3: 2$
B. $4: 3$
C. $20: 13$
D. none of these

Answer: B

D Watch Video Solution

34. The molar ration of Fe^{++}to Fe^{+++}in a mixture of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ having equal number of sulphate ions in both ferrous and
ferric sulphate is:
A. $1: 2$
B. $3: 2$
C. $2: 3$
D. 25.67

Answer: B

- Watch Video Solution

35. If a piece of iron gains 10% of its weight due to partial rusting into
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ the percentage of total iron that has rusted is:
A. 23
B. 13
C. 23.3
D. 25.67

Answer: C

D Watch Video Solution

36. If 1 g of HCl and 1 g of MnO_{2} heated together the maximum weight of
Cl_{2} gas evolved will be :

$$
\left[\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right]:
$$

A. 2 gm
B. 0.975 gm
C. 0.486 gm
D. 0.972 gm

Answer: C

Watch Video Solution
37. 12 g of alkaline earth metal gives 14.8 g of nitiride. Atomic weight of metal is
A. 12
B. 20
C. 40
D. 14.8

Answer: C

- View Text Solution

38. A metal oxide has the formular $\mathrm{M}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water 0.1596 g of the metal oxide required 6 mg hydrogen for complete reduction. The atomic weight of the metal is:
A. 27.9
B. 159.6
C. 0.486 gm
D. 55.80 gm

Answer: D

- Watch Video Solution

39. Mass of Cl_{2} produced by the complete reaction $230 \mathrm{gm} \mathrm{As}_{2} \mathrm{O}_{5}$ with 182.5 gm HCl according reaction is : [As $=75$]
A. 71 gm
B. 142 gm
C. 177.5 gm
D. 35.5 gm

Answer: A

40. If 10 g of Ag reacts with 1 g of sulphur, the amount of $\mathrm{Ag}_{2} \mathrm{~S}$ formed will be [Atomic weight of $\mathrm{Ag}=108, \mathrm{~S}=32$]?
A. 7.75 g
B. 0.755 g
C. 11g
D. 10 g

Answer: A

- Watch Video Solution

41. A 10.0 g sample of a mixture of CaCl_{2} and NaCl is treated to precipitate all the calcium as calcium carbonate. $\mathrm{Thus} \mathrm{CaCO}_{3}$ is heated to convert all the Ca to CaO and the final mass of CaO is 1.62 g . What is the percentage by mass of CaCl_{2} in the original mixture?
B. 0.321
C. 0.218
D. 0.1107

Answer: B

- Watch Video Solution

42. According to following reaction:
$A+B O_{3} \Rightarrow A_{3} O_{4}+B_{2} O_{3}$
The number of moles of moles of $A_{3} O_{4}$ produced if 1 mole of A is missed with mole of BO_{3} is:
A. 3
B. 1
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

43. Calculate the amount of Ni needed in the Mond's process given below

$$
\mathrm{Ni}+4 \mathrm{CO} \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}
$$

If CO used in this process is obtained through a process, in which 6 g of carbon is mixed with $4 \mathrm{gCO}_{2}$.
A. 14.675 g
B. 29.5 g
C. 58.7 g
D. 28 g

Answer: A

D Watch Video Solution

44. For the reaction $2 P+Q$ rArr $R, 8 \mathrm{~mol}$ of p and 5 mol of Q will produce:
A. 8 mol of R
B. 5 mol of R
C. 4 mol of R
D. 13 mol of R

Answer: C

- Watch Video Solution

45. What volume of hydrogen gas at 273 K and 1 atm pressure will be consumed in obtaining 21.6 g of elemential boron (Atomic mass $=10.8$) from the reduction of boron trichloride by hydrogen?
A. 44.8 L
B. 22.4 L
C. 89.6 L

Answer: D

- Watch Video Solution

46. Temporary hardness is due to bicarbonates of Mg^{2+} and Ca^{2+}. It is removed by addition of CaO as follows:

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaO} \Rightarrow 2 \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Mass of CaO required to precipitate $2 \mathrm{~g} \mathrm{CaCO}_{3}$ is:
A. 2 g
B. 0.56 g
C. 0.28 g
D. 1.12 g

Answer: B

47. When a 2.00 gm sample of rock containing lime stone was dissolved in acid 0.44 gm of CO_{2} was generated. If the rock contains no carbonates other than CaCo_{3}, What was the percent of CaCO_{3} by mass in the limestone?
A. 0.5
B. 0.64
C. 0.86
D. 0.92

Answer: A

- Watch Video Solution

48. Consider the following reaction
$A+2 B \Rightarrow C+D$
If $\frac{W_{A}}{W_{B}}=0.5$, which condition will make B a limiting reagent and A to be present in excess?
A. $\left(\frac{M_{B}}{M_{A}}\right)<1$
B. $\frac{M_{B}}{M_{A}}>1$
C. $\left(\frac{M_{B}}{M_{A}}\right)=1$
D. B will always be limiting reagent

Answer: B

D View Text Solution

49. 5 moles of VO and 6 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are allowed to react completely according to reaction
$\mathrm{VO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \Rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$
The number of moles of $V_{2} \mathrm{O}_{5}$ formed is:
A. 6
B. 2
C. 3
D. 5

Answer: B

- Watch Video Solution

50. 5.33 mg of salt $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] . \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}(a q)$ then mass of AgCl ppt. obtained will be :
[Given : $\mathrm{Cr}=52, \mathrm{Cl}=35.5$]
A. 5.74 gm
B. 2.87 gm
C. 4.3 gm
D. 8.61 gm

Answer: A

51. For the reaction :
$7 A+13 B+15 C \Rightarrow 17 P$
If 15 moles of $A, 26$ moles of B and 30.5 moles of C are taken initially, then limiting reactant is:
A. A
B. B
C. C
D. none of these

Answer: B

- Watch Video Solution

52. 12 moles of each A and B are allowed to react as given : $3 A+2 B \Rightarrow C+\frac{1}{2} D$. If 60 g of D is produced then calculate the atomic mass of D.
A. 30
B. 45
C. 60
D. 15

Answer: A

- Watch Video Solution

53. According to the following reaction the minimum quantity in gm of $\mathrm{H}_{2} \mathrm{~S}$ needed to precipitate 63.5 gm of Cu^{2+} ions will be nearly:
$\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{~S} \Rightarrow \mathrm{CuS}+2 \mathrm{H}^{+}$
A. 63.5 gm
B. 31.75 gm
C. 34 gm
D. 1.24 gm

Answer: C

54. What mass of HNO_{3} is needed to convert 5 gm of iodine into iodic acid according to the reaction?
$\mathrm{I}_{2}+\mathrm{HNO}_{3} \Rightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. 12.4 gm
B. 24.8 gm
C. 0.248 gm
D. 1.24 gm

Answer: A

- Watch Video Solution

55. 0.6 mol of barium chloride in solution is mixed with 0.2 mol of sodium phosphate, the amount of barium phosphate produced is:
A. 0.1 mol
B. 0.3 mol
C. 0.4 mol
D. 0.5 mol

Answer: A

- Watch Video Solution

56. Large quantities of ammonia are burned in the presence of a platinum catalyst to give nitric oxide, as the first step in the preparation of nitric acid, $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow \mathrm{NO}_{g}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ (unbalanced).

Suppose a vessel contains 0.12 mole of NH_{3} and $0.14 \mathrm{~mol} \mathrm{O}_{2}$. How many moles of NO may be obtained?
A. 0.12
B. 0.112
C. 0.14
D. 0.07

Answer: B

- Watch Video Solution

57. $1.0 \times 10^{-3} \mathrm{~mol}$ of Ag^{+}and $1.0 \times 10^{-3} \mathrm{~mol}$ of CrO_{4}^{2-} react together to form solid $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$. What is the amount of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=332$)
A. 0.268 gm
B. 0.166 gm
C. 0.212 gm
D. 1.66 gm

Answer: B

- Watch Video Solution

58. 280 gm of ethylene polymerises to polyethylene according to the equation.
$n\left(\mathrm{CH}_{2}=\mathrm{CH}_{2} \Rightarrow\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n}-\right.$
The weight and mole of polyethylene formed will be:
A. $280,10 \mathrm{n}$
B. $\left(\frac{280}{n}\right)$, n
C. $\frac{280}{n}, 280$
D. $280,\left(\frac{10}{n}\right)$

Answer: D

- Watch Video Solution

59. A sample containing CaBr_{2} and Nal in the mass ratio $\frac{2}{9}$ was dissolved in water and treated with sufficient amount of aq. AgNO_{3} solution to form a mixed precipitate of AgI and AgBr . The weight of mixed precipitate
was found to be 1786 gm .
$[\mathrm{Na}=23, \mathrm{Br}=80, \mathrm{l}=127, \mathrm{Ca}=40]$
Select the correct option.
A. Moles of CaBr_{2} and Nal in the original sample was 1 and 6 respectively
B. Mass of original sample was 900 cm
C. Mass of CaBr_{2} in the original sample was 400 gm
D. Number of moles of AgBr produced is 1

Answer: A

- Watch Video Solution

60. A metal carbonate decomposes according to following reaction
$\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \Rightarrow \mathrm{M}_{2} \mathrm{O}_{\mathrm{s}}+\mathrm{CO}_{2}(\mathrm{~g})$
Percentage loss in mass on complete decomposition of $\mathrm{M}_{2} \mathrm{CO}_{3}(s)$ (Atomic mass of $M=102$) is:
A. $\left(\frac{100}{3}\right) \%$
B. $\left(\frac{50}{3}\right) \%$
C. ${ }^{`}(25 / 3) \%$
D. 0.15

Answer: B

- Watch Video Solution

61. 0.4 g of polybasic acid HnA (all the hydrogens are acidic) requries 0.5 g of NaOH for complete neutralisation. The number of replaceable hydrogen atoms and the molecular weight of A would be (Mw of acid $=96$)
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

62. A mixture contains $40 \% \mathrm{Cr}$ and $60 \% \mathrm{Zn}$ by mass. Find the volume of $\left(\mathrm{H}_{2}(\mathrm{ml})\right)$ at 760 mm Hg at $31^{\circ} \mathrm{C}$ which will be produced from 1 gm of mixture and sufficient amount of HCl solution (Cr is in ${ }^{`}+3$ oxidation state in salt). [Cr=52, $\mathrm{Zn}=65$]
A. 500 ml
B. 416 ml
C. 552 ml
D. 620 ml

Answer: A

63. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by weight. 2.8 gm of the mineral on heating lost 1.32 gm of CO_{2}. What is the \% by weight of the other metal?
A. 87.5
B. 23.21
C. 65.11
D. 40.35

Answer: B

- View Text Solution

64. A 0.6 gm sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at 500° Cgets converted into CaCO_{3} and MgCO_{3}. The sample then weighed 0.465 gm . If the sample had been heated to $900^{\circ} \mathrm{C}$ where the products are CaO and MgO , then what would the mixture of oxides weigh?
A. 0.12 gm
B. 0.21 gm
C. 0.252 gm
D. 0.3 gm

Answer: C

- Watch Video Solution

65. Chlorine can be prepared by reacting HCl with MnO_{2}. The reaction is represented by this equation.
$\mathrm{MnO}_{2}(s)+4 \mathrm{HCl}(\mathrm{aq}) \Rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Assuming the reaction goes to completion what mass of concentrated HCL solution (36.0\% HCl by
A. 5.15 g
B. 14.3 g
C. 19.4 g
D. 26.4 g

Answer: B

- Watch Video Solution

66. The amount of chloride ion in a water sample is to be determined by
adding excess silver nitrate. If 1.0 g of silver chloride is precipitated, What mass of chloride ion is in the original sample?

Molar Mass gmol^{-1}
$\mathrm{AgNO}_{3} \quad 169.91$
$\mathrm{AgCl} \quad 143.25$
A. 0.25 g
B. 0.34 g
C. 0.50 g
D. 0.75 g

Answer: A

67. According to the equation
$\mathrm{SnO}_{2}+2 \mathrm{H}_{2} \Rightarrow \mathrm{Sn}+2 \mathrm{H}_{2} \mathrm{O}$
What volume of hydrogen, measured at 1 atm and 273 K , is required to react with 2.00 g of SnO_{2} ? [sn=50]
A. 0.00135 L
B. 0.00265 L
C. 0.595 L
D. 1.093 L

Answer: D

Watch Video Solution

68. $4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})$

What is the maximum volume of oxygen that canbe produced when 150
mL of CO_{2} is passed over 0.500 g of KO_{2} ? Assume all gases are measured at $0^{\circ} \mathrm{C}$ and 1atm
A. 118 mL
B. 157 mL
C. 225 mL
D. 475 mL

Answer: A

- Watch Video Solution

69. Silicon carbide, SiC , is produced by heating SiO_{2} and C to high temperature according to the equation:
$\mathrm{SiO}_{2}(g)+3 C(s) \Rightarrow \mathrm{SiC}(\mathrm{s})+2 \mathrm{CO}(g)$
How many grams of SiC could be formed by reacting 2.00 g of SiO_{2} and
2.00 g of C ? $[\mathrm{Si}=28]$
A. 1.33
B. 2.26
C. 3.59
D. 4

Answer: A

- Watch Video Solution

70. A 7.66 g sample of hydrated sodium sulphate, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$, forms 4.06 g of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. What is the value of x ?

Molar mass $\left(\mathrm{gmol}^{-1}\right)$
$\mathrm{Na}_{2} \mathrm{SO}_{4} \quad 142$
A. 0.2
B. 3.6
C. 5
D. 7

Answer: D

- Watch Video Solution

71. Consider the following reaction

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \Rightarrow 2 \mathrm{NH}_{3}
$$

Which condition will make H_{2} a limiting reagent under all cases (where W is weight of substance)?
A. $\begin{aligned} & \frac{W_{N_{2}}}{W_{H_{2}}}<\frac{14}{3} \\ & \text { B. } \frac{W_{N_{2}}}{W_{H_{3}}}>\frac{14}{3}\end{aligned}$.
c. $\frac{W_{N_{2}}}{W_{H_{2}}}=1$
D. N_{2} will always be present as limiting reagent

Answer: B

- Watch Video Solution

72. $\mathrm{Mg}(\mathrm{OH})_{2}$ in the form of Milk of Magnesia is used to neutralize excess stomach acid. How many moles of stomach acid can be neutralized by 1.00 g of $\mathrm{Mg}(\mathrm{OH})_{2}$?

Molar Mass $\mathrm{g} / \mathrm{mol}$
$\left(\mathrm{mg}(\mathrm{OH})_{2}\right) 58.33$
A. 0.0171
B. 0.0343
C. 0.686
D. 1.25

Answer: B

- Watch Video Solution

73. A 1.871 gram sample of an unkown metallic carbonate is decomposed by heating to form the metalling oxide and 0.656 g of carbon dioxide according to the equation
$\mathrm{MCO}_{3}(\mathrm{~s}) \Rightarrow \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
What is the metal?
A. Ca
B. Mn
C. Ni
D. Zn

Answer: D

- Watch Video Solution

74. A mineral containing iron(II) sulphide but no other sulphides is treated with excess hydrochloride acid to produce hydrogen sulphide. . If a 3.15 g sample of the mineral yields 448 mL of hydrogen sulphide gas (measured at $0^{\circ} \mathrm{C}$ and 760 mm Hg), what is the mass percentage of iron (II) sulphide inthe sample?
A. 20.4
B. 35.5
C. 55.8
D. 71

Answer: C

- Watch Video Solution

75. What is the maximum mass of (in grams) of NO that could be obtained from 15.5 g of $\mathrm{N}_{2} \mathrm{O}$ and 4.68 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ when they react? The balanced chemical equation is:
$2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{N}_{2} \mathrm{H}_{4} \Rightarrow 6 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
Molar mass $\left(\mathrm{gmol}^{-1}\right)$
$\mathrm{N}_{2} \mathrm{O}_{4} \quad 92.0$
$\mathrm{N}_{2} \mathrm{H}_{4} \quad 32.0$
A. 4.38
B. 5.04
C. 15.2
D. 26.2

Answer: C

- Watch Video Solution

76. lodine adds to the double bonds in fatty acids(one iodine molecule per double bond). How many double bonds are in a molecule of arachidonic acid (Molar mass $\left.={ }^{`} 304.5 \mathrm{~g} / \mathrm{mol}\right)$ if 0.125 g of the acid require 0.417 of iodine?
A. 2
B. 3
C. 4
D. 8

Answer: C

77. According to the equation
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
how many moles of $\mathrm{NH}_{3}(\mathrm{~g})$ could be formed from the reaction of 0.22 mol of $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ with 0.87 mol of $\mathrm{H}_{2}(\mathrm{~g})$?
A. 0.29 mol
B. 0.44 mol
C. 0.73 mol
D. 1.1mol

Answer: A

Watch Video Solution

78. How many moles of oxygen gas are produced by the decomposition of

245 g of potassium chlorate?
Molar mass ($\mathrm{g} / \mathrm{mol}$)
$\mathrm{KClO}_{3} \quad 122.6$
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \Rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
A. 1.5
B. 2
C. 2.5
D. 3

Answer: D

- Watch Video Solution

79. what is the maximum mass of $B a_{3}\left(\mathrm{PO}_{4-}\right.$ (2) that can be formed from 0.00240 mol of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.131 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
A. 0.240 g
B. 0.480 g
C. 1.44 g
D. 7.22 g
80. Enzymes convert glucose ($M=180.2$) to ethanol ($M=46.1$) according to the equation
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \Rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
What is the maximum mass of ethanol that can be made from 15.5 kg of glucose?
A. 0.256 kg
B. 0.512 kg
C. 3.96 kg
D. 7.93 gk

Answer: D

- Watch Video Solution

81. A reaction mixture is prepared containing 0.60 mol of aluminum and 1.20 mol of manganese dioxide. The mixture is heated until one of the reactants has been completely consumed according to the equation :
$2 \mathrm{Al}+3 \mathrm{MnO}_{2} \Rightarrow 3 \mathrm{Mn}+\mathrm{Al}_{2} \mathrm{O}_{3}$
What quantity of which reactant remains uncombined?
A. 0.20 mol Al
B. 0.40 mol Al
C. $0.30 \mathrm{~mol} \mathrm{MnO}_{2}$
D. $0.60 \mathrm{~mol}_{\mathrm{MnO}_{2}}$

Answer: C

- Watch Video Solution

82.

In the above diagram, the paired open spheres represent H_{2} molecules and the paired solid spheres represent N_{2} molecules. When the molecules in the box react to form the maximum possible amount of ammonia (NH_{3} molecules, what is the limiting reactant and how many molecules of NH_{3} can be formed?
A. N_{2} is limiting. 5 molecules of NH_{3} can be formed.
B. N_{2} is limiting. 10 molecules of NH_{3} can be formed.
C. H_{2} is limiting. 8 molecules of NH_{3} can be formed.
D. H_{2} is limiting, 12 molecules of NH_{3} can be formed.

Answer: C

83. Calcium carbonate, CaCO_{3} decomposes upon heating to calcium oxide and carbon dioxide. What mass of solid calcium carbonate is required to produce 2.40 liters of carbon dioxide measured at STP?
A. 10.7 g
B. 21.4 g
C. 50.0 g
D. 10.6 g

Answer: D

- Watch Video Solution

84. Percentage loss in mass on heating mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCO_{3} containing equal mass fo the two components will be: [Note: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is thermally stable]
A. 0.44
B. 0.22
C. 0.35
D. 0.5

Answer: B

- Watch Video Solution

85. The value of x, if hydrated salt $A_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ undergoes 45% loss in mass on heating and becomes anhydrous, is: (where atomic weight of A is 7).
A. 8
B. 9
C. 10
D. 5

Answer: D

- Watch Video Solution

86. What is the maximum amountof nitrogen dioxide that can be produced by mixing 4.2 gm of $\mathrm{NO}(\mathrm{g})$ and 3.2 gm of $\mathrm{O}_{2}(\mathrm{~g})$?
A. 4.60 gm
B. 2.30 gm
C. 3.22 gm
D. 6.44 gm

Answer: D

- Watch Video Solution

87. If nitrogen atoms are represented as filled circle and oxygen atoms as open circles, how much NO_{2} can be prepared from the mixture shown?

A. 4 molecules
B. 5 molecules
C. 6 molecules
D. 8 molecules

Answer: D
88. $\mathrm{H}_{2} \mathrm{SO}_{4}$ can be prepared in following two step process : [\% yield of each step is indicated]

50 \% yield
$(P) S(g)+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{SO}_{2}(\mathrm{~g})$
80% yield
(Q) $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$

What mass of sulphur is required to prepare $1960 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 640 gm
B. 1450 gm
C. 1600 gm
D. 1280 gm

Answer: C

- Watch Video Solution

Percentage yield and percentage purity

1. In the formation reaction of NH_{3} from N_{2} and $\mathrm{H}_{2} 140 \mathrm{~g}$ of N_{2} and 40 g H_{2} were mixed. Select the option which is correct.
A. Maximum mass of NH_{3} which can be formed is 180 gm
B. If $\%$ yield of reaction is 80%, then H_{2} consumed will be 32 gm .
C. Some $N_{2}(g)$ will be left after the reaction.
D. If NH_{3} formed is 85 gm then $\%$ yield will be 50%.

Answer: D

- Watch Video Solution

2. In a cartain operation 358 g of TiCl_{4} is reacted with 96 g of Mg .

Calculate \% yield of Ti if 32 g of Ti is actually obtained [At. Wt. Ti=48, Mg=24][Hint: $\frac{358}{190}=1.88$]

$$
\text { A. } 0.3546
$$

B. 0.666
C. 1
D. 0.6

Answer: A

- Watch Video Solution

3. How many kg of $\mathrm{CaCo}_{3}\left[\mathrm{Mol} . \mathrm{Wt}=100 \mathrm{~g}\right.$ mole $\left.{ }^{-1}\right]$ is needed to produce 336 kg of $\mathrm{CaO}\left[\mathrm{Mol} \mathrm{wt}=56 \mathrm{~g} \mathrm{~mol}^{-1}\right]$ if \% yield of the reaction given is 60%. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
A. 10^{3}
B. 10^{2}
C. 900
D. 800

Answer: A

4. A given initial mass of KClO_{3} on 50% decompostion produces 67.2 litre oxygen gas at $0^{\circ} \mathrm{C}$ and 1 atm . The other product of decompostion is KCl . The initial mass of KClO_{3} (in gm) taken is:
A. 245
B. 122.5
C. 490
D. none of these

Answer: C

- Watch Video Solution

5. An sample of NaCl with 50% purity is added into aqueous solution havinig excess AgNO_{3}. AgCl precipitate is filtered, washed and dired weighing 2.87 gm . If the reaction yeild is 20%, then find the amount of sample.
A. 23.4 gm
B. 11.7 gm
C. 20 gm
D. 12.8 gm

Answer: B

- Watch Video Solution

6. Calculate the number of oxygen atoms requried to combine with 7.0 g of N_{2} to form $N_{2} \mathrm{O}_{3}$ if 82% of N_{2} is converted into products.
$\mathrm{N}_{2}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$
A. 4.5×10^{23}
B. 3.6×10^{23}
C. $1.8 \mathrm{xx} 10^{\wedge}(23)^{\wedge}$
D. 7.2×10^{23}

Answer: B

- Watch Video Solution

7. Methyl benzoate is prepared by the reaction between benzoic acid and methanol, according to the equation
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
In an experiment 24.4 gm of benzoic acid were reacted with 70.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$. The density of $\mathrm{CH}_{3} \mathrm{OH}$ is $0.79 \mathrm{~g} \mathrm{~mL}^{-1}$. The methyl benzoate produced had a mass of 21.6 g . What is the percentage yeild of product?
A. 0.917
B. 0.794
C. 0.715
D. 0.217

Answer: B

8. Calcualte the volume of Cl_{2} gas (in ml) liberated at 1 atm 273 K when 1.74 gm MnO 2 reacts with 2.19 gm HCl according to the following with \% yeild 40 .
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. 336 ml
B. 112 ml
C. 134.4 ml
D. 44.8 ml

Answer: C

- Watch Video Solution

9. Ammonia is produced in accordance with this equation .

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

In a particular experiment, 0.25 mol of NH_{3} is formed when 0.5 mol of N_{2} is reacted with 0.5 mol of H_{2}. What is the percent yield?
A. 0.75
B. 0.5
C. 0.33
D. 0.25

Answer: A

- Watch Video Solution

10. Diborane, $B_{2} H_{6}$, canbe prepared by the reaction:
$3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \rightarrow 3 \mathrm{NaBF}_{4}+2 \mathrm{~B}_{2} \mathrm{H}_{6}$
In this reaction has a 70 percent yield, how many moles of NaBH_{4} should be used with excess $B H_{3}$ in order to obtain 0.200 mol of $B_{2} H_{6}$?
A. 0.200 mol
B. 0.210 mol
C. 0.300 mol
D. 0.429 mol

Answer: D

- Watch Video Solution

11. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$

In an experiment, to prepare bromobenzene according to the equation, a student reacted 20.0 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ with 0.310 mol of bromine. If 28.0 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ was obtained, what was the percentage yield?
A. 31.5
B. 40.3
C. 57.6
D. 69.7

Answer: D

12. For the reaction : $2 \mathrm{X}+3 \mathrm{Y}$ rightarrow $3 Z$, the combination of 2.00 moles of X with 2.00 moles of Y produces 1.75 moles of Z. What is the percent yeild of this reaction ?
A. 0.438
B. 0.583
C. 0.667
D. 0.875

Answer: D

- Watch Video Solution

13. Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$ can be reduced to iron by heating with carbon monoxide according to the equation :
$\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2}$

Molar mass $\left(\mathrm{gmol}^{-1}\right)$
$\mathrm{Fe}_{3} \mathrm{O}_{4} \quad 232$
What mass of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is required in order to obtain 5.0 kg of iron if the process is 88% efficient?
A. 6.1 kg
B. 6.9 kg
C. 7.9 kg
D. 18 kg

Answer: C

- View Text Solution

14. Sulphur trioxide, SO_{3} is made by oxidizing sulphur dioxide, SO_{2}, according to the equation,
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$. If a 16.0 g sample of SO_{2} yields 18.0 g of SO_{3}. What is the percent yield?
A. 0.7
B. 0.8
C. 0.9
D. 1

Answer: C

- Watch Video Solution

15. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with excess CO at a high temperature according to the equation below:
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
If $6.5-0 \mathrm{~g}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ yields 3.85 g of Fe , what is the percentage yield of the reaction?
A. 0.592
B. 0.699
C. 0.763

- Watch Video Solution

16. Aluminium reacts with sulphur to form aluminium sulphide. If 31.9 g of Al are reacted with 72.2 g of S , what is the theoretical yeild of aluminium sulphide in grams?
A. 88.6 g
B. 69.7 g
C. 57.2 g
D. 113 g

Answer: A

- Watch Video Solution

17. Aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, is prepared by the acetylation of salicylic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, according to the following equation :
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{CH}_{3} \mathrm{COOH}$
If the yeild of this reaction is 83%, what mass of salicylic acid would be required to prepare 1.0 kg of aspirin?
A. 0.77 kg
B. 0.62 kg
C. 1.2 kg
D. 1.3 kg

Answer: B

- Watch Video Solution

18. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{O}_{2}$

What is the percent yield if 0.85 g of aspirin is formed in the reaction of
1.00 g of salicylic acid with excess acetic anydride ?

Substance Molar Mass
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3} \quad 138.12 \mathrm{~g} . \mathrm{mol}^{-1}$
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \quad 102.09 \mathrm{~g} . \mathrm{mol}^{-1}$
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \quad 180.15 \mathrm{~g} . \mathrm{mol}^{-1}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \quad 60.05 \mathrm{~g} . \mathrm{mol}^{-1}$
A. 0.65
B. 0.77
C. 0.85
D. 0.91

Answer: A

Watch Video Solution

Sequential and Parallel Reactions

1. Sulphur trioxide may be prepared by the following two reactions:
$\mathrm{S}_{8}+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{SO}_{2(\mathrm{~g})}$
$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{SO}_{3(g)}$
How many grams of SO_{3} will be produced from 1 mole of S_{8} ?
A. 1280
B. 640
C. 960
D. 320

Answer: B

- Watch Video Solution

2. If 240 g of carbon is taken in a container to convert it completely to CO_{2} but in industry it has taken found that 280 g of CO was also formed along with CO_{2}. Find the percentage yeild of CO_{2}. The reactions occuring
are: $C+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \mathrm{C}+\left(\frac{1}{2}\right) \mathrm{O}_{2} \rightarrow \mathrm{CO}$

$$
\text { A. } 0.25
$$

B. 0.5
C. 0.75
D. 1

Answer: B

- View Text Solution

3. What weight of CaCO_{3} must be decomposed to produce the sufficient quantity of carbon dioxide to convert 21.2 kf of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ completely in NaHCO_{3}. [Atomic mass $\mathrm{Na}=23, \mathrm{Ca}=40$]
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaHCO}_{3}$
A. 100 Kg
B. 20 kg
C. 120 Kg
D. 30 Kg

Answer: B

D View Text Solution

4. For a sequential reaction.
$\mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2}$
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
What will be the amount of water which will be obtained if 5 moles of NH_{3} is mixed with 3 moles of O_{2} and \% yield of $1^{\text {st }}$ and $2^{\text {nd }}$ reaction is 50% and 80% respectively ?
A. 3 moles
B. 2.5 mole
C. 2 mole
D. 2.4 mole

Answer: A

5. For a sequential reaction :

A rightarrow $B+C$
$2 B$ rightarrow $C+2 D$

If \% yeild of (i) and (ii) reactions are 90% and 80% respectively, then the overall \% yield is expected to be:
A. 0.9
B. 0.8
C. 0.72
D. 0.1

Answer: C

(Watch Video Solution

6. $N X$ is produced by the following step of reactions
$M+X_{2} \rightarrow M X_{2}$
$3 M X_{2}+X_{2} \rightarrow M_{3} X_{8}$
$\mathrm{M}_{3} \mathrm{X}_{8}+\mathrm{N}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NX}+\mathrm{CO}_{2}+\mathrm{M}_{3} \mathrm{O}_{4}$
How much M (metal) is consumed to produce 206 gm of NX? (Take at. wt of $M=56, N=23, X=80]$
A. 42 gm
B. 56 gm
C. $14 / 3 \mathrm{gm}$
D. $7 / 4 \mathrm{gm}$

Answer: A

- Watch Video Solution

7. How many moles of CH_{4} will produce 12.0 ethane according to the reaction:

$$
80 \% \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}
$$

$\mathrm{CH}_{4}+\mathrm{Cl}_{2}$
50\%
$2 \mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{Na} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}+2 \mathrm{NaCl}$
A. 2
B. 0.8
C. 0.32
D. 1

Answer: A

- View Text Solution

8. For the sequential reactions:
80%
$2 A \rightarrow 3 B+C$
50\%
$2 B \rightarrow 5 D+E$

Moles of A needed for the formation of 1.5 moles of D is:
A. 0.6
B. 0.4
C. 1
D. 1.16

Answer: C

- Watch Video Solution

9. Minimum amount of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ required to produce sufficient oxygen for the complete combusion of $\mathrm{C}_{2} \mathrm{H}_{2}$ which produces 11.35 litre of CO_{2} at STP after combusion is:
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g})$,
$\mathrm{C}_{2} \mathrm{H}_{2}+\left(\frac{5}{2}\right)\left(\mathrm{O}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. 276 g
B. 345 g
C. 690 g
D. 1380 g

- View Text Solution

10. 120 g Mg was burnt in air to give a mixture of MgO and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$. The mixture is now dissolved in HCl to form MgCl_{2} and $\mathrm{NH}_{4} \mathrm{Cl}$, if 107 gram $\mathrm{NH}_{4} \mathrm{Cl}$ is produced. Then the moles of MgCl_{2} formed is:
$\mathrm{Mg}+\left(\frac{1}{2}\right) \mathrm{O}_{2} \rightarrow \mathrm{MgO}$
$3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$.
$\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+8 \mathrm{HCl} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}+3 \mathrm{MgCl}_{2}$ (iv)
A. 3 moles
B. 6 moles
C. 5 moles
D. 10 moles

Answer: C

11. Ferric oxide can be obtained by oxidation of FeO :
$4 \mathrm{FeO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
The O_{2} gas required can be prepared by the following reaction.
$2 \mathrm{SO}_{3} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}(\mathrm{~g})$
What is the maximum amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ that can be produced by 144 g
FeO and 160 g of SO_{3} ?
[Atomic mass of $\mathrm{Fe}=56$]
A. 320 g
B. 80 g
C. 120 g
D. 160 g

Answer: D

- View Text Solution

12. One commercial system removes SO_{2} emission from smoke at $95^{\circ} \mathrm{C}$ by the following set of reactions:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{HO})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Assuming the process to be 95% efficient, how many moles of CaSO_{4} may be produced from 128 g SO 2 ? $[\mathrm{Ca}=40, \mathrm{~S}=32, \mathrm{O}=16]$
A. 1.9 moles
B. 2 moles
C. 3.8moles
D. 0.95 moles

Answer: A

- View Text Solution

13. Moles of $A B C_{3}$ produced in the following set tio reaction when 180 gm of $A, 180 \mathrm{gm}$ of B and 200 gm of C are mixed in a container (given molar mas of A, B, C and 20,30 and 10 respectively).
$2 A+3 B+5 C \rightarrow A_{2} B C+B_{2} C_{3}$
$B_{2} C_{3}+3 C \rightarrow 2 B C_{3}$
$B C_{3}+A \rightarrow A B C_{3}$.
A. 5
B. 4
C. 43741
D. $20 / 3$

Answer: B

- View Text Solution

14. The following sequences of reaction may be used to extract zinc from its sulphate are:
$\mathrm{Zns}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}+\mathrm{SO}_{2}$
$\mathrm{ZnO}+\mathrm{C} \rightarrow \mathrm{Zn}+\mathrm{CO}$

How many tonnes of Zn can be obtained from 10 tonnes of Zns assuming that the yield is 75% ? [Atomic weight of $\mathrm{Zn}=65, \mathrm{~S}=231$]
A. 5
B. 10
C. 12
D. 15

Answer: A

D View Text Solution

15. 5 moles of $A, 6$ molesof Z are mixed with suffifcient amount of C to finally produce F. Then find the maximum molesof F which can be produced. Assuming that the product formed can also be reused. Reactions are :
$A+2 Z \rightarrow B$
$B+C \rightarrow Z+F$
A. 3 moles
B. 4.5 moles
C. 5 moles
D. 6 moles

Answer: C

- View Text Solution

16. Consider the following reactions:
$2 \mathrm{Na}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{NaNH}_{2}+\mathrm{H}_{2}(\mathrm{~g})$.
$2 \mathrm{NaNH}_{2}+\mathrm{C} \rightarrow \mathrm{Na}_{2} \mathrm{CN}_{2}+2 \mathrm{H}_{2}(\mathrm{~g})$.
$\mathrm{Na}_{2} \mathrm{CN}_{2}+\mathrm{C} \rightarrow 2 \mathrm{NaCN}$.
51 gm dry ammonia gas is passed over excess heated sodium to form sodamide NaNH_{2} which is further reacted with carbon (excess) to finally form NaCN . Find the total volume of $\mathrm{H}_{2}(g)$ evolved at 0.5 atm, 273 K .
A. 201.6 L
B. 100.8 L
C. 403.2 L
D. 50.4 L

Answer: A

- View Text Solution

17. Two pure substances of equal molar masses are α and β (where $\alpha=\mathrm{AHCO}_{3}$ and $\left(\beta=\mathrm{BCO}_{3}\right]$ and they decomposes as shown:
Δ
$2 \alpha \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{A}_{2} \mathrm{CO}_{3}$.
Δ
$\beta \rightarrow \mathrm{BO}+\mathrm{CO}_{2}$
6.2 g of mixture of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} is obtained by 16.8 g of α. Find out the molar mass of α and β and value of $\left(\frac{\alpha+\beta}{2}\right)^{2}$.
A. 84 each, 168.0
B. 57.9 each, 3360
C. 59.39 each, 3528
D. 84 each, 7056

Answer: D

- View Text Solution

Empirical and molecular formula

1. Equal mass of KClO_{3} undergoes different reactions in two different containers:

$$
\begin{align*}
& \Delta \\
& 2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \tag{i}\\
& \Delta \\
& 4 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KCl}(\mathrm{~s})+3 \mathrm{KClO}_{4}(\mathrm{~s}) . \tag{ii}
\end{align*}
$$

Mass ratio of KCl produced in respective reaction is $n: 1$ then, value of n will be:
A. 4
B. 2
C. 74.5
D. 90

Answer: A

- View Text Solution

2. The atomic weights of two alements A and B are 40 and 80 reapectively. If xg of A contains y atoms, how many atoms are present in 2 xg of B ?
A. $\frac{y}{2}$
B. $\frac{y}{4}$
C. y
D. $2 y$

Answer: C

3. The empirical formula of a compound of molecular mass 120 is $\mathrm{CH}_{2} \mathrm{O}$. The molecular formula of the compound is :
(a). $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(b). $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
(c). $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(d). all of these
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
D. all of these

Answer: B

- Watch Video Solution

4. Calcualte the molecualr formula of compound which contains $20 \% \mathrm{Ca}$ and $80 \% \mathrm{Br}$ (by wt.) if molecualr weight of compound is 200. (Atomic wt. $\mathrm{Ca}=40, \mathrm{Br}=80$)
A. $C a \frac{1}{2} B r$
B. CaBr_{2}
C. CaBr
D. $\mathrm{Ca}_{2} \mathrm{Br}$

Answer: B

- Watch Video Solution

5. In an organic compound of molar mass greater than 100 containing only C, H and N, the percentage of C is 6 times the percentage of H while the sum of the percentage of C and H is 1.5 times the percentage of N. What is the least molar mass :
A. 175
B. 140
C. 105
D. 210

Answer: B

- Watch Video Solution

6. The simplest formula of a compound containing 50% of an element X (atomic weight 10) and 50% of element Y (atomic weight 20) is:
A. $X Y$
B. $X_{2} Y_{2}$
C. $X Y_{2}$
D. $X_{2} Y_{3}$

Answer: B

7. The oxides of a certain (hypothetical) element contain 27.28\%, 42.86\% and 52.94% oxygen. What is the ratio of the valencies of the element in the 3 oxides?
A. 2:3:4
B. 1:3:4
C. 1:2:4
D. 1:2:3

Answer: D

- Watch Video Solution

8. A certain organic substance used as a solvent in many reactions contains carbon, hydrogen, oxygen and sulphur. Weight \% of hydrogen in
the compound is 7.7. The weight ratio $C: O: S=3: 2: 4$. What is the least possible molar mas of the compound?
A. 86
B. 63
C. 94
D. 78

Answer: D

- Watch Video Solution

9. In an organic compound of molar mass $108 \mathrm{gmmol}^{-1} \mathrm{C}, \mathrm{H}$ and N atoms are presents in $9: 1: 3.5$ by mass. Molecular can be
A. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}$
C. $C_{5} H_{6} N_{3}$
D. $\mathrm{C}_{4} \mathrm{H}_{18} \mathrm{~N}_{3}$

Answer: A

- Watch Video Solution

10. 64 g of an organic compound contains 24 g of carbon, 8 gm of hydrogen and the rest oxygen. The empirical formula of the compound is
A. $\mathrm{CH}_{4} \mathrm{O}$
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D. none

Answer: A

- Watch Video Solution

11. X and Y are two elements which form $X_{2} Y_{3}$ and $X_{3} Y_{4}$. If 0.20 mol of $X_{2} Y_{3}$ weighs 32.0 g and 0.4 mol of $X_{3} Y_{4}$ weighs 92.8 g , the atojic weights of X and are respectively:
A. 16.0 and 56.0
B. 8.0 and 28.0
C. 56.0 and 16.0
D. 28.0 and 8.0

Answer: C

- View Text Solution

12. A compound has the molecular formula $X_{4} O_{6}$. If $10 g o f X_{4} O_{6}$ has 5.72 gX , atomic mass of X is:
A. 32 amu
B. 37 amu
C. 42 amu
D. 98 amu

Answer: A

- Watch Video Solution

13. An unidentified bivalent metal M reacts with unidentified halogen X to form an unknown compound of halogen gas. When 1.12 g of it is heated, 0.72 g of MX is obtained along with 56 ml of halogen gas at 1atm and 273 K. Identify the metal.
A. Zn
B. Cu
C. Fe
D. Pb

Answer: B

14. A 0.239 g sample of a gas in a $100-\mathrm{ml}$ flask exerts a pressure of 600 mm Hg at $14^{\circ} \mathrm{C}$. What is the gas?
A. Chlorine
B. Nitrogen
C. Krypton
D. Xenon

Answer: A

- View Text Solution

15. A certain oxide of iron contains 2.5 grams of oxide for every 7.0 grams of iron. If it is regarded as a mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the weight ratio $a: b$, what is $a: b ?$ (atomic weight of iron = 56)
A. $9: 10$
B. 9:20
C. 14:5
D. 1:1

Answer: A

- View Text Solution

16. Disilane, $\mathrm{Si}_{2} \mathrm{H}_{X}$ is analysed and found to contain 90.32% silicon by mass. What is the value of X ? $[\mathrm{Si}=28]$
A. 3
B. 4
C. 6
D. 8

Answer: C

17. A gaseous hydrocarbon gives upon combustion, 0.72 g of water and 3.08 g of CO_{2}. The empirical formula of the hydrocarbon is
A. $\mathrm{C}_{3} \mathrm{H}_{4}$
B. $\mathrm{C}_{6} \mathrm{H}_{5}$
C. $\mathrm{C}_{7} \mathrm{H}_{8}$
D. $\mathrm{C}_{2} \mathrm{H}_{4}$

Answer: C

- Watch Video Solution

18. Each 9.4 gm of a compound contains 7.2 gm carbon, 0.6 gm hydrogen and rest oxygen. The empirical formula of the compound is:
A. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
B. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$

Answer: C

- View Text Solution

19. Three different oxides of nitrogen each contain 7.00 g of hydrogen and weigh $15.0 \mathrm{~g}, 23.0 \mathrm{~g}$ and 19.0 g , respectively. What are their empirical formulas?
A. $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}$
B. $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$
C. $\left.\mathrm{N}_{92}\right) \mathrm{O}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}$
D. $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$

Answer: A

20. A compound contains 69.5% oxygen and 30.5% nitrogen and its molecualr weight is 92 . The molecualr formula of that compound is:
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{2}
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: C

- View Text Solution

21. 26.8 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} . \mathrm{nH}_{2} \mathrm{O}$ contains 12.6 g of water. The value of n is:
A. 1
B. 10
C. 6

D. 7

Answer: D

- View Text Solution

22. Which of the following series of compounds have same mass percentage of carbon?
A. $\mathrm{CO}_{2}, \mathrm{CO}$
B. $\mathrm{CH}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{10} \mathrm{H}_{8}$
D. $\mathrm{HCHO}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer: D

23. 60 gm of an organic compound containing C, H and O atoms on complete combustion gave $88 \mathrm{gm} \mathrm{CO}_{2}$ and $36 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}$. The empirical formula of the organic compound is:
A. $\mathrm{C}_{2} \mathrm{HO}$
B. CHO
C. $\mathrm{CH}_{2} \mathrm{O}$
D. CHO_{2}

Answer: C

- View Text Solution

24. Aspartame an artificial sweetner contains 9.52% by weight of nitrogen.

There are two nitrogen atoms per molecule, then the molecular weight of aspartame is:
A. 588
B. 266
C. 147
D. 294

Answer: D

- View Text Solution

25. A compound contains $38.8 \% \mathrm{C}, 16.0 \% \mathrm{H}$ and $45.2 \% \mathrm{~N}$. The empirical formular of the compound would be:
A. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CN}$
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
D. $\mathrm{CH}_{2}(\mathrm{NH})_{2}$

Answer: A

26. A compound contains 5 gm sulphur and 5 gm oxygen atom. The empirical formula of compound is:
A. SO
B. SO_{2}
C. $\mathrm{S}_{2} \mathrm{O}$
D. SO_{3}

Answer: B

- View Text Solution

27. To find formula of a compound composed of iron and carbon monoxide $\mathrm{Fe}_{x}(\mathrm{CO})_{y}$,the compound is burned in pure oxygen and following reaction occurs:
$\mathrm{Fe}_{\chi}(\mathrm{CO})_{Y}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$

If 19.6 gm of $\mathrm{Fe}_{x}(\mathrm{CO})_{y}$ is burnt and $8 \mathrm{gm} \mathrm{Fe} 2_{2} \mathrm{O}_{3}$ is formed, then empirical formula of $\mathrm{Fe}_{x}(\mathrm{CO})_{y}$ is:
A. $\mathrm{Fe}_{2}(\mathrm{CO})_{5}$
B. $\mathrm{Fe}(\mathrm{CO})_{4}$
C. $\mathrm{Fe}(\mathrm{CO})_{3}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: D

D View Text Solution

28. An oxide of element A was analysed and found to have mass ratio of A to oxygen equal to $7: 3$. Then formular of oxide can be : [Atomic mass of A $=56]$
A. $A_{2} \mathrm{O}_{2}$
B. $A_{2} \mathrm{O}_{3}$
C. AO

D. $\mathrm{A}_{2} \mathrm{O}$

Answer: B

- View Text Solution

29. 32.2 gm of an organic compound containing C, H and O when completely combusted produces 61.6 gm of CO_{2} and 37.8 gm of $\mathrm{H}_{2} \mathrm{O}$. Select the correct option :
A. \% of C in the organic compound is 40%.
B. \% of H in the organic compound is 13.04%
C. \% of O in the organic compound is 17.04%
D. Data given is insufficient.

Answer: B

- View Text Solution

30. An organic compound contains 20 atoms of carbon per molecule, the pecentage of carbon by weight being 70 . The gram molecualr mass of the organic compound is approximately:
A. 465
B. 343
C. 415.0667 .0
D.

Answer: B

- View Text Solution

31. A drug marijuna owes its activity to tetrahydrocarbinol, which contains 70% as many C atoms as oxygen atoms. The number of mole of compound in a gm of it is 0.00318 . the molecualr formular will be :
A. $C_{20} H_{30} O_{2}$
B. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$
C. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$
D. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$

Answer: B

- View Text Solution

32. Analysis of a compound known to contain only Mg, P, and O gives this analysis.
$21.8 \% \mathrm{Mg}, 27.7 \% \mathrm{P}, 50.3 \% \mathrm{O}$ by mass
What is its empirical formula?
A. MgPO_{2}
B. MgPO_{3}
C. $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
D. $\mathrm{Mg}_{3} \mathrm{P}_{2} \mathrm{O}_{8}$

Answer: C

33. A chloride salt of Rhenium contains 63.6% Re by mass. What is its empirical formula? $[\mathrm{Re}=186]$
A. ReCl
B. ReCl_{2}
C. ReCl_{3}
D. ReCl_{5}

Answer: C

- View Text Solution

34. An oxide of manganese contains 2.29 g of manganese per gram of oxygen. What is the empirical formular of this compound?
A. MnO
B. MnO_{2}
C. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
D. MnO_{3}

Answer: C

- View Text Solution

35. Which expression gives the fraction by mass of nitrogen in ammonium dihydrogen phosphate?
A. $\left(\frac{11}{115}\right)$
B. $\left(\frac{28}{115}\right.$
C. $\left(\frac{28}{132}\right)$
D. $\left(\frac{28}{133}\right)$

Answer: A

36. The percentage by mass of C, H, and Cl in a compound are $\mathrm{C} 52.2 \%, \mathrm{H}$ 3.7% and $\mathrm{Cl} 44.1 \%$. How many carbon atoms are in the simplest formular of the compound?
A. 3
B. 4
C. 6
D. 7

Answer: D

- View Text Solution

37. Calcualte the mass percentage of nitrogen in hydrazinium Sulphate $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$.

Molar mass $\quad\left(\mathrm{gmol}^{-1}\right)$

$$
\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4} \quad 162.2
$$

A. 10.8
B. 17.3
C. 34.5
D. 51.2

Answer: C

- View Text Solution

38. A 200 mL sample of a gaseous hydrocarbons has a density of $2.52 g L^{-1}$ at $55^{\circ} \mathrm{C}$ and 720 mm Hg . What Is its formula?
A. $\mathrm{C}_{2} \mathrm{H}_{6}$
B. $C_{4} H_{10}$
C. $\mathrm{C}_{5} \mathrm{H}_{12}$
D. $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer: C

- View Text Solution

39. For which compound are the empirical and molecualr formular the same?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
B. $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}$
C. HOOCCOOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: A

- View Text Solution

40. An ionic compound contains 29.08% sodium, 40.56% sulphur and 30.36% oxygen by mass. What is the formular of the sulphur-containing anion in the compound?
A. $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{\wedge}(2-)$
B. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{5}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$

Answer: A

- View Text Solution

41. The mineral beryl contians $5 / 03 \%$ beryllium by mass and contains three beryllium atoms per formula unit. Determine the formula mass of beryl. [$\mathrm{Be}=9$]
A. $950 \mathrm{~g} / \mathrm{mol}$
B. $537 \mathrm{~g} / \mathrm{mol}$
C. $270 \mathrm{~g} / \mathrm{mol}$
D. $179 \mathrm{~g} / \mathrm{mol}$

Answer: B

- View Text Solution

42. A compound with the formula $X_{2} \mathrm{O}_{5}$ contains 34.8% oxygen by mass. Identify element X.
A. Arsenic
B. Carbon
C. Phosphorous
D. Samarium

Answer: A

43. What is the percent by mass of nitrogen in ammonium carbonate, $\left(\mathrm{NH}_{2}^{4} \mathrm{CO}_{3}\right)$?
A. 0.1453
B. 0.2783
C. 0.2916
D. 0.3334

Answer: C

- Watch Video Solution

44. Which compound contains the highest percentage of nitrogen by mass?
A. $\mathrm{NH}_{2} \mathrm{OH}(\mathrm{M}=33)$
B. $\mathrm{NH}_{4} \mathrm{NO}_{2}(\mathrm{M}=64.1)$
C. $N_{2} O_{3}(M=76.0)$
D. $\mathrm{NH}_{4} \mathrm{NH}_{2} \mathrm{CO}_{2}(\mathrm{M}=78.1)$

Answer: B

- Watch Video Solution

45. What is the mass of percent of oxygen in the compound $\mathrm{UO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{O}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$?

Formula Weight g

$$
\mathrm{UO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}=573
$$

A. 0.0558
B. 0.168
C. 0.223
D. 0.391

Answer: D

46. Reduce acid contains 52.63% carbon, 5.30% hydrogen and 42.07% oxygen. Its empirical formula is the same as its molecualr formula. What is the number of carbon atoms in a molecule of this acid?
A. 4
B. 5
C. 6
D. 8

Answer: B

- Watch Video Solution

47. The percent composition of the high explosive HNS is:

C	H	N	O
37.35%	1.34%	18.67%	42.65%

The molar mass of HNS is 450.22 . What is the molecular formular of HNS?
A. $C_{13} H_{4} N_{7} O_{12}$
B. $C_{14} H_{6} N_{6} O_{12}$
C. $C_{15} H_{10} N_{6} O_{11}$
D. $C_{16} H_{12} N_{5} O_{11}$

Answer: B

- Watch Video Solution

48. Element E reacts with oxygen to produce EO_{2}. Identify element E if 16.5 g of it react with excess oxygen to form 26.1 g of EO_{2}
A. Manganese
B. Nickel
C. sulphur dioxide and sulphur trioxide
D. Titanium
49. The mass percentage of O in a potassium salt, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{x}$, is 36.0%. What is the formular of the polyatomic ion?
A. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{5}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$

Answer: B

- Watch Video Solution

50. An 18.5 g sample of tin ($\mathrm{M}=118.7$) combines with 10.0 g of sulphur ($M=32.07$) to form a compound. What is the empirical formular of this compound?
A. SnS
B. $S n S_{2}$
C. $S n_{2} S$
D. $S n_{2} S_{3}$

Answer: B

- Watch Video Solution

51. A compound with $69.41 \% \mathrm{C}, 4.16 \% \mathrm{H}$ and $26.42 \% \mathrm{O}$ has a molar mass of $23-250 \mathrm{~g} \mathrm{~mol}^{-1}$. What is its molecualr formula?
A. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{4}$
B. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}$
C. $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{O}_{4}$
D. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
52. Which compound contains the highest percentage of magnesium by mass?
A. $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$
B. $\mathrm{Mg}\left(\mathrm{HPO}_{4}\right)_{2}$
C. $\mathrm{Mg}_{2} \mathrm{P}_{4} \mathrm{O}_{7}$
D. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Answer: D

- Watch Video Solution

POAC Based Questions

1. 25.4 g of iodine and 14.2 g of chlorine are made to react completely to yield a mixture of ICI and ICI_{3}. Calcualte the number of moles of ICl and
Icl_{3} formed.
A. 0.1 mole, 0.1 mole
B. 0.1 mole, 0.2 mole
C. 0.5 mole, 0.5 mole
D. 0.2 mole, 0.2 mole

Answer: A

- View Text Solution

2. What weights of $P^{4} O_{6}$ and $P_{4} O_{10}$ will be produced by the combusion of 31 g of P_{4} in 32 g of oxygen leaving no P_{4} and O_{2} ?
A. $2.75 \mathrm{~g}, 219.5 \mathrm{~g}$
B. $27.5 \mathrm{~g}, 35.5 \mathrm{~g}$
C. $55 \mathrm{~g}, 71 \mathrm{~g}$
D. $17.5 \mathrm{~g}, 190.5 \mathrm{~g}$

Answer: B

- Watch Video Solution

3. 0.05 mole of LiAlH_{4} in ether solution was placed in a flask containing 74 g (1 mole) of t-butyl alcohol. The product LiAlHC $_{12} \mathrm{H}_{27} \mathrm{O}_{3}$ weighed 12.6 g. If Li atoms are conserved, the percentage yield is:
$[\mathrm{Li}=7, \mathrm{Al}=27, \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16]$
A. 0.25
B. 0.75
C. 1
D. 0.15

Answer: C

4. XeF_{6} fluorinates I_{2} to $I F_{7}$ and liberates Xenon(g). 210 mmol of XeF_{6} can yield a maximum of.... Mmol of IF_{7}
A. 420
B. 180
C. 1
D. 0.15

Answer: B

- Watch Video Solution

5. Human lungs can absorb $8 \mathrm{gm} O_{2}$ per hour by respiration. If all oxyggen atoms are converted to carbohydrates $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$ how long will it take to produce $180 \mathrm{gm} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
A. 8 hours
B. 12 hours
C. 10 hours
D. 6 hours

Answer: B

- Watch Video Solution

6. A mixture of magnesium chloride and magnesium sulphate is known to contain 0.6 moles of chloride ion and 0.2 moles of sulphate ions. For quantitative estimation of Mg , above mixture is treated with set of reagents to form $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ produced is:
A. 0.5
B. 0.25
C. 0.8
D. 0.7

Answer: B

7. A 1.50 g sample of an ore containing silver was dissolved, and all of the Ag^{+}was converted to 0.124 g of $\mathrm{Ag}_{2} \mathrm{~S}$. What was the percentage of silver in the ore?
A. 0.0641
B. 0.072
C. 0.0827
D. 0.108

Answer: B

- Watch Video Solution

8. How many moles of $P_{4} O_{6}$ and $P_{4} O_{10}$ will be produced by the combustion of 12.4 gm of phosphorus in 12.8 gm of O_{2}, leaving no P_{4} or O_{2} ? [Atomic wt. P=31]
A. 0.11 mol and 0.3 mol
B. 0.15 mol and 0.25 mol
C. 0.05 mol each
D. 0.1 mol each

Answer: C

- View Text Solution

9. In an experiment, 2.847 g of pure MOCl_{3} was allowed to undergo a set of reactions as a result of which all the Cl was converted to AgCl . The weight of AgCl was 7.2 g . Find at. Wt of M .
A. 35.52
B. 47.72
C. 65.2
D. 80.42

Answer: B

- View Text Solution

10. 8 g of sulphur are burnt to form SO_{2}, which is oxidised by Cl_{2} water. The solution is treated with BaCl_{2} solution. The amount of BaSO_{4} precipitated is:
A. 0.25 mol
B. 0.30 mol
C. 0.50 mol
D. 0.75 ml

Answer: A

11. 1.44 gram of Titanium (Ti) reacted with excess of O_{2} and produced x gram of non-stoichiometric compound $\mathrm{Ti}_{\cdot 0.44} \mathrm{O}$. The value of x will be :[Ti = 48]
A. 2.77 g
B. 3.77 g
C. 1.77 g
D. 3.0 g

Answer: C

- Watch Video Solution

12. One mole mixture of FeO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ containing equal moles of each on reaction with excess O_{2} gives n moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. n is:
A. 1
B. 2
C. 43499
D. none of these

Answer: A

D Watch Video Solution

13. A solution with a mass of 1.263 g containing an unkown amount of potassium ions was treated with excess sodium tetraphenylborate to precipitate 1.003 g of $\mathrm{KB}\left(C_{6} H_{5}\right)_{4}(\mathrm{M}=358.33)$. What is the mass percentage of potassium in the original solution?
A. 0.0864
B. 0.0916
C. 0.109
D. 0.138

Answer: A

14. A 10.00 g sample of a soluble barium salt is treated with an excess of sodium sulphate to precipitate $11.21 \mathrm{~g} \mathrm{BaSO}_{4}(\mathrm{M}=233.4)$. Which barium salt is it?
A. $\mathrm{BaCl}_{2}(\mathrm{M}=208.2)$
B. $\mathrm{Ba}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}(\mathrm{M}=227.3)$
C. $\mathrm{Ba}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}(\mathrm{M}=261.3)$
D. $\mathrm{BaBr}_{2}(\mathrm{M}=297.1)$

Answer: A

- Watch Video Solution

15. 21.6 g of silver coin is dissolved in HNO_{3}. When NaCl is added to this solution, all silver is precipitated as AgCl . The weight of AgCl is found to
be 14.35 g then $\%$ silver in coin is:
NaCl
$\mathrm{Ag}+\mathrm{HNO}_{3} \rightarrow \mathrm{AgCl}$
A. 0.5
B. 0.75
C. 1
D. 0.15

Answer: A

- Watch Video Solution

16. To find formular of a compound composed of A and B which is given by
$A_{x} B_{y}$, it is strongly heated in oxygen as per reaction:
$A_{x} B_{y}+O_{2} \rightarrow A O+$ Oxide of B
If 2.5 gm of $A_{x} B_{y}$ on oxidation gives 3 gm oxide of A , Find empirical formular of $A_{x} B_{y}$
[Take atomic mass of $\mathrm{A}=24$ and $\mathrm{B}=14$]
A. $A_{3} B_{2}$
B. $A_{2} B_{3}$
C. $A B_{2}$
D. $A_{2} B$

Answer: A

- Watch Video Solution

Experimental Methods

1. if 30 gm sample of a chloroplatinate salt of diacidic organic Lewis base on ignition produce 5 gm of white residue, then what will be the molar mass of the base? $[\mathrm{Pt}=195]$
A. 760
B. 380
C. 1170
D. 410

Answer: A

- Watch Video Solution

2. An organic base is tetraacidic. If from every 10 gm of the chloroplatinate salt of the base 3.9 gm of the residue of platinum is obtained, then what will be the molecualr mass of the base? [$\mathrm{Pt}=195$]
A. 180
B. 360
C. 90
D. 270

Answer: A

- Watch Video Solution

3. 6.0 gm of silver of a tetrabasic acid gives 4.32 gm silver on strong heating. The molar mass of the acid is: $(\mathrm{Ag}=108)$
A. 168
B. 172
C. 84
D. 88

Answer: B

- Watch Video Solution

4. In Kjeldahl's method, 1.4 gm of an organic compounds is strongly boiled with concetration NaOH . If the liberated ammonia gas is completely absorbed by $100 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution and no acid is remained, the mass percent of nitrogen in the compound is
A. 0.2
B. 0.1
C. 0.4
D. 0.8

Answer: A

- Watch Video Solution

5. A trivalent metal has mass $\%$ of metal in its superoxide equal to 36%.

Calcualte approximate specific heat capacity of metal.
A. $\left(\frac{6.4}{18}\right) \mathrm{Cal} / \mathrm{gm}^{\circ} \mathrm{C}$
B. $\frac{6.4}{18} \mathrm{Cal} / \mathrm{gm}^{\circ} \mathrm{C}$
C. $\left(\frac{18}{6.4}\right) \mathrm{Cal} / \mathrm{gm}^{\circ} \mathrm{C}$
D. $\left(\frac{54}{6.4}\right) \mathrm{Cal} / \mathrm{gm}^{\circ} \mathrm{C}$

Answer: B

6. $\mathrm{NH}_{3}(\mathrm{~g})$ evolved from 1.4 mg of protein sample can be completely neutralized by 40 ml of $0.4 \mathrm{M} \mathrm{HCl} \%$ (by mass) of nitrogen in the sample is:
A. 0.08
B. 0.16
C. 0.194
D. 0.24

Answer: B

- Watch Video Solution

7. 76 gram of a silver salt of dibasic acid on heating left a residue of 54 gram silver. Silver salt contains Ag, C and O only and C and O in mole ratio of $1: 2$ then find the mass of CO_{2} gas liberated during ignition of 76 gm silver salt, $(\mathrm{Ag}=108)$
A. 22.4 gm
B. 0.22 gm
C. 44 gm
D. 22 gm

Answer: D

- Watch Video Solution

8. The specific heats of several metals are given in the table. If the same number of Joules were applied to the same mass of each metal, which metal would show the greatest temperature change?

Specific Heat $\left(\mathbf{J}-\mathrm{g}^{-1}{ }^{\circ} \mathbf{C}^{-1}\right)$

Al
 Au
 Cu
 Hg

0.900
0.129
0.385
0.139
A. Al
B. Av
C. Cu
D. Hg

Answer: B

- Watch Video Solution

9. Calculate the mass of ammonia that can be produced from the decomposition of a sample $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ containing 0.100 g Pt .
Substance
Molar mass
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6} \quad 443.9 \mathrm{~g} . \mathrm{mol}^{-1}$
A. 0.0811 g
B. 0.0766 g
C. 0.0175 g
D. 0.00766 g

Answer: C

- Watch Video Solution

10. How many significant figures should be reported the answer to the calculation? (Assume all number are experimentally determined).
12.501×3.52
0.0042
A. 2
B. 3
C. 4
D. 5

Answer: A

11. Which would produce the largest change in the $\mathrm{H}_{2} \mathrm{O}$ level when added to water in a 25 mL graduate cylinder?
A. 10.0 g of $\mathrm{Hg}\left(d=13.6 \mathrm{~g} . m L^{-1}\right)$
B. 7.42 g of $\mathrm{Al}\left(d=2.70 \mathrm{~g} . m L^{-1}\right)$
C. 5.09 of iron pyrite $\left(\mathrm{d}=4.9 \mathrm{~g} . \mathrm{mL}^{-1}\right)$
D. 2.68 g of oak $\left(\mathrm{d}=0.72 \mathrm{gmL}^{-1}\right)$

Answer: B

- Watch Video Solution

12. In an experiment to determine the percentage of water in a solid hydrate by heating, what is the best indication that all the water has been removed?
A. The solid melts
B. The solid changes colour.
C. Water vapour no longer appears.
D. Successive weighings give the same mass.

Answer: D

- Watch Video Solution

13. Assertion : A mixture of plant pigments can be separated by chromatography.

Reason : Chromatography is used for the separation of colourd substances into individual components.
A. Calorimetry
B. Chromatography
C. Calorimetry
D. Gravimetry

Answer: B

14. A student wishes to determine the thickness of a reactangualr piece of aluminuim foil but cannot measure it directly. She can measure its density (d), length (I), mass (m) and width (w). Which relationship will give the thickness?
A. $\frac{m}{\text { d.l.w }}$
B. $\frac{m . l . w}{d}$
C. $\frac{\text { d.l. } w}{m}$
D. $\frac{d . m}{l . w}$

Answer: A

- Watch Video Solution

15. A student is asked to measure 30.0 g of methanol ($\mathrm{d}=0.7914 \mathrm{~g} / \mathrm{mL}$) at $25^{\circ} \mathrm{C}$) but has only a graduated cylinder with which to measure it. What
volume of methanol should the student use to obtain the required 30.0 g ?
A. 23.7 mL
B. 30.0 mL
C. 32.4 mL
D. 37.9 mL

Answer: D

- Watch Video Solution

16. The molar mass of an unkown organic liquid ($M \sim 100$) is determined by placing 5 mL of the liquid in a weighted 125 mL conical flask with a piece of Al foil with a pin hole in it. The flask is heated in a Al foil with a pin hole in it. The flask is heated in a boiling water bath until the liquid evaporates to expel the air and fill the fisk with unknown vapour at atmospheric pressure. After cooling to vapour at atmospheric pressure.

After cooling to room temperature the flask and its contents are room
temperature the flask and its contents are reweighed. The uncertainty in which piece of apparatus causes the largest percentage error in the molar mass:
A. balance $(\pm 0.01 g)$
B. barometer $(\pm 0.2 \mathrm{mmHg})$
C. Flask $(\pm 1.0 \mathrm{~mL})$
D. thermometer $\left(\pm 0.2^{\circ} \mathrm{C}\right)$

Answer: A

- View Text Solution

17. A student determined the density of a solid to be $2.90,2.91$ and 2.93 g. cm^{-3}. If the actual density of this solid is $2.70 \mathrm{~g} . \mathrm{cm}^{-3}$, how should the student's resutls be described?
A. High accuracy and high precision
B. Low accuracy and high precision
C. High accuracy and low precision
D. Low accuracy and low precision

Answer: B

- Watch Video Solution

18. In an experiment to verify the value of absolute zero, a student is instructed to measure the volume of He in a 10 mL syrings at $10^{\circ} \mathrm{C}$. She is told to plot the volume versus temperature and to extrapolate this graph to zero volume and read the resulting temperature. Which modification of the experimental procedure will give the best value for absolute zero?
A. Correcting each measured volume to one atmosphere pressure before plotting.
B. Doubling the number of temperature-volume value between $0{ }^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
C. using a thermometer that can measure temperature to $\pm O^{\circ} \mathrm{C}$ between $O^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
D. Measuring the volume of He in the syringe at $-40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$.

Answer: D

- Watch Video Solution

19. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl's method and the evolved ammonia was absorbed in 60 mL of $M / 10$ sulphuric acid. The unreacted acid required 20 mL of $\mathrm{M} / 10$ sodium hydroxide for complete neutralisation. The percentage of nitrogen in the compound is
A. 3
B. 5
C. 24
D. 10

Answer: D

- Watch Video Solution

20. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCL solution. The excess of the acid required 15 mL of 0.1 M NaOH solution for complete neutralization. The percentage of nitrogen in the compound is:
A. 59
B. 47.4
C. 23.7
D. 29.5

Answer: C

21. Five successive determinations of the density of an alloy gave the following results:
$10.29 \mathrm{~g} / \mathrm{mL}, 9.95 \mathrm{~g} / \mathrm{mL}, 9.89 \mathrm{~g} / \mathrm{mL}, 10.18 \mathrm{~g} / \mathrm{mL}$
What value should be reported for the density of this alloy?
A. $10.074 \mathrm{~g} / \mathrm{mL}$
B. $10.07 \pm 0.16 \frac{g}{\mathrm{~m}} \mathrm{~L}$
C. $10.1 \pm 0.2 \mathrm{~g} / \mathrm{mL}$
D. $1.0 \times 10 \mathrm{~g} / \mathrm{mL}$

Answer: B

- Watch Video Solution

22. A student is asked to analyze a water sample from a stream for total solids (TS), dissolved solids (DS) and suspended solids (SS). She carries out the experiments below.
(P) A 25-mL portion of the water sample is evaporated to dryness in a pre-
weighed evaporating dish to give mass 1.
(Q) A seperate $25-\mathrm{mL}$ portion is filtred into a second pre-weighed evaporating dish and evaporated to dryness to give mass 2.

How are the values for TS, SS and DS (per 25 mL water) determined?
A. TS = mass $1, \mathrm{SS}=$ mass 1 - mass $2, \mathrm{DS}=$ mass 2
B. TS = mass $1, \mathrm{SS}=$ mass $2, \mathrm{DS}=$ mass $1-$ mass 2
C. $\mathrm{TS}=$ mass $1+$ mass $2, \mathrm{SS}=$ mass $1, \mathrm{DS}=$ mass 2
D. TS = mass $1+$ Mass $2, \mathrm{SS}=$ Mass 2, DS = mass 1

Answer: A

- Watch Video Solution

23. 2.43 g of dry silver salt of mono carboxylic acid is ignited till complete decomposition occurs to give 1.08 gm of residue. 3.09 gm of acid chloride of same acid is treated with excess NH_{3} and amide formed is treated with sufficient $B r_{2}+\mathrm{KOH}$ mixture at 343 K , giving 1° amine. What is the amine formed? $[\mathrm{Ag}=108, \mathrm{Cl}=35.5, \mathrm{~N}=14]$
A. 1.07 gm
B. 2.7 gm
C. 2.14 gm
D. 2.27 gm

Answer: C

- Watch Video Solution

24. Nitration of aniline byHNO $\mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ mixture gives 51% para nitro derivate while 47% is meta nitro derivative and rest 2% ortho nitro derivative at $15^{\circ} \mathrm{C}$. In order to obtain 276 gm of p -nitro aniline what minimum mass of aniline should be taken?
A. 514.2 gm
B. 563.3 gm
C. 364.7 gm
D. 476.7 gm

Answer: C

- Watch Video Solution

Concentration Terms

1. If 500 ml of 1 M solution of glucose is mixed with 500 ml of 1 M solution of glucose final moalrity of solution will be:
A. 1 M
B. 0.5 M
C. 2 M
D. 1.5 M

Answer: A

Watch Video Solution
2. The volume of water that must be added to a mixture of 250 ml of 0.6 M HCl and 750 ml of 0.2 M HCl to obtain 0.25 M solution of HCl is:
A. 750 ml
B. 100 ml
C. 200 ml
D. 300 ml

Answer: C

- Watch Video Solution

3. What volume of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ must be added to 50 mL of a 0.10 NaOH solution to make a solution in which molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.050 M ?
A. 400 mL
B. 50 mL
C. 100 mL
D. 150 mL

Answer: C

- Watch Video Solution

4. What approximate volume of $0.40 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ must be added to 50.0 mL of 0.30 M NaOH to get a solution in which the molarity of the OH^{-} ions is 0.50 M ?
A. 33 mL
B. 66 mL
C. 133 mL
D. 100 mL

Answer: A

- Watch Video Solution

5. What volume of a 0.8 M solution contains 100 milli moles of the solute?
A. 100 mL
B. 125 mL
C. 500 mL
D. 62.5 mL

Answer: B

- Watch Video Solution

6. 500 mL of a glucose solution contains 6.02×10^{22} molecules. The concentration of the solution is :
A. 0.1 mol
B. 1.0 M
C. 0.2 M
D. 2.0 M

D Watch Video Solution

7. 500 mL of $0.1 \mathrm{M} \mathrm{KCl}, 200 \mathrm{ml}$ of $0.01 \mathrm{M} \mathrm{NaNO}_{3}$ and 500 ml of $0.1{\mathrm{M} \mathrm{AgNO}_{3}}^{2}$ was mixed. The molarity of $\mathrm{K}^{+}, \mathrm{Ag}^{+}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{NO}^{3-}$ in the solution would be:
A.
$\left[\mathrm{K}^{+}\right]=0.04,\left[\mathrm{Ag}^{+}\right]=0.04,\left\{\mathrm{Na}^{+}\right]=0.002\left[\mathrm{Cl}^{-}\right]=0.04,\left[\mathrm{NO}_{3}{ }^{-}=0.04\right.$
B. $\left[\mathrm{K}^{+}\right]=0.04,\left[\mathrm{Na}^{+}\right]=0.00166,\left[\mathrm{NO}^{-3}\right]=0.0433$
C.
$\left[\mathrm{K}^{+}\right]=0.04,\left[\mathrm{Ag}^{+}\right]=0.05,\left[\mathrm{Na}^{+}\right]=0.0025,\left[\mathrm{Cl}^{-}\right]=0.05,\left[\mathrm{NO}^{-3}=0.0\right.$
D. $\left[\mathrm{K}^{+}\right]=0.05,\left[\mathrm{Na}^{+}\right]=0.0025\left[\mathrm{Cl}^{-}\right]=0.05,\left[\mathrm{NO}^{-3}=0.0525\right.$

Answer: B

8.75 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (specific gravity is 1.18) containing $49 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass is diluted to 590 ml . Calculate molarity of the diluted solution , $[\mathrm{S}=32]$
A. 0.7 M
B. 7.5 M
C. 0.75 M
D. 0.25 m

Answer: C

- Watch Video Solution

9. What volume of $0.2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ must be added to 300 mL of 0.08 M HCl solution to get a solution in which the molarity of hydroxyl $\left(\mathrm{OH}^{-}\right)$ions is 0.8 M ?
A. 375 mL
B. 300 mL
C. 225 mL
D. 150 mL

Answer: D

- Watch Video Solution

10. 50 mL solution of $\mathrm{BaCl}_{2}(20.8 \% \mathrm{w} / / \mathrm{v})$ and 100 mL solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(9.8 \% \mathrm{w} / / \mathrm{v})$ are mixed ($\mathrm{Ba}=137, \mathrm{Cl}=35.5, \mathrm{~S}=32$)
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow 2 \mathrm{HCl}$
Weight of BaSO_{4} formed is:
A. 23.3 g
B. 46.6 g
C. 29.8 g
D. 11.65 g

Answer: D

11. Which is limiting reagent in the above case in above question?
A. BaCl_{2}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. Both (a) and (b)
D. none of these

Answer: A

- Watch Video Solution

12. In what volume ratio can $0.1 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{4}$ and $0.1 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ be mixed so that the ratio of total numebr the solution is $2: 3$? Consider $\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}$ and $\left(\mathrm{SO}^{2-}\right)_{4}$ as only ions in the solution. Salts are completely dissociated and do not undergo any hydrolysis.
A. $1: 1$
B. $4: 7$
C. $3: 16$
D. Any of these values

Answer: D

- Watch Video Solution

13. Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 18 M . Its density is $1.8 \mathrm{~g} / \mathrm{cm}^{3}$, hence molality is:
A. 18
B. 100
C. 36
D. 500

Answer: D

14. Mole fraction of A in $\mathrm{H}_{2} \mathrm{O}$ is 0.2. The molality of A in $\mathrm{H}_{2} \mathrm{O}$ is:
A. 13.9
B. 15.5
C. 14.5
D. 16.8

Answer: A

- Watch Video Solution

15. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density of $1.84 \mathrm{~g} /$ and contains 98% by mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 4.18 M
B. 8.14 M
C. 18.4 M
D. 18 M

Answer: C

D Watch Video Solution

16. The molarity of the solution containing 2.8% (mass/volume) solution of KOH is : (Given atomic mass of $\mathrm{K}=39$)
A. 0.1 M
B. 0.5 M
C. 0.2 M
D. 1 M

Answer: B

D View Text Solution

17. The molality of a sulphuric acid solution is 0.2 . Calculate the total weight of the solution having 1000 gm of solvent.
A. 1000 g
B. 1098.6 g
C. 980.4 g
D. 1019.6 g

Answer: D

- Watch Video Solution

18. 0.01 mole of a non-electrolyte is dissolved in 10 g of water. The molality of the solution is:
A. 0.1 m
B. 0.5 m
C. 1.0 m
D. 0.18 m

Answer: C

19.400 ml of $0.2 \mathrm{M}-\mathrm{HCl}$ is mixed with 600 ml of $0.1 \mathrm{M}-\mathrm{NaOH}$ solution. The maximum mass of NaCl fromed is :
A. 4.68 gm
B. 2.34 gm
C. 7.02 gm
D. 3.51 gm

Answer: D

- Watch Video Solution

20. Which of the following concentration terms does not correctly represent concentration of aqueous solution of NH_{3} having molarity 2 M and density $2.034 \mathrm{gm} / \mathrm{ml}$?
A. Molality $=1 \mathrm{~m}$
B. $\% w / w=\frac{3400}{2034} \%$
C. Mole fraction of $\mathrm{NH}_{3}=\frac{36}{2036}$
D. $\% w / v=1.7 \%$

Answer: D

- Watch Video Solution

21. An aqueous solution is made by dissolving glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ in water. The mole ratio of glucose and water is $1: 10$. If the masses of glucose and urea are in 3:1 ratio, the mole fraction of glucose in the solution is :
A. $\frac{1}{11}$
B. $\frac{1}{12}$
C. $\frac{1}{10}$
D. $\frac{3}{4}$

D Watch Video Solution

22. Equal moles of $\mathrm{H}_{2} \mathrm{O}$ and a solute (of negligible molar mass) are present in a solution. Hence, molarity of solution is :
A. 0.55
B. 55.5
C. 1.00
D. 0.18

Answer: B

D Watch Video Solution

23. In which of the following cases, the final solution obtained will definitely be basic?
A. 100 ml 0.1 M NaOH solution is mixed with $200 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
B. $50 \mathrm{ml} 40 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ solution is mixed with 1 litre of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{2}$ solution.
C. 200 ml of $40 \% w / w \mathrm{NaOH}$ solution is mixed with 1.5 litre of 1 M HCl
solution.
D. 200 ml of 0.2 M NaOH solution is mixed with 100 ml of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

Answer: C

- Watch Video Solution

24. How much of NaOH is required to neutralise $1500 \mathrm{~cm}^{3}$ of 0.1 M HCl ?
A. 40 g
B. 4 g
C. 6 g
D. 60 g

Answer: C

- Watch Video Solution

25. The density of HCl equal to $1.17 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution will be :
A. 36.5
B. 18.25
C. 19.17
D. 4.65

Answer: C

26. The NH_{3} evolved from 2.8 gm sample of protein was absorbed in 45 ml of $0.2 \mathrm{M}_{\mathrm{HNO}_{3}}$. The excess acid required 20 ml of $0.05 \mathrm{M} \mathrm{NaOH} \%$ of N in the sample will be :
A. 16%
B. 4%
C. $\frac{17 \times 4}{7} \%$
D. 8%

Answer: B

- Watch Video Solution

27. The molarity of a solution containing 5.0 g of NaOH in 250 mL solution is:
A. 0.1
B. 0.5
C. 1.0
D. 2.0

Answer: B

- Watch Video Solution

28. 10 g of glucose is dissolved in 150 g of water. The mass percentage of glucose is :
A. 2.50%
B. 6.25 \%
C. 8.75%
D. 10%

Answer: B

29. $\mathrm{H}_{3} \mathrm{PO}_{4}\left(98 \mathrm{gmol}^{-1}\right)$ is 98% by mass of solution. If the density is 1.8 g / ml, the molarity is:
A. 18 M
B. 36 M
C. 54 M
D. 018 M

Answer: A

- Watch Video Solution

30. 2 M of $100 \mathrm{ml} \mathrm{Na} \mathrm{SO}_{4}$ is mexed with 3 M of 100 ml NaCl solution and 1 M of $200 \mathrm{ml} \mathrm{CaCl} \mathrm{I}_{2}$ solution. Then the ratio of the concentration of cation and anion.
A. $\frac{1}{2}$
B. 2
C. 1.5
D. 1

Answer: D

- Watch Video Solution

31. The volume of water is required to make 0.20 M solution from 1 mL of 0.5 M solution is :
A. 40 mL
B. 16 mL
C. 50 mL
D. 24 mL

Answer: D

32. An aqueous solution of NaOH has a molarity of 0.05 M . Select the option having incorrect representation of concentration of solution.

$$
\left[d_{\text {solution }}=1.002 \mathrm{gm} / \mathrm{ml}\right]
$$

A. $\% w / v=0.2 \%$
B. $X_{\mathrm{NaOH}}($ Mole fraction $)=\frac{0.05}{0.05+55056}$
C. $\% w / w=\frac{2}{10.02} \%$
D. $\mathrm{ppm}=5 p \pm \mathrm{NaOH}^{\prime \prime}$ solution

Answer: D

- Watch Video Solution

33. The molarity of Cl^{-}in an aqueous solution which was $(w / v) 2 \% \mathrm{NaCl}, 4 \% \mathrm{CaCl}_{2}$ and $6 \% \mathrm{NH}_{4} \mathrm{Cl}$ will be :
A. 0.342
B. 0.721
C. 1.12
D. 2.18

Answer: D

- Watch Video Solution

34. On mixing $15.0 \mathrm{ml}^{2}$ of ethyl alcohol of density $0.792 \mathrm{~g} \mathrm{ml}^{-1}$ with 15 ml of pure water at $4{ }^{\circ} \mathrm{C}$, the resulting solution is found to have a density of $0.924 \mathrm{~g} \mathrm{ml}^{-1}$. The percentage contraction in volume is :
A. 8%
B. 2%
C. 3 \%
D. 4%

Answer: C

35. 100 ml of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 400 ml of $0.05 \mathrm{M} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Calculate the concentration of $\left[\mathrm{Ba}^{+2}\right]$ ion in resulting solution.
A. 0.08 M
B. 0.04 M
C. 0.4 M
D. 0.8 M

Answer: A

- Watch Video Solution

36. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
B. 1.75 M
C. 0.975 M
D. 1.0 M

Answer: A

- Watch Video Solution

37. A solution of FeCl_{3} is $\frac{M}{30}$. Its molarity for Cl^{-}ion will be :
A. $\frac{M}{90}$
B. $\frac{M}{30}$
C. $\frac{M}{10}$
D. $\frac{M}{5}$

Answer: C

38. Two glucose solution are mixed. One has a volume of 480 mL and a concentration of 1.50 M and the second has a volume of 250 mL and concentration 1.20 M . The molarity of final solution is
A. $2.70 \mathrm{M}^{\prime}$
B. 1.40 M
C. 1.50 M
D. 1.20 M

Answer: D

- Watch Video Solution

39. Density of 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of same solution is:
A. $1.14 \mathrm{molkg}^{-1}$
B. $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
C. $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
D. $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$

Answer: C

- Watch Video Solution

40. The density $\left(\mathrm{ingmL}^{-1}\right.$) of a 3.60 M sulphuric acid solution that is $29 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Molar mass $=98 \mathrm{gmol}^{-1}$) by mass will be:
A. 1.22
B. 1.45
C. 1.64
D. 1.88

Answer: A

41. The strength of $10^{-2} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in terms of molality willl be (density of solution $=1.10 \mathrm{~g} \mathrm{~mL}^{-1}$). (Molecular weight of $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{gmol}\right)$
A. 9.00×10^{-3}
B. 1.5×10^{-2}
C. 5.1×10^{-3}
D. 11.2×10^{-3}

Answer: A

- Watch Video Solution

42. A solution containing 0.1 mol of a metal chloride $M C l_{x}$ requires 500 ml of $0.8 \quad \mathrm{M} \quad \mathrm{AgNO}_{3} \quad$ solution for complete reaction $\mathrm{MCl}_{x}+x \mathrm{AgNO}_{3} \rightarrow x \mathrm{AgCl}+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{x}$. Then the value of x is :
A. 1
B. 2
C. 4
D. 3

Answer: C

- Watch Video Solution

43. 20 ml of CaCl_{2} solution is mixed with 30 ml of $0.1 \mathrm{MAlCl}_{3}$ solution. If the resulting solution has chloride ion concentration equal is 0.34 M , the concentration of CaCl_{2} solution added is :
A. 0.2 M
B. 0.7 M
C. 0.4 M
D. 0.1 M
44. A mineral water sample was analysed and found to contain $1 \times 10^{-3} \%$ ammonia (w / w). The mole of dissolved ammonia gas in one litre water bottle is $\left(d_{\text {water }} \approx 1 \mathrm{gm} / \mathrm{ml}\right)$:
A. $5.8 \times 10^{-4} \mathrm{~mol}$
B. $1 \times 10^{-2} \mathrm{~mol}$
C. $0.58 \times 10^{-2} \mathrm{~mol}$
D. same as w/w

Answer: A

- Watch Video Solution

45. Which of the following conentration factor is affected by change in temperature?
A. Molarity
B. Molality
C. Mole fraction
D. Weight fraction

Answer: A

- Watch Video Solution

46. Mole fraction of ethyl alcohol in aqueous ethyl alcohol solution is 0.25
. Hence percentage of ethyl alcohol by weight is :
A. 54%
B. 25 \%
C. 75%
D. 46%
47. Common salt obtained from sea water contains $95 \% \mathrm{NaCl}$ by mass. The appoximate number of molecules present in 10.0 g of the salt is
A. 10^{21}
B. 10^{22}
C. 10^{23}
D. 10^{24}

Answer: C

- Watch Video Solution

48. The relation between molarity (M) and molality (m) is given by : ($\mathrm{p}=$ density of solution $(\mathrm{g} / \mathrm{mL}), M_{1}=$ molecular mass of solute)
A. $m=\frac{M}{d+M M_{2}} \times 1000$
B. $m=\frac{M}{1000 d-M M_{2}} \times 1000$
C. $m=\frac{d+M M_{2}}{M} \times 1000$
D. $m=\frac{1000 d-M M_{2}}{M} \times 1000$

Answer: B

- Watch Video Solution

49. Density of a 3 molar aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is $1.482 \mathrm{gm} / \mathrm{ml}$.

Calculate mole fracrtion of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in solution.
A. 0.054
B. 0.06
C. 0.03
D. 0.072

Answer: A

50. If 3 litre of $1 \mathrm{M} \mathrm{Ag} \mathrm{SO}_{4}$ is mixed with 4 litre of 1 M NaCl solution, then what will be the sum of molarity of all ions?
A. 7 M
B. 1 M
C. 2.42 M
D. 1.28 M

Answer: D

- View Text Solution

51. Suppose you want an acidic solution to carry out a chemical reaction with 2 moles of NaOH . Which sample of acid is the best choise for you?
(Atomic weight : $\mathrm{S}=32, \mathrm{Cl}=35.5$)
A. $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (50 Rs. Per It.)
B. $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (56 Rs. Per It.)
C. ${ }^{1} \mathrm{M} \mathrm{HCl}$ (30 Rs. Per It.)
D. 1 M HCl (27 Rs. Per It.)

Answer: A

- Watch Video Solution

52. For a solution concentration can be expressed as $16 \% w / w$ as well as $20 \% w / v$. What will be density of solution?
A. $1.25 \mathrm{gm} / \mathrm{L}$
B. $0.8 \mathrm{gm} / \mathrm{L}$
C. $1.25 \mathrm{gm} / \mathrm{mL}$
D. ${ }^{`} 0.8 \mathrm{gm} / / \mathrm{mL}$

Answer: C

53.150 ml of a solution containing 5 millimoles of A (specific gravity $=1.2$) is mixed with 250 ml of another solution containing 10 millimoles of A (specific gravity $=1.4$). If on mixing the density of the solution becomes 5.3 $\frac{5.3}{4.5} \mathrm{gm} / \mathrm{ml}$, then what will be molartiy of A in the final solution?
A. $\frac{1}{30} M$
B. $\frac{3}{80} M$
C. $\frac{1}{20} M$
D. $\frac{4}{85}$

Answer: A

- Watch Video Solution

54. Which of the following concentration terms is temperature dependent?
A. \% by mass
B. Mole fraction
C. Mass/volume ratio
D. Molality

Answer: C

- Watch Video Solution

55. Volume (in ml) of 0.7 M NaOH required for complete reaction with 350 ml of $0.3 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}$ solution is :
A. 300 ml
B. 450 ml
C. 150 ml
D. 350 ml

Answer: A

56. Which of the following solutions will have maximum amount of NaOH ?
A. 4 L of 0.1 M NaOH solution
B. 2 L of $5 \% w / v \mathrm{NaOH}$ solution
C. 540 gm of 2 m NaOH solution
D. 300 gm of $20 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ solution

Answer: B

- View Text Solution

57. How many gof KCl would have to be dissolved in $60 \mathrm{gH}_{2} \mathrm{O}$ to give 20% by weight of solution?
A. 15 g
B. 1.5 g
C. 11.5 g
D. 31.5 g

Answer: A

- Watch Video Solution

58. 90 gm glucose is dissolved in 410 gm water to get a solution. The concentration of solution is
A. $\frac{900}{41} \%$
B. $1.8 \%(w / w)$
C. $\frac{50}{41}$
D. 1.0 m

Answer: C

59. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of solution is :
A. 0.001 M
B. $0.01 \mathrm{M}^{`}$
C. 0.02 M
D. 0.1 M

Answer: B

- Watch Video Solution

60. How much $(\mathrm{NaN})_{3}$ must be weighed out to make 50 ml of an aqueous solution containing 70 mg of Na^{+}per mL ?
A. 12.394 g
B. 1.29 g
C. 10.934 g
D. 12.934 g

Answer: D

- View Text Solution

61. A solution of stearic acid $\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}, \mathrm{M}=284\right)$ in benzene contains 1.42 gm acid per L . When this solution (100 L) is dropped on surface, $\mathrm{C}_{6} \mathrm{H}_{6}$ gets eveporated and acid forms a unimolecular layer on the surface. If it covers an area $6020 \mathrm{~cm}^{2}$ with unimolecular film, find the area covered by one molecule of acid.
A. $2 \times 10^{-20} \mathrm{~cm}^{2}$
B. $4 \times 10^{-20} \mathrm{~cm}^{2}$
C. $2 \times 10^{20} \mathrm{~cm}^{2}$
D. $4 \times 10^{20} \mathrm{~cm}^{2}$

Answer: A

- Watch Video Solution

62. A 1800 gm mixture of anhydrous $\mathrm{CuSO}_{4}(\mathrm{~s})$ and its hydrated form [$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$] undergoes 20% loss in mass on heating. Mole fractrion of CuSO_{4} in mixture is (Atomic mass of $\mathrm{Cu}=64$):
A. $\frac{3}{40}$
B. $\frac{4}{9}$
C. $\frac{5}{9}$
D. $\frac{1}{2}$

Answer: C

D View Text Solution

$63.300 \mathrm{gm}, 30 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaOH}$ solution is mixed with $500 \mathrm{gm} 40 \%(\mathrm{w} / \mathrm{w})$ NaOH solution. What is $\%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ if density of final solution is 2 $\mathrm{gm} / \mathrm{mL}$?
A. 72.5
B. 65
C. 62.5
D. None of these

Answer: A

- Watch Video Solution

64. 100 ml aqueous solution containing equimolar mixtrue of $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ requires 0.5 litre of 4 M HCl for complete neutralisation. Molarity of $\mathrm{Ca}(\mathrm{OH})_{2}$, in the original solution is:
A. 2 M
B. 4 M
C. 8 M
D. 10 M

Answer: B

- Watch Video Solution

65. Molarity and Molality of a solution of a liquid (molecular weight $=50$) in aqueous solution is 9 and 18 respectively. What is the density of solution?
A. $1 \mathrm{~g} / \mathrm{cc}$
B. $0.95 \mathrm{~g} / \mathrm{cc}$
C. $1.05 \mathrm{~g} / \mathrm{cc}$
D. $0.66 \mathrm{~g} / \mathrm{cc}$

Answer: B

66. $300 \mathrm{ml}, 2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with $\left.200 \mathrm{ml}, 2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\right)$ solution then find final molarity of sulphate ion in diluted to 4 times. (BaSO_{4} formed is precipitated)
A. 0.2 M
B. 0.8 M
C. 0.3 M
D. 0.1 M

Answer: D

- Watch Video Solution

67. What is the specific gravity of a liquid if 260 mL of the liquid has the same mass as 390 mL of water?
A. 0.66
B. 0.5
C. 1.5
D. 1.8

Answer: C

- Watch Video Solution

68. Molality of pure liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ if its density $d=1.2 \mathrm{~g} / \mathrm{ml}$ is
A. 0.83 m
B. 50 m
C. 0.78 m
D. 21.74 m

Answer: D

69. $500 \mathrm{~mL}, \quad 0.2 \mathrm{M} \mathrm{NA}_{2} \mathrm{SO}_{4}$ solution is mixed with 100 mL , $17.1 \%(w / v) \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution and resulting solution is diluted to 5 times. Find the molarity of SO_{4}^{-2} ions in the final solution.
[Atomic mass of $\mathrm{Al}=27, \mathrm{~S}=32, \mathrm{Na}=23$]
A. $\frac{1}{12} M$
B. $\frac{5}{12} M$
C. ${ }_{5}^{5} M$
D. $\frac{12}{5} M$

Answer: A

- Watch Video Solution

70. Equal volumes of 0.50 M of $\mathrm{HCl}, 0.25 \mathrm{M}$ of NaOH and 0.75 M of NaCl are mixed. The molarity of the NaCl solution :
A. $\frac{3}{4} M$
B. $\frac{1}{3} M$
C. $\frac{1}{2} M$
D. 2.00 M

Answer: B

- Watch Video Solution

71. A solution is made by dissolving CaBr_{2} in water (solvent) such that mass fraction of solute and solvent is same in the solution. The molality of solution is:
A. 2.5 m
B. 55.55 m
C. 2 m
D. 5 m

Answer: D

72. Molarity and molality of pure $\mathrm{CH}_{3} \mathrm{COOH}$ are respectively : $\left(d_{\mathrm{CH}_{3} \mathrm{COOH}}=1.5 \mathrm{~g} / \mathrm{ml}\right)$
A. $16.67,25$
B. $25,16.67$
C. $50,33.3$
D. 25 both

Answer: B

- Watch Video Solution

73. 1.11 gm of CaCl_{2} is added to water forming 500 ml solution. 20 ml of this solution is taken and diluted 10 folds. Find moles of Cl^{-}ions in 2 ml of diluted solution :
A. 8×10^{-6}
B. 4×10^{-6}
C. 12×10^{-8}
D. 5×10^{-6}

Answer: A

- View Text Solution

74. Calculate molality of one litre of solution containing $200 \mathrm{gm} \mathrm{CaBr}_{2}$. Given density of solution equal to $1.0 \mathrm{gm} / \mathrm{ml}$. (Atomic mass of $\mathrm{Ca}=40, \mathrm{Br}$ = 80)
A. 1 m
B. 1.25 m
C. 0.8 m
D. 1.4 m

Answer: B

- Watch Video Solution

75. A human patient suffering from a duodenal ulcer may show a hydrochloric of $0.080 \mathrm{~mol} / \mathrm{L}$ in his gastric juice. It is possible to neutralize this acid with aluminum hydroxide, $\mathrm{Al}(\mathrm{OH})_{3}$, which reacts with HCl according to the chemical reaction shown below :
$\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{HCL} \rightarrow \mathrm{AlCl}_{3}+\mathrm{H}_{2} \mathrm{O}$

Find wt. $\mathrm{Al}(\mathrm{OH})_{3}$ which is required to neutralize 2 L HCl :
A. 2.08 g
B. 6.20 g
C. 0.693 g
D. 4.16 g

Answer: D

76. A mixture containing equimolar amounts of $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ requires 0.5 L of 4.0 M HCl to react with it completely. Moles of the mixture are :
A. 0.04
B. 0.4
C. 0.8
D. 0

Answer: C

- Watch Video Solution

77. X mL of a $60 \% \mathrm{w} / \mathrm{w}$ alcohol by weight ($d=0.6 \mathrm{gm} / \mathrm{mL}$) must be used to prepare 200 mL of 12% alcohol by weight $(d=0.6 \mathrm{gm} / \mathrm{mL})$. Then the value of X will be :
B. 40
C. 60
D. 80

Answer: C

- Watch Video Solution

78. 100 ml aqueous solution $\left(\operatorname{density} \frac{5}{3} \mathrm{gm} / \mathrm{ml}\right)$ contains 40% by weight NaOH . The number of molecules of NaOH dissolved in the above solution is :

$$
\left(\mathrm{UseN}_{A}=6 \times 10^{23}\right)
$$

A. 2×10^{22}
B. 3.33×10^{22}
C. 10^{24}
D. 3.33×10^{23}

Answer: C

- Watch Video Solution

79. Molality of pure liquid benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ if its density $d=1.2 \mathrm{~g} / \mathrm{ml}$ is :
A. 0.83 m
B. 50 m
C. 0.78 m
D. 12.8 m

Answer: D

- Watch Video Solution

80. Molality of pure water if its density is $0.936 \mathrm{gm} / \mathrm{ml}$:
A. 50
B. 55.56
C. 57.56
D. 56.56

Answer: B

- Watch Video Solution

81. Arrange in increasing order of molarity of solute in following solutions consdering water as solvent.
(P) $224 \mathrm{gm} / \mathrm{L} \mathrm{KOH}$
(Q) $11.2 \% w / v \mathrm{KOH}$
(R) $5 \mathrm{~m} \mathrm{KOH}(d=0.64 \mathrm{gm} / \mathrm{ml})$
A. $(Q)<(R)<(P)$
B. $(R)<(A)<(P)$
C. $(R)<(P)<(Q)$
D. $(P)<(Q)<(R)$

- Watch Video Solution

82. Decreasing order (first having highest and then other following it) of mass of pure NaOH in each of the aqueous solution
(P) 50 gm of $40 \%(w / w) \mathrm{NaOH}$
(Q) 50 gm of $50 \%(w / w) \mathrm{NaOH}\left[d_{\text {soln. }}=1.2 \mathrm{gm} / \mathrm{ml}\right]$
(R) 50 gm of $20 \mathrm{M} \mathrm{NaOH}\left[d_{\text {soln. }}=1 \mathrm{gm} / \mathrm{ml}\right]$
A. (P), (Q), (R)
B. (R), (Q), (P)
C. (Q), (R), (P)
D. All contain same wt of NaOH

Answer: B

- Watch Video Solution

83. If ratio of mole fraction of solute to solvent is unity, what would be \% by weight? (concentration of solute))M solute=M molecular mass of solvent)
A. $\frac{\text { Msolute }}{\mathrm{M} \text { solute }+\mathrm{M} \text { solvent }} \times 100$
B. 50 \%
C. 66.67 \%
D. $\frac{M \text { solute }}{M \text { solvent }} \times 100$

Answer: A

- Watch Video Solution

84. Molality(m) of a sulphuric acid solution in which the mol fraction of water is 0.85 is :
A. 4.9
B. 9.8
C. 19.6
D. cannot be determined

Answer: B

- Watch Video Solution

85. 200 ml of an aqueous solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ has molarity of 0.01 M . Which of the following operations can be done to this solution so as to increase molarity to 0.015 M ?
A. Evaporate 50 ml water from this solution
B. Add 0.18 g glucose to solution without changing its volume
C. Add 50 ml water to this solution
D. None of the above

Answer: B

86. Volume of dil. $\mathrm{HNO}_{3}(\mathrm{D}=1.1 \mathrm{gm} / \mathrm{ml}, 20 \% 3 / 3)$ that can be prepared by diluting 50 ml of concentrated $\mathrm{HNO}_{3}(d=1.4 \mathrm{gm} / \mathrm{ml}, 70 \% \mathrm{w} / \mathrm{w})$ with water is nearest ot :
A. 150 ml
B. 223 ml
C. 178 ml
D. 333 ml

Answer: B

- Watch Video Solution

87. If a pure compound is composed of $X_{2} Y_{3}$ molecules and consists of $60 \% \mathrm{X}$ by weight what is the atomic weight of Y in term of atomic weight of X (Atomic mass of $X=M_{x}$)?
A. $\frac{9}{4} M_{x}$
B. $\frac{4}{9} M_{x}$
C. $\frac{2}{3} M_{X}$
D. $\frac{3}{2} M_{x}$

Answer: B

D Watch Video Solution

88. If 200 ml of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is mixed with 100 ml of $0.2 \mathrm{M} \mathrm{NA}{ }_{3} \mathrm{PO}_{4}$ solution, molarity of Na^{+}in the final solution, if final solution has density
$1.2 \mathrm{gm} / \mathrm{ml}$, will be :
A. 0.196 M
B. 0.33 M
C. 0.5 M
D. none of these

Answer: B

89. 4 L of 0.02 M aqueous solution of NaCl was diluted by adding one litre of water.The molality of the resultant solution is :
A. 0.004
B. 0.008
C. 0.012
D. 0.016

Answer: D

- View Text Solution

90. $V_{1} \mathrm{ml}$ of NaOH of molarity X and $V_{2} \mathrm{ml}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ of molarity $\frac{y}{2}$ are mixed together. Mixture is completely neutralized by $100 \mathrm{ml} \frac{0.1}{2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ /. If $\frac{V_{1}}{V_{2}}=\frac{1}{4}$ and $\frac{x}{y}=4$, what fraction of acid is neutralized by $\mathrm{Ba}(\mathrm{OH})_{2}$?
A. 0.5
B. 0.25
C. 0.33
D. 0.67

Answer: A

- Watch Video Solution

91. A faculty of KOTA Institute who has five classes per day, after taking the fourth class and before going for next class, drinks 500 ml of $90 \%(w / v)$ glucose solution. The number of glucose molecules taken by him is
$=Q \times 10^{23}$. Find the value of Q .
$\left(N_{A}=6.0 \times 10^{23}\right)$
A. 9
B. 6.5
C. 4.5
D. 1.5

Answer: D

- Watch Video Solution

92. A bottle of $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution contains $70 \%(w / w)$ acid. If the density of the $H_{3} \mathrm{PO}_{4}$ solution required to prepare 1 L of 1 N solution is :
A. 90 mL
B. 45 mL
C. 30 mL
D. 23 mL

Answer: C

93. When 1 L of 0.1 M sulphuric acid solution is allowed to react with 1 L of 0.1 M sodium hydroxide solution, the amount of sodium sulphate (anhydrous) that can be obtained from the solution fromed and the concentration of H^{+}in the solution respectively are :
A. $3.55 g, 0.1 M$
B. $7.10 \mathrm{~g}, 0.025 \mathrm{M}$
C. $3.55 \mathrm{~g}, 0.025 \mathrm{M}$
D. $7.10 \mathrm{~g}, 0.05 \mathrm{M}$

Answer: D

- Watch Video Solution

94. How many mL of 8.00 M HCl are needed to prepare 150 mL of a 1.60 M HCl solution?
A. 30.0 mL
B. 24.0 mL
C. 18.8 mL
D. 12.0 mL

Answer: A

- Watch Video Solution

95. What mass of magnesium hydroxide is required to neutralize 125 mL of 0.136 M hydrochloric acid solution?

Substance Molar Mass
$\mathrm{MG}(\mathrm{OH})_{2} \quad 58.33 \mathrm{gmol}^{-1}$
A. $0.248 g$
B. 0.496 g
C. $0.992 g$
D. 1.98 g

Answer: B

96. Concentrated hydrochloric acid is 12.0 M and is 36.0 \% hydrogen chloride by mass. What is its density?
A. $1.22 \mathrm{~g} \mathrm{~mL}^{-1}$
B. $1.10 \mathrm{~g} \mathrm{~mL}^{-1}$
C. $1.01 \mathrm{~g} \mathrm{~mL}^{-1}$
D. $0.820 \mathrm{~g} \mathrm{~mL}^{-1}$

Answer: A

- Watch Video Solution

97. A jheterogeneous system is produced when 0.040 moles of solid NaCl is added to 0.10 L of $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. Which ion is present in the aqueous phase at the highest concentration?
A. Cl^{-}
B. NO^{-}
C. Pb^{2+}
D. Na^{+}

Answer: D

- Watch Video Solution

98. A solution of sulphuric acid in water that is $25 \% h_{2} \mathrm{SO}_{4}$ by mass has a density of $1.178 \mathrm{gmL}^{-1}$. Which expression gives the molarity of this solution?
A. $0.25 \times 98 \times 1178$
B. $\frac{0.25 \times 1178}{98}$
C. $\frac{0.25}{98 \times 1178}$
D. $\frac{1178}{0.25 \times 98}$

D Watch Video Solution

99. The mineral trona has the formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and a formula mass of $226 \mathrm{~g} . \mathrm{mol}^{-1}$. How many mL of 0.125 M HCl are needed to convert all the carbonbate and bicarbonate in a 0.407 g sample of trone into carbon dioxide and water?
A. 43.3 mL
B. 28.8 mL
C. 21.6 mL
D. 14.4 mL

Answer: A

100. Silver metal reacts with nitric acid according to the equation :
$3 \mathrm{Ag}(\mathrm{s})+4 \mathrm{HNO}_{3}(a q) \rightarrow 3 \mathrm{AgNO}(a q)+\mathrm{NO}(g)+2 h_{2} \mathrm{O}(\mathrm{l})$
What volume of $1.15 \mathrm{M} \mathrm{HNO}_{3}(a q)$ is required to react with 0.784 g of silver?
A. 4.74 mL
B. 6.32 mL
C. 8.43 mL
D. 25.3 mL

Answer: C

Watch Video Solution

101. What volume of $6.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to make 20 L pf $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ upon dilution to volume?
A. 1.7 L
B. 5.0 L
C. 8.3 L
D. 10 L

Answer: C

- Watch Video Solution

102. An aqueous solution that is $30.0 \% \mathrm{NaOH}$ by mass has a density of $1.33 \mathrm{gmL}^{-1}$. What is the molarity of NaOH in this solution?
A. 8.25
B. 9.98
C. 16.0
D. 33.2

Answer: B

103. A solution of magnesium chloride that is 5.10% magnesium by mass has a density $1.17 \mathrm{~g} / \mathrm{mL}$. How many moles of Cl^{-}ions are in 300 mL of the solution?
A. 0.377
B. 0.627
C. 0.737
D. 1.49

Answer: D

- Watch Video Solution

104. What volume of $0.108 \mathrm{M}_{2} \mathrm{SO}_{4}$ is required to neutralize 25.0 mL of

0.145 M KOH ?

A. 16.8 mL
B. 33.6 mL
C. 37.2 mL
D. 67.1 mL

Answer: A

- Watch Video Solution

105. What is the molarity of KI in a solution that is $5.00 \% \mathrm{KI}$ by mass and has a density of $1.038 \mathrm{~g} . \mathrm{cn}^{-3}$?
A. 0.0301 M
B. 0.313 M
C. 0.500 M
D. 0.625 M

Answer: B

106. What is the concentration of the solution that results from mixing 40.0 mL of 0.200 M HCl with 60.0 mL of 0.100 M NaOH ?(You may assume the volume are additive.)
A. 0.150 M NaCl
B. 0.0200 M NaCl and 0.0200 M HCl
C. 0.0200 M NaCl and 0.0600 M HCl
D. 0.0600 N NaCl and 0.0200 M HCl

Answer: D

- Watch Video Solution

107. What volume, in mL , of concentrated sulphuric acid $\left(18.0 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is needed to prepare 2.50 L of a 1.00 M solution?
A. 7.20
B. $14.4^{`}$
C. 69.4
D. 139

Answer: D

- Watch Video Solution

108. The bromide impurity in a 2.00 g sample of a metal nitrate is precipitated as silver bromide. If 6.40 mL of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ solution is required, what is the mass percentage of bromide in the sample?
A. 1.28
B. 2.56
C. 5.11
D. 9.15

Answer: C

109. A 100 mL portion of 0.250 M calcium nitrate solution. What is the final concentration of the nitrate ion?
A. 0.180 M
B. 0.130 M
C. 0.0800 M
D. 0.0500 M

Answer: A

Watch Video Solution

110. What is the molarity of a 0.500 molal aqueous solution of calcium nitrate that has a density of $1.045 \mathrm{gmL}^{-1}$?
A. 0.483 M
B. 0.500 M
C. 0.522 M
D. 0.567 M

Answer: A

D Watch Video Solution

111. What volume of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ would be required to completely neutralize a mixture of 20.0 mL of 0.200 M NaOH and 40.0 mL of 0.0500 M $\mathrm{Ca}(\mathrm{OH})_{2}$?
A. 20.0 mL
B. 26.7 mL
C. 40.0 mL
D. 53.3 mL

Answer: B

112. A saturated aqueous solution of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, contains 525 g of sucrose (molar mass 342) per 100 g of water. What is the $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} / \mathrm{H}_{2} \mathrm{O}$ molecular ratio in this solution?
A. $\frac{5.25}{1}$
B. $\frac{1.54}{1}$
C. $\frac{1}{1}$
D. $\frac{0.276}{1}$

Answer: D

- Watch Video Solution

113. A 50.0 mL solution of 0.150 M HCl . Is mixed with 25.0 mL of 0.400 M HCl What is the HCl concentration in the final solution? (Assume volumes are additive.)
A. 0.0175
B. 0.233
C. 0.275
D. 0.550

Answer: B

- Watch Video Solution

114. How many moles of ions are present in 250 mL of a 4.4 M solution of sodium sulphate?
A. 1.1
B. 2.2
C. 3.3
D. 13

Answer: C

115. 40.0 g of a solute is dissolved in 500 mL of solvent to give a solution with a volume of 515 mL . The solvent has a density of $1.00 \mathrm{~g} / \mathrm{mL}$. Which statement about this solution is correct?
A. The molarity is greater than the molality.
B. The molarity is lower than the molality.
C. The molarity is the same as the molality.
D. The molarity and molality cannot be compared without knowing the solute.

Answer: B

- Watch Video Solution

116. A 49.9 g sample of barium hydroxide octahydrate, $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ is dissolved in water and the solution is diluted to give a final volune of
2.50L. What is the concentration of the hydroxide ion in this solution?'

Molar mass ($\mathrm{g} \mathrm{mol}^{-1}$)

 $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \quad 315$A. 0.0634 M
B. 0.127 M
C. 0.190 M
D. 0.634 M

Answer: B

- Watch Video Solution

117. What is the maximum mass of PbI_{2} that can be precipitated by mixing 25.0 mL of $0.100 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ with 35.0 mL of 0.100 M Nal ?

Molar mass ($\mathrm{g} \mathrm{mol}^{-1}$)
 PbI_{2}
 461

A. 0.807 g
B. 1.15 g
C. 1.61 g
D. 2.30 g

Answer: A

- Watch Video Solution

118. Commercial vinegar is a 5.00% by mass aqueous solution of acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{M}=60.0)$. What is the molarity fo acetic acid in vinegar?
[Density of vinega $=1.00 \frac{\mathrm{~g}}{\mathrm{~mL}}$]
B. 1.00 M
C. 1.20 M
D. 3.00 M

Answer: A

- Watch Video Solution

119. What is the molarity of Na^{+}ions in a solution made by dissolving 4.20 g of $\mathrm{NaHCO}_{3}(\mathrm{M}=84.0)$ and 12.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{M}=126)$ in water and diluting to 1.00 L ?
A. 0.050 M
B. 0.100 M
C. 0.150 M
D. 0.250 M

Answer: D

120. What is the molarity of a hydorchlric acid solution if 20.00 mL of it neutralizes 18.46 mL of a $0.0420 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
A. 0.0194 M
B. 0.0388 M
C. 0.0455 M
D. 0.0775 M

Answer: D

- Watch Video Solution

121. A 65.25 g sample fo $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=249.7)$ is dissolved in enough water to make 0.800 L of solution. What volume of this solution must be diluted with water to make 1.00 L of $0.100 \mathrm{M} \mathrm{CuSO}_{4}$?
A. 3.27 mL
B. 81.6 mL
C. 209 mL
D. 306 mL

Answer: D

- Watch Video Solution

122. How many moles of sulphate ions are in 100 mL of a solution of $0.0020 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
A. 2.0×10^{-4}
B. 6.0×10^{-4}
C. 2.0×10^{-1}
D. 6.0×10^{-1}

Answer: B

123. What is the molality of a solution made by dissolving 36.0 g of glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{M}=180.2$) in 64.0 g of $\mathrm{H}_{2} \mathrm{O}$?
A. 0.0533
B. 0.200
C. 0.360
D. 3.12

Answer: D

- Watch Video Solution

124. What is the final $\left[\mathrm{Na}^{+}\right]$in a solution prepared by mixing 70.0 mL of
$3.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ with 30.0 mL of 1.00 M NaCl ?
A. 2.00 M
B. 2.40 M
C. 4.00 M
D. 4.50 M

Answer: D

- Watch Video Solution

125. The active ingredient in commercial bleach is sodium hypochloride, NaOCl , which can be determined by iodometric analysis as indicated in these equations.
$\mathrm{OCI}^{-}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
$I_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
If 1.356 g of a bleach sample requires 19.50 mL of $0.100 \mathrm{M} \mathrm{Na} \mathrm{N}_{2} \mathrm{O}_{3}$ solution, what is the percentage by mass of NaOCl in the bleach?
A. 2.68 \%
B. 3.70%
C. 5.35%
D. 10.7%

Answer: C

- Watch Video Solution

126. What mass of $\mathrm{NaHCO}_{3}(\mathrm{M}=84.0)$ is required to completely neutralize 25.0 mL of $0.125 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 0.131 g
B. 0.262 g
C. 0.525 g
D. 1.05 g

Answer: C

127. Which mixture of water and $\mathrm{H}_{2} \mathrm{SO}_{4}$ represents a soltion with a concentration that is closest to 30% by mass $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. $30 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}+100 \mathrm{gH}_{2} \mathrm{O}$
B. $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}+200 \mathrm{gH}_{2} \mathrm{O}$
C. $30 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}+0.70 \mathrm{kgH}_{2} \mathrm{O}$
D. $0.30 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}+0.70 \mathrm{molH}_{2} \mathrm{O}$

Answer: B

- View Text Solution

128. What is the mole fraction of $\mathrm{CH}_{3} \mathrm{OH}$ in an aqueous solution that is
12.0m in $\mathrm{CH}_{3} \mathrm{OH}$?
A. 0.178
B. 0.216
C. 0.400

Answer: A

- Watch Video Solution

129. A solution is prepared by mixing 25.0 mL of 6.0 M HCl with 45.0 mL of $3.0 \mathrm{M} \mathrm{HNO}_{3}$. What is $\left[\mathrm{H}^{+}\right]$in the resulting solution?
A. 1.9 M
B. 2.1 M
C. 4.1 M
D. 4.5 M

Answer: C

- Watch Video Solution

130. A 25.0 mL sample of 0.15 M silver nitrate, AgNO_{3}, is reacted with a 3.58 g sample of calcium chloride, CaCl_{2} ($\mathrm{M}=111.0$). Which of the following statements is true?
A. Silver nitrate is the limting reactant and calcium nitrate precicpitates.
B. Silver nitrate is the limiting reactant and silver chloride precipitates.
C. Calcium chloride is the limiting reactant and calcium nitrate precipitates.
D. Calcium chloride is the limiting reactant and silver chloride precipitates.

Answer: B

- Watch Video Solution

131. What volume of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight $\left(d=1.85 \mathrm{gmL}^{-1}\right)$ and what mass of water must be taken to prepare 100 mL of 15% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\left(d=1.10 \mathrm{gmL}^{-1}\right)$
A. 9.4 ml
B. 18.8 ml
C. 28.2 ml
D. 56.4 ml

Answer: A

- Watch Video Solution

132. Equal weight of NaCl and KCl are dissolved separately in equal of solutions. Molarity of the two solutions will be:
A. equal
B. that of NaCl will be less than that of KCl solution.
C. that of NaCl will be more than that of KCl solution
D. that of NaCl will be half than that of KCl solution

Answer: C

- Watch Video Solution

133. The strength of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (in $\mathrm{gm} /$ litre), 12 ml of which neutralized by 15 ml of $\frac{M}{10} \mathrm{NaOH}$ solution :
A. 12.25
B. 3.06
C. 6.125
D. 5.00

Answer: C

134. 120 gm of glucose is dissolved to make 1 litre solution having density $1.2 \mathrm{~g} \mathrm{~mL}^{-1}$. Which of following is correct about the solution?
A. Molarity of solution is 2 M
B. Solution is $10 \% \mathrm{w} / \mathrm{w}$
C. Solution is $10 \% \mathrm{w} / \mathrm{v}$
D. Molarity of solution is 1.85 molal.

Answer: B

D Watch Video Solution

135. Equal volume of liquid $A(d=0.8 \mathrm{gm} / \mathrm{ml})$ and liquid $B(d=1.2 \mathrm{gm} / \mathrm{ml})$ are mixed to form a solution. Calculate mole fraction of A in solution. [$\left.M_{A}=16, M_{B}=32\right]$
A. $\frac{3}{8}$
B. $\frac{2}{3}$
C. $\frac{4}{7}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

136. A solution is made by dissolving CaBr_{2} in water (solvent) such that mass fraction of solute and solvent is same in the solution. The molality of solution is :[Atomic mass of $B r=80, C a=40]$
A. 2.5 m
B. 55.55 m
C. 2 m
D. 5 m

Answer: D

137. $500 \mathrm{ml}, 1 \mathrm{M} \mathrm{NaCl}(a q)$ solution is mixed with $1000 \mathrm{ml}, 1 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ solution. Which of the following option is correct for resultant solution?
A. $\left[N a^{+}\right]=\frac{1}{3} M$
B. $\left[A g^{+}\right]=\frac{2}{3} M$
C. $\left[\mathrm{NO}_{3}^{-}=\frac{4}{3} M\right.$
D. $\left[C l^{-}\right]=\frac{1}{3} M$

Answer: A

- Watch Video Solution

138. A 12.0 M acid solution that contains 75.0% acid by mass has a density of $1.57 \mathrm{~g} / \mathrm{mL}$. What is the identity of the acid?
A. $\mathrm{HCl}(\mathrm{M}=36.5)$
B. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{M}=60.0)$
C. $\mathrm{Hbr}(\mathrm{M}=80.9)$
D. $H_{3} \mathrm{PO}_{4}(M=98.0)$

Answer: D

- Watch Video Solution

Percentage labelling of Oleum sample, volume strength of hyrogen Peroxide, ppm

1. A 50 gm sample which may contain either $\left(\mathrm{H}_{2} \mathrm{~S}\right)_{4}$ or SO_{3} or any combination of the two is mixed with 9 gm of water. The maximum oleum labelling possible of the sample formed can be:
A. 118%
B. 109 \%
C. 105%
D. 103.8 \%

Answer: D

D Watch Video Solution

2. An aqueous solution of $\mathrm{H}_{2} \mathrm{O}$ is labelled as $28.375 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$ and the density of solution is $1.25 \mathrm{gm} / \mathrm{ml}$. Then the correct option will be :
A. Molality will be 2 m
B. Molarity will be 5M
C. Molality of solution is 2.15 m
D. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 1.25 M

Answer: C

D Watch Video Solution

3. 35 mL sample lof hydrogen peroxide gives off 494 mL of O_{2} at $27^{\circ} \mathrm{C}$ and 1 atm pressure. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample will be :
A. 10 V
B. 13 V
C. 11 V
D. 12 V

Answer: B

- View Text Solution

4. The volume strength of $0.75 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is: (Assume 1 mole of an ideal gas occupies 22.4 L at STP)
A. 4.8 V
B. 8.4 V
C. 3 V
D. 8 V

Answer: B

5. A fresh $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled 11.2 V . This solution has the same concentration as a solution which is
A. $3.4 \%(w / w)$
B. $3.4 \%(v / v)$
C. $3.4 \%(w / v)$
D. none of these

Answer: C

- Watch Video Solution

6. Bottle (A) contains 320 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution and labelled with 10 V $\mathrm{H}_{2} \mathrm{O}_{2}$ and bottle (B) contains $80 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ having molarity 2.5 M . Content of bottle (A) and bottle (B) are mixed and solution is filled in bottle (C).

Select the correct label for bottle (C) in terms of volume strength and $\mathrm{g} / \mathrm{litre}$. (Assume 1 mole of an ideal gas occupies 22.4 L at STP)
A. 13.6 V and $41.276 \mathrm{~g} / \mathrm{L}$
B. 11.2 V and $0.68 \mathrm{~g} / \mathrm{L}$
C. 5.6 V and $0.68 \mathrm{~g} / \mathrm{L}$
D. 5.6 V and $41.286 \mathrm{~g} / \mathrm{L}$

Answer: A

- Watch Video Solution

7. Hydrogen peroxide in aqueous solution decomposes on warming to give oxygen according to the equation
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
under conditions where 1 mole of gas occupies $24 \mathrm{dm}^{3} .100 \mathrm{~cm}^{3}$ of XM solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $3 \mathrm{dm}^{3}$ of O_{2}. Thus, X is :
A. 2.5
B. 1
C. 0.5
D. 0.25

Answer: A

D Watch Video Solution

8. which of the following options temperature-dependent concentration term?
A. ppm
B. $\% \mathrm{w} / \mathrm{w}$
C. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$
D. \% labelling of oleum

Answer: A::C

9. 60 gm of oleum (labelled as 118%) is mixed with 11.8 gm of water. What will be the composition of final mixture?
A. Only $\mathrm{H}_{2} \mathrm{SO}_{4}$, having mass 71.8 gm
B. 118 gm of $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $70.8 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 1 gm water
D. $32 \mathrm{gm} \mathrm{SO}_{3}$ and $39.8 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

- View Text Solution

10. The molality of a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of density $1.068^{\prime} \mathrm{gm} / \mathrm{ml}$ is 2 m . The only incorrect concentration of the same solution is :
A. molarity $=2 M$
B. volume strength $=22.7$ vol at STP
C. $6.8 \%(w / w)$
D. $6.8 \%(w / w)$

Answer: D

D Watch Video Solution

11. A sample of oleum is labelled as 112%. In 200 gm of this sample, 18 gm water is added. The resulting solution will contain:
A. 218 gm pure $\mathrm{H}_{2} \mathrm{So}_{4}$
B. $218 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 6 gm free SO_{3}
C. $212 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 6 gm free SO_{3}
D. $191.33 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 26.67 gm free SO_{3}

Answer: D

- Watch Video Solution

12. A sample of oleum is labelled as 118%. Moles of NaOH needed for complete neutralisation of 100 gm oleum is:
A. 2.0
B. $\frac{20}{49}$
C. $\frac{118}{49}$
D. $\frac{59}{49}$

Answer: C

- Watch Video Solution

13. An oleum sample is labelled as 113.5%. Identity the incorrect statement
A. The amount of free SO_{2} in 50 g oleum sample is 30 g
B. The amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 50 g oleum sample is 30 g
C. The new labelling of oleum sample when 8 g water is added in 100 g original oleum sample is $\left(100+\frac{137.5}{27}\right) \%$
D. In the original 50 g oleum sample when 6.75 g is added then 56.75 g $\mathrm{H}_{2} \mathrm{SO}_{4}$ is produced.

Answer: B

- Watch Video Solution

14.200 gm of an oelum sample (labelled as 109%) is mixed with 400 gm of another oleum sample (labelled as 118%). The labelling of the new sample formed will be :
A. 115%
B. 112 \%
C. 122 \%
D. 116 \%

D Watch Video Solution

15. The legal limit for human exposure to CO in the work place is 35 ppm .

Assuming that the density of air is $1.3 \mathrm{~g} / \mathrm{L}$, how many grams of CO are in
1.0 L of air at the maximum allowable concentration?
A. $4.55 \times 10^{-5} \mathrm{gm}$
B. $3.5 \times 10^{-5} \mathrm{gm}$
C. $2.69 \times 10^{-5} \mathrm{gm}$
D. $7.2 \times 10^{-5} \mathrm{gm}$

Answer: A

16. If all hydrogen atoms are present in its isotopic form of deuterium $\left({ }_{1} H^{2}\right)$ in an oleum sample. Calculate percentage by mass of sulphur in 118% of one such oleum sample $\left(\mathrm{SO}_{3}+\mathrm{D}_{2} \mathrm{SO}_{4}\right)$.
A. 32%
B. 64%
C. 46.8 \%
D. 38.4 \%

Answer: D

- Watch Video Solution

17. Which of the following is/are incorrect for $17 \mathrm{~g} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ?
A. Volume strength is 5.675
B. Molarity of solution is 0.5 M .
C. 1 ml of this solution gives 2.8 ml at 273 K and 2 atm
D. The molarity of solution is 2 M

Answer: D

- Watch Video Solution

18. $56 \mathrm{~V}, 500 \mathrm{mlH} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is kept in an open contaier due to which some $\mathrm{H}_{2} \mathrm{O}_{2}$ is decomposed and evolves $8 \mathrm{gm} \mathrm{O}_{2}$. Simultaneously some $\mathrm{H}_{2} \mathrm{O}$ also vapouries. Due to all these changes ,final volume is reduced by 20%. Find final volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}(a q)$.

Assume 1 mole of an ideal gas occupies 22.4 L at STP)
A. 56 V
B. 44.8 V
C. 11.2 V
D. 33.6 V

Answer: A

19. Label an oelum sample sample which has mass friction of SO_{3} equal to 0.6:
A. 1.15
B. 1.09
C. 1.045
D. 1.135

Answer: D

- Watch Video Solution

20. The volume strength (at STP) of $100 \mathrm{ml}_{2} \mathrm{O}_{2}$ solution which produce 5.6 litre of oxygen gas at 1 atm and 0^{C} is :
A. 28
B. 56
C. 112
D. 56.75

Answer: D

- Watch Video Solution

21. Accoridng to EPA guidelines the permissible level for lead in drinking water is 15 parts per billion (ppb). What is the maximum allowable mass of lead that could be present in 1.00 L of H_{2} ?
A. 0.015 ng
B. $0.015 \mu \mathrm{~g}$
C. 0.015 mg
D. 0.015 g

Answer: C

22. Relationship between volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution and molarity depeds on pressre and temperature of $\mathrm{O}_{2}(\mathrm{~g})$ collected Example :

At1 atm ,273K,Volume strength $=11.2 \mathrm{xxM}$
At STP, Volume strength $=11.35 \times \mathrm{M}$
[Note : By default STP is taken for volume strength and calculationl.
Find the relationship between volume strength and molarity at 300 K and 1 atm.
A. $12.308 \times$ Molarity
B. $24.63 \times$ Molarity
C. $11.35 \times$ Molarity
D. $22.7 \times$ Molarity

Answer: A

- Watch Video Solution

23. Calculate the mass percent (w / w) of sulphuric acid in a solution prepared by dissovles 4 g of sulphur trixoide in a 100 ml of sulphuric acid solution containing 80 mass percent (w / w) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and having a density of $1.96 \mathrm{~g} / \mathrm{ml}$.
(Molecular weight of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{gm}$) Taken reaction $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
A. 0.8085
B. 0.84
C. 0.4165
D. None of these

Answer: A

K. Eudiometry

1. The volume of CO_{2} prodcued by the combination of 40 ml of gaseous acetone in excess of oxygen is:
A. 40 ml
B. 80 ml
C. 60 ml
D. 120 ml

Answer: D

- Watch Video Solution

2. 500 ml of a hydrocarbon gas burnt in excess of oxygen yields 2500 ml of CO_{2} and 3 litres of water vapours. All volume being measured at the same temperature and pressure. The formula of the hydrocarbon is :
A. $\mathrm{C}_{5} \mathrm{H}_{10}$
B. $\mathrm{C}_{5} \mathrm{H}_{12}$
C. $\mathrm{C}_{4} \mathrm{H}_{6}$
D. $\mathrm{C}_{3} \mathrm{H}_{6}$

Answer: B

- Watch Video Solution

3. 7.5 ml of a gaseous hydrocarbon was exploded with 36 ml of O_{2}. On cooling the volume of gases was found to be $28.5 \mathrm{ml}, 15 \mathrm{ml}$ of which was absorbed by KOH and the rest was absorbed in a solution of alkaline pyrogallol. The formula of hydrocarbon is:
A. $\mathrm{C}_{3} \mathrm{H}_{4}$
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}$
D. $\mathrm{C}_{3} \mathrm{H}_{6}$

Answer: B

4. A gaseous alkane is exploded with oxygen. The volume of O_{2} for complete combination to CO_{2} formed in the ratio $\frac{7}{4}$. The molecular of alkane is :
A. $\mathrm{C}_{2} \mathrm{H}_{4}$
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. C_{4}
D. $\mathrm{C}_{4} \mathrm{H}_{12}$

Answer: B

- Watch Video Solution

5. LPG is a mixture of n-butane and iso-butane. The volume of oxygen needed to burn 1 kg of LPG at STP would be :
B. 2544 L
C. 1000 L
D. 500 L

Answer: B

- Watch Video Solution

6. Given the reaction :
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$

Calculate the volume of the gases prodcued at STP from 48.0 g of carbon.
A. 181.6 L
B. 179.2 L
C. 45.4 L
D. 22.7 L
7. A chemist has sythesized a greenish yellow gaseous compound of chlorine and oxygen and oxygen and finds that its density is $7.71 \mathrm{~g} / \mathrm{L}$ at $36^{\circ} \mathrm{C}$ and 2.88 atm . Then the molcular formula of the compound will be :
A. CIO_{3}
B. CIO_{2}
C. CIO
D. $\mathrm{CI}_{2} \mathrm{O}_{2}$

Answer: B

- Watch Video Solution

8. An amount of 1.00 g of a gaseous compound of boron and hydrogen occupies 0.820 L at 1.00 atm and at $3^{\circ} \mathrm{C}$. The compound is: $(\mathrm{R}=0.0820 \mathrm{~L}$ atm mole ${ }^{-1} K^{-1}$, at. Wt: $\mathrm{H}=1.0, \mathrm{~B}=10.8$)
A. BH_{3}
B. $B_{4} H_{10}$
C. $B_{2} H_{6}$
D. $B_{3} H_{12}$

Answer: C

- Watch Video Solution

9. Potassium hydroxide solutions are used to absorb CO_{2}. How many litres of CO_{2} at 1.00 atm and $22^{\circ} \mathrm{C}$ would be absorbed by an aqueous solution containing 15.0 g of KOH ?
(Take $\mathrm{R}=\frac{1}{12} \mathrm{~L}$ atm $/ \mathrm{K} /$ mole)
$\mathrm{KOH}+\mathrm{CO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
A. 3.29 L
B. 1.65 L
C. 6.58 L
D. 0.329 L

Answer: A

- Watch Video Solution

10. 1 ml of gaseous aliphatic compound $\mathrm{C}_{n} \mathrm{H}_{3 n} \mathrm{O}_{m}$ is completely burnt in an excess of O_{2}. The contraction in volume is
A. $\left(1+\frac{1}{2} n-\frac{3}{4} m\right)$
B. $\left(1+\frac{3}{4} n-\frac{1}{4} m\right)$
C. $\left(1+\frac{1}{2} n-\frac{3}{4} m\right)$
D. $\left(1+\frac{3}{4} n-\frac{1}{2} m\right)$

Answer: D

- Watch Video Solution

11. A hypothetical gaseous element having molecular formula M_{x} at 310 K.In this act volume of the gas is contracted from 12 ml to a volume of 8 ml .The simplest possible molecular formula of the two allotropes is :
A. M_{5} and M_{3}
B. M_{3} and M_{5}
C. M_{1} and M_{2}
D. M_{2} and M_{3}

Answer: D

- Watch Video Solution

12. what volume of hydrogen gas, at 273 K and 1 atm pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass=10.8) from the reduction of boron trichloride by hydrogen?
A. 89.6 L
B. 67.2 L
C. 44.8 L
D. 22.4 L

Answer: B

- Watch Video Solution

13. If 30 ml of H_{2} and 20 ml of O_{2} react to form water, what is left at the end of the reaction ?
A. 10 ml of H_{2}
B. 5 ml of H_{2}
C. 10 ml of O_{2}
D. 5 ml of O_{2}

Answer: D

14. what volume of CO_{2} will be liberated at STP if 12 g of carbon is burnt in excess of oxygen?
A. 11.35 L
B. 22.7 L
C. 2.27 L
D. 1.135 L

Answer: B

- Watch Video Solution

15. For the complete combustion of 4 litre ethane, how much oxygen is required ?
A. 14 litre
B. 4 litre
C. 8 litre
D. 12 litre

Answer: A

- Watch Video Solution

16. The volume of oxygen necessary for the complete combustion of 20 litre of propane is :
A. 40 litre
B. 60 litre
C. 80 litre
D. 100 litre

Answer: D

17. In Haber process 30 litre of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end?
A. 20 litres $\mathrm{NH}_{3}, 25$ litres $\mathrm{N}_{2}, 20$ litres H_{2}
B. 10 litres NH_{3}, 25 litres N_{2}, 15 litres H_{2}
C. 20 litres NH_{3}, 10 litres N_{2}, 30 litres H_{2}
D. 20 litres $\mathrm{NH}_{3}, 25$ litres $\mathrm{N}_{2}, 15$ litres H_{2}

Answer: B

- Watch Video Solution

18.27 g C and $48 \mathrm{~g} \mathrm{O}_{2}$ are allowed to react completely to form CO and CO_{2}. The weight ratio of CO and CO_{2} formed, is :
A. 7: 11
B. $3: 4$
C. 14:11
D. 9:8

Answer: C

- Watch Video Solution

19. What mass of octane should be taken in a total 100 gm mixture of octane and oxygen gas so as to obtain maximum $\mathrm{CO}_{2}(\mathrm{~g})$ on complete combustion?
A. 100 gm
B. 50 gm
C. 23.54 gm
D. 22.17 gm

Answer: D

20. One mole mixture of CH_{4} and air (containing $80 \% \mathrm{~N}_{2} 20 \% \mathrm{O}_{2}$ by volume) of a composition such that when underwent combustion gave maximum heat (assume combustion of only CH_{4}). Then which of the statements are correct, regarding composition of initial mixture ? (X presents mole fraction)
A. $X_{C H_{4}}=\frac{1}{11}, X_{O_{2}}=\frac{2}{11}, X_{N_{2}}=\frac{8}{11}$
B. $X_{C H_{4}}=\frac{3}{8}, X_{O_{2}}=\frac{1}{8}, X_{N_{2}}=\frac{1}{2}$
C. $X_{C H_{4}}=\frac{1}{6}, X_{O_{2}}=\frac{1}{6}, X_{N_{2}}=\frac{2}{3}$
D. Data insufficient

Answer: A

- Watch Video Solution

21. 15 ml of gaseous butane is burnt with 105 ml of oxygen gas at room temperature and pressure. Contraction in volume observed will be :
A. expansion in volume will be observed
B. 60 ml
C. 52.5 ml
D. 65 ml

Answer: C

- Watch Video Solution

22. The mass of graphite which should be burnt completely with 9.6 gm oxygen to produce CO and CO_{2} gases in $4: 1$ mole-ratio is :
A. 12.0 gm
B. 7.2 gm
C. 6.0 gm
D. 4.8 gm

Answer: C

- Watch Video Solution

23. A gaseous mixture of ethene, ethane and methane having total volume 150 ml is subjected to combustion in excess of oxygen.If percentage of methane in the original mixture is 20%, then calculate volume (in ml) of CO_{2} which will be obtained at same temperature and pressure.
A. 150 ml
B. 30 ml
C. 240 ml
D. 270 ml

Answer: D

24. 10 gm of a hydrocarbon exactly requires 40 gm oxygen for complete combustion. The product formed are CO_{2} and water. When CO_{2} gas formed is absorbed completely in lime water, the mass of solution increases by 27.5 gm What is the mass of water formed in combustion?
A. 22.5 gm
B. 27.5 gm
C. 50 gm
D. 10 gm

Answer: A

- Watch Video Solution

25. When 20 ml of mixture of O_{2} and O_{3} is heated the volume becomes 29 ml and disappears in alkaline pyragallol solution. What is the volume precent of O_{2} in the originl mixture? .
A. 90%
B. 10%
C. 80 \%
D. 40%

Answer: B

- Watch Video Solution

26. 20 ml of a gaseous mixture of N_{2} and H_{2} gases is mixed with $8 \mathrm{ml} \mathrm{O}_{2}$ and the mixture is fired.if the final volume becomes 13 ml the volume percent of N_{2} in the original mixture is:
A. 20%
B. 50 \%
C. 80%
D. 40%

- Watch Video Solution

27. 20 ml of a gaseous alkyne exactly requires $80 \mathrm{ml} \mathrm{O}_{2}$ for complete combustion. The alkyne is :
A. $\mathrm{C}_{3} \mathrm{H}_{8}$
B. $\mathrm{C}_{3} \mathrm{H}_{6}$
C. $\mathrm{C}_{3} \mathrm{H}_{4}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

28. To an eudiometry tube 20 ml of $A_{(g)}, 40 \mathrm{ml}$ of $B_{(g)}, 30 \mathrm{ml}$ of $D_{(g)}$ and 60 ml of $C_{(g)}$ is introduced \& subjected to sparking to cause following
reation with 100% extent. Calculate the volume change involved due to sparking.
$2 A_{(g)}+4 B_{(g)} \rightarrow 3 P_{(g)}+Q_{(l)}$
$3 C_{(g)}+D_{(g)} \rightarrow 2 P_{(g)}+4 R_{(g)}$
A. 10 ml expansion
B. No volume change
C. 30 ml contraction
D. 50 ml expanion

Answer: A

- Watch Video Solution

29. A mixture of $C_{3} H_{6}, C_{3} H_{8}$ and $C_{4} H_{10}$ having total volume 90 ml is subjected to complete combustion liberating 320 ml of $\mathrm{CO}_{2}(\mathrm{~g})$ at same temperature and pressure. Calculate volume $\%$ of $C_{4} H_{10}$

$$
\text { A. } 40 \%
$$

B. 50 \%
C. 55.55%
D. 45%

Answer: C

- Watch Video Solution

30. Volume of STP of 0.44 gm of CO_{2} is the same as that
A. 0.02 gm of hydrogen gas
B. 0.085 gm of ammonia gas
C. 0.18 g of $\mathrm{H}_{2} \mathrm{O}$
D. both (a) and (c)

Answer: A

31. The minimum mass of butane and oxygen which should be taken to obtain atleast 198 gm of each product CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
A. 396 gm
B. 350 gm
C. 299.25 gm
D. 585.2 gm

Answer: D

- Watch Video Solution

32. When burnt in air, a 12.0 g mixture of carbon and sulphur yields a mixture of CO_{2} and SO_{2}, in which the number of moles of SO_{2} is half that of CO_{2}.The mass of the carbon the mixture contains is: (At . Wt. $\mathrm{S}=32$)
A. 4.08 g
B. 5.14 g
C. 8.74 g
D. 1.54 g

Answer: B

- Watch Video Solution

33.50 ml of gaseous mixture of acetylene and ethylene if taken in a ratio of a:b requires 700 ml of air containing 20% by volume O_{2} for complete combustion . Calculate the volume of air required for complete combustion of a mixture having ratio $\mathrm{b}: \mathrm{a}$.
A. 700 ml
B. 675 ml
C. 135 ml
D. 140 ml

Answer: B

34. 10 moles of a mixture of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ was mixed with 22 moles of O_{2} gas and subjected to sparking.Moles of gas absorbed when the residual gases are passed through alc. KOH is given by :
A. 10 moles
B. 5 moles
C. 20 moles
D. 7.5 moles

Answer: A

- Watch Video Solution

35. 40 gm of compound containing 4 nitrogen atoms per molecules on combustion gives 2.8 gm of N_{2} gas.Molecular mass of compound is :
A. 200
B. 400
C. 600
D. 800

Answer: D

- Watch Video Solution

36. 24 gms of carbon reacts with 38.4 gms of oxygen gas such that no reactant remain.Calculate moles of carbon mono-oxide obtained in the reaction?
A. 2 moles
B. 1.2 moles
C. 2.4 moles
D. 1.6 moles

Answer: D

37.20 ml of a mixture of CO_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$ was mixed with excess of O_{2} gas and was exploded.On bringing the solution back to the original room temperature a contraction of 12 ml was observed. What is the volume percentage of CO_{2} in the original mixture ?
A. 6%
B. 14 \%
C. 70 \%
D. 30%

Answer: C

- Watch Video Solution

38. In 20 ml of a gaseous mixture containing N_{2} and H_{2} gases, $5 \mathrm{ml} \mathrm{O}_{2}$ gas is added and the mixture is exploded. If the final volume becomes

13 ml , then the only incorrect statement is :
(All the volumes are measured at the same pressure and temperature)
A. The initial mixture contains $10 \mathrm{ml} N_{2}$ gas
B. The initial mixture contains $8 \mathrm{ml} \mathrm{H}_{2}$ gas
C. The final mixture contains $1 \mathrm{ml} \mathrm{O}_{2}$ gas
D. The final mixture contains $12 \mathrm{ml} N_{2}$ gas.

Answer: A

(Watch Video Solution

39. Maximum mass of sucrose $C_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ produced by mixing 84 gm of carbon, 12 gm of hydrogen and $56 \mathrm{~L} \mathrm{O}_{2}$ at 1 atm and 273 K according to given reaction, is :

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})
$$

A. 138.5
B. 155.5
C. 172.5
D. 199.5

Answer: B

- Watch Video Solution

40. The ratio of the weight of one litre of a gas to the weight of 1.0 L of oxygen gas both measured at STP is 2.22 . The molecular weight of the gas would be :
A. 14.002
B. 35.52
C. 71.04
D. 55.56

Answer: C

41. In the reaction $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 6 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2}$
A. $6 \mathrm{~L} \mathrm{HCl}(\mathrm{aq})$ is consumed for every $3 \mathrm{~L} \mathrm{H}_{2}$ produced
B. $33.6 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ is produced regardless temperature and pressure for every moles that reacts .
C. $67.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at $1 \mathrm{~atm}, 273 \mathrm{~K}$ is produced for every mole Al that reacts.
D. 11.2 $\mathrm{L} \mathrm{H}_{2}(\mathrm{~g})$ at $1 \mathrm{~atm}, 273 \mathrm{~K}$ is produced for every mole $\mathrm{HCl}(\mathrm{aq})$ consumed

Answer: D

- Watch Video Solution

42. When a mixture consisting of 10 moles of SO_{2} and 16 moles of O_{2} were passed over a catalyst , 8 mole of SO_{3} were formed at
equilibrium. The number of moles of SO_{2} and O_{2} which did not enter into reation were :
A. 2,12
B. 12,2
C. 3,10
D. 10,3

Answer: A

- Watch Video Solution

43. $2 \mathrm{KI}+\mathrm{I}_{2}+22 \mathrm{HHNO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+2 \mathrm{KIO}_{3}+22 \mathrm{NO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

If 3 mole of KI and 2 moles I_{2} are reacted with excess of HNO_{3}. Volume of NO_{2} gas evolved at STP is :
A. 749.1 L
B. 1089.6 L
C. 45.4 L
D. 68.1 L

Answer: A

D Watch Video Solution

44. The hourly energy requirement of an astronaut can be satisfied by the energy relesed when 34 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ are burnt in his body. How many g of oxygen would be needed to be carried in space capsule to meet his requirement for one day :
A. 916.2 gm
B. 91.62 gm
C. 8.162 gm
D. 9.162 gm

Answer: A

45. 1 volumes of gaseous compound consistin C, H, O on complete combustion in presence of 2.5 volume of the formula of the compound if all measurements are made at STP ?
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
B. $\mathrm{CH}_{3} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Answer: A

- Watch Video Solution

46. 2 litres of a mixture of nitrous and nitric oxides at STP have a mean molecular weight of 39.8 . What volume of nitrogen measured at STP could be obtained when the mixture has been passed over red hot copper?
A. 1.7 L
B. 1.9 L
C. 1.5 L
D. 1.85 L

Answer: A

- Watch Video Solution

47. 1 of NO_{2} and $7 / 8 \mathrm{~L}$ of O_{2} at the same temperature and pressure were mixed together. What is the relation between the mases of the two gases in the mixture?
A. $M_{N_{2}}=3 M_{O_{2}}$
B. $M_{N_{2}}=8 M_{O_{2}}$
C. $M_{N_{2}}=M_{O_{2}}$
D. $M_{N_{2}}=16 M_{O_{2}}$

Answer: C

48. Volume conctraction during complete combustion of 30 ml of tolene as per reaction

A. 30 ml
B. 90 ml
C. 60 ml
D. 150 ml

Answer: B

49. In one experiment 100 ml of ozonised oxygen was reduced to 60 ml when treated with turpentine oil.What would be the increase in volume if the original sample was heated until no further change occurred [All volumes are measured under identical conditions]?
A. 10 ml
B. 20 ml
C. 30 ml
D. 40 ml

Answer: B

- Watch Video Solution

50. 3 gm of carbon reacts completely with 5 gm of O_{2} leaving none of reactant Mole fraction of CO in final mixture is :
A. 0
B. 0.75
C. 1
D. 0.25

Answer: C

- Watch Video Solution

51. A mixture containing 3 moles each of $C_{4} H_{8}$ and $C_{6} H_{6}$ undergoes complete combustion with O_{2} to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ Calculate total mass of CO_{2} produced :
A. 1320 gm
B. 610 gm
C. 528 gm
D. 792 gm
52. The percentage by volume of $\mathrm{C}_{3} \mathrm{H}_{8}$ in a mixture of $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{CH}_{4}$ and CO is 36.5 . Calculate the volume of CO_{2} produced when 100 ml of the mixture is burnt in excess of O_{2}.
A. 173 ml
B. 106.5 ml
C. 206.5 ml
D. 156.5 ml

Answer: A

- Watch Video Solution

53. 1120 ml of ozonised oxygen $\left(\mathrm{O}_{2}+\mathrm{O}_{3}\right)$ at 1 atm and passing the mixture through alkaline pyrogallol solution is :
A. 896 ml
B. 224 ml
C. 448 ml
D. 672 ml

Answer: A

- View Text Solution

54. For which compound, volume of oxygen required is 1.5 times volume of carbon dioxide produced.
A. Alkane
B. Alkene
C. Alkyne
D. For all hydrocarbon

Answer: B

55. How many litres of oxygen at 1 atm and 273 K will be required to burn completely 2.2 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?
A. 11.2 L
B. 22.4 L
C. 5.6 L
D. 44.8 L

Answer: C

- Watch Video Solution

56. When a certain amount of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$ is burnt completely 7.04 gm CO_{2} is fomed What is the weigh of $\mathrm{H}_{2} \mathrm{O}$ formed, simultaneously ?
B. 6.48 gm
C. 3.24 gm
D. 2.28 gm

Answer: C

- Watch Video Solution

57. An ideal gaseous mixture of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ occupies 28 litre at $1 \mathrm{~atm} 0^{\circ} \mathrm{C}$. The mixture reacts completely with $128 \mathrm{gmO}_{2}$ to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Mole of fraction at $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixtture is-
A. 0.6
B. 0.4
C. 0.5
D. 0.8

D Watch Video Solution

58.
combustion gives $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.Find ratio of number of atoms O to
H in product formed.
A. $\frac{1}{2}$
B. $\frac{21}{10}$
C. $\frac{19}{6}$
D. $\frac{9}{2}$

Answer: B

- Watch Video Solution

59. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Magnitude of volume change if 30 ml of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$ is burnt with excess amount of oxgen, is
A. 30 ml
B. 60 ml
C. 20 ml
D. 10 ml

Answer: B

60. Methyl-t-butel ether, $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ is added to gasoline to promote cleaner burning How many moles of oxygen gas. O_{2} are required to burn 1.0 mol of this compound completeley to form carbon dioxide and water?
A. 4.5 mol
B. 6.0 mol
C. 7.5 mol
D. 8.0 mol

Answer: C

- Watch Video Solution

61. The reaction of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, with oxygen is a popular classroom demonstration.Balance the equation to find the number of moles of gaseous products formed per mole of ethanol.
$__{-} \mathrm{C}_{2} 2 \mathrm{H}_{-} 5 \mathrm{OH}(\mathrm{g})+\mathrm{O}_{-} 2(\mathrm{~g}) \rightarrow$ _ $^{\mathrm{CO}} 2(\mathrm{~g})+\mathrm{H}_{-} 2 \mathrm{O}(\mathrm{g})$
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

62. The mass of $560 \mathrm{~cm}^{3}$ of a gas at $0^{\circ} \mathrm{C}$ and 1 atm is 1.60 g . Which gas could it be ?
A. O_{2}
B. CO_{2}
C. SO_{2}
D. Cl_{2}

Answer: C

63. Assume 0.10 L of N_{2} and 0.18 L of H_{2}, both at 50 atm and $450^{\circ} \mathrm{C}$, are reacted to form NH_{3} Assuming the reation goes to completion , identify the reagent that is in excess and determine the volume of that remains at the same temperature and pressure.
A. $H_{2} 0.02 \mathrm{~L}$
B. $\mathrm{H}_{2} 0.08 \mathrm{~L}$
C. $N_{2} 0.01 \mathrm{~L}$
D. $N_{2} 0.04 \mathrm{~L}$

Answer: D

- Watch Video Solution

64. Ethanol burns in excess oxygen to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ according to this balanced equation.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
What value is closest to the volume of $\mathrm{CO}_{2}(\mathrm{~g})$, measured at 200 K and 1 atm produced from the combustion of 0.25 mol of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$?
A. 5 L
B. 8 L
C. 10 L
D. 15 L

Answer: B

- Watch Video Solution

65. Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$ reacts with oxygen according to the unbalanced equation :

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the $\mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ ratio when this equation is correctly balanced?
A. $\frac{2}{1}$
B. $\frac{3}{1}$
C. $\frac{4}{1}$
D. $\frac{5}{2}$

Answer: D

- Watch Video Solution

66. Which combustion prouduct is produced THE LEAST by gasolinepowered vehicles ?
A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. NO_{2}
D. SO_{2}

Answer: D

67. A 12 gm sample of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{4}$ on complete oxidation with O_{2} forms $35.2 \mathrm{gmCO}_{2}$. Find the mean molar mass of original sample:
A. 20
B. 22
C. 14.7
D. 23

Answer: A

- Watch Video Solution

68. Toluence, $\mathrm{C}_{7} \mathrm{H}_{8}$ is added to gasoline to increase its octane rating. What is the volume ratio of air to tolane vapour to burn completely to from CO_{2} and $\mathrm{H}_{2} \mathrm{O}$? (Assume air is $20 \% \mathrm{O}_{2}$ by volume.)
A. $\frac{9}{1}$
B. $\frac{11}{1}$
C. $\frac{28}{1}$
D. $\frac{45}{1}$

Answer: D

- Watch Video Solution

69. Which absorbs gaseous carbon dioxide most effectively?
A. Solid KOH
B. Solid SiO_{2}
C. Aqueous HCl
D. Aqueous NaF

Answer: A

70. Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, reacts with O_{2} (in moles) is required to react completely with 1.00 mol of $\mathrm{CH}_{3} \mathrm{NH}_{2}$?
A. 2.25
B. 2.50
C. 3.00
D. 4.50

Answer: A

- Watch Video Solution

71. 100 L of carbon dioxide measured at 740 mm Hg and $50^{\circ} \mathrm{C}$ is produced the complete combination of a sample of pentane.
$2 \mathrm{C}_{5} \mathrm{H}_{12}+16 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
What mass of pentane reacted?
A. 342 g
B. 265 g
C. 64.4 g
D. 53.0 g

Answer: D

- Watch Video Solution

72. A 10.0 g sample of an oxide of copper forms metallic copper and 1.26 g of water when heated in a stream of hydrogen. What is the mass percent of copper in this oxide?
A. 11.2 \%
B. 66.6 \%
C. 79.9 \%
D. 88.8%

Answer: D

73. A 10.00 g sample of a compound containing C, H, and O is burned completely to produce 14.67 g of CO_{2} and $6.000 \mathrm{gof} \mathrm{H}_{-} 2 \mathrm{O}^{\circ}$. What is the empirical formula of this compound ?
A. CHO
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{CH}_{2} \mathrm{O}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Answer: B

- Watch Video Solution

74. How many moles of water are produced by the complete comustion of
14.4 "g of" $\mathrm{C}_{5} \mathrm{H}_{12}$?
$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
A. 0.200
B. 0.600
C. 1.20
D. 2.40

Answer: C

- Watch Video Solution

Reasoning type

1. Assertion: Both 12 g . of carbon and 27 g . of aluminium will have 6.02×10^{23} atoms.

Reason: Gram atomic mass of an element contains Avogadro's number of atoms.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

D Watch Video Solution

2. Statement-1: Limiting reagent is the reactant that gets completed (or consumed) in a chemical reaction.

Statement-2: Limiting reagent always has either least mass or the least moles among all the reactant available for a chemical reaction.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: C

- Watch Video Solution

3. Statement-1 :3.4g of $\mathrm{NH}_{3}(\mathrm{~g})$ on complete decomposition into N_{2} and $\mathrm{H}_{2}(\mathrm{~g})$ produces 0.6 g of $\mathrm{H}_{2}(\mathrm{~g})$.

Statement- 2 : Law of conservartion of mass is followed by the chemical reaction.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is True, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

D Watch Video Solution

4. Statement-1 : Both solutions have equal moles of CI^{-}ions in given volume.

Statement-2: 2M,500ml of NaCl solution and $1 \mathrm{M}, 500 \mathrm{ml}$ of CaCI_{2} solution has equal number of $C I^{-}$ions.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

5. Statement-1 : For $10 \% w / w \mathrm{NaOH}$ solution value of molarity is more than it's molarity. Statement-2 : Density of this solutions is more than water.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: D

- Watch Video Solution

6. Statement-1 : Average molar mass of a gaseous mixture of O_{2} and CH_{4} gas will be $24 \mathrm{~g} / \mathrm{mole}$.

Statement-2 : Average molar mass depends upon composition of the mixture.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: D

- Watch Video Solution

7. Statement-1 : When 40 gm of NaOH is mixed with $49 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ and mixed with water then 89 gm of NaSO_{4} is obtained assuming 100% yield. Statement-2 : For producing maximum amount of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ with 100% yield NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be present in a molar ratio of 2:1.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is True, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: D

- Watch Video Solution

8. Assertion: The weight percentage of a compound A in a solution is given by

$$
\% \text { ofA }=\frac{\text { Mass A }}{\text { Total mass of solution }} \times 100
$$

Reason: The mole fraction of a component A is given by, Mole fraction of

A

$$
=\frac{\text { No. of moles of A }}{\text { Total no. of moles of all components }}
$$

A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: B

9. Assertion: A one mola solution prepared at $20^{\circ} \mathrm{C}$ will retain the same molality at $100^{\circ} \mathrm{C}$, provided there is no loss of solute or solvent on heating.

Reason: Molality is independent of temperature.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

- Watch Video Solution

10. Assertion: Laboratory reagents are usually made up to a specific molarity rather than a given molality.

Reason: The volume of a liquid is more easily measured than its mass.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

- Watch Video Solution

11. Assertion: Molality and mole fraction concentration units do not change with temperature.

Reason: These units are not defined in terms of any volume.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

D Watch Video Solution

12. Assertion: The molality and molarity of very dilute aqueous solutions differ very little. Reason: The density of water is about $1.0 \mathrm{gcm}^{-3}$ at room temperature.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: C

D Watch Video Solution

13. Assertion: For calculating the molality or the mole fraction of solute, if the molarity is known, it is necessary to know the density of the solution. Reason: Molality, molarity and the mole fraction of solute can be calculated from the weight percentage and the density of the solution.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: B

- Watch Video Solution

14. Assertion: The ratio of the mass of 100 billion atoms of magnesium to the mass of 100 billion atoms of lead can be expressed as $\frac{27}{207}$. Reason: Atomic weight are relative masses.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

- Watch Video Solution

15. Assertion: The average mass of one Mg atom is $24.305 a \mu$, which is not actual mass of one Mg atom.

Reason: Three isotopes, $24 \mathrm{Mg}, 25 \mathrm{Mg}$ and 26 Mg , of Mg are found in nature.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

16. Assertion: A molecule of butane, $C_{4} H_{10}$ has a mass of $58.12 a \mu$. Reason: One mole of butane contains 6.022×10^{23} molecules and has a mass of 58.12 g .
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

D Watch Video Solution

17. Statement-1 : Boron has relative atomic mass 10.81.

Statement-2 : Boron has two isotopes ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$ and their relative abundance is 19% and 81%.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

- Watch Video Solution

18. Statement-1 : The percentage of nitrogen in area is approximately 46.6 \% .

Statement-2 : Urea is an ionic compound.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: C

- Watch Video Solution

19. Statement-1 : Molarity of a solution and molality of a solution both change with density.

Statement-2 : Density of the solution changes when percentage by mass of solution changes.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

D Watch Video Solution

20. Statement-1 : During a chemical reaction total moles remains constant.

Statement-2 : During a chemical reaction total mass remains constant.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: D

- Watch Video Solution

21. Statement-1 : Approximate mass of 1 atom of O^{16} in gms is $\left(\frac{16}{N_{A}}\right)$.

Statement-2: 1 atom of O^{16} weighhs 16 a.m.u and 1 a.m.u $\left(\frac{1}{N_{A}}\right)$ gm.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

- Watch Video Solution

22. Statement-1 : For the reaction producing Fe and CO_{2} by the raction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and C the ratio of stoichiometric coeffecients of $\mathrm{Fe}_{2} \mathrm{O}_{3}$: "Fe is" 1:2. Statement-2 : During a chemical reaction atoms can neither be created nor be destroyed.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

- Watch Video Solution

23. Statement-1 : For reaction $2 A(g)+3 B(g) \rightarrow 4 C(g)+D(g)$ vapour density remains constant throughout the course of reaction.

Statement-2 : In all gaseous chemical reactions vapour density reamain constant.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1:
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: C

24. Statement-1 : When 1 mole of NH_{3} and 1 mole of O_{-}(2) are made to react, all the NH_{3} may be consumed, if reactions is : $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Statement-2 : Oxygen is limiting reagent.
A. Statement-1 : is True, Statement-2 : is True, Statement-2 : is a correct explanation for Statement-1 :
B. Statement-1 : is True, Statement-2 : is True, Statement-2 : is NOT a correct explanation for Statement-1 .
C. Statement-1 : is Ture, Statement-2 : is False.
D. Statement-1 : is False, Statement-2 : is True.

Answer: A

- Watch Video Solution

1. 124 u of P_{4} will contains:
A. $4 N_{A}$ atoms of phosphorus
B. 4 atoms of phosphorus
C. 1 molecule of phosphorus
D. N_{A} molecules of phosphorus

Answer: B::C

- Watch Video Solution

2. Lithium metal reacts with nitrogen gas to produce a white solid Lithium nitride $\left(L i_{N}\right)$ according to the reaction : $6 \mathrm{Li}(\mathrm{s})+N_{2}(\mathrm{~s}) \rightarrow 2 L i_{3} N(s)$ if 8.4 g of Li is taken initially with excess of $N_{2}(\mathrm{~g})$, then (Atomic weight of $\mathrm{Li}=7$)
A. Volume of nitrogen gas consumed at STP is 4.54 L
B. Total mass of the product obtained is 14 g
C. Total number of atoms obtained in the prouduct is $1.6 N_{A}$
D. Lithium and nitrogen combine in ratio 3:2: by mass.

Answer: A::B::C::D

- Watch Video Solution

3. Equal weight of Aluminium and Oxygen are allowed to combine with each other to produce $\mathrm{Al}_{2} \mathrm{O}_{3}$.Identify the correct statement.

$$
\left(4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}\right)(\mathrm{At} . \mathrm{Wt.} \text { of } \mathrm{Al}=27, \mathrm{O}=16)
$$

A. Aluminium metal is the limiting reagent
B. The fraction of excess reagent left unreacted is $\frac{1}{9}$
C. The mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced is $\frac{51}{27}$ times the mass of oxygen taken initially.
D. The mass of aluminium and oxygen is left unreacted and the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced is double the mass of aluminium taken initially.

Answer: A::B::C

- Watch Video Solution

4. In which of the following pairs do 1 g of each have an equal number of molecules.
A. $\mathrm{N}_{2} \mathrm{O}$ and CO
B. N_{2} and $\mathrm{C}_{3} \mathrm{O}_{2}$
C. N_{2} and CO
D. $\mathrm{N}_{2} \mathrm{O}$ and CO_{2}

Answer: C::D

5. If $100 \mathrm{mLof} 1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution is mixed with 100 mL of $98 \%(\mathrm{~W} / \mathrm{W})$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $\left(d=0.1 \mathrm{gmL}^{-1}\right)$, then
A. concentration of solution remains same
B. volume of solution become 200 ml
C. mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution is 98 gm
D. mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution is 19.6 gm

Answer: A: B::D

- Watch Video Solution

6. Which of the following contain same number of entities ?
A. Number atoms in 1 mole $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. Number of neutrons in 3.5 mole of CH_{4}
C. Number of atoms in 2 mole of $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
D. Number of electrons in 2.1 mole of NH_{4}^{+}

- Watch Video Solution

7. For the following reaction if equal mass of A and B are taken :

$$
A+2 B \rightarrow C
$$

Which of the following is/are correct ? $\left(M_{A}\right.$ and M_{B} are molar mass of A and B respectively)
A. If $M_{A}=2 M_{B}$, then none of the reactant will be left.
B. if $M_{B}<\frac{M_{A}}{2}$, then A will be limiting reagent
C. If $M_{A}=M_{B}$, then A will be limiting reagent
D. If $M_{B}<\frac{M_{A}}{2}$, then A will be limiting reagent.

Answer: A::B

D View Text Solution

8. Identify the correct statement.
A. 1 gm atom of oxygen and ozone each, contain same number of atoms.
B. 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ contain 7 gm molecule of oxygen
C. 12 gm carbon and 24 gm Mg contain same number of atoms.
D. Vapour density of air is 14.4.(Air contain : $80 \% \mathrm{~N}_{2}$ and $20 \% \mathrm{O}_{2}$ by volume.)

Answer: A::B::C::D

- Watch Video Solution

9. Which of the following options represent concentration terms which are independent of temperature?
A. \% (w/w), mole fraction , molality
B. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$, Mole percent , ppm
C. Molality , mass fraction , \% labelling
D. Molarity, $\%(w / v)$, mole fraction

Answer: A::C

- Watch Video Solution

10. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labelled as 45.4 V . Which of the following concentration terms representing the solution will also be correct ($d_{\text {soln }}$. $=2.136 \mathrm{gm} / \mathrm{ml}$)
A. 4 molar
B. 2 molar
C. 13.6 \% (w/v)
D. $X_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{4}{\frac{1000}{18}}+4$

Answer: A::B::C

11. Which of the following molarity of KMnO_{4} solution can prouduce atleast 1 gm each of CO_{2} and water when 2 litre of KMnO_{4} reacts with excess of oxalic acid, according to the equation :
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
A. $\frac{1}{18} M$
B. $\frac{1}{160} M$
C. $\frac{1}{80} M$
D. $\frac{1}{96} M$

Answer: A::C::D

- View Text Solution

12. A 200 ml mixture of CO and CO_{2} is passed through excess of red hot charcoal causing the following reaction.
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$

After passing the gas through charcoal, volume increased to 270 ml . Select the correct statement.
A. Volume percentage of CO in the original mixture is 65%
B. If original mixture was passed through KOH solution volume would have reduced to 70 ml
C. Mole fraction of CO_{2} in the original mixture will be 0.25 .
D. Minimum moles of red hot charcoal required for complete conversion of CO_{2} should be 70 millimoles.

Answer: A:C

- Watch Video Solution

13. A sample of oxygen contains O^{16} and O^{18} isotopes only with percentage abundance respectively as 90% and 10%. Identify the correct options
B. Average number of protons per atom is 8
C. Average number of neutrons per atom is 8.2
D. Molecular mass of oxygen gas which can be formed from the sample can vary from 32 to 36

Answer: A::B::C::D

- Watch Video Solution

14. A sample of NH_{3} occupies 5.6 litres at 2 atm and $273^{\circ} \mathrm{C}$ Which of the following options are correct ?
A. sample contains $\frac{3}{4}$ gm atoms of hydrogen
B. Sample contains 10.5 gm of nitrogen
C. Volume of the sample at STP will be same as volume occupied by 12 gm of ozone gas at STP
D. Density of the above gaseous sample at 3 atm pressure and 300 K is equal to $2.07 \mathrm{gm} / \mathrm{ml}$

Answer: A::C::D

- Watch Video Solution

15. A particular element X can be found in three gaseous forms-monoatomic, di-atomic and tri-atomic.lf density of one of its forms at a pressure of 8.21 atm at 400 K is $18 \mathrm{gm} / \mathrm{L}$, then what would be atomic mass of the element?
A. 72
B. 24
C. 36
D. 144
16. An aqueous solution of ammonia has molarity equal to 2 M . If density of the solution is $1.534 \mathrm{gm} / \mathrm{ml}$, then identify the options in which correct concentration terms are mentioned.
A. Molality $=\frac{4}{3} \mathrm{~m}$
B. $\%(w / w)=\frac{34}{15.34}$
C. \% (w/v) $=6.8$
D. Mole fraction of $\mathrm{NH}_{3}=\frac{3}{128}$

Answer: A::B::D

- Watch Video Solution

17. The number of hydrogen atoms in 0.9 gm glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is same as:
A. 0.48 gm hydrazine , $\mathrm{N}_{2} \mathrm{H}_{4}$
B. 0.17 gm ammonia, NH_{3}
C. 0.30 gm ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
D. 0.03 gm hydrogen, H_{2}

Answer: A::C

- Watch Video Solution

18. The density of 2 m -aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is $1.068 \mathrm{gm} / \mathrm{ml}$ Which of the followin is/are correct concentrations of this solution, in different units ?
A. Molarity $=2 \mathrm{M}$
B. volume strength $=22.7 \mathrm{~V}$
C. $\%(w / v)=6.8$
D. Mole fraction of water $=\frac{250}{259}$

Answer: A::B::C::D

19. 90 gm glucose is dissolved in 410 gm water to get a solution. The concentration of solution is :
A. $\frac{900}{41} \%(w / w)$
B. 18% (w/w)
C. $\frac{50}{41} \mathrm{~m}$
D. 1.0 m

Answer: B::C

- Watch Video Solution

20. Which of the following is the incorrect conclusion regarding the reaction :
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. 2 mole of $\mathrm{H}_{2}(\mathrm{~g})$ will produce 2 moles of $\mathrm{H}_{2} \mathrm{O}$ (I)
B. 16 gm of $\mathrm{O}_{2}(\mathrm{~g})$ will produce 18 gm of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. 2 litre of $\mathrm{O}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 1 atm will produce 4 litre of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ and 1 atm
D. 2 molecules of $\mathrm{H}_{2} \mathrm{O}(l)$ is obtained from every 3 molecules of gaseous mixture of H_{2} and O_{2}.

Answer: C::D

- Watch Video Solution

21. A definite volume of pure ammonia $\left(\mathrm{NH}_{3}\right)$ gas is passed through a series of electric sparks by which the volume becomes 90 ml . The increase in volume is due to formation of nitrogen $\left(\mathrm{N}_{2}\right)$ and hydrogen $\left(\mathrm{H}_{2}\right)$ gases.All the gases finally present are washed with dilute sulphuric acid solution, by which the volume of gases becomes 80 ml . All the volumes are measured at the same temperature and pressure. Which of the following statement is are correct regarding the original ammonia sample?
A. The volume of NH_{3} gas taken was 40 ml
B. The volume of NH_{3} gas taken was 50 ml
C. Only 80% of NH_{3} gas decomposed into N_{2} and H_{2} gases.
D. Only 20\% of NH_{3} gas decomposed into N_{2} and H_{2} gases.

Answer: B::C

- Watch Video Solution

22. Which is/are correct statement about 1.7 gm of NH_{3} ?
A. It contains 0.3 mol H -atom
B. It contains 2.408×10^{23} atoms
C. Mass \% hydrogen is 17.65%
D. Vapour density of NH_{3} is 17

Answer: A::B::C

23. $A+B \rightarrow A_{3} B_{2}$ (unbalanced)
$A_{3} B_{2}+C \rightarrow A_{3} B_{2} C_{2}$ (unbalanced)
Above two reactions are carried out by taking 3 moles each of A and B and one mole of C .Then which option is/are correct ?
A. 1 mole of $A_{3} B_{2} C_{2}$ is formed
B. $\frac{1}{2}$ mole of $A_{3} B_{2} C_{2}$ is formed
C. 1 mole of $A_{3} B_{2}$ is formed from first reaction
D. $\frac{1}{2}$ mole of $A_{3} B_{2}$ is left finally.

Answer: B::C::D

- Watch Video Solution

1. A sample of a mixture of CaCl_{2} and NaCl weighing 4.44 gm was treated to precipatate all the Ca as CaCo_{3}, which was then heated and quantitatively converted to 1.12 g of CaO . Choose the correct statements. (Atomic weight : $\mathrm{Ca}=40=23, \mathrm{Cl}=35.5$)
A. Mixture contains $50 \% \mathrm{NaCl}$
B. Mixture contains $60 \% \mathrm{CaCl}_{2}$
C. Mass of CaCl_{2} is 2.22 g
D. Mass of $\mathrm{CaCl}_{2} 1.11 \mathrm{~g}$

Answer: A:C

- Watch Video Solution

2. The density of 3 M sodium thiosulphate is $1.25 \mathrm{~g} / \mathrm{ml}$. Identify the correct statements among the following.
A. $\%$ by weight fo sodium thiosulphate is 37.92 .
B. The mole fraction of sodium thiosulphate is 0.065 .
C. The molarity of Na^{+}is 2.53 and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is 1.25 .
D. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ contains S-O-S linkage.

Answer: A: B

- View Text Solution

3. A 5 L vessel contains 2.8 g of N_{2} only, when heated to $1800 \mathrm{~K} 30 \%$ molecules are dissociated into atoms.
A. Total no, of moles N in the container will be 0.12
B. Total no. of molecules in the container will be close to 0.421×10^{23}
C. Total no. of moles in the container will be 0.098
D. Pressure in the container decreased

Answer: A: B

4. The density of air of $0.001293 \mathrm{~g} / \mathrm{cm}^{3}$ at 1 atm and 273 K . Identify which of the following statement is correct?
A. Vapour density is 14.48.
B. Molecular weight is 28.96 .
C. Vapour density is $0.001293 \mathrm{~g} / \mathrm{cm}^{3}$
D. Vapour density and molecular weight cannot be determined.

Answer: A: B

- Watch Video Solution

5. Which of the following has same mass?
A. 1.0 mole of O_{2}
B. 3.01×10^{23} molecular of SO_{2}
C. 0.5 moles of CO_{2}
D. 1 g atom of sulphur

Answer: A::B::D

- Watch Video Solution

6. The mole fraction of NaCl in aqueous soluition is 0.2 . The solution is :
A. 13.9 m
B. mole fraction of $\mathrm{H}_{2} \mathrm{O}$ is 0.8
C. acidic in nature
D. neutral

Answer: A::B::D

- Watch Video Solution

7. 100 mL of $0.06 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 50 mL of $0.06 \mathrm{M} \mathrm{Na} \mathrm{N}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. After the reaction is complete.
A. 0.003 moles of calcium oxalate will get precipatated
B. 0.003 M of Ca^{2+} will remain in excess
C. $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is limited reagent
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is excess reagent

Answer: A::C::D

- Watch Video Solution

8. Silver metal in ore is dissolved by potassium cyanide solution in the presence of air by the reaction
$4 \mathrm{Ag}+8 \mathrm{KCN}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{~K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+4 \mathrm{KOH}$
A. The amount of KCN required to dissolved 100 g of pure Ag is 120 g
B. The amount of oxygen used in this process is 0.742 g (for 100 gm pure Ag$)$.
C. The amount of oxygen used in this process is 7.40 g (for 100 gm pure Ag).
D. The volume of oxygen used to STP is 5.25 litres.

Answer: A::C::D

- Watch Video Solution

9. Equal masses of SO_{2} and O_{2} are placed in a flask at STP. Choose the correct statement .
A. The number of molecules of O_{2} are more than SO_{2}.
B. Volume occupied at STP is more for O_{2} than SO_{2}
C. The ratio of number of atoms of SO_{2} and O_{2} is 3:4.
D. Moles of SO_{2} is greater than the moles of O_{2}

- Watch Video Solution

10. For the reaction $2 P+Q \rightarrow R, 12 \mathrm{~mol}$ of P and 8 mol of Q are taken then:
A. 3 mol of R is produced
B. 6 mol of R is produced
C. 25% of Q is left behind
D. 25% of Q has reacted

Answer: B::C

- Watch Video Solution

11. If $\mathrm{H}_{2} \mathrm{SO}_{4}$ is formed from it's elements by taking 6.023×10^{23} atom of O , 5.6 litre of H_{2} gas at 1 atm and 273 K and 8 gm S , then:
A. 0.125 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are formed
B. 0.25 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are formed
C. no moles of S are left
D. $\frac{1}{4}$ moles of O_{2} is left

Answer: B::C

- Watch Video Solution

12. Equal volume of 0.1 M NaCl and $0.1 \mathrm{M} \mathrm{FeCl}_{2}$ are mixed with no change in volume due toO mixing. Which of the following will be true for the final solution? (No precipation occurs) . Assume complete dissociated of salts and neglect any hydrolysis.
A. $\left[\mathrm{Na}^{+}\right]=0.05 \mathrm{M}$
B. $\left[\mathrm{Fe}^{2+}\right]=0.05 \mathrm{M}$
C. $\left[\mathrm{Cl}^{-}\right]=0.3 \mathrm{M}$
D. $\left[\mathrm{Cl}^{-}\right]=0.15 \mathrm{M}$

D Watch Video Solution

13. 0.28 g of a gas occupies 227 ml at STP. The gas could be:
A. N_{2}
B. CO
C. $\mathrm{C}_{2} \mathrm{H}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: A::B::C

D Watch Video Solution

14. Choose the incorrect statement(s).
A. 1 gm molecules always contains same number of atoms
B. Weight of one molecules in gm is equal to its molar mass
C. Number of atoms in 2 gm of hydroden is greater than 11.35 litre hydegen at STP
D. Volume of 16 gm oxygen gas at $2 \mathrm{~atm}, 300 \mathrm{~K}$ is greater than volume of 2 gm hydrogen gas at 1 atm 300 K

Answer: A::B::D

- Watch Video Solution

15. In 2.6 gm of $\mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (At wt of $\mathrm{fe}=56$):
A. No. of atoms of O are $100 \times N_{A}$
B. Moles of H atoms are $120 \times N_{A}$
C. Molecules of water are $60 \times N_{A}$
D. Moles of e^{-}present in SO_{4}^{2-} are 500

- Watch Video Solution

16. For reaction
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}(\mathrm{~g}) 261 \mathrm{gm} \mathrm{MnO} 2$ is mixed with 448 litres of HCl gas at $273^{\circ} \mathrm{C}$ and 1 atm pressure to produce product $\left[N_{A}=6 \times 10^{23}\right.$, Atomic mass of $\left.\mathrm{Mn}=55, \mathrm{Cl}=35.5\right]$

Select correct statement(s)
A. MnO_{2} is limited reagent
B. Chlorine gas produced contains 15×10^{23} molecules.
C. Moles of excess reactant left is 0.5 moles
D. If \% yield of reaction is 50%, then mass of MnCl_{2} obtained will be 315.

Answer: B::C

- Watch Video Solution

17. 10 moles of $A_{2} B_{3}$ contains $100 \mathrm{gm} A$ atom and $60 \mathrm{gm} B$ atoms. Choose the correct statements.
A. Molecules weight of $A_{2} B_{3}$ is equal to 16
B. Atomic weight of A is equal to 16
C. Weight of one atom of B is equal to 2
D. Atomic weight of B is equal to 6

Answer: A::B

- Watch Video Solution

18. Consider the following chemical reaction
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{NaNO}_{3}$.
If a series of experiments are run maintaining sum of the weights of two reactant constant but varying the weights of reactants, which of the following statements is (are) true?

$$
\left[M_{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=394, M_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=142\right]
$$

A. Maximum weight of the ppt $\left(\mathrm{PbSO}_{4}\right)$ will be formed if equal weights of reactant are taken.
B. Maximum weight fo the ppt $\left(\mathrm{PbSO}_{4}\right)$ will be formed if equal moles of reactants are taken
C. In the experiments, as the weight of $\operatorname{Pb}\left(\mathrm{SO}_{4}\right)$ increase, weight of $\operatorname{ppt}\left(\mathrm{PbSO}_{4}\right)$ increases.
D. In the experiment, as the weight of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ increases, weight of ppt $\left(\mathrm{PbSO}_{4}\right)$ increases and than decreases.

Answer: B::D

- Watch Video Solution

19. $400 \mathrm{ml} 0.1 \mathrm{M} \mathrm{BaCL}_{2}$ is mixed with $600 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to form products according to following reaction:
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
Select the correct option(s) after reaction is completed.
A. Molarity of $B a^{+2}$ ions in final solution is 0.04 M
B. Molarity of SO_{4}^{2-} ions in solution is 0.02 M
C. Molarity of H^{+}ions do not change on mixing
D. Final molarity of H^{+}ions in solution is 0.12 M

Answer: B::D

- Watch Video Solution

20. Aqueous solution containing $30 \mathrm{gm} \mathrm{CH}_{3} \mathrm{COOH}$ are:
A. 250 ml of $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution
B. 600 gm of 5% (by wt.) $\mathrm{CH}_{3} \mathrm{COOH}$ solution
C. 111 gm of solution in which mole fraction of $\mathrm{CH}_{3} \mathrm{COOH}$ is 0.1
D. 500 gm of 7 m CH 33 COOH solution

Answer: A::B::C

21.50 ml of CO is mixed with 20 ml of oxygen and sparked. After reaction, the mixture is treated with an aqueous KOH solution. Choose the correct option:
A. The volume of the CO that reacts is 40 ml .
B. The volume of the CO_{2} formed is 40 ml
C. The volume of CO that remains after treatment with KOH is 20 ml
D. The volume of mixture obtained after reaction when treated with KOH solvent remains 10 ml

Answer: A::B::D

- Watch Video Solution

22. Which of the follewing aqueous solutions of $\mathrm{H}_{2} \mathrm{SO}_{4}$ has 4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 500 mL of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}\left(d=1.5 \mathrm{gmL}^{-1}\right)$
B. 250 mL solution of density 2 g mL - which is $49 \%(\mathrm{w} / \mathrm{w})$
C. 10 g solution which is $49 \%(\mathrm{w} / \mathrm{w})$
D. Solution having 500 g water with molality $0.1 \mathrm{~mol}_{\mathrm{kg}}{ }^{-1}$

Answer: A::C::D

- Watch Video Solution

23. Select the correct statement(s)
A. Ratio of $\mathrm{gm} /$ litres and $\%(\mathrm{w} / \mathrm{v})$ of a solution is independent fo solute substance
B. Ratio of $\%(w / v)$ and molarity of a solution depends on solute substance
C. Ratio of $\%(\mathrm{w} / \mathrm{v})$ and molarity of a solution depends on solvent substance
D. Ration of $\%(w / v)$ and $p p m$ for any solution same

Answer: A::B

- Watch Video Solution

24. Atomic mass of elements are defined with respect to $\frac{1}{12}$ th of mass of single atom of $\mathrm{C}-12$ [present scale]. If reference is changed to $\frac{1}{24}$ th of mass of single atom of $\mathrm{C}-12$ [new scale], then select the correct statement(s).

Given : Atomic mass of Fe on present scale is 56 Mass of $\frac{1}{12}$ the of mass of single atom of $\mathrm{C}-12=1$ amu New mass of $\frac{1}{24}$ th of mass single atom fo C $12=1$ amu
A. Atomic mass of elements will change.
B. Mass of an atom (in gm) of an elements remains same on both scale.
C. Mass of an atom of Fe will be 112 amu on new scale.
D. Atomic mass of Fe on new scale will be 112.

Answer: A::B::D

- Watch Video Solution

25. 100 gm mixture of Co and CO_{2} is mixed with 30 mL of O_{2} and sparked in eudiometer tube. The residual gas after treatment with aq. KOH has a volume of 10 mL which remains unchanged when treated with alkline pyrogallol. If all the volume are under the same conditions, point out the correct option(s)
A. The volume of CO that reacts is 60 mL
B. The volume of CO that remains unreacted is 10 mL
C. The volume of O_{2} that remains unreacted is 10 mL
D. The volume of CO_{2} that gets absorbed y aqueous KOH is 90 mL .

Answer: A::B::D

26. 20 mL of a gaseous hydrocarbon was exploded with 120 mL of oxygen . A contraction of 60 mL was observed and a further contraction of 60 mL took place when $K O H$ was added. What is the formula of the hydrocarbon?
A. $\mathrm{C}_{3} \mathrm{H}_{6}$
B. $\mathrm{C}_{3} \mathrm{H}_{8}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}$

Answer: B

- Watch Video Solution

27. 100 ml of mixture of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ was sparked. There was contraction of 70 ml volume when the mixture was passed through
aqueous KOH . The composition of initial gas mixture in (ml) will be in order of $\mathrm{CH}_{4} \mathrm{O}_{2}, \mathrm{CO}_{2}$:
A. 10,30,60,
B. $15,30,55$
C. 20,30,50,
D. $20,20,60$

Answer: A::B::D

- Watch Video Solution

28. An aqueous solution is made by dissolving glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ in water. Mole ratio of glucose and water is 1:10. If the masses of glucose and urea are in 3:1 ratio, then correct statement(s) regarding the solution is/are:
A. The mole fraction of glucose in the solution is $\frac{1}{11}$
B. The mole fraction of urea in the solution is $\frac{1}{12}$
C. Molality of glucose in the solution is $\frac{25}{6}$
D. Molality of urea in the solution is $\frac{50}{9}$

Answer: B::D

- View Text Solution

29. 200 gm water is saturated with H_{2} Sgas to get a solution fo density $0.95 \mathrm{gm} / \mathrm{ml}$ and containing $20 \% \mathrm{H}_{2} \mathrm{~S}$,by mass. Which of the following information(s) is/are correct regarding the solution formed?
A. Molality of solution is $\frac{100}{17} \mathrm{~m}$
B. Volume of solution is $\frac{5000}{19} \mathrm{ml}$
C. Molality of solution is $\frac{950}{17} \mathrm{~m}$
D. Mass of $\mathrm{H}_{2} \mathrm{~S}$ in solution is 50 gm

Answer: B::C::D

30. An oleum sample has SO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 2:3 mass ratio. Select the correct statement(s).
A. \% labelling of sample is 109%
B. \% labelling of sample is 118%
C. If $9 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}$ is added to200 gm of above sample, new labelling would be 104.5\%
D. If $9 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}$ is added to 200 gm of above sample, new labelling would be 104.3\%

Answer: A: D

- View Text Solution

31. A reacts by following two parallel reactions to give B and C. If half of A goes into reaction I and other half goes to reaction-II, then select the correct statement(s)
$A+N \rightarrow B+L$
$A+N \xrightarrow{I I} \frac{1}{2} B+\frac{1}{2}(C)+L$
A. B will be always greater than C
B. If 2 moles of C are formed then total 2 moles of B are also formed
C. If 2 moles of C are formed then total 4 moles of B are also formed
D. If 2 moles of C are formed then total 6 moles of B are also formed

Answer: A::D

D Watch Video Solution

32. 83.33 gm of 117.6% oleum is added to 1 litre of $3 \mathrm{M} K_{4}\left[\mathrm{Fe}(C N)_{6}\right]$ and futher 2 litre of 33.6 volume strenght (at 1 atm, 273 K) $\mathrm{H}_{2} \mathrm{O}$ is added to it reaction:
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
If final volume of solutin is 3 litre, then select the correct statement(s):
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is limited reagent
B. 2 moles of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is formed
C. If 2 ml of resulting solution is heated then 37.3 ml of O_{2} at 1 atm , 273 K will be evoled from $\mathrm{H}_{2} \mathrm{O}_{2}$
D. If 3 ml of resulting solution is heated then 37.3 ml of O_{2} at 1 atm , 273 K will be evolved from $\mathrm{H}_{2} \mathrm{O}_{2}$

Answer: A::B::C

- View Text Solution

33. In the formation rection of NH_{3} from N_{2} and $\mathrm{H}_{2} 140 \mathrm{~g}$ of N_{2} and 40 g H_{2} were mixed. Select the option which is/are incorrect?
A. Maximum mass of NH_{3} which can be formed is 180 gm
B. If $\%$ yield of reaction is 80% consumed will be 32 gm .
C. Some $N_{2}(g)$ will be left after the reaction.
D. If NH_{3} formed is 85 gm then $\%$ yield will be 50%

D View Text Solution

34. Select the correct statement(s) about chemical reaction in a closed container.
A. Total mass remains conserved.
B. Total moles of molecules remains conserved.
C. Total mass of atoms remains conserved
D. Total mass of molecules may change.

Answer: A::C::D

D View Text Solution

35. A Solution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and water contains 54% water by mass, then which option(s) are correct for the given solution: [Given density of
solution $=1 \mathrm{gm} / \mathrm{ml}]$
A. Molality $=18.52$
B. $\%(w / w)=46$
C. $X_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=0.25$
D. $\%(w / w)=46$

Answer: A::B::C::D

- Watch Video Solution

36. 50 gm of CaCO_{3} is allowed to react with 68.6 gm of $\mathrm{H}_{3} \mathrm{PO}_{4}$ then select the correct option(s):
$3 \mathrm{CaCO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
A. 51.67 gm salt is formed
B. Amount of unreacted reagent $=35.93 \mathrm{gm}$
C. $n_{C o_{2}}=0.5$ moles
D. 0.7 moles of CO_{2} is evoled

Answer: A::B::C

- Watch Video Solution

37. Hexamethylenediamine $\left[\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right) \mathrm{NH}_{2}\right]$ reacts with adipic acid $\left[\begin{array}{cc}\mathrm{O} & \begin{array}{c}O \\ \| \mid \\ \mathrm{HO} \\ \mathrm{C}\end{array}-\left(\mathrm{CH}_{2}\right)_{4}-\stackrel{\text { I }}{\mathrm{C}}-\mathrm{OH}\end{array}\right]$ to form dimer as:
with adipic acid $\left[\mathrm{HOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}-\mathrm{OH}\right]$ to form vimer as:

50% yield

The dimer polymerises to form Nylon 6,6 as per the reaction

Select the correct statement:
A. 290 gm of Hexamethylenediamine is required to make 610 gm of dimer.
B. 730 gm of adipic acid is required to make 610 gm of dimer.
C. In order to obtain 1.03 kg of Nylon- 6,6 at least 1220 gm of dimer is required.
D. In order to obtain 1.13 kg of Nylon-6,6 at least 1742.9 gm of dimer is required.
38. Concentration term similar to "volume strenght of $\mathrm{H}_{2} \mathrm{O}_{2}$ " is used for nitroglycerine $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}\right]$ (MW=227) where volume strenght is defined as volume of gasses evolved at 1 atm and 273 K from 1 litre solution as per the reaction:

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{aq}) \rightarrow 6 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})(\mathrm{d}=1.1 \mathrm{gm} / \mathrm{ml})
$$

Select the correct option about Volume strenght of 212.8 V nitroglycerine solution.
A. Its 2 M nitroglycerine solution.
B. Its $454 \mathrm{gm} / \mathrm{L}$ nitroglycerine solution
C. Its $41.27 \%(w / w)$ nitoglycerine solution.
D.

Answer: A:B::C

- Watch Video Solution

39. In order to remove Mg^{2+} and Ca^{+2} from $\mathrm{H}_{2} \mathrm{O}$, impure water is treated with sodium tripolyphosephate
$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+\mathrm{Mg}^{+2} \rightarrow \mathrm{Na}_{3} \mathrm{MgP}_{3} \mathrm{O}_{10}+2 \mathrm{Na}^{+}$
$\mathrm{Na}_{3} \mathrm{MgP}_{3} \mathrm{O}_{10}+\mathrm{Ca}^{+2} \rightarrow \mathrm{NaCaMg} \mathrm{P}_{3} \mathrm{O}_{10}+2 \mathrm{Na}^{+}$
Select the correc statement about treatment of $10 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ having 48 ppm of Mg^{+2} and 40 ppm of Ca^{+2}
A. In order of remove all Mg^{+2} from $\mathrm{H}_{2} \mathrm{O}$ at least 7.36 gm of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is required
B. In order of remove all Mg^{+2} from $\mathrm{H}_{2} \mathrm{O}$ at least 3.68 gm of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is required
C. In order to remove all mg^{+2} and $\mathrm{Ca}^{+2}, 7.36 \mathrm{gm}$ of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is
required
D. In order to remove all Mg^{+2} and Ca^{+2}, at least 11.04 gm of $N a_{5} P_{3} O_{10}$ is required

Answer: A::C

40. Which fo the following is heavier than 1 gm molecules oxygen?
A. 12 gm of O_{3}
B. 1 gm-molecules O_{3}
C. 4 gm-atom of hydrogen
D. 1.12 litre of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$ and 1 atm

Answer: B::D

D Watch Video Solution

41. In which of the following mixtures summation of molarity of cation(s) in the resulting solution is less than 1 ?
A. $\mathrm{NHO}_{3}(0.1 \mathrm{M}, 10 \mathrm{~mL})+\mathrm{NaOH}(1 \mathrm{M}, 10 \mathrm{~mL})$
B. $\mathrm{NHO}_{3}(0.1 \mathrm{M}, 10 \mathrm{~mL})+\left(\mathrm{NHO}_{3}(1.1 \mathrm{M}, 10 \mathrm{~mL})\right.$
C. $\mathrm{NaOH}(4 \%(\mathrm{w} / \mathrm{w}), 10 \mathrm{~mL}$ sp.gr. $=1.2)+\mathrm{NaOH}[4 \%(\mathrm{w} / \mathrm{w}), 10 \mathrm{~mL}$, sp.gr. $=12]$
D. $\mathrm{AgNO}_{3}(1 \mathrm{M}, 10 \mathrm{~mL})+\mathrm{NaCl}(2 \mathrm{M}, 10 \mathrm{~mL})$

Answer: A::B

- View Text Solution

42. Which of the following option(s) is correctly matched for atomic /molecular weight determination method?
A. Ag-Dulong and pett's method
B. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$ (volatile)-Victor Meyer's method
C. $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COOH}$ - Chloroplatinate salt method
D. $\mathrm{Ch}_{3}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{NH}_{2}$ (base)-Silver salt method

Answer: A::B

- View Text Solution

43. Two flask of equal capacity contain NH_{3} and SO_{2} gases respectively, are kept under similar conditions of temperature and pressure. Select the correct option on the basis of above information.
A. More moles are present in flask contain NH_{3}.
B. Flask of SO_{2} has more mass.
C. Flask of NH_{3} has more number of atoms.
D. Both flask contain same number of molecules of NH_{3} and SO_{2} respectively

Answer: B::C::D

- Watch Video Solution

44. In the reaction:
$A+B_{2} \rightarrow A B_{2}$
Find out in which option(s) B_{2} is limiting reagent. [Molar mass : $\left.M_{A}=10 \mathrm{gmole}^{-1}, M_{B}=20 \mathrm{gmol}^{-1}\right]$
A. 300 atoms of $\mathrm{A}+200$ molecules of B_{2}
B. 2 mole A+3 gram-atom of B
C. 100 mole A atoms +100 mole B atoms
D. 5 gram-atom of $A+12.5$ gram molecule of B_{2}

Answer: A::B::C

- Watch Video Solution

45. 27 g of Al will react completely with
A. 24 gm of O_{2}
B. 0.75 moles of O_{2}
C. 16.8 L of O_{2} at $1 \mathrm{~atm}, 273 \mathrm{~K}$
D. $0.75 \mathrm{~N}_{\mathrm{A}}$ molecules of O_{2}

Answer: A::B::C::D

46. 1.5 g of oxygen is produced by heating KCIO_{3}. How much KCI is produced in the reaction?
$2 \mathrm{KCIO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}_{s}+3 \mathrm{O}_{2}(\mathrm{~g})$
A. $4.15 \times 10^{2} \mathrm{~mol}$
B. 4.33 g
C. $3.12 \times 10^{-2} \mathrm{~mol}$
D. 2.33 g

Answer: C::D

- Watch Video Solution

47. When FeCl_{3} is ignited in an atmosphere of pure oxygen, this reaction takes place:
$4 \mathrm{FeCl}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{Cl}_{2}(\mathrm{~g})$
If 3 moles of FeCl_{3} are ignited in the presence of 2 moles of O_{2} gas, which
of the following statements regarding to the given reaction is/are correct?
A. 0.33 mole FeCl_{3} remains unreacted
B. 0.67 mole FeCl_{3} remains unreacted
C. 1.33 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are formed
D. 0.50 moles O_{2} remains unreacted

Answer: A:C

- Watch Video Solution

48. For the following reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{HN}_{3}$
Identify the compostions which will produce same amount of NH_{3}
A. $140 \mathrm{gm} \mathrm{N}_{2}$ and $35 \mathrm{~g} \mathrm{H} \mathrm{H}_{2}$
B. $18 \mathrm{~g} \mathrm{H}_{2}$ and $52 \mathrm{~g} \mathrm{~N}_{2}$
C. Total 20 moles of mixture having N_{2} and H_{2} present in stoichiometric ratio (No limiting reagent)
D. 136 gm of mixture having mass friction of $\mathrm{H}_{2}=6$

Answer: A:C

- View Text Solution

49. When $N_{2}(g)$ and $H_{2}(g)$ are mixed $N_{2} H_{4}(g), \mathrm{NH}_{3}(\mathrm{~g})$ or both may form, depending upon the relative amount of N_{2} and H_{2} taken. If initial mols of $\mathrm{N}_{2}, \mathrm{H}_{2}$ are x, y and final moles of $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}$ are z, v, then the correct options from the following in order of (x, y, z, v) is/are
A. $(2,2,1,0)$
B. $(3,8,1,4)$
C. $(4,9,4,1)$
D. $(0,5,3,0,1)$

D View Text Solution

50. To a container containing 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ further of gram $\mathrm{C}_{2} \mathrm{H}_{6}$ is added and 2.4×10^{24} molecules of gas are then removed. The left ovr gas is burnt in the presence of excess oxygen. Then:
A. 60 gms of $\mathrm{C}_{2} \mathrm{H}_{6}$ are left for combustion
B. volume of CO_{2} at STP produced is 45.4 litre
C. mass of liquid water produced is 54 gram
D. 30 gms of $\mathrm{C}_{2} \mathrm{H}_{6}$ are left for combustion

Answer: B::C::D

51. A piece of plumber's solder weighting 3.0 gm was dissolved in dilute nitric acid, then treated with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. This precipatated the lead as PbSO_{4} which after washing and drying weighted 2.98 gm . The solution was then neutralized to precipatate stannic acid, which was decomposed by heating, yielding 1.27 gm SnO 2 . What is the analysis of the solder?
(Pb=207.2 amu, $\mathrm{Sn}=118.7 \mathrm{amu}$)
A. 66.7 \% Pb, 33.3\% Sn
B. $33.3 \% \mathrm{~Pb}, 1 \mathrm{gm} \mathrm{Sn}$
C. $1 \mathrm{gm} \mathrm{Pb}, 2 \mathrm{gm} \mathrm{Sn}$
D. $2 \mathrm{gm} \mathrm{Pb}, 1 \mathrm{gm} \mathrm{Sn}$

Answer: A: D

- View Text Solution

52. A mixture fo H_{2} and O_{2} having total volume 55 mL is sparked in an Eudiometry tube and contraction of 45 mL is observed after cooling.

What can be composition of reacting mixture?
A. $30 \mathrm{ml} \mathrm{H}_{2}$ and $25 \mathrm{ml} \mathrm{O}_{2}$
B. $10 \mathrm{ml} \mathrm{H}_{2}$ and 45 ml O
C. $40 \mathrm{ml} \mathrm{H}_{2}$ and $15 \mathrm{ml} \mathrm{O}_{2}$
D. $35 \mathrm{ml} \mathrm{H}_{2}$ and 20 ml O

Answer: A::C

- View Text Solution

53. A mixture of $\mathrm{C}_{4} \mathrm{H}_{8}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ was completely burnt in excess of oxygen yielding equal volumes of CO_{2} and steam. Calculate the percentage (by volume) of the compounds in the original mixture:
A. $25 \% \mathrm{C}_{4} \mathrm{H}_{8}$ and $75 \% \mathrm{C}_{2} \mathrm{H}_{4}$
B. $30 \% \mathrm{C}_{4} \mathrm{H}_{8}$ and $70 \% \mathrm{C}_{2} \mathrm{H}_{4}$
C. $75 \% \mathrm{C}_{4} \mathrm{H}_{8}$ and $25 \% \mathrm{C}_{2} \mathrm{H}_{4}$
D. $50 \% \mathrm{C}_{4} \mathrm{H}_{8}$ and $50 \% \mathrm{C}_{2} \mathrm{H}_{4}$

Answer: A::B::C::D

- View Text Solution

54.1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will exactly neutralise:
A. 2 mole of ammonia
B. 1 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$
C. 0.5 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$
D. 2 mole of KOH

Answer: A::B::D

55. An oxide of nitrogen 30.43% nitrogen and its one molecules has mas of $\left(1.527 \times 10^{-22} \mathrm{~g}\right)$. Which of the following statement(s) regarding this oxide is/are true?
A. Its empirical formula is NO
B. Its empirical formula is NO_{2}
C. Its molecular formula is $\mathrm{N}_{2} \mathrm{O}_{4}$
D. Its molecular formula is $\mathrm{N}_{2} \mathrm{O}_{2}$

Answer: B::C

- Watch Video Solution

56. If 27 of carbon is mixed with 88 g of oxygen and is allowed to burn to produce CO_{2}, then:
A. oxygen is the limiting reagent
B. volume of CO_{2} gas produced at STP is 51.075 L
C. C and O combine in amss ratio $3: 8$
D. volume of unreacted O_{2} at STP is 11.35 L

Answer: B::C::D

- Watch Video Solution

57. 0.01 mol TNT was completely decomposed as,

$$
\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s})
$$

TNT
The gases evolved occupied 2.24 L at constant pressure and 273 K in the eudiometer. Select the correct option on the basis of above information.
A. Partial pressure of CO is 0.6 atm in the evolved gas
B. If just sufficient O_{2} si introduced in the container to combust CO and H_{2} completely, then final volume fo gases would be 0.68 L at 1 atm and 273 K
C. If just sufficient O_{2} is introduced in the container to combust CO and H_{2} completely, then fianl volume of gases would be 0.896 L at 1
atm and 273 K
D. If after combustion the mixture of gases at 273 K is passes through $\mathrm{KOH}(\mathrm{aq})$, contraction of 1.344 L would take place

Answer: A::B::D

- View Text Solution

58. The oxygen needed for complete combustion of $4 \mathrm{gm} \mathrm{CH}_{4}$ may be obtained from decomposition of:
A. $\frac{4}{3}$ moles of KCIO_{3} with 25% yield $\left(\mathrm{KCIO}_{3} \rightarrow \mathrm{KCI}+\frac{3}{2} \mathrm{O}_{2}\right)$
B. $50 \mathrm{ml}, 10 \mathrm{mH}_{2} \mathrm{O}_{2}$ solution $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)$
C. 500 gm solution containing 17% (wow) NaNo_{3}

$$
\left(\mathrm{NaNo}_{3} \rightarrow \mathrm{NaNO}_{2}+\frac{1}{2}\right)
$$

D. 410 gm impure sample of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ of 40% purity

$$
\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{CaO}+2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}\right)
$$

D View Text Solution

100%
59. For the reaction $, \mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}, 8.7 \mathrm{gmMnO}_{2}$ is dissolved in 500 ml of HCl solution containing 7.3 gm HCl per litre ($M n=55$)
A. HCl is the limiting reagent.
B. MnO_{2} is the limiting reagent
C. 0.025 moles of MnCl_{2} will form
D. $560 \mathrm{ml} \mathrm{Cl} \mathrm{I}_{2}$ gas will liberate at $0^{\circ} \mathrm{C}$ and 1 atm.

Answer: A::C::D

D View Text Solution

1. The concentrations of soluitons can be expressed in number of ways,
viz : mass fraction of solute (or mass percent), Molar concentration (Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each otehr i.e., knowing one concentration terms for the solution, we can find other concentration terms also. the definition of different cencentration terms are given below:

Molarity : It is number of moles of solute present in one litre of the solution.

Molality : It is the number of moles of solute present in one kg of the solvent.

Mole fraction $=\frac{\text { Mole of solute }}{\text { Moles of solute }+ \text { Moles of solvent }}$
If molality of the solution is given as a, then mole fraction of the solute can be calculated by

Mole Fraction $=\frac{a}{a+\frac{100}{M_{\text {solvent }}}},=\frac{a \times M_{\text {solvent }}}{\left(a \times M_{\text {solvent }}+1000\right) 0}$
where a=molality and $M_{\text {solvent }}=$ Molar mass of solvent We can change :
Mole fraction \Leftrightarrow Molality \Leftrightarrow Molarity
120 gm of solution containing 40% by mass of NaCl are mixed with 200
gm of a solution containing 15% by mass NaCl . Determine the mass percent of sodium chloride in the final solutions.
A. 24.4%
B. 75%
C. 48.8 \%
D. 19.68 \%

Answer: A

- Watch Video Solution

Comprehension\#2

1. The concentrations of soluitons can be expressed in number of ways,
viz : mass fraction of solute (or mass percent), Molar concentration (Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each otehr i.e., knowing one concentration terms for the solution, we can find other
concentration terms also. the definition of different cencentration terms are given below:

Molarity : It is number of moles of solute present in one litre of the solution.

Molality : It is the number of moles of solute present in one kg of the solvent.

Mole fraction $=\frac{\text { Mole of solute }}{\text { Moles of solute }+ \text { Moles of solvent }}$
If molality of the solution is given as a, then mole fraction of the solute
can be calculated by
Mole Fraction $=\frac{a}{a+\frac{100}{M_{\text {solvent }}}},=\frac{a \times M_{\text {solvent }}}{\left(a \times M_{\text {solvent }}+1000\right) 0}$
where a=molality and $M_{\text {solvent }}=$ Molar mass of solvent We can change :
Mole fraction \Leftrightarrow Molality \Leftrightarrow Molarity
What is the molality of the above solution?
A. 4.4 m
B. 5.5 m
C. 24.4 m
D. None of these

Answer: B

- Watch Video Solution

Comprehension\#3

1. The concentrations of soluitons can be expressed in number of ways,
viz : mass fraction of solute (or mass percent), Molar concentration (Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each otehr i.e., knowing one concentration terms for the solution, we can find other concentration terms also. the definition of different cencentration terms are given below:

Molarity : It is number of moles of solute present in one litre of the solution.

Molality : It is the number of moles of solute present in one kg of the solvent.

Mole fraction $=\frac{\text { Mole of solute }}{\text { Moles of solute }+ \text { Moles of solvent }}$

If molality of the solution is given as a, then mole fraction of the solute can be calculated by
Mole Fraction $=\frac{a}{a+\frac{100}{M_{\text {solvent }}}},=\frac{a \times M_{\text {solvent }}}{\left(a \times M_{\text {solvent }}+1000\right) 0}$
where a=molality and $M_{\text {solvent }}=$ Molar mass of solvent We can change :
Mole fraction \Leftrightarrow Molality \Leftrightarrow Molarity
What is the mole fraction of the solute?
A. 0.18
B. 0.75
C. 0.09
D. 0.25

Answer: C

- Watch Video Solution

Comprehension\#4

1. The concentrations of soluitons can be expressed in number of ways,
viz : mass fraction of solute (or mass percent), Molar concentration (Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each otehr i.e., knowing one concentration terms for the solution, we can find other concentration terms also. the definition of different cencentration terms are given below:

Molarity : It is number of moles of solute present in one litre of the solution.

Molality : It is the number of moles of solute present in one kg of the solvent.

Mole fraction $=\frac{\text { Mole of solute }}{\text { Moles of solute }+ \text { Moles of solvent }}$
If molality of the solution is given as a, then mole fraction of the solute can be calculated by
Mole Fraction $=\frac{a}{a+\frac{100}{M_{\text {solvent }}}},=\frac{a \times M_{\text {solvent }}}{\left(a \times M_{\text {solvent }}+1000\right) 0}$
where a=molality and $M_{\text {solvent }}=$ Molar mass of solvent We can change :
Mole fraction \Leftrightarrow Molality \Leftrightarrow Molarity
What is the molarity of solutions if density of solution in $1.6 \mathrm{gm} / \mathrm{ml}$?
A. 5.5 M
B. 6.6 M
C. 2.59 M
D. None of these

Answer: B

D Watch Video Solution

Comprehension\#5

1. The concentrations of soluitons can be expressed in number of ways,
viz : mass fraction of solute (or mass percent), Molar concentration
(Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each otehr i.e., knowing one concentration terms for the solution, we can find other concentration terms also. the definition of different cencentration terms are given below:

Molarity : It is number of moles of solute present in one litre of the solution.

Molality : It is the number of moles of solute present in one kg of the solvent.

Mole fraction $=\frac{\text { Mole of solute }}{\text { Moles of solute }+ \text { Moles of solvent }}$
If molality of the solution is given as a, then mole fraction of the solute can be calculated by

Mole Fraction $=\frac{a}{a+\frac{100}{M_{\text {solvent }}}},=\frac{a \times M_{\text {solvent }}}{\left(a \times M_{\text {solvent }}+1000\right) 0}$
where a=molality and $M_{\text {solvent }}=$ Molar mass of solvent We can change :
Mole fraction \Leftrightarrow Molality \Leftrightarrow Molarity

Percentage (weight/vol) of NaCl persent in the solution is:
A. 24.4 \%
B. 40 \%
C. 39 \%
D. 3.9 \%

Answer: C

Comprehension\#6

1. Equals number of atoms are contained in one gram atomic weight of each element and the same number of molecules are found in one gram molecules weight of any compound . The terms gram atomic weight and gram molecular weight are used to refer to a fixed numer(Avogadro's number 6.022×10^{23}) of particle. the term 'mole' stands for the amount of material which contains these number of particles. If $12 \mathrm{~g} \mathrm{C} C^{12}$ has equal number of atoms as Avogadro's number, what mass of ${ }_{2} \mathrm{He}^{4}$ will contain same number of atoms?
A. 2 g
B. 4 g
C. 6 g
D. 3 g

Answer: B

- Watch Video Solution

Comprehension\#7

1. Equals number of atoms are contained in one gram atomic weight of each element and the same number of molecules are found in one gram molecules weight of any compound . The terms gram atomic weight and gram molecular weight are used to refer to a fixed numer(Avogadro's number 6.022×10^{23}) of particle. the term 'mole' stands for the amount of material which contains these number of particles. What will be the gram atomic weight of Mg if 24 g of $\cdot{ }_{24} \mathrm{Mg}^{24}$ contains 6.022×10^{23} atoms?
A. 12 gm
B. 36 g
C. 24 g
D. 48 g

Answer: C

- Watch Video Solution

Comprehension\#8

1. Equals number of atoms are contained in one gram atomic weight of each element and the same number of molecules are found in one gram molecules weight of any compound. The terms gram atomic weight and gram molecular weight are used to refer to a fixed numer(Avogadro's number 6.022×10^{23}) of particle. the term 'mole' stands for the amount of material which contains these number of particles. Compute gram molecular weight of H_{2} gas if 4 g of H_{2} gas contains 24.09×10^{23} atoms.
A. 4 g
B. 3 g
C. 2 g
D. 1 g

Answer: C

- Watch Video Solution

Comprehension\#9

1. The number of carbon atoms in exactly $12 \mathrm{~g} C^{12}$ is called Avogadro's number, $N_{A}\left(6.022 \times 10^{23}\right)$. One mole is the amount of material which contains Avogradro's number of particle.

These definitions emphasize that the mole refers to a fixed number of $N A^{+}$b Avogadro's number of atoms, electrons to refer to a mole of helium , a mole of electrons, or a mole of $N A^{+}$by Avogadro's number of atoms, electrons or ions respectively. On the other hand, phrases like "one mole of hydrogen" can be ambiguous, and should be restated as "one mole of hydroden atoms" or " one mole fo hydrogen molecules." But it is a matter of common practice among chemists, however, to let the name of the element stand for its mos common form. Thus one mole of O_{2} is frequently referred to as one mole of oxygen, whereas one moles of O is
called one mole of oxygen atoms. Suppose if we take one mole molecules fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ then it contain 2 moles of H atom 1 mole of S atom and 4 moles of O atom. It can also be said that moles of oxygen molecules is $\frac{4}{2}=2$ mole.

According to common practise, if you have Avogadro number of hydrogen molecules, then its mass is equal to :
A. 1 gm
B. 2 g
C. 4 g
D. depends on temperature

Answer: B

- Watch Video Solution

Comprehension\#10

1. The number of carbon atoms in exactly $12 \mathrm{~g} C^{12}$ is called Avogadro's number, $N_{A}\left(6.022 \times 10^{23}\right)$. One mole is the amount of material which contains Avogradro's number of particle.

These definitions emphasize that the mole refers to a fixed number of $N A^{+}$b Avogadro's number of atoms, electrons to refer to a mole of helium, a mole of electrons, or a mole of $N A^{+}$by Avogadro's number of atoms, electrons or ions respectively. On the other hand, phrases like "one mole of hydrogen" can be ambiguous, and should be restated as "one mole of hydroden atoms" or " one mole fo hydrogen molecules." But it is a matter of common practice among chemists, however, to let the name of the element stand for its mos common form. Thus one mole of O_{2} is frequently referred to as one mole of oxygen, whereas one moles of O is called one mole of oxygen atoms. Suppose if we take one mole molecules fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ then it contain 2 moles of H atom 1 mole of S atom and 4 moles of O atom. It can also be said that moles of oxygen molecules is $\frac{4}{2}=2$ mole.

From a container having 64 g Oxygen, 11.35 L oxygen gas at STP and
6.022×10^{23} oxygen atoms are removed. Find the mass fo the oxygen gas left:
A. zero
B. 32 g
C. 16 g
D. none

Answer: B

- Watch Video Solution

Comprehension\#11

1. The number of carbon atoms in exactly $12 \mathrm{~g} C^{12}$ is called Avogadro's number, $N_{A}\left(6.022 \times 10^{23}\right)$. One mole is the amount of material which contains Avogradro's number of particle.

These definitions emphasize that the mole refers to a fixed number of
$N A^{+}$b Avogadro's number of atoms, electrons to refer to a mole of helium , a mole of electrons, or a mole of $N A^{+}$by Avogadro's number of atoms, electrons or ions respectively. On the other hand, phrases like "one mole of hydrogen" can be ambiguous, and should be restated as "one mole of hydroden atoms" or " one mole fo hydrogen molecules." But it is a matter of common practice among chemists, however, to let the name of the element stand for its mos common form. Thus one mole of O_{2} is frequently referred to as one mole of oxygen, whereas one moles of O is called one mole of oxygen atoms. Suppose if we take one mole molecules fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ then it contain 2 moles of H atom 1 mole of S atom and 4 moles of O atom. It can also be said that moles of oxygen molecules is $\frac{4}{2}=2$ mole.

From a mixture of 4 moles $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, 5 moles of $p_{4} \mathrm{O}_{10}$ and 6 moles of $\mathrm{H}_{3} \mathrm{PO}_{3}$, all the phosphourus atoms are removed. Then moles of P_{4} molecules formed from all these atoms are:
A. 8.5
B. 17
C. 34

D. 10

Answer: A

- Watch Video Solution

Comprehension\#12

1. The number of carbon atoms in exactly $12 \mathrm{~g} C^{12}$ is called Avogadro's number, $N_{A}\left(6.022 \times 10^{23}\right)$. One mole is the amount of material which contains Avogradro's number of particle.

These definitions emphasize that the mole refers to a fixed number of $N A^{+}$b Avogadro's number of atoms, electrons to refer to a mole of helium , a mole of electrons, or a mole of $N A^{+}$by Avogadro's number of atoms, electrons or ions respectively. On the other hand, phrases like "one mole of hydrogen" can be ambiguous, and should be restated as "one mole of hydroden atoms" or " one mole fo hydrogen molecules." But it is a matter of common practice among chemists, however, to let the name of the element stand for its mos common form. Thus one mole of O_{2} is
frequently referred to as one mole of oxygen, whereas one moles of O is called one mole of oxygen atoms. Suppose if we take one mole molecules fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ then it contain 2 moles of H atom 1 mole of S atom and 4 moles of O atom. It can also be said that moles of oxygen molecules is $\frac{4}{2}=2$ mole.

If a sample of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ contains 3 moles of oxygen molecules, then fo H -atom present in the sample is :
A. 5
B. 9
C. $\frac{10}{3}$
D. $\frac{20}{3}$

Answer: D

- Watch Video Solution

1. The number of carbon atoms in exactly $12 \mathrm{~g} C^{12}$ is called Avogadro's number, $N_{A}\left(6.022 \times 10^{23}\right)$. One mole is the amount of material which contains Avogradro's number of particle.

These definitions emphasize that the mole refers to a fixed number of
$N A^{+}$b Avogadro's number of atoms, electrons to refer to a mole of helium , a mole of electrons, or a mole of $N A^{+}$by Avogadro's number of atoms, electrons or ions respectively. On the other hand, phrases like "one mole of hydrogen" can be ambiguous, and should be restated as "one mole of hydroden atoms" or " one mole fo hydrogen molecules." But it is a matter of common practice among chemists, however, to let the name of the element stand for its mos common form. Thus one mole of O_{2} is frequently referred to as one mole of oxygen, whereas one moles of O is called one mole of oxygen atoms. Suppose if we take one mole molecules fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ then it contain 2 moles of H atom 1 mole of S atom and 4 moles of O atom. It can also be said that moles of oxygen molecules is $\frac{4}{2}=2$ mole.

Sulphur exists in different allotropic forms like $S_{2} S_{6}^{\prime}$ and S_{8} etc. If equal weight of these three ar taken in separate containers, then the ratio of number of atoms present in them is :
A. $1: 3: 4$
B. 1:1:1
C. $2: 4: 3$
D. 1:1:4

Answer: B

D Watch Video Solution

Comprehension\#14

1. Large quantities of hydrogen are required these days in industry for various purposes. Water is found to be the industry raw material from which hydrogen can be obtained. One of the important methods for the commerical production of hyrogen in Lane's process in which steam is passes over hot iron. Iron decomposes steam with formation of magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and hydrogen.
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$

Iron is regenerated by reducing magnetic oxide with water gas (it is mixture of CO and H_{2} in 1:1 mole ratio).
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \uparrow$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
(Steam recovered)
[equal amount sof magnetic oxide react in steps (ii) and (iii)] Steam so produced is again used in the previous step in which magnitic oxide is produced :
[At.wt. $\Rightarrow \mathrm{Fe}=56$]
How many grams of iron are needed in order to produce 11.35 litre fo H_{2} gas at STP?
A. 56 gm
B. 21 gm
C. 42 gm
D. None of these

Answer: B

- Watch Video Solution

Comprehension\#15

1. Large quantities of hydrogen are required these days in industry for various purposes. Water is found to be the industry raw material from which hydrogen can be obtained. One of the important methods for the commerical production of hyrogen in Lane's process in which steam is passes over hot iron. Iron decomposes steam with formation of magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and hydrogen.

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

(i) steam magnetic oxide

Iron is regenerated by reducing magnetic oxide with water gas (it is mixture of CO and H_{2} in 1:1 mole ratio).
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \uparrow$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
(Steam recovered)
[equal amount sof magnetic oxide react in steps (ii) and (iii)] Steam so produced is again used in the previous step in which magnitic oxide is
produced :
[At.wt. $\Rightarrow \mathrm{Fe}=56$]

How many gram water gas is needed in order to recover all the iron in previous problem?
A. 14 gm
B. 7.5 gm
C. 15 gm
D. None of these

Answer: B

D Watch Video Solution

Comprehension\#16

1. Large quantities of hydrogen are required these days in industry for various purposes. Water is found to be the industry raw material from which hydrogen can be obtained. One of the important methods for the
commerical production of hyrogen in Lane's process in which steam is passes over hot iron. Iron decomposes steam with formation of magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and hydrogen.

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

(i) steam magnetic oxide

Iron is regenerated by reducing magnetic oxide with water gas (it is mixture of CO and H_{2} in 1:1 mole ratio).
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \uparrow$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
(Steam recovered)
[equal amount sof magnetic oxide react in steps (ii) and (iii)] Steam so produced is again used in the previous step in which magnitic oxide is produced :
[At.wt. $\Rightarrow \mathrm{Fe}=56$]
How many grams of steam is consumed in order to produce 11.35 litres H_{2} gas at STP?
A. 9 gm
B. 36 g
C. 18 gm

D. None of these

Answer: A

- Watch Video Solution

Comprehension\#17

1. Large quantities of hydrogen are required these days in industry for various purposes. Water is found to be the industry raw material from which hydrogen can be obtained. One of the important methods for the commerical production of hyrogen in Lane's process in which steam is passes over hot iron. Iron decomposes steam with formation of magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and hydrogen.

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

(i) steam magnetic oxide

Iron is regenerated by reducing magnetic oxide with water gas (it is mixture of CO and H_{2} in 1:1 mole ratio).
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \uparrow$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
(Steam recovered)
[equal amount sof magnetic oxide react in steps (ii) and (iii)] Steam so produced is again used in the previous step in which magnitic oxide is produced :
[At.wt. $\Rightarrow \mathrm{Fe}=56$]
if iron is recovered in (ii) an (iii) with 80% efficiency, then how many gram iron is recovered if initially 56 gm iron is taken?
A. 44.8 gm
B. 80 gm
C. 448 gm
D. 4.48 gm

Answer: A

- Watch Video Solution

1. Large quantities of hydrogen are required these days in industry for various purposes. Water is found to be the industry raw material from which hydrogen can be obtained. One of the important methods for the commerical production of hyrogen in Lane's process in which steam is passes over hot iron. Iron decomposes steam with formation of magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and hydrogen.
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
(i)

$$
\begin{array}{ll}
\text { steam } & \begin{array}{l}
\text { magnetic } \\
\text { oxide }
\end{array}
\end{array}
$$

Iron is regenerated by reducing magnetic oxide with water gas (it is mixture of CO and H_{2} in 1:1 mole ratio).
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \rightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \uparrow$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
(Steam recovered)
[equal amount sof magnetic oxide react in steps (ii) and (iii)] Steam so produced is again used in the previous step in which magnitic oxide is produced :
[At.wt. $\Rightarrow \mathrm{Fe}=56$]
How many litre H_{2} gas is produced in (i) at STP in the above problem?
A. 22.7 litre
B. 30.27 litre
C. 3.027 litre
D. 90.8 litre

Answer: B

- Watch Video Solution

Comprehension\#19

1. Nitric acid is the most important oxyacid formed y nitrogen .lt is one of the major industial chemicl and is widely used. Nitric acid is manufactured by the catalytic oxidation of ammonia in what is known as OSTWALD PROCESS which can be represented by the sequenve of reactions shown below:

$$
\begin{align*}
& \text { Pt/Rh } \\
& 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \xrightarrow{\rightarrow} \text { Catalyst4NO(g)+6H2O(g)} \tag{i}\\
& 1120 \mathrm{~K} \\
& 2 \mathrm{NO}(f)+\mathrm{O}_{2}(g) \xrightarrow{\rightarrow} 2 \mathrm{NO}_{2}(g) \quad \ldots(i i) \tag{ii}\\
& 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g}) \quad \ldots(i i \tag{iii}
\end{align*}
$$

The aqueous nitric acid obtained by this method can be concentrated by distillation to $\sim 68.5 \%$ by weight . Further concentrated to 98% acid can be achieved by dehyration with concentrated sulphuric acid.

85 kg of $\mathrm{NH}_{3}(\mathrm{~g})$ was heated with 320 kg oxygen in the first step and NHO_{3} is prepared according to the above reactions. If the above reactions. If the final solution has volume 500 L , then molarity of HNO_{3} is
:
[Assume NO formed finally is not reused]
A. 2 M
B. 8 M
C. 3.33 M
D. 6.66 M

Answer: D

- Watch Video Solution

1. Nitric acid is the most important oxyacid formed y nitrogen . It is one of the major industial chemicl and is widely used. Nitric acid is manufactured by the catalytic oxidation of ammonia in what is known as OSTWALD PROCESS which can be represented by the sequenve of reactions shown below:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt} / \mathrm{Rh}} \text { Catalyst } 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1120K
$2 \mathrm{NO}(f)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
The aqueous nitric acid obtained by this method can be concentrated by distillation to $\sim 68.5 \%$ by weight . Further concentrated to 98% acid can be achieved by dehyration with concentrated sulphuric acid. If 180 litre of water completely reacts with NO_{2} produced to form nitric acid according ot the above reactions then the volume of air at STP containing 20% of NH_{3} is $:\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{gm} / \mathrm{ml}\right)$
A. $1.56 \times 10^{6} L$
B. $6.81 \times 10^{4} L$
C. $3.40 \times 10^{6} L$

D. none of these

Answer: C

- Watch Video Solution

Comprehension\#21

1. Nitric acid is the most important oxyacid formed y nitrogen .It is one of the major industial chemicl and is widely used. Nitric acid is manufactured by the catalytic oxidation of ammonia in what is known as OSTWALD PROCESS which can be represented by the sequenve of reactions shown below:

$$
\begin{align*}
& 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{P t / R h} \text { Catalyst } 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \stackrel{1120 \mathrm{~K}}{ } \tag{i}\\
& 2 \mathrm{NO}(f)+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\rightarrow} 2 \mathrm{NO}_{2}(\mathrm{~g}) \ldots(\mathrm{ii}) \\
& 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g}) \tag{ii}
\end{align*}
$$

The aqueous nitric acid obtained by this method can be concentrated by distillation to $\sim 68.5 \%$ by weight . Further concentrated to 98% acid can
be achieved by dehyration with concentrated sulphuric acid. If 170 kg of NH_{3} is heated in excess of oxygen then the volume fo $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ produced in 1st reaction at STP si, $\left.\left(\rho_{H_{2}} O=1 \mathrm{gm} / \mathrm{ml}\right)\right)$
A. $340 \times 10^{3} \mathrm{~L}$
B. 270 L
C. $227 \times 10^{3} \mathrm{~L}$
D. 170 L

Answer: B

- Watch Video Solution

Comprehension\#22

1. We know that balancing of a chemical equation is entirely bases on law of conservation of mass. However the concept of Principle of Atom Conservation (POAC) can also be related to law of consevation of mass in
a chemical reaction. So, POAC can also act as a technique for balancing a chemical equation. For example, for a reaction:
$A B C_{3} \rightarrow A B+C_{2}$
On applying POAC for A, B and C and related the equations, we get :
$\frac{n_{A B C_{3}}}{2}=\frac{n_{A B}}{2}=\frac{n_{C_{2}}}{3}$
(n_{X} : number of moles of X)
Thus, the cofficients of $A B C_{3}, \mathrm{AB}$ and C_{2} in the balanced chemical equation will be 2,2 and 3 respectively and the balanced chemical equation can be represented as,
$2 A B C_{3} \rightarrow 2 A B+3 C_{2}$ Which of the following statements jis correct balanced chemical equation,
$p A+q B_{2} \rightarrow r A_{2} B_{5}$
A. $2 p=r$
B. $q=1.25 p$
C. $r=2 q$
D. $q=0.8 p$

Answer: B

(D) Watch Video Solution

Comprehension\#23

1. We know that balancing of a chemical equation is entirely bases on law of conservation of mass. However the concept of Principle of Atom Conservation (POAC) can also be related to law of consevation of mass in a chemical reaction. So, POAC can also act as a technique for balancing a chemical equation. For example, for a reaction:
$A B C_{3} \rightarrow A B+C_{2}$
On applying POAC for A, B and C and related the equations, we get :
$\frac{n_{A B C_{3}}}{2}=\frac{n_{A B}}{2}=\frac{n_{C_{2}}}{3}$
(n_{X} : number of moles of X)
Thus, the cofficients of $A B C_{3}, \mathrm{AB}$ and C_{2} in the balanced chemical equation will be 2,2 and 3 respectively and the balanced chemical equation can be represented as,
$2 A B C_{3} \rightarrow 2 A B+3 C_{2}$
For the unbalanced chemical equation given below, which of the
following statement is correct?

$$
X+Y_{2} \rightarrow X Y_{3}
$$

A. $n_{x}=1.5 n_{y_{2}}$
B. $n_{y_{2}}=n_{X Y_{3}}$
C. $n_{y_{2}}=1.5 n_{x}$
D. $n_{X}=3 n_{X Y_{3}}$

Answer: C

- Watch Video Solution

Comprehension\#24

1. We know that balancing of a chemical equation is entirely bases on law of conservation of mass. However the concept of Principle of Atom

Conservation (POAC) can also be related to law of consevation of mass in a chemical reaction. So, POAC can also act as a technique for balancing a chemical equation. For example, for a reaction:
$A B C_{3} \rightarrow A B+C_{2}$
On applying POAC for A, B and C and related the equations, we get :
$\frac{n_{A B C_{3}}}{2}=\frac{n_{A B}}{2}=\frac{n_{C_{2}}}{3}$
(n_{X} : number of moles of X)
Thus, the cofficients of $A B C_{3}, A B$ and C_{2} in the balanced chemical equation will be 2,2 and 3 respectively and the balanced chemical equation can be represented as,
$2 A B C_{3} \rightarrow 2 A B+3 C_{2}$
If in the above question, the atomic masses of X and Y are 10 and 30 respectively, then the mass of $X Y_{3}$ formed when 120 g of Y_{2} reacts completely with X is:
A. 133.3 g
B. 200 g
C. 266.6 g
D. 400 g

Answer: A

Comprehension\#25

1. A chemist decided to determine the molecular formula of an unknown compound. He collects following informations: (P) Compound contains 2:1

H to O atom (number fo atoms).
(Q) Compound has $40 \% \mathrm{C}$ by mass
(R) Approximate molecular mass of the compound is 178 g .
(S) Compound contains C, H and O only.

What is the \% by mass of oxygen in the compound?
A. 53.33 \%
B. 88.88 \%
C. 33.33 \%
D. None of these

Answer: A

Comprehension\#26

1. A chemist decided to determine the molecular formula of an unknown compound. He collects following informations: (P) Compound contains 2:1

H to O atom (number fo atoms).
(Q) Compound has $40 \% \mathrm{C}$ by mass
(R) Approximate molecular mass of the compound is 178 g .
(S) Compound contains C,H and O only.

What is the empirical formula of the compound?
A. $\mathrm{CH}_{3} \mathrm{O}$
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{3} \mathrm{O}_{2}$

Answer: B

Comprehension\#27

1. A chemist decided to determine the molecular formula of an unknown compound. He collects following informations: (P) Compound contains 2:1

H to O atom (number fo atoms).
(Q) Compound has $40 \% \mathrm{C}$ by mass
(R) Approximate molecular mass of the compound is 178 g .
(S) Compound contains C, H and O only.

Which of the following could be molecular formula of compound?
A. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$
B. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$
C. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{12}$
D. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$

Answer: B

Comprehension\#28

1. Pure carbon was burnt in excess of oxygen. The gaseous products are
$\mathrm{CO}_{2}=60 \mathrm{~mole} \% \mathrm{CO}=15 \mathrm{~mole} \%, \mathrm{O}_{2}=25 \mathrm{~mole} \%$
Find average molar mass of mixture.
A. $38.6 \mathrm{gm} / \mathrm{mole}$
B. $28 \mathrm{gm} / \mathrm{mole}$
C. $46 \mathrm{gm} / \mathrm{mole}$
D. $42 \mathrm{gm} / \mathrm{mole}$

Answer: A

- Watch Video Solution

Comprehension\#29

1. Pure carbon was burnt in excess of oxygen. The gaseous products are $\mathrm{CO}_{2}=60 \mathrm{~mole} \% \mathrm{CO}=15 \mathrm{~mole} \%, \mathrm{O}_{2}=25 \mathrm{~mole} \%$

Calculate moles of O_{2} taken if initially 30 mole of carbon are taken:
A. 27 mole
B. 37 mole
C. 30 mole
D. 47 mole

Answer: B

- Watch Video Solution

Comprehension\#30

1. Pure carbon was burnt in excess of oxygen. The gaseous products are $\mathrm{CO}_{2}=60 \mathrm{~mole} \% \mathrm{CO}=15 \mathrm{~mole} \%, \mathrm{O}_{2}=25 \mathrm{~mole} \%$

In the above gaseous mixture if SO_{2} gas is introduced then which of the following will be correct?
A. Molar mass of mixture will increase
B. Gaseous mixture will become heavier
C. (a) and (b) both are correct.
D. Molar mass remains same for homogenous system

Answer: C

- Watch Video Solution

Comprehension\#31

1. 1300 gm of a solution of urea having molarity equal to 5 m is kept in a large bucket is kept under a tap through which a 1 m urea solution is flowing . Assuming a constant rate of flow of urea solution which is equal to $0.5 \mathrm{gm} / \mathrm{sec}$ answer the question that follow.

Total amount of solution (in gm) finally present in bucket when solution present in bucket have concentration of urea equal to 3 m .
A. 2360 gm
B. 2000 gm
C. 2200 gm
D. 2480 gm

Answer: A

- Watch Video Solution

Comprehension\#32

1. 1300 gm of a solution of urea having molarity equal to 5 m is kept in a large bucket is kept under a tap through which a 1 m urea solution is flowing . Assuming a constant rate of flow of urea solution which is equal to $0.5 \mathrm{gm} / \mathrm{sec}$ answer the question that follow.

Time taken (in seconds) for concentration in the bucket to reach 3 m .
A. 2000 sec
B. 2120 sec
C. 1980 sec
D. 400 sec

Answer: B

- Watch Video Solution

Comprehension\#33

1. 1300 gm of a solution of urea having molarity equal to 5 m is kept in a large bucket is kept under a tap through which a 1 m urea solution is flowing . Assuming a constant rate of flow of urea solution which is equal to $0.5 \mathrm{gm} / \mathrm{sec}$ answer the question that follow.

Calulate approximate amount of water present in the bucket at time $\mathrm{t}=2000 \mathrm{sec}$.
A. 2000 gm
B. 2200 gm
C. 2100 gm
D. 1943 gm

Answer: D

D Watch Video Solution

Comprehension\#34

1. Two different formulas are used in order to represent composition of any miolecule, empirical formula and molecular formula. While the fomer gives an idea of relative ratio of number of atoms, latter gives the exact number of atoms in the molecule.
4.6 gm of an organic compound on complete combustion gave 8.8 gm of $\mathrm{CO}_{2}(\mathrm{~g})$ and 5.4 gm of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ only and no other products. what will be the empirical formula of the hydrocarbon?
A. CH_{3}
B. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{CH}_{2} \mathrm{O}$
D. CH_{2}

Answer: B

- Watch Video Solution

Comprehension\#35

1. Two different formulas are used in order to represent composition of any miolecule, empirical formula and molecular formula. While the fomer gives an idea of relative ratio of number of atoms, latter gives the exact number of atoms in the molecule.

An organic compound contains CN and O . The number of oxygen atom is same as that of nitogen atom which is one third of number of carbon atoms and number of hydrogen atoms is approximately 2.33 times of
carbon atoms. If vapour density of the compound is 73 then molecular formula of the compound will be :
A. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$
C. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
D. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}$

Answer: C

- Watch Video Solution

Comprehension\#36

1. Two different formulas are used in order to represent composition of any miolecule, empirical formula and molecular formula . While the fomer gives an idea of relative ratio of number of atoms, latter gives the exact number of atoms in the molecule.

A 62 gm sample of a substance consist of 2 gm hydrogen , 28 gm nitrogen and remaining oxygen. What will b its empirical formula?
A. NHO_{2}
B. NHO_{4}
C. NHO_{3}
D. NHO_{4}

Answer: B

- Watch Video Solution

Comprehension\#37

1. 6.0 gm of gaseous hydrogen produce $17.6 \mathrm{gm} \mathrm{CO}_{2}$ on complete combustion.

The mass percent of carbon in the hydrogen is :
B. 50 \%
C. 60 \%
D. 80 \%

Answer: D

- Watch Video Solution

Comprehension\#38

1. 6.0 gm of gaseous hydrogen produce $17.6 \mathrm{gm} \mathrm{CO}_{2}$ on complete combustion.

The mass of water formed simultaneously is:
A. 10.8 gm
B. 5.4 gm
C. 21.6 gm
D. 17.6 gm

- Watch Video Solution

Comprehension\#39

1. 6.0 gm of gaseous hydrogen produce $17.6 \mathrm{gm} \mathrm{CO}_{2}$ on complete combustion.

The volume occupied by 0.3 gm of the hydrocarbon is 224 ml at 2 atm and $273^{\circ} \mathrm{C}$. The Hydrocarbon is :
A. CH_{4}
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. $\mathrm{C}_{3} \mathrm{H}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}$

Answer: B

Comprehension\#40

1. A mixture pf $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} occupying 100 ml underwent reaction so as to form $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ and $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})$ as the only products , causing the volume to contract by 60 ml . The remaining mixture was passed through pyrogallol causing a contraction of 10 ml . to the remaining mixture excess H_{2} was added and the above reaction was repeaped, causing a reduction in volume of 10 ml .(No other products are formed)

What is the mole percent of N_{2} in th initial mixture?
A. 30 ml
B. 40 ml
C. 60 ml
D. 80 ml

Answer: A

Comprehension\#41

1. A mixture pf $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} occupying 100 ml underwent reaction so as to form $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ and $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})$ as the only products , causing the volume to contract by 60 ml . The remaining mixture was passed through pyrogallol causing a contraction of 10 ml . to the remaining mixture excess H_{2} was added and the above reaction was repeaped, causing a reduction in volume of 10 ml .(No other products are formed)

What is the volume percent of H_{2} in the initial mixture?
A. 30 ml
B. 40 ml
C. 60 ml
D. 80 ml

Answer: B

Comprehension\#42

1. A mixture pf $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} occupying 100 ml underwent reaction so as to form $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ and $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})$ as the only products , causing the volume to contract by 60 ml . The remaining mixture was passed through pyrogallol causing a contraction of 10 ml . to the remaining mixture excess H_{2} was added and the above reaction was repeaped, causing a reduction in volume of 10 ml .(No other products are formed)

What is the volume of $\mathrm{N}_{20 \mathrm{H}_{2}(\mathrm{~g})}$ formed in this reaction after adding excess of $\mathrm{H}_{2}(\mathrm{~g})$?
A. 20 ml
B. 30 ml
C. 10 ml
D. 40 ml

Answer: C

Comprehension\#43

1. According to the Avogadro's law, equal number of moles of gases occupy the same volume at identical conditions of temperature and pressure. Even if we have a mixture of non-reacting gases then Avogadro's law is still obeyed by assuming mixture as a new gas.

Now let us assume air to consist of 80% by volume of nitrogen $\left(N_{2}\right)$ and 20% by volume of oxygen $\left(\mathrm{O}_{2}\right)$. If air is taken at STP, then its 1 mol would occupy 22.4 L .1 mol of air would contain 0.8 mol of N_{2} and 0.2 mol of O_{2} hence the mole fraction of N_{2} and O_{2} are given by $X_{n_{2}}=0.8, X_{O_{2}}=0.2$

Volume occupied by air at STP containing exactly 11.2 gm f nitrogen:
A. 22.4 L
B. 8.96 L
C. 11.2 L
D. 2.24 L

Answer: C

- Watch Video Solution

Comprehension\#44

1. According to the Avogadro's law, equal number of moles of gases occupy the same volume at identical conditions of temperature and pressure. Even if we have a mixture of non-reacting gases then Avogadro's law is still obeyed by assuming mixture as a new gas.

Now let us assume air to consist of 80% by volume of nitrogen $\left(N_{2}\right)$ and 20% by volume of oxygen $\left(\mathrm{O}_{2}\right)$. If air is taken at STP, then its 1 mol would occupy 22.4 L .1 mol of air would contain 0.8 mol of N_{2} and 0.2 mol of O_{2} hence the mole fraction of N_{2} and O_{2} are given by $X_{n_{2}}=0.8, X_{o_{2}}=0.2$

If air is treated as a solution of O_{2} and N_{2}, then $\% \mathrm{w} / \mathrm{w}$ of oxygen is:
A. $\frac{10}{9}$
B. $\frac{200}{9}$
C. $\frac{700}{9}$
D. $\frac{350}{9}$

Answer: B

- Watch Video Solution

Comprehension\#45

1. According to the Avogadro's law, equal number of moles of gases occupy the same volume at identical conditions of temperature and pressure. Even if we have a mixture of non-reacting gases then Avogadro's law is still obeyed by assuming mixture as a new gas.

Now let us assume air to consist of 80% by volume of nitrogen $\left(N_{2}\right)$ and 20% by volume of oxygen $\left(\mathrm{O}_{2}\right)$. If air is taken at STP, then its 1 mol would occupy 22.4 L .1 mol of air would contain 0.8 mol of N_{2} and 0.2 mol
of O_{2} hence the mole fraction of N_{2} and O_{2} are given by $X_{n_{2}}=0.8, X_{O_{2}}=0.2$

Density of air at STP is:
A. $1 \mathrm{~g} / \mathrm{L}$

9
B. $\overline{7}^{g / L}$
C. $\frac{2}{7} g / L$
D. can't be determined

Answer: B

- Watch Video Solution

Comprehension\#46

1. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic /
molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of Na is 23 and Hg is 200)($1 \mathrm{~F}=96500 \mathrm{C}$). The total number of moles of chlorine gas evolved is
A. 0.5
B. 1.0
C. 2.0
D. 3.0

Answer: B

1. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic / molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of Na is 23 and Hg is 200)($1 \mathrm{~F}=96500 \mathrm{C}$).

If the cathode is an Hg electrode, the maximum weight $(\in g)$ of amalgam formed from this solution is
A. 200
B. 225
C. 400
D. 446

Answer: D

- Watch Video Solution

Comprehension\#48

1. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic / molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of Na is 23 and Hg is 200$)(1 F=96500 C)$. The total charge (coulomb) required for complete electrolysis is
A. 24125
B. 48250
C. 96500
D. 193000

Answer: D

- Watch Video Solution

Comprehension\#49

1. Molality : It is defined as the moles of the solute pressent in 1 kg of the solvent. It is denoted by m .

Molality $(m)=\overline{\text { Number of kilograms of the solvent }}$
let w_{A} grams of the solute of molecular mass m_{A} be present in w_{B} grams of the solvent, then:

Molality $(\mathrm{m})=\frac{w_{A}}{m_{A} \times w_{B}} \times 1000$
Relation between mole fraction and molality:
$X_{A}=\frac{n}{N+n}$ and $X_{B}=\frac{N}{N+n}$
$\frac{X_{A}}{X_{B}}=\frac{n}{N}=\frac{\text { Moles of solute }}{\text { Moles of solvent }}=\frac{w_{A} \times m_{B}}{w_{B} \times m_{A}}$
$\frac{X_{A} \times 1000}{X_{B} \times m_{B}}=\frac{w_{A} \times 1000}{w_{B} \times m_{A}}=m$ or $\frac{X_{A} \times 1000}{\left(1-X_{A}\right) m_{B}}=m$
The molality of 1 litre solution with $y \%$ by $(w / v) \mathrm{pf}_{\mathrm{CaCO}}^{3}$ is 2 . The weight of the solvent present in the solution is 900 g , then value of y is :
[Atomic weight : $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16$]
A. 9
B. 18
C. 27
D. 36

(D) Watch Video Solution

Comprehension\#50

1. Molality : It is defined as the moles of the solute pressent in 1 kg of the solvent. It is denoted by m .

Molality $(m)=\frac{\text { Number of moles of solute }}{\text { Number of kilograms of the solvent }}$
let w_{A} grams of the solute of molecular mass m_{A} be present in w_{B} grams of the solvent, then:

Molality $(\mathrm{m})=\frac{w_{A}}{m_{A} \times w_{B}} \times 1000$
Relation between mole fraction and molality:
$X_{A}=\frac{n}{N+n} \operatorname{and} X_{B}=\frac{N}{N+n}$
$\frac{X_{A}}{X_{B}}=\frac{n}{N}=\frac{\text { Moles of solute }}{\text { Moles of solvent }}=\frac{w_{A} \times m_{B}}{w_{B} \times m_{A}}$
$\frac{X_{A} \times 1000}{X_{B} \times m_{B}}=\frac{w_{A} \times 1000}{w_{B} \times m_{A}}=m$ or $\frac{X_{A} \times 1000}{\left(1-X_{A}\right) m_{B}}=m$
If the mole fraction of a solute is changed from $\frac{1}{4}$ to $\frac{1}{2}$ in the 800 g of solvent then the ratio tof molality will be:
A. $1: 3$
B. $3: 1$
C. $4: 3$
D. $1: 2$

Answer: A

- Watch Video Solution

Comprehension\#51

1. Molality : It is defined as the moles of the solute pressent in 1 kg of the solvent. It is denoted by m .

Molality $(m)=\frac{\text { Number of moles of solute }}{\text { Number of kilograms of the solvent }}$ let w_{A} grams of the solute of molecular mass m_{A} be present in w_{B} grams of the solvent, then:

Molality $(\mathrm{m})=\frac{w_{A}}{m_{A} \times w_{B}} \times 1000$
Relation between mole fraction and molality:
$X_{A}=\frac{n}{N+n}$ and $X_{B}=\frac{N}{N+n}$
$\frac{X_{A}}{X_{B}}=\frac{n}{N}=\frac{\text { Moles of solute }}{\text { Moles of solvent }}=\frac{w_{A} \times m_{B}}{w_{B} \times m_{A}}$
$\frac{X_{A} \times 1000}{X_{B} \times m_{B}}=\frac{w_{A} \times 1000}{w_{B} \times m_{A}}=m$ or $\frac{X_{A} \times 1000}{\left(1-X_{A}\right) m_{B}}=m$
The mole fraction of the solute in the 12 molal solution of CaCo_{3} is :
A. 0.822
B. 0.177
C. 1.77
D. 0.0177

Answer: B

- Watch Video Solution

Comprehension\#52

1. An aqueous solution of urea containing 18 g urea in $1500 \mathrm{~cm}^{3}$ of solution has a density of $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. If the molecular weight of urea is 60 . Then the molality of solution is:
A. 0.2
B. 0.134
C. 0.064
D. 1.2

Answer: B

- Watch Video Solution

Comprehension\#53

1. Molality : It is defined as the moles of the solute pressent in 1 kg of the solvent. It is denoted by m .

Molality $(m)=\frac{\text { Number of moles of solute }}{\text { Number of kilograms of the solvent }}$
let w_{A} grams of the solute of molecular mass m_{A} be present in w_{B} grams of the solvent, then:
$\operatorname{Molality}(\mathrm{m})=\frac{w_{A}}{m_{A} \times w_{B}} \times 1000$
Relation between mole fraction and molality:
$X_{A}=\frac{n}{N+n}$ and $X_{B}=\frac{N}{N+n}$
$\frac{X_{A}}{X_{B}}=\frac{n}{N}=\frac{\text { Moles of solute }}{\text { Moles of solvent }}=\frac{w_{A} \times m_{B}}{w_{B} \times m_{A}}$
$\frac{X_{A} \times 1000}{X_{B} \times m_{B}}=\frac{w_{A} \times 1000}{w_{B} \times m_{A}}=m$ or $\frac{X_{A} \times 1000}{\left(1-X_{A}\right) m_{B}}=m$
What is the quantity of water that should be added to 16 g methonal to make the mole fraction of methonal as 0.25 ?
A. 27 g
B. 12 g
C. 18 g
D. 36 g

Answer: A

1. The following sequence of reaction occurs in commical production of aqueous nitric acid.
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
In an industry, 378 kg of HNO_{3} was required to be produced.
If $\%$ yield of all reactions is 100%, then mass (kg) of NH_{3} required is :[NO produced in reaction -(iii) is not re-used in reaction-(ii)]
A. 306
B. 170
C. 126
D. 153

Answer: D

1. The following sequence of reaction occurs in commical production of aqueous nitric acid.
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
In an industry, 378 kg of HNO_{3} was required to be produced. If $\%$ yield of reaction(i),(ii) and (iii) is $85 \%, 60 \%$ and 50% respectively , then mass (kg) of NH_{3} required is : [NO produced in reaction(iii) is not re-used in reaction-(ii)]
A. 30
B. 600
C. 6000
D. 300

Answer: B

Comprehension\#56

1. The following sequence of reaction occurs in commical production of aqueous nitric acid.
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(a q)+\mathrm{NO}(\mathrm{g})$
In an industry, 378 kg of HNO_{3} was required to be produced. If $\%$ yield of all reactions is 100%, then mass (kg) of NH_{3}, required is :[NO produced is reactionp-(iii) re-used in reaction-(ii)]
A. 153
B. 126
C. 102
D. can't be determined

Answer: C

(D) Watch Video Solution

Comprehension\#57

1. An unknown compound $\mathrm{A}\left(\mathrm{Mn}_{x} \mathrm{O}_{y}\right)$ composed of manganese and oxygen, has 36.7% oxygen by weight. When 8.7 g of A is heated with HCl it liberates Cl_{2} gas as per the following reaction:
$\mathrm{Mn}_{x} \mathrm{O}_{y}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ (unbalanced)
The simplest formula of A is:
A. MnO
B. MnO_{2}
C. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
D. $\mathrm{Mn}_{3} \mathrm{O}_{4}$

Answer: B

1. An unknown compound $\mathrm{A}\left(\mathrm{Mn}_{x} \mathrm{O}_{y}\right)$ composed of manganese and oxygen, has 36.7% oxygen by weight. When 8.7 g of A is heated with HCl it liberates Cl_{2} gas as per the following reaction:
$\mathrm{Mn}_{x} \mathrm{O}_{y}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ (unbalanced)
The volume of Cl_{2} gas at STP obtained when 8.7 gm of compound A is heated with excess of HCl , (assume molecular formula and, empirical formula to be same):
A. 1.135 L
B. 2.27 L
C. 4.54 L
D. 0.567 L

Answer: B

1.632 g of sodium thiosulphate $\left(a_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ reacts with copper sulphate to form cuproc thiosulphate which is reduced by sodium thiosulphate to give cuprous compound which is dissolved in excess of sodium thiosulphate to form a complex compound sodium cuprothisosulphate $\left(\mathrm{Na}_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]\right),(\mathrm{MW}=1033)$
$\mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{CuS}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4} \quad$ [very fast]
$2 \mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$3 \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]$
(Sodium cuprothisoulphate)
In this process , 0.2 mole of sodium cuprothiosulphate is formed . $(\mathrm{O}=16$, $\mathrm{Na}=23, \mathrm{~S}=32$)

Moles of sodium thiosulophate reacted and unreacted after the reaction are respectively,
A. 3 and 2
B. 2 and 3
C. 2.2 and 1.8
D. 1.8 and 2.2

Answer: C

- Watch Video Solution

Comprehension\#60

1.632 g of sodium thiosulphate $\left(a_{2} S_{2} O_{3}\right)$ reacts with copper sulphate to form cuproc thiosulphate which is reduced by sodium thiosulphate to give cuprous compound which is dissolved in excess of sodium thiosulphate to form a complex compound sodium cuprothisosulphate

$$
\begin{aligned}
& \left(\mathrm{Na}_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]\right),(\mathrm{MW}=1033) \\
& \mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{CuS}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \text { [very fast] } \\
& 2 \mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
\end{aligned}
$$

$$
3 \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]
$$

(Sodium cuprothisoulphate)

In this process , 0.2 mole of sodium cuprothiosulphate is formed . $(\mathrm{O}=16$,
$\mathrm{Na}=23, \mathrm{~S}=32$)
It instead of given amount of sodium thiosulphate, 2 moles of sodium thiosulphate along with 3 moles of CuSO_{4} were taken initially. Then, moles of sodiu cuprothiosulphate formed is:
A. 0
B. 1
C. 1.5
D. 2

Answer: A

- Watch Video Solution

1. 81 gm mixture of $\mathrm{mgCO}_{3}(\mathrm{~s})$ and $\mathrm{NH}_{3} \mathrm{CO}_{3}(\mathrm{~s})$ is heated to constant mass.

If vapour density of gaseous mixture evolved was found to be $\frac{61}{4}$ then Given that:
$\mathrm{MgCo}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}_{s}+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
Mole \% of MgCo_{3} in original sample:
A. 0.5
B. 0.6
C. 0.75
D. None of these

Answer: A

- Watch Video Solution

Comprehension\#62

1. 81 gm mixture of $\mathrm{mgCO}_{3}(\mathrm{~s})$ and $\mathrm{NH}_{3} \mathrm{CO}_{3}(\mathrm{~s})$ is heated to constant mass. If vapour density of gaseous mixture evolved was found to be $\frac{61}{4}$ then Given that:
$\mathrm{MgCo}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}_{s}+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ ItBrgt Volume (in litreO of the total gases produced at 1 atm and 273 K :
A. 22.4
B. 44.8
C. 179.2
D. 896

Answer: B

- Watch Video Solution

Comprehension\#63

1. If above gaseous mixture at 273 K is passed through KOH solution , contraction in volume (in litre) will be (assume KOH solution absorb CO_{2} gas completely):
A. 11.2
B. 22.4
C. 44.8
D. 89.6

Answer: B

- Watch Video Solution

Comprehension\#64

1. Air sample from an industrial town, heavily polluted by CO_{2} was collected and analyzed . In one anaylsis , 56L of air measured at 1 atm and 273 K was passed through a 250 mL of 0.025 M NaOH solution, where
$\mathrm{CO}_{2}(\mathrm{~g})$ was absorbed completely. 25 mL of the above solution was then treated with excess of BaCl_{2} solution where all the carbonate was precipitated as $\mathrm{BaCo}_{3}(\mathrm{~s})$. The solution was filtered off and the filtrate required 25 mL of a 0.005 MHCl solution for neutralization. ppm strenght of $\mathrm{CO}_{2}(\mathrm{~g})$, volume by volume i.e., mL of CO_{2} per $10^{6} \mathrm{~mL}$ of air was :
A. 560
B. 5600
C. 100
D. 1000

Answer: D

- Watch Video Solution

1. Air sample from an industrial town, heavily polluted by CO_{2} was collected and analyzed . In one anaylsis, 56L of air measured at 1 atm and 273 K was passed through a 250 mL of 0.025 M NaOH solution, where $\mathrm{CO}_{2}(\mathrm{~g})$ was absorbed completely. 25 mL of the above solution was then treated with excess of BaCl_{2} solution where all the carbonate was precipitated as $\mathrm{BaCo}_{3}(\mathrm{~s})$. The solution was filtered off and the filtrate required 25 mL of a 0.005 MHCl solution for neutralization.

Weight (in milligrams) of precipitate $\mathrm{BaCO}_{3}(s)$ obtained from the 25 ml of test solution was:
[Atomic weight : $\mathrm{Ba}=137, \mathrm{C}=12, \mathrm{O}=16$]
A. 27.58
B. 275.8
C. 492.5
D. 49.25

Answer: D

Comprehension\#66

1. Air sample from an industrial town, heavily polluted by CO_{2} was collected and analyzed . In one anaylsis, 56L of air measured at 1 atm and 273 K was passed through a 250 mL of 0.025 M NaOH solution, where $\mathrm{CO}_{2}(\mathrm{~g})$ was absorbed completely. 25 mL of the above solution was then treated with excess of BaCl_{2} solution where all the carbonate was precipitated as $\mathrm{BaCo}_{3}(\mathrm{~s})$. The solution was filtered off and the filtrate required 25 mL of a 0.005 MHCl solution for neutralization.

Fraction of original NaOH (by mole) that reached with CO_{2} was:
A. 0.2
B. 0.4
C. 0.6
D. 0.8

Answer: D

Comprehension\#67

1. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of 45.4 V at STP . In a hospital of Kota, patient under artifical respiration take s200ml O_{2} per min at 1 atm and 273 K and a cylinder last for 2.8 hours. After that it cannot be used for respiration though it still contains $\mathrm{H}_{2} \mathrm{O}_{2}$.
[Assume volume of solution and rate of decomposition remain constant] Initial moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a cylinder are:
A. 12
B. 16
C. 8
D. 24

Answer: A

Comprehension\#68

1. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of 45.4 V at STP . In a hospital of Kota, patient under artifical respiration take s $200 \mathrm{ml} \mathrm{O}_{2}$ per min at 1 atm and 273 K and a cylinder last for 2.8 hours. After that it cannot be used for respiration though it still contains $\mathrm{H}_{2} \mathrm{O}_{2}$.
[Assume volume of solution and rate of decomposition remain constant] Volume of oxygen used for respiration is :
A. 11.2 L
B. 22.4 L
C. 33.6 L
D. 5.6 L

Answer: C

1. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of 45.4 V at STP. In a hospital of Kota, patient under artifical respiration take s200ml O_{2} per min at 1 atm and 273 K and a cylinder last for 2.8 hours. After that it cannot be used for respiration though it still contains $\mathrm{H}_{2} \mathrm{O}_{2}$.
[Assume volume of solution and rate of decomposition remain constant]
Volume strenght of $\mathrm{H}_{2} \mathrm{O}_{2}$ left in solution is:
A. 11.35 V
B. 22.7 V
C. 5.67 V
D. 34.05 V

Answer: D

- Watch Video Solution

1. For the given series of reaction,
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ If 20 ml of NH_{3} is mixed with 100 ml of O_{2}. Volume contraction at the completion of above reaction is:
A. 20 ml
B. 85 ml
C. 35 ml
D. 100 ml

Answer: C

- Watch Video Solution

Comprehension\#71

1. For the given series of reaction,
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
To obtain maximum mass of NO_{2} from a given mass of a mixture of NH_{3} and O_{2} the ratio of mass of NH_{3} ot O_{2} should be:
A. $\frac{4}{7}$
B. $\frac{17}{56}$
C. $\frac{17}{40}$
D. none of these

Answer: B

- Watch Video Solution

Comprehension\#72

1. For the given series of reaction,
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Total volume of O_{2} used if $20 \mathrm{ml} \mathrm{NH}_{3}$ is mixed with $100 \mathrm{ml} \mathrm{O}_{2}$ is :
A. 40
B. 60
C. 35
D. none of these

Answer: C

- Watch Video Solution

Comprehension\#73

1. Similar to \% labelling of oleum ,a mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$ is labelled as $(100+\mathrm{x}) \%$ where x is maximum mass of water which can reacts
with $P_{4} O_{6}$ present in 100 gm mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$
$\mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$
If such a mixture is labelled as 127%, then mass of free $P_{4} \mathrm{O}_{6}$ in given 100 g mixture is :
A. 45 gm
B. 55 gm
C. 71 gm
D. 58 gm

Answer: B

- Watch Video Solution

Comprehension\#74

1. Similar to \% labelling of oleum ,a mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$ is labelled as $(100+x) \%$ where x is maximum mass of water which can reacts with $P_{4} O_{6}$ present in 100 gm mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$

$$
\mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}
$$

For such a mixture of $P_{4} \mathrm{O}_{6}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$ labelled as $(100+\mathrm{x}) \%$. Value of x can lie in range of (maximum and minimum) :
A. $0<x<22.5$
B. $0<x<49.09$
C. $0<x<59.65$
D. $0<x<34.66$

Answer: B

- Watch Video Solution

Comprehension\#75

1. Similar to \% labelling of oleum ,a mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$ is labelled as $(100+\mathrm{x}) \%$ where x is maximum mass of water which can reacts with $P_{4} O_{6}$ present in 100 gm mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$

$$
\mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}
$$

$\frac{100}{3}$ gm mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$ (labelled as 123%) is mixed with 50 L of $\mathrm{H}_{2} \mathrm{O}$ and resulting solution (assuming volume change) is mixed with 2 M NaOH solution. Volume of NaOH required for complete neutralisationn is:
A. 250 ml
B. 750 ml
C. 200 ml
D. 500 ml

Answer: D

- Watch Video Solution

Comprehension\#76

1. Two substance $A_{2}(g)$ and $B_{2}(g)$ are allowed to react to form either of
$A_{2} B_{2}(I), A_{2} B_{4}(g)$ or both depending on relative amount.

Answer the following the following question, if $75 \mathrm{~g} A_{2}$ and $200 \mathrm{~g} B_{2}$ are mixed and no reactant is left.
[Given :At mass of $\mathrm{A}=25, \mathrm{~B}=50$]
What is the volume of all the gases present in the mixture after completion of reaction at 760 mm of Hg and $273^{\circ} \mathrm{C}$?
A. 67.2 L
B. 44.8 L
C. 22.4 L
D. 11.2 L

Answer: C

- Watch Video Solution

Comprehension\#77

1. Two substance $A_{2}(g)$ and $B_{2}(g)$ are allowed to react to form either of $A_{2} B_{2}(I), A_{2} B_{4}(g)$ or both depending on relative amount.

Answer the following the following question, if $75 \mathrm{~g} A_{2}$ and $200 \mathrm{~g} B_{2}$ are mixed and no reactant is left.
[Given :At mass of $\mathrm{A}=25, \mathrm{~B}=50$]
Now $A_{2} B_{4}$ is transferred to another container completey . At high temperature it is completely dissociated in its gaseous elements A_{2} and B_{2}. Find average molecular weight of gaseous mixture:
A. $\frac{125}{3}$
B. $\frac{250}{3}$
C. 125
D. 250

Answer: B

- Watch Video Solution

1. 24 gm pure sample of magnesium is burnt in air to form magnesium oxide and magnesium nitride. When products are treated with excess of $\mathrm{H}_{2} \mathrm{O}, 3.4 \mathrm{gm}$ of gaseous NH_{3} is generated according to given reactions.
$\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$
$\mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$
Calculate the amount of magnesium oxide (in gm) in products.
A. 28
B. 20
C. 16.8
D. 32

Answer: A

- Watch Video Solution

1. 24 gm pure sample of magnesium is burnt in air to form magnesium oxide and magnesium nitride. When products are treated with excess of $\mathrm{H}_{2} \mathrm{O}, 3.4 \mathrm{gm}$ of gaseous NH_{3} is generated according to given reactions.
$\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$
$\mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$
Calculate the amount of $\mathrm{Mg}(\mathrm{OH})_{2}$ (in gm) produced in above reaction.
A. 11.6
B. 17.4
C. 23.2
D. 15.8

Answer: B

- Watch Video Solution

1. Consider following vessel of given dimensions

Cubical vessel is filled completely with $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution , whereas spherical and cylindrical vessels are empty (Tale $\pi=3$) (Atomic mass of Br =80)

Total centent of cubical vessel is placed in cylindrical vessel and it is further filled completely with $1 \mathrm{M} \mathrm{BaCl} l_{2}$ solution. Molarity of SO_{4}^{2-} ions in aqueous solution will be :
A. 1 M
B. 0 M
C. 0.66 M
D. 0.33 M

Answer: B

Comprehension\#81

1. Consider following vessel of given dimensions

Cubical vessel is filled completely with $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution , whereas spherical and cylindrical vessels are empty (Tale $\pi=3$) (Atomic mass of Br =80)

The acid left in cylindrical container and its molarity will be :
A. $\mathrm{H}_{2} \mathrm{SO}_{4}, 2 \mathrm{M}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}, \frac{2 M}{3}$
C. $H C l, \frac{2 M}{3}$
D. $H C l, \frac{4}{3} M$

Answer: D

D View Text Solution

Comprehension\#82

1. Consider following vessel of given dimensions

Cubical vessel is filled completely with $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution , whereas spherical and cylindrical vessels are empty (Tale $\pi=3$) (Atomic mass of Br =80)

Now total content of cuylindrical container is placed in a spherical container and if it is further filled completely with $32.4 \% \mathrm{w} / \mathrm{v} \mathrm{HBr}$ solution. Molarity of H^{+}in final solution will be:
A. $\frac{7}{4} \mathrm{M}$
B. 2 M
C. $\frac{3}{2} \mathrm{M}$

5
D. $\frac{-M}{2}$

Answer: B

- View Text Solution

Comprehension\#83

1. Mr. Rao owns a famous beauty parlour . For bleaching of hair, renowned actress katrina kaif enters parlour but, she was astonished to find a trainee hair dresser. She realised that hair dresser is inefficient in his job and unsure which amound the four bottles is to be used for bleaching She was shown four bottles containing 500 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution each.

56.75 V

6 M

34% w/v

(34/5) \% w/w

$$
\left(d_{\text {mol }}=1.0 \mathrm{~g} / \mathrm{ml}\right)
$$

Katrina was further told that:
(a) $\mathrm{H}_{2} \mathrm{O}_{2}$ solution are used for bleaching of hair.
(b) only one complete bottle to be used per person.
(c) requirement of oxygen for a good bleach is 10% by mass of hair.

Knowing mass of her hair to be 480 gm, help Katrina to find which bottle will be just sufficient for her?
A. Bottle B
B. Bottle A
C. Bottle D
D. Bottle C

Answer: A

1. Mr. Rao owns a famous beauty parlour . For bleaching of hair, renowned actress katrina kaif enters parlour but, she was astonished to find a trainee hair dresser. She realised that hair dresser is inefficient in his job and unsure which amound the four bottles is to be used for bleaching . She was shown four bottles containing 500 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution each.

56.75 V

6 M

34% w/v

(34/5) \% w/w

$$
\left(d_{\text {sel }}=1.0 \mathrm{~g} / \mathrm{ml}\right)
$$

Katrina was further told that:
(a) $\mathrm{H}_{2} \mathrm{O}_{2}$ solution are used for bleaching of hair.
(b) only one complete bottle to be used per person.
(c) requirement of oxygen for a good bleach is 10% by mass of hair.

Which other combination of two bottles can provide exact amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ for bleaching, if half of the amount of the solution in two bottle choosen are mixed?
A. A and B
B. C and D
C. B and C
D. A and D

Answer: B

- View Text Solution

Comprehension\#85

1. 2.7 gm of Al is heated with 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}(29.4 \% \mathrm{w} / \mathrm{w}$ density 1 $\mathrm{gm} / \mathrm{mL}$) following reaction takes place:
$\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
The volume of H_{2} gas evolved at 273 k and 1 atm:
A. 3.36 L
B. 2.24 L
C. 4.48 L
D. 11.2 L

Answer: A

- Watch Video Solution

Comprehension\#86

1. 2.7 gm of Al is heated with 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}(29.4 \% \mathrm{w} / \mathrm{w}$ density 1 $\mathrm{gm} / \mathrm{mL}$) following reaction takes place:
$\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
The hydrogen gas obtained in the reaction is mixed with 1.2×10^{24} molecules of O_{2}. The molecular weight of gaseous mixture is :(Assuming gases are not reacting $N_{0}=6 \times 10^{23}$)
A. 29.9
B. 30.6
C. 17
D. None of these

Answer: A

- Watch Video Solution

Comprehension\#87

1.9×10^{22} atoms of Ar and n moles of O_{2} are kept in a vessel of capacity
5 L at 1 atm and $27^{\circ} \mathrm{C}$.
(Consider $N_{A}=6 \times 10^{23}, R=0.0821 \mathrm{Latmmol}^{-1} K^{-1}$):
Find the mass of O_{2} in vessel:
A. 17 gm
B. 3.4 gm
C. 1.7 gm
D. 34 gm

(D) Watch Video Solution

Comprehension\#88

1.9×10^{22} atoms of Ar and n moles of O_{2} are kept in a vessel of capacity 5 L at 1 atm and $27^{\circ} \mathrm{C}$.
(Consider $N_{A}=6 \times 10^{23}, R=0.0821$ Latmmol $\left.^{-1} K^{-1}\right)$:
If all the O_{2} in vessel, then:
A. moles of gas remain same
B. molecules in vessel remain same
C. pressure in vessel remain same
D. total atoms in vessel remain same

Answer: D

- Watch Video Solution

1. similar to \% labelling of oleum ,a mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$ is labelled as $(100+\mathrm{x}) \%$ where x is maximum mass of water which can reacts with $P_{4} O_{6}$ present in 100 gm mixture of $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$
$\mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{H}_{3}$
A. 1.25 atm
B. 2.23 atm
C. 0.25 atm
D. None of the above

Answer: A

- View Text Solution

1. Estimation of halogens:

Carius method: A known mass of compound is heated with conc. HNO_{3} in the pressure of AgNO_{3} contained in a hard glass tube known as Carius tube in a furance. C and H are oxidised to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The halogen forms the corresponding AgX . It si filtered m dried and weighted. Extimation of sulphur: A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ in the presence of BaCl_{2} solution in Carius tube. Sulphur is oxidised to $\mathrm{H}_{2} \mathrm{SO}_{4}$ and percipipated as BaSO_{4}. It is filtered, dried and weighed.

Percentage of S
$=\frac{\text { Atomic mass of } \mathrm{S}}{\text { Molecular mas of } \mathrm{BaSO}_{4}} \times \frac{\text { Mass of } \mathrm{BaSO}_{4} \times 100}{\text { Mass of compound }}$
0.15 gm of an organic compound gave 0.12 gm of silver bromide by the Carius method. Find the percentage of bromine in the compound.
A. 34
B. 40
C. 17
D. 68

Answer: A

- Watch Video Solution

Comprehension\#91

1. Estimation of halogens:

Carius method: A known mass of compound is heated with conc. HNO_{3} in the pressure of AgNO_{3} contained in a hard glass tube known as Carius tube in a furance. C and H are oxidised to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The halogen forms the corresponding AgX. It si filtered m dried and weighted Extimation of sulphur: A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ in the presence of BaCl_{2} solution in Carius tube. Sulphur is oxidised to $\mathrm{H}_{2} \mathrm{SO}_{4}$ and percipipated as BaSO_{4}. It is filtered, dried and weighed.

Percentage of S
$=\frac{\text { Atomic mass of } \mathrm{S}}{\text { Molecular mas of } \mathrm{BaSO}_{4}} \times \frac{{\mathrm{Mass} \mathrm{of} \mathrm{BaSO}_{4} \times 100}_{\text {Mass of compound }}^{\text {M }} \text {. }}{\text { Man }}$
0.2595 gm of an organic substance when treated by Carius method gave 0.35 gm of BaSo_{4}. Calculate the percentage of sulphur in the compound.
A. 9
B. 30.4
C. 18.52
D. 40.52

Answer: C

- Watch Video Solution

Comprehension\#92

1. Estimation of phosphorous:

Second method: A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right.$ in Carius tube which converts phosphorous to $\mathrm{H}_{3} \mathrm{PO}_{4}$. Magnesia mixture $\left(\mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{Cl}\right)$ is then added, which
gives the percipate of magnesium ammonium phosphate $\left(\mathrm{MgNH}_{4} \cdot \mathrm{PO}_{4}\right)$ which on heating gives magnesium pyrophosphate $\left(\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)$, which is weighted.

Percentage of P

$$
=\frac{\text { Atomic mass of } \mathrm{P}}{\text { Molecular mass of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \times \frac{\text { Molecular mass of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \times 100}{\text { Mass of compound }}=\frac{62}{222} \times
$$

0.12 gm of and organic compound containing phosphorus gave 0.22 gm of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by the usual analysis. Calculate the percentage of phosphorus in the compound.
A. 25
B. 9.25
C. 801
D. 51.20

Answer: D

- Watch Video Solution

1. Estimation of phosphorous:

Second method: A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right.$ in Carius tube which converts phosphorous to $\mathrm{H}_{3} \mathrm{PO}_{4}$. Magnesia mixture $\left(\mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{Cl}\right)$ is then added, which gives the percipate of magnesium ammonium phosphate $\left(\mathrm{MgNH}_{4} . \mathrm{PO}_{4}\right)$ which on heating gives magnesium pyrophosphate $\left(\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)$, which is weighted.

Percentage of P

$$
=\frac{\text { Atomic mass of } \mathrm{P}}{\text { Molecular mass of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \times \frac{\text { Molecular mass of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \times 100}{\text { Mass of compound }}=\frac{62}{222} \times
$$

An organic compound has 6.2% of phosphorus .In the reaction sequence, all phosphorous is converted to $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Find wt. of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ formed
A. 2.22
B. 10.2
C. 15
D. 20

- Watch Video Solution

Comprehension\#94

1. Estimation of Nitrogen: There are two methods for the estimation of nitrogen (1) Dumas method and (2) Kjedahl's method.
(1) Duma's method: A known mass of compound is heated with copper oxide (CuO) in an atmosphere of CO_{2}, which gives free nitrogen along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z}+\left(2 x+\frac{y}{2}\right) \mathrm{CuO} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2}\left(\mathrm{H}_{2} \mathrm{O}\right)+\frac{z}{2}+\left(2 x+\frac{y}{2}\right) \mathrm{Cu}$.
The gaseous mixture is passed over a heated copper gauze which converts traces of nitrogen oxides formed of N_{2}. The gaseous mixture is collected over an aqueous solution of KOH which absorbs CO_{2} and nitrogen is collected in the upper part of the graduated tube.
(2) kjeldahl's method: A known mass of organic compound (0.5 gm) is mixed with $\mathrm{K}_{2} \mathrm{SO}_{4}(10 \mathrm{gm})$ and $\mathrm{CuSO}_{4}(1.0 \mathrm{gm})$ or a drop of mercury (Hg) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{ml})$, and heated in Kjeldahl's flask. CuSO_{4} or Hg acts as a catalyst, while $\mathrm{K}_{2} \mathrm{SO}_{4}$ raises the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The
nitrogen in the organic compound is quantitatively converted to ammonium sulphate . The resulting mixture is then distilled with excess of NaOH solution and the NH_{3} evolved is passes into a known but excess volume of standard HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$. The acid left unused is estimated by titration with some standard alkali . The amound of acid used against NH_{3} can thus be known and from this the percentage of nitogen is calculated.
conc.
(a) $\mathrm{C}+\mathrm{H}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
conc.
(b) $\mathrm{N} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(3) This method is not applicable to compounds containing N in nitro and azo groups,and N persent in the ring (e.g., pyridine as N of these conpounds does not change to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (ammonium sulphate) under these reaction condition.
0.30 gm of an organic compound gave 50 ml of nitrogen collected at 300 K and 715 mm pressure in water or Duma's method. Calculate the percentage of nitrogen in the compound . (Vapour pressure of aqueous tension of water at 300 k is 15 mm)
A. 10.2
B. 17.46
C. 24
D. 34

Answer: B

D Watch Video Solution

Comprehension\#95

1. Estimation of Nitrogen: There are two methods for the estimation of nitrogen (1) Dumas method and (2) Kjedahl's method.
(1) Duma's method: A known mass of compound is heated with copper oxide (CuO) in an atmosphere of CO_{2}, which gives free nitrogen along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z}+\left(2 x+\frac{y}{2}\right) \mathrm{CuO} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2}\left(\mathrm{H}_{2} \mathrm{O}\right)+\frac{z}{2}+\left(2 x+\frac{y}{2}\right) \mathrm{Cu}$.
The gaseous mixture is passed over a heated copper gauze which
converts traces of nitrogen oxides formed of N_{2}. The gaseous mixture is collected over an aqueous solution of KOH which absorbs CO_{2} and nitrogen is collected in the upper part of the graduated tube.
(2) kjeldahl's method: A known mass of organic compound (0.5 gm) is mixed with $\mathrm{K}_{2} \mathrm{SO}_{4}(10 \mathrm{gm})$ and $\mathrm{CuSO}_{4}(1.0 \mathrm{gm})$ or a drop of mercury (Hg) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{ml})$, and heated in Kjeldahl's flask. CuSO_{4} or Hg acts as a catalyst, while $\mathrm{K}_{2} \mathrm{SO}_{4}$ raises the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The nitrogen in the organic compound is quantitatively converted to ammonium sulphate. The resulting mixture is then distilled with excess of NaOH solution and the NH_{3} evolved is passes into a known but excess volume of standard HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$. The acid left unused is estimated by titration with some standard alkali . The amound of acid used against NH_{3} can thus be known and from this the percentage of nitogen is calculated.
conc.
(a) $\mathrm{C}+\mathrm{H}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
conc.
(b) $\mathrm{N} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(3) This method is not applicable to compounds containing N in nitro and
azo groups,and N persent in the ring (e.g., pyridine as N of these conpounds does not change to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (ammonium sulphate) under these reaction condition.
0.50 gm of an organic compound was treated according to Kjedahl's method. The ammonia evolved was absorbed in 50 ml of $\frac{M}{2} \mathrm{NaOH}$ solution. Find the percentage of nitrogen in the compound.
A. 50
B. 56
C. 66
D. 40

Answer: B

- Watch Video Solution

Comprehension\#96

1. Estimation of Nitrogen: There are two methods for the estimation of nitrogen (1) Dumas method and (2) Kjedahl's method.
(1) Duma's method: A known mass of compound is heated with copper oxide (CuO) in an atmosphere of CO_{2}, which gives free nitrogen along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z}+\left(2 x+\frac{y}{2}\right) \mathrm{CuO} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2}\left(\mathrm{H}_{2} \mathrm{O}\right)+\frac{z}{2}+\left(2 x+\frac{y}{2}\right) \mathrm{Cu}$.
The gaseous mixture is passed over a heated copper gauze which converts traces of nitrogen oxides formed of N_{2}. The gaseous mixture is collected over an aqueous solution of KOH which absorbs CO_{2} and nitrogen is collected in the upper part of the graduated tube.
(2) kjeldahl's method: A known mass of organic compound (0.5 gm) is mixed with $\mathrm{K}_{2} \mathrm{SO}_{4}(10 \mathrm{gm})$ and $\mathrm{CuSO}_{4}(1.0 \mathrm{gm})$ or a drop of mercury (Hg) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{ml})$, and heated in Kjeldahl's flask. CuSO_{4} or Hg acts as a catalyst, while $\mathrm{K}_{2} \mathrm{SO}_{4}$ raises the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The nitrogen in the organic compound is quantitatively converted to ammonium sulphate. The resulting mixture is then distilled with excess of NaOH solution and the NH_{3} evolved is passes into a known but excess volume of standard HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$. The acid left unused is estimated by
titration with some standard alkali. The amound of acid used against NH_{3} can thus be known and from this the percentage of nitogen is calculated.
conc.
(a) $\mathrm{C}+\mathrm{H}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
conc.
(b) $\mathrm{N} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(3) This method is not applicable to compounds containing N in nitro and azo groups,and N persent in the ring (e.g., pyridine as N of these conpounds does not change to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (ammonium sulphate) under these reaction condition.
0.4 gm of an organic compound was treated according to Kjeldahl's method .The ammonia evloved was absorbed in 50 ml of $0.5 \mathrm{MH}_{3} \mathrm{PO}_{3}$. The residual acid required 30 ml of $0.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$. Find the percentage of N_{2} in the compound.
A. 20
B. 50
C. 70
D. 90

Answer: C

- Watch Video Solution

Comprehension\#97

1. Estimation of Nitrogen: There are two methods for the estimation of nitrogen (1) Dumas method and (2) Kjedahl's method.
(1) Duma's method: A known mass of compound is heated with copper oxide (CuO) in an atmosphere of CO_{2}, which gives free nitrogen along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z}+\left(2 x+\frac{y}{2}\right) \mathrm{CuO} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2}\left(\mathrm{H}_{2} \mathrm{O}\right)+\frac{z}{2}+\left(2 x+\frac{y}{2}\right) \mathrm{Cu}$.
The gaseous mixture is passed over a heated copper gauze which converts traces of nitrogen oxides formed of N_{2}. The gaseous mixture is collected over an aqueous solution of KOH which absorbs CO_{2} and nitrogen is collected in the upper part of the graduated tube.
(2) kjeldahl's method: A known mass of organic compound (0.5 gm) is mixed with $\mathrm{K}_{2} \mathrm{SO}_{4}(10 \mathrm{gm})$ and $\mathrm{CuSO}_{4}(1.0 \mathrm{gm})$ or a drop of mercury (Hg) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{ml})$, and heated in Kjeldahl's flask. CuSO_{4} or Hg acts as a catalyst, while $K_{2} \mathrm{SO}_{4}$ raises the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The nitrogen in the organic compound is quantitatively converted to ammonium sulphate. The resulting mixture is then distilled with excess of NaOH solution and the NH_{3} evolved is passes into a known but excess volume of standard HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$. The acid left unused is estimated by titration with some standard alkali . The amound of acid used against NH_{3} can thus be known and from this the percentage of nitogen is calculated.
conc.
(a) $\mathrm{C}+\mathrm{H}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
conc.
(b) $\mathrm{N} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(3) This method is not applicable to compounds containing N in nitro and
azo groups,and N persent in the ring (e.g., pyridine as N of these conpounds does not change to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (ammonium sulphate) under these reaction condition.
0.002 gm of an organic compound was treated according to Kjeldahl's method $.0 .2 \times 10^{-4} \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was required to neutralise NH_{3}. Calculated the percentage of N .
A. 50
B. 28
C. 70
D. 4

Answer: B

- Watch Video Solution

Comprehension\#98

1. FeSO_{4} undergoes decomposition as
$2 \mathrm{FeSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})$
At 1 atm 273 K . If (7.6 gm) FeSO_{4} so taken then:
The average molar mass of the gaseous mixture,
A. 22.4 L
B. 11.2 L
C. 1.12 L
D. 2.24 L

Answer: C

- Watch Video Solution

Comprehension\#99

1. FeSO_{4} undergoes decomposition as
$2 \mathrm{FeDO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})$
At 1 atm 273 K . If (7.6 gm) FeSO_{4} so taken then:
The average molar mass of the gaseous mixture,
A. 72
B. 36
C. 48
D. 60

Answer: A

- Watch Video Solution

Comprehension\#100

1.8 mole of a mixture of $\mathrm{N}_{2}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a mean molecular mass of 378 $\frac{37}{8}$. On heating to a temperature at which $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociated completely $\left(\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}\right)$, the mean molecular mass become $\frac{378}{9}$.

The ratio of number of moles of $\mathrm{N}_{2}: \mathrm{NO}_{2}: \mathrm{N}_{2} \mathrm{O}_{4}$ in original mixture is :
A. 3:4:1
B. 2:5:1
C. 3:5:2
D. $4: 2: 3$

- Watch Video Solution

Comprehension\#101

1.8 mole of a mixture of $\mathrm{N}_{2}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a mean molecular mass of 378
$\frac{8}{8}$. On heating to a temperature at which $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociated completely $\left(\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}\right)$, the mean molecular mass become $\frac{378}{9}$.

The ratio of number of moles of N_{2} and NO_{2} after heating is :
A. 1:1
B. 3:9
C. 2:7
D. 1:2

Answer: C

Comprehension\#102

1. Many a time the reaction are carried out when the reactants are not present in the amounts required by a balanced chemical reaction. In such situations, one reactant is in excess over other. The reactant which is present in th lesser amount gets conserved after sometime and after that no further reaction takes place whatever be the amount of other reactant is present .Hence, the reactant which gets consumed, limits the amount of products formed and is therefore called limiting reagent.

To determine the limiting reagent find the value of ϕ which is the ratio of (given) mole of a substance to the stoichiometric coefficient of that substance. The limiting reagent is the reagent which has minimum value of ϕ.

The insecticide DDT is made by the reaction
$\mathbb{C l C H O}$ (Chloral) $+2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}($ chlorobenzene)

$$
\rightarrow\left(\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}_{3}(D D T)+\mathrm{H}_{2} \mathrm{O}
$$

If 100 pound (lb) of chlorobenzene, how much DDT would be formed?
(Assume the reaction goes to completion without side reactions or losses)
$[1 \mathrm{lb}=453.6 \mathrm{~g}$]
A. 157 lb
B. 71.3 lb
C. 84 lb
D. 15 lb

Answer: A

- Watch Video Solution

Comprehension\#103

1. Many a time the reaction are carried out when the reactants are not present in the amounts required by a balanced chemical reaction. In such situations, one reactant is in excess over other. The reactant which is present in th lesser amount gets conserved after sometime and after that
no further reaction takes place whatever be the amount of other reactant is present .Hence, the reactant which gets consumed, limits the amount of products formed and is therefore called limiting reagent.

To determine the limiting reagent find the value of ϕ which is the ratio of (given) mole of a substance to the stoichiometric coefficient of that substance. The limiting reagent is the reagent which has minimum value of ϕ.

The reduction of $\mathrm{Cr}_{2} \mathrm{O}+_{3}$ by Al proceeds quantitatively on ignition of a suitable fuse. The reaction is :
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
How much metallic chromium can be made by bringing to reaction temperature a mixture of 5 kg Al and $20 \mathrm{~kg} \mathrm{Cr}_{2} \mathrm{O}_{3}$?
A. 9.6 kg
B. 14.4 kg
C. 5.9 kg
D. 1.41 kg

Answer: A

Comprehension\#104

1. Many a time the reaction are carried out when the reactants are not present in the amounts required by a balanced chemical reaction. In such situations, one reactant is in excess over other. The reactant which is present in th lesser amount gets conserved after sometime and after that no further reaction takes place whatever be the amount of other reactant is present .Hence, the reactant which gets consumed, limits the amount of products formed and is therefore called limiting reagent.

To determine the limiting reagent find the value of ϕ which is the ratio of (given) mole of a substance to the stoichiometric coefficient of that substance. The limiting reagent is the reagent which has minimum value of ϕ.

In the above question, how much reactant is remaining at the completion of reaction and which one?
A. Nothing
B. $5.9 \mathrm{~kg} \mathrm{Cr}_{2} \mathrm{O}_{3}$
C. $14.1 \mathrm{~kg} \mathrm{Cr} 2_{2} \mathrm{O}_{3}$
D. 14.1 kg Al

Answer: B

- Watch Video Solution

Comprehension\#105

1. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromite $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ ore according to the following reactions:
(1) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(2) Acidifing filtered sodium chromate solution with sulphuric acid.
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(3) Treating sodium dichormate with potassium choride .
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
If you are initially provided with 224 gm of pure chromite ore and 169.6
gm of sodium carbonate, the minimum volume of air required at 1 atm and 273 K to consume at least one of the reactant completely, if air contains 20% by volume of oxygen gas is :
A. 156.8 L
B. 196 L
C. 28 L
D. 152.4 L

Answer: A

- Watch Video Solution

1. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromite $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ ore according to the following reactions:
(1) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(2) Acidifing filtered sodium chromate solution with sulphuric acid.
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(3) Treating sodium dichormate with potassium choride .
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
If the number of moles of reactant available for reaction are : $\left[\mathrm{FeCr}_{2} \mathrm{O}_{4}=0.25 \mathrm{moles}, \mathrm{O}_{2}=0.35 \mathrm{moles}, \mathrm{Na}_{2} \mathrm{CO}_{3}=0.60 \mathrm{moles}, \mathrm{H}_{2} \mathrm{SO}_{4}=0.2 \mathrm{~mol}\right.$, then the maximum number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, that can be produced is:
A. 0.05 moles
B. 0.1 moles
C. 0.2 moles
D. 0.5 moles

Answer: C

- Watch Video Solution

Comprehension\#107

1. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromite $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ ore according to the following reactions:
(1) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(2) Acidifing filtered sodium chromate solution with sulphuric acid.
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(3) Treating sodium dichormate with potassium choride .
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
If whole of the chormite ore given in the previous question gets
consumed and sufficient amount of rest of the reactants are given, then the mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ obtained is:
A. 14.7 gm
B. 7.35 gm
C. 73.5 gm
D. 147 gm

Answer: C

- Watch Video Solution

Comprehension\#108

1. 12 mol gaseous mixture of an alkane and an alkene (containing same number of carbon atoms) require exactly 285 ml of air (containing 20% $\mathrm{v} / \mathrm{v} \mathrm{O}_{2}$ and rest N_{2}) for complete combustion at 200K. After combustion when gaseous mixture is passes through KOH solution it shows volume

contraction of 36 ml .

Formula of alkane is:

A. $\mathrm{C}_{5} \mathrm{H}_{12}$
B. $\mathrm{C}_{3} \mathrm{H}_{8}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}$

Answer: B

- Watch Video Solution

Comprehension\#109

1. 12 mol gaseous mixture of an alkane and an alkene (containing same number of carbon atoms) require exactly 285 ml of air (containing 20\% $\mathrm{v} / \mathrm{v} \mathrm{O}_{2}$ and rest N_{2}) for complete combustion at 200K. After combustion when gaseous mixture is passes through KOH solution it shows volume

contraction of 36 ml .

Mole fraction of CO_{2} in final gaseous sample:
A. $\frac{6}{51}$
B. $\frac{6}{44}$
C. $\frac{6}{45}$
D. $\frac{6}{13}$

Answer: B

- Watch Video Solution

Comprehension\#110

1. 12 mol gaseous mixture of an alkane and an alkene (containing same number of carbon atoms) require exactly 285 ml of air (containing 20\% $\mathrm{v} / \mathrm{v} \mathrm{O}_{2}$ and rest N_{2}) for complete combustion at 200K. After combustion when gaseous mixture is passes through KOH solution it shows volume

contraction of 36 ml .

Calculate mol \% of oxygen which is converted into $\mathrm{H}_{2} \mathrm{O}$
A. 0.3684
B. 0.7368
C. 0.2061
D. 0.2563

Answer: A

- Watch Video Solution

Comprehension\#111

1. Two litre Duma's bulb contains nitrogen gas at 0.5 atm . On adding 0.01 mole of O_{2} gas it is necessary to cool bulb to a temperature passage of $10^{\circ} \mathrm{C}$ to maintain the same pressure.

The total no. of moles of N_{2} in Duma's bulb is :
A. 0.033
B. 0.066
C. 3.34
D. 0.334

Answer: A

- Watch Video Solution

Comprehension\#112

1. Two litre Duma's bulb contains nitrogen gas at 0.5 atm . On adding 0.01 mole of O_{2} gas it is necessary to cool bulb to a temperature passage of $10^{\circ} \mathrm{C}$ to maintain the same pressure.

The initial temperature of the Duma's bulb is :
A. 95.6 K
B. 368.6 K
C. 555.12 K
D. 273.0 K

Answer: B

0
 Watch Video Solution

Match the columns

1. Match the following columns:

Column-I	Column-II	
32 g each of O_{2} and S	(p)	2 moles of Fe
2 gram -molecule of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$	(q)	3 moles of ozone molecule
144 g of oxygen atom	(r)	one mole
Prom 168 g of iron, 6.022×10^{23} atoms of iron are removed, the (s) iron left	12 moles of carbon atoms	

2. Match the following columns:

Column-I	Column-II		
(2)	1 Mg glucose solution	(p)	mol solute per litre solution
3 M urea solution	(q)	180 g solute per litre solution	
$3 \mathrm{MCH}_{3} \mathrm{COOH}$ solution	(r)	$\% \mathrm{w} / \mathrm{v}=18 \%$ (solution)	
$1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution	(s)	$\% \mathrm{w} / \mathrm{v}=9.8 \%$ (solution)	

-
 Watch Video Solution

3. Match the following columns:

| Column-I | Column-II | |
| :--- | :---: | :---: | :---: |
| 50 ml of $3 \mathrm{M} \mathrm{HCl}+150 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{FeCl}_{3}$ (p)
 (b) Mole fraction of NaCl in aqueous
 solution of NaCl is 0.1 then molality of
 (he solution is | $\left[\mathrm{Cl}^{-}\right]=3 \mathrm{M}$ | |
| $10 \% \quad(\mathrm{w} / \mathrm{w})$ propanol $\quad\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$
 solution has molality | (r) | $\left[\mathrm{H}^{+}\right]=0.75 \mathrm{M}$ |
| $10.95 \%(\mathrm{w} / \mathrm{v}) \mathrm{HCl}$ | (s) | 6.1 m |

4. Match the following columns:

Column-I	Column-II	
$120 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$ in 1 L solution $d_{\text {sol }}=1.2 \mathrm{~g} / \mathrm{mL}$	(p)	$M=2$
120 g glucose dissolved in 1 L solution $d_{\text {sol }}=1.2 \mathrm{~g} / \mathrm{mL}$	(q)	$10 \% \mathrm{w} / \mathrm{w}$ sol.
$X_{\mathrm{NH}_{2} \mathrm{CONH}_{2}}=\frac{1}{31}$ (aqueous solution)	(r)	$12 \% \mathrm{w} / \mathrm{v}$ sol.
$19.6 \%(\mathrm{w} / \mathrm{v}) \mathrm{I} \quad \mathrm{SO}_{4}$ solution $\xrightarrow{4}\left(d_{\mathrm{sol}}=1.2 \mathrm{~g} / \mathrm{mL}\right)$	(s)	$m=1.85$

- Watch Video Solution

5. Match the following columns:

Column-I		Column-II	
(a)	Vapour density (V.D.) of SO_{2} with respect to O_{2}	(p)	22
(b)	Specific gravity of the solid with mass 10 gm and volume 5 cc	(q)	32
(c)	Molar mass of the compound having V.D. 16 (r)	9	
(d)	V.D. and number of atoms in 132 a.m.u. CO_{2}	(s)	2

6. Match the following columns:

	Column-I	Column-II	
(a)	Compound containing 5 g S and 5 g oxygen atom	(p)	Empirical formula CH_{2}
(b)	Hydrocarbon contain $\frac{600}{7} \% \mathrm{C}$	(q)	Molecular formula $\mathrm{C}_{2} \mathrm{H}_{4}$
(c)	$\frac{300}{11} \%$ of C and $\frac{800}{11} \%$ of O	(r)	Empirical formula SO_{2}
(d)	Hydrocarbon containing $\frac{100}{7} \% \mathrm{H}$	(s)	Empirical formula CO_{2}

- Watch Video Solution

7. Match the following columns:

Column-I For 1 mole of reactant placed in open container in each reaction			Column-II Product
(a)	$\mathrm{PCl}_{5}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	(p)	$2 N_{A}$ molecules
(b)	$\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$	(q)	68.1 litre gaseous product at STP
(c)	$2 \mathrm{HCl}(\mathrm{g}) \xrightarrow{\Delta} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}$	(r)	22.7 litre gaseous product at STP
(d)	$\begin{array}{\|} \mathrm{NH}_{4} \mathrm{COONH}_{2}(\mathrm{~s}) \\ \xrightarrow[\Delta]{\Delta} 2 \mathrm{NH}_{3}+\mathrm{CO}_{2}(\mathrm{~g}) \end{array}$	(s)	45.4 litre gaseous product at STP

8. Match parameters involved in column-I with those in column-II.

Column-I		Column-II	
(a)	Moles of any one element in 244 gm of salicylaldehyde	(p)	4
(b)	Ratio of density of ozone gas to that of methane at same temperature and pressure	(q)	6
(c)	gm-atoms or gm-molecules in 22.4 litres of N_{2} gas at 273 K and 3 atm pressure	(r)	12
(d)	gm-ion of anion or total moles of all the ions in 342 gm of aluminium sulphate	(s)	5

-
 Watch Video Solution

9. Match the following columns:

Column-I		Column-II	
(a)	3 mole of $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$	(p)	3 mole of S atom
(b)	1 mole $\mathrm{FeKCo}\left(\mathrm{NO}_{2}\right)_{6}$	(q)	1 mole Fe
(d)	1.5 mole $\left[\mathrm{FeCH}_{2}\right)_{5} \mathrm{SCNNSO}_{3}$	(r)	12 mole O atoms
(d)	0.75 mole $\mathrm{K}_{2} \mathrm{Cu}\left(\mathrm{SCN}_{4}\right.$	(8)	6 mole N atoms
		(t)	1.5 mole K atoms

10. Match Column-I with Column-II.

Column-I		Column-II (a)100 ml of $0.2 \mathrm{M} \mathrm{AlCl}_{3}$ solution +400 ml of 0.1 M HCl solution	
(p)	Concentration of (b) cation $=0.12 \mathrm{M}$		
50 ml of $0.4 \mathrm{M} \mathrm{KCl}+50 \mathrm{ml}$ $\mathrm{H}_{2} \mathrm{O}$	(q)	$\left[\mathrm{SO}_{4}^{2-}\right]=0.06 \mathrm{M}$	
(c)	30 ml of $0.2 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}+70 \mathrm{ml}$ $\mathrm{H}_{2} \mathrm{O}$	(r)	$\left[\mathrm{SO}_{4}^{2-}\right]=2.5 \mathrm{M}$
(d)	$200 \mathrm{ml} 24.5 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$	(s)	$\left[\mathrm{Cl}^{-}\right]=0.2 \mathrm{M}$

- Watch Video Solution

11. Match Column-I with Column-II.

Column-I		Column-II	
(a)	$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ above reaction is carried out by taking 2 moles each of Zn and HCl	(p)	50% of excess reagent left
(b)	$\mathrm{AgNO}_{3}(a q)+\xrightarrow{\mathrm{HCl}(a q)} \mathrm{AgCl}(s)+\mathrm{HNO}_{3}(g)$ above reaction is carried out by taking $170 \mathrm{~g} \mathrm{AgNO}_{3}$ and 18.25 g HCl $(\mathrm{Ag}=108)$	(q)	22.7 L of gas at STP is liberated
(c)	$\begin{aligned} & \mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) 100 \mathrm{~g} \\ & \mathrm{CaCO}_{3} \text { is decomposed } \end{aligned}$	(r)	1 moles of solid (product) obtained.
(d)	$\begin{aligned} & 2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\ & \frac{2}{3} \text { moles of } \mathrm{KClO}_{3} \text { decomposed } \end{aligned}$	(s)	HCl is the limiting reagent

- Watch Video Solution

12. Match Column-I with Column-II.

Column-I		Column-II	
(a)	4.5 m solution of CaCO_{3} (density 1.45 $\mathrm{gm} / \mathrm{ml}$)	(p)	Mole fraction of solute is 0.2
(b)	$3 \mathrm{M} \mathrm{100} \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ mixed with 1 M $300 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution	(q)	Mass of the solute is 360 gm
(c)	14.5 m solution of Ca	(r)	Molarity $=4.5$
(d)	In 4 M 2 litre solution of $\mathrm{NaOH}, 40 \mathrm{gm}$ NaOH is added.	(s)	Molarity = 1.5

Watch Video Solution

13. Match the following columns:

Column-I	Column-II		
(a)	$49 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$	(p)	0.5 mole
(b)	$20 \mathrm{~g} \mathrm{NaOH}^{2}$	(q)	$1.5 N_{A}$ atoms
(c)	11.35 L of CO		
2	at STP	(r)	$0.5 N_{A}$ moleculu
(d)	6.022×10^{23} atoms of oxygen	(s)	2 mole of O atoIII

- Watch Video Solution

14. Match the following columns:

	Column-I (Amount of substance)	Column-II (No. of moles of particular atoms the given substand	
(a)	6.022×10^{24} molecules of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	(p)	15 mole O-atoms
(b)	$90 \mathrm{gm} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	(q)	60 mole H-atoms
(c)	112 litre $\mathrm{SO}_{3}(\mathrm{~g})$ at 1 atm and $0^{\circ} \mathrm{C}$	(r)	3 mole O -atoms
(d)	3.75 mole $\mathrm{N}_{2} \mathrm{O}_{4}$	(s)	30 mole S-atoms
		(t)	150 mole O-atom

(
 Watch Video Solution

15. Match the following columns:

| Column-I | | Column-II | |
| :--- | :--- | :--- | :--- | :--- |
| (a) | N_{2} | (p) | 40% carbon by mass |
| (b) | CO | (q) | Empirical formula $\mathrm{CH}_{2} \mathrm{O}$ |
| (c) | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ | (r) | Vapour density $=14$ |
| (d) | $\mathrm{CH}_{3} \mathrm{COOH}$ | (s) | $14 N_{A}$ electrons in a mole $(N=$ Avoga
 number) |
| | | (t) | 25% carbon by mole |

16. Match the following columns:

A.
(P) (Q)
(R) (S)
(a)
(4) $(1,2,4)(2,3)(2,4)$
(P) $\quad(Q) \quad(R)$
(S)
B.
(a) $(2,3)(2,4)(1,2,4)(1,4)$
C.
$(P) \quad(Q) \quad(R) \quad(S)$
(a) $(4)(2,4)(1,3)(1,3)$
(P)
(a) $(1,2,4)$
$(2,4)$
$(1,3)$
$(1,4)$

Answer: c

- Watch Video Solution

17. Match the column:

Column-I		Column-II	
(P)	$20 \%(w / w)$ solution of KOH (density of solution $=1.02 \mathrm{gm} / \mathrm{mL})$	(1)	8.64 M
(Q)	Solution containing 864 gm of CaCO_{3} in a 1 L solution	(2)	3.64 M
(R)	Volume of $1.204 \times 10^{24} \mathrm{molecules}$ of water at $4{ }^{\circ} \mathrm{C}$	(3)	5 mL
(S)	Volume of 0.2 M NaOH solution containing 40 mg of NaOH	(4)	36 mL

A.
(P) (Q) (R) (S)
(a) $4 \begin{array}{llll} & 1 & 2 & 3\end{array}$
(P) (Q) (R) (S)
B.
(a) 24134
$(P) \quad(Q) \quad(R) \quad(S)$
C.
(a) $\begin{array}{lllll}4 & 1 & 3 & 2\end{array}$
$(P) \quad(Q) \quad(R) \quad(S)$
D.
(a) $24 \begin{array}{llll}\text { (a } & 4 & 3\end{array}$

Answer: d

- Watch Video Solution

18. Match the following columns:

19. Match the following columns:

- View Text Solution

20. Match the following columns:

Column-I	Column-II		
a)	Same number of atoms	(p)	$4.25 \mathrm{~g} \mathrm{NH}_{3}$ and $4.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b)	Same number of molecules	(q)	$2.20 \mathrm{~g} \mathrm{CO}_{2}$ and $0.90 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(c)	Same numbers of atoms as well as molecules	(r)	$4.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}$ and $5.0 \mathrm{~g} \mathrm{NH}_{3}$
	Sifferent numbers of (d) (s) atoms as well as molecules	$4.80 \mathrm{~g} \mathrm{O}_{2}$ and 2.80 g CO	

21. Match the following columns:

Column-I		Column-II	
(a)	Gram atom present in one atom	(p)	$2 N_{A}$
(b)	N_{A} gram atom contains atom	(q)	$\frac{1}{N_{A}}$
(c)	No. of protons in 1 gm molecule of H_{2}	(r)	$4 N_{A}$
(d)	No. of electrons added to 32 gm O atom to convert it into O 0^{2-}	(s)	N_{A}^{2}

22. Match the following columns:

Column-I Atomie masses			Column-II \% composition of heavier isotope		
	Isotope-I Isotope-II Avg				
(a)	$(z-1)$	$(z+2)$	z	(p)	33.33% by moles
(b)	$(z+1)$	$(z+3)$	$(z+2)$	(q)	50% by moles
(c)	z	$3 z$	$2 z$	(r)	$\%$ jy mass dependent on z
(d)	$(z-1)$	$(z+1)$	z	(s)	75% by mass

23. Match the following columns:

Column-I	Column-II	
(a) 5 m NaOH solution (density $=0.6 \mathrm{gm} / \mathrm{ml})$.	(p)	6 M
Molarity of solution is		

- View Text Solution

24. Two substance C and O_{2} are allowed to react completely to form CO and CO_{2} mixture, leaving none of the reactants. Its is known that when I mole of $\mathrm{CO}_{2}, 100 \mathrm{Kcal}$ of energy is released and when 1 mole of carbon reacts with 0.5 mole of O_{2} to give of $\mathrm{CO}, 25 \mathrm{Kcal}$ is liberated. Using this
information match column I and column II.

Column-I (Amount of reactants)		Column-II (Energy released)	
(a)	36 g C and $80 \mathrm{~g} \mathrm{O}_{2}$	(p)	
(b)	12 g C and $24 \mathrm{~g} \mathrm{O}_{2}$	(q)	
(c)	$24 \mathrm{~g} \mathrm{C} \mathrm{and}^{2} 48 \mathrm{~g} \mathrm{O}_{2}$	(r)	
(d)	36 g Cal and $64 \mathrm{~g} \mathrm{O}_{2}$	(s)	

- View Text Solution

25. Match the column-I (Reaction) with column-II (maximum yield of the product)

	Column-I (Reaction)	Column-II (Maximum yield of the product)	
(a)	$\begin{aligned} & 2 \mathrm{H}_{2}+\mathrm{C} \longrightarrow \mathrm{CH}_{4} \\ & 1 \mathrm{~g} \\ & \hline \mathrm{~g} \end{aligned}$	(p)	1.214 g
(b)	$\underset{1 \mathrm{~g}}{\mathrm{H}_{2}}+\underset{1 \mathrm{Cl}}{\mathrm{Cl}_{2}} \longrightarrow 2 \mathrm{HCl}$	(q)	1.125 g
(c)	$\left\lvert\, \begin{aligned} & 3 \mathrm{H}_{2}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}_{3} \\ & 1 \mathrm{~g} \quad \mathrm{~g} \end{aligned}\right.$	(r)	1.33 g
(d)	$\left\|\begin{array}{l} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \\ 1 \mathrm{~g} \end{array}\right\|$	(s)	1.028 g

- View Text Solution

1. An alloy of iron and carbon was treated with suphuric acid, in which only iron reacts
$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(\mathrm{~g})$ If a sample of alloy weighing 140 g gave 6 g hydrogen, What is the percentage of iron in the alloy?

- Watch Video Solution

2. What volumn (in mL) of $0.250 \mathrm{M} \mathrm{HNO}_{3}$ (nitric acid) reacts with 50 mL of $0.150 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (sodium carbonate) in the following reaction? $2 \mathrm{HNO}_{3}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$

- Watch Video Solution

3. How many millilitres of $0.5 \mathrm{M} \mathrm{KMnO}_{4}$ are needed to react with 3.04 gms of iron (II) sulphate , FeSO_{4} ? The reaction is as follows?
$10 \mathrm{FeSO}_{4}(a q)+2 \mathrm{KMnO}_{4}(a q)+8 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+2 \mathrm{MnSO}_{4}(a q)$

- Watch Video Solution

4. What weight of CO is required to form $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ from 2.50 g fo $f \mathrm{Re}_{2} \mathrm{O}_{7}$ according to the unbalanced reaction:
$\mathrm{Re}_{2} \mathrm{O}_{7}+\mathrm{CO} \rightarrow \mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{CO}_{2}$
($\operatorname{Re}=186, C=12$ and $O=16$).Give your answer to the nearest integar.

- Watch Video Solution

5. 2.5 of a mixture of BaO and CaO when heated with $\mathrm{H}_{2} \mathrm{SO}_{4}$, produced 4.713 g of the mixed sulphates. Find the percentage of BaO present in the mixture.

- Watch Video Solution

6. If 150 g of carbon reacts with $250 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$ and the reaction has an 85% yield, how many grams of $\mathbb{C l}_{4}$ are produced? Given answer excluding decimal places.

- Watch Video Solution

7. Equal weight of Cu metal and iodine are mixed together and the iodine is completely converted to CuI_{2}. What percentage of weight of the original copper remains unreacted? ($\mathrm{Cu}=63.5, I_{2}=254$)

- Watch Video Solution

8. What is the minimum amount of $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{O}(392)$ needed for the synthesis of 10.0 g of $\mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(437)$? Give your answer to the nearest integer.

- Watch Video Solution

9. Calculate the number of moles of ammonia required to produce 2.5 moles of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$.

- Watch Video Solution

10. A compound contains $28 \% \mathrm{~N}$ and 72% of a metal by weight. Three atoms of metal combine with two atoms of N . Find the atomic weight of metal.

- Watch Video Solution

11. Haemoglobin contains 0.25% iron by weight, the molecular weight of Haemoglobin is 89600 , calculate the weight (in g) of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ that can be produced if all the iron atoms from 4.48 kg haemoglobin are converted into $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ through a series of reaction. Give your answer to the nearest integer.

- Watch Video Solution

12. Concentrated HNO_{3} is $63 \% \mathrm{HNO}_{3}$ by mass and has a density of $1.4 \mathrm{~g} / \mathrm{mL}$. How many millilitres of this solution are required to prepare 250 mL of a $1.20 \mathrm{MHNO}_{3}$ solution ?

- Watch Video Solution

13. Many cereals are made with high moisture content so that the product can be formed into various containing $50 \% \mathrm{H}_{2} \mathrm{O}$ by mass is produced at the rate of $1000 \mathrm{~kg} / \mathrm{hr}$. How much water (in kg) must b evaporated per hour if final product contains only 20% water?
(Fill your answer dividing it by 62.5)

- View Text Solution

14. Nitrogen (N), phosporus (P) and potassium (K) are the main nutrients in plant fertilizers. . According to an industry convention, the numbers on the label refer to the mas \% of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ in that order. If the $\mathrm{N}: \mathrm{P}: \mathrm{K}$
(in terms of moles of each elements) ratio of a fertilizer labelled as 28:14.2:4.7 is expressed as $20: x: 1.0$, then calculate x .

- Watch Video Solution

15.34 gm of ammonia on decomposition gives some hydrogen gas along with N_{2} gas. Hydrogen underwent combustion with oxygen gas and water wa formed. Calculate number of drops of water formed if each drop contain 6 ml of water.

- Watch Video Solution

16. A 12 gm sample of metallic element M reacts completely with 0.02 mole of X_{3} to form MX. Find atomic mass of M.
(Fill your answer divinding it by 100)

- Watch Video Solution

17. Calculate the amount of the water which must be added to 2 ml of a solution of concentration of 40 mg silver nitrate per ml , yield a solution of concentration fo 16 mg silver nitrate per ml ?

- Watch Video Solution

18. 500 ml of $2 \mathrm{M} \mathrm{AlCl}_{3}$ solution is mixed with 200 ml of $58.5 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution and 300 ml of $50 \% \mathrm{w} / \mathrm{w} \mathrm{BaCl} 2_{2}$ solution ($d=2.08 \mathrm{~g} / \mathrm{ml}$). Calculate molarity of Cl^{-}in the final solution.

- Watch Video Solution

19. The molality of a pure gas A is $50 / 2.4$ and that of pure B is $100 / 3.2$,

Calculate molarity of A in gaseous solution of A and B at 8 atm pressure and $200 / 0.821 \mathrm{~K}$, if the vapour density of the gaseous mixture at 10 atm and 400 K is 18 .
20. 100 gm water is saturated with glucose to form a solution of density X $\mathrm{gm} / / \mathrm{ml}$ and contains 50% gulcose, by mass. If the volume of solution formed is 100 ml , the value of X is:

- Watch Video Solution

21.40 ml of $22.7 \mathrm{~V} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is mixed with 60 ml of $8.5 \%(\mathrm{w} / / \mathrm{v}) \mathrm{H}_{2} \mathrm{O}_{2}$ solution and the mixture is diluted to 230 ml . If 20 ml of diluted solution is callected in an empty beaker, the molarity of collected solution is:

- Watch Video Solution

22. Calculate total number of SO_{2} molecules in a sample having 32 milligrams of the SO_{2} gas, 1.4×10^{20} number of SO_{2} molecules, 0.8 ml of SO_{2} gas at 6 atm and 300 K .
[Given: $N_{A}=6 \times 10^{23}, R=0.08 \mathrm{atmL} / \mathrm{molK}$]
[Express your answer in terms of multiple of 10^{20} and then round off to
nearest integer for e.g. if your answer is 6.2×10^{20} fill 6 in OMR after rounding off.]

- Watch Video Solution

23. Calculate number of $g m$ ions present in an aqueous solution containing 369 gm of $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ if the salt undergoes complete dissocation into ions and water does not dissociate.

- Watch Video Solution

24. What volume of liquid $\mathrm{A}_{2} \mathrm{O}_{3}$ has same number of atoms as there are atom in $\mathrm{BO}_{2}(\mathrm{I})$ having volume 20 Ml ? [Given: Density of $\mathrm{A}_{2} \mathrm{O}_{3}=1.5 \mathrm{gm} / \mathrm{ml}$ and density of $\mathrm{BO}_{2}=0.7 \mathrm{gm} / \mathrm{ml}$, Atomic mass of $A=50$, Atomic mass of $B=60$ and O represents oxygen]

- Watch Video Solution

25. H_{2} gas is often used as a reducing gas. In a particular set up 17.4 gm of MnO_{2} on reacting with excess of hydrogen gas gives water and new oxide $M n_{x} O_{y}$ such that mass of the oxide obtained is 12.6 g . What will be value of y if x is 2 . $[M n=55]$

- Watch Video Solution

26. Excess of calcium orthophosphate is reacted with magnesium to form calcium phosphide $\left(\mathrm{Ca}_{3} \mathrm{P}_{2}\right)$ along with magnesium oxide. Calcium phosphide on reacting with excess of water liberate phosphine gas $\left(\mathrm{PH}_{3}\right)$ along with calcium hydroxide. Phosphine is burnt in excess of oxygen to form $\mathrm{P}_{2} \mathrm{O}_{5}$ along with water. Oxides of magnesium and phosphorous react to give magnesium metaphophate. Calculate grams of magnesium metaphosphate obtained if 1.92 gm of magnesium is taken.
[Round off your answer to nearest integer]

- View Text Solution

27. What is the maximum mass of $\mathrm{H}_{2} \mathrm{O}$ (in gm) which can be obtained if total 42 gm of propyne and oxygen are subjected to combustion?

- View Text Solution

28. The density of mercury is $13.6 \mathrm{gm} / / \mathrm{ml}$. The diameter of an atom of mercury (in A) assuming that each atom of mercury is occupying a cube of edge length equal to the diameter of the mercury atom is:
[Take: $\left(\frac{125}{5.1}\right)^{1 / 3}=3, \mathrm{Hg}=200$]

- Watch Video Solution

29. The number of gm -molecules of oxygen in 6.0×10^{24} CO molecules is:
$\left[\right.$ Take $\left.: N_{A}=6 \times 10^{23}\right]$

- Watch Video Solution

30. From 0.2 kg calcium, 1.2×10^{24} atoms are removed. The number of g atoms of calcium left is:
[Take: $\left.N_{A}=6 \times 10^{23}, C a=40\right]$

- Watch Video Solution

31. A 12.0 gm sample of magnesium is burnt in air to form magnesium oxide (MgO) and magnesium nitrides $\left(\mathrm{Mg}_{3} \mathrm{~N}_{2}\right)$. When the products are treated with water, 1.7 gm gaseous ammonia is generated. What is the mass (in gm) of $\mathrm{Mg}(\mathrm{OH})_{2}$ formed simultaneously.

- Watch Video Solution

32. The number of alkoxy groups in an organic compound, $A(O R)_{x}$, may be determined by the sequential reactions:
$A(\mathrm{OR})_{x}+x H I \rightarrow A(O H)_{x}+x R I$
$\mathrm{RI}+\mathrm{Ag}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ROH}+\mathrm{AgI}(\mathrm{s})+\mathrm{H}^{+}$When 4.8 gm of the organic
compound, $A(O R)_{X}$, (molar mass $\left.=240 \mathrm{gm} / / \mathrm{mol}\right)$ is treated as above, 9.4 gm Agl is precipitated. The number of alkoxy groups in the compound is:

- Watch Video Solution

33. Water gas contains CO and H_{2} in mole ratio, 1:1. A nickel ore containing $\mathrm{Ni}_{2} \mathrm{O}_{3}$ may be reduced into Ni as
$\mathrm{Ni}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ni}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ But due to presence of $\mathrm{CO}(\mathrm{g})$, the nickel formed get converted into $\operatorname{Ni}(\mathrm{CO})_{x}(g)$. Both the reaction occurs 100% If 240 gm water gas is needed to convert one mole of $\mathrm{Ni}_{2} \mathrm{O}_{3}(\mathrm{~s})$ into $\mathrm{Ni}(\mathrm{CO})_{\chi}(g)$, the value of x is:

- View Text Solution

34. A mixture pf $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} occupying 100 ml underwent reaction so as to form $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ and $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})$ as the only products, causing the volume to contract by 60 ml . The remaining mixture was passed through pyrogallol causing a contraction of 10 ml . to the remaining mixture excess H_{2} was added and the above reaction was repeaped, causing a
reduction in volume of 10 ml .(No other products are formed)
What is the volume of $\mathrm{N}_{20 \mathrm{H}_{2}(\mathrm{~g})}$ formed in this reaction after adding excess of $\mathrm{H}_{2}(\mathrm{~g})$?

- Watch Video Solution

35.4.54 $\mathrm{L} \mathrm{O}_{2}$ gas at STP is liberated from all $\mathrm{H}_{2} \mathrm{O}_{2}$ present in $200 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution. The molarity (in mol//litre) of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is:

- Watch Video Solution

36. 50 ml of a gaseous mixture of hydrogen and hydrogen chloride was exposed to sodium amalgam. The volume decreased to 40 ml . if 10 ml of the same mixture is mixed with 5 ml of gaseous ammonia and then exposed to water, what will be the final volume (in ml) of gas left ? all the volumes are measured at the same temperature and pressure.

- Watch Video Solution

37. $\mathrm{Br}_{2}(\mathrm{I})$ reacts with $\mathrm{Cl}_{2}(\mathrm{~g})$ to form BrCl and BrCl_{3}, simultaneously. How many moles of $\mathrm{Cl}_{2}(\mathrm{~g})$ reactas completely with 3 moles of $\mathrm{Br}_{2}(i)$ to give BrCl and BrCl_{3} in 5:1 mole ratio?

- Watch Video Solution

38. Find the density of $\mathrm{CO}_{2}(\mathrm{~g})$ with respect to $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$.

- Watch Video Solution

39.340 g of $\mathrm{NH}_{3}(M=17)$ when decomposes how many liters of nitrogen gas is produced at STP?

- Watch Video Solution

40. 117 gm NaCl is dissolved in 500 ml aqueous solution. Find the molarity of the solution.
41. If, from 10 moles NH_{3} and 5 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$, all the H -atoms are removed in order to form H_{2} gas, then find the number moles of H_{2} formed.

- Watch Video Solution

42. If from 3 moles $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, all the ' O ' atoms are taken out and converted into ozone find the number of moles of O_{3} formed.

- Watch Video Solution

43. The density of liquid mercury is $13.6 \mathrm{~g} / \mathrm{cm}^{3}$. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of $\mathrm{Hg}=200$).

- Watch Video Solution

44. A fluorine disposal plant was constructed to carryout the reactions:
$\mathrm{F}_{2}+2 \mathrm{NaOH} \rightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NaF}+\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaF}_{2}+2 \mathrm{NaOH}$
As the plant operated, excess lime was added to bring about complete precipitation of the fluoride as CaF_{2}. Over a period of operation, 1900 kg of fluorine was fed into a plant and $10,000 \mathrm{~kg}$ of lime was required. What was the percentage utilisation of lime? [At, massF =19], [Lim $e=C a O]$

- View Text Solution

45. The following process has been used to obtain iodine from oil-field drines in California.
$\mathrm{NaI}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3} \ldots(1)$
$2 \mathrm{AgI}+\mathrm{Fe} \rightarrow \mathrm{FeI}_{2}+2 \mathrm{Ag} \ldots$ (2)
$2 \mathrm{FeI}_{2}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{I}_{2} \ldots(3)$
How many grams of AgNO_{3} are required in the first step for every $254 \mathrm{kgI}_{2}$ produced in the third step?
46. Carbon disulphide, CS_{2} can be made from by-product SO_{2}. The overall reaction is
$5 \mathrm{C}+2 \mathrm{SO}_{2} \rightarrow \mathrm{CS}_{2}+4 \mathrm{CO}$
How much CS_{2} (in kg) can be produced from 440 kg of waste SO_{2} with 60 kg of coke if the SO_{2} conversion is 80% ?
[Give answer after rounding off to the next integer.]

- View Text Solution

47. Find the Cl^{-}concentration in solution which is obtained by mixing one mole each of $\mathrm{BaCl}_{2}, \mathrm{NaCl}$ and HCl in 500 ml of water.

- Watch Video Solution

48. 3.0 litre of water are added to 2.0 litre to 2.0 litre of 5 M HCl . What is the molarity of HCl in the resultant solution?
49. Determine the volume (in mL) of dilute nitric acid ($d=1.08 \mathrm{gmL}^{-1}$, $19 \% \mathrm{HNO}_{3}$ by wt.) that can be prepared by diluting 48 mL of conc. HNO_{3} ($d=1.44 \mathrm{gmL}^{-1}, 76 \%$ by wt.).

- View Text Solution

50. What volume of water (in mL) should be added to 50 ml of HNO_{3} having density $1.5 \mathrm{~g} \mathrm{ml}^{-}$and 63.0% by weight to have one molar solution

- Watch Video Solution

51.5 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ was dissolved in 250 ml of solution. How many ml of this solution sholuld be used so that 2.33 g of BaSO_{4} may be precipitated from BaCl_{2} solution.
$\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{KCl}$
52. A sodium hydroxide solution containing 40% by weight of pure NaOH has a specific gravity of 1.5 . What volume (in mL) of this solution will be required in the preparation of 500 mL of a 0.45 M NaOH solution?

- Watch Video Solution

53. Three oxides of nitrogen $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ are mixed in a molar ratio of 3:2:1 Find the vapour density of gaseous mixture.

- Watch Video Solution

54.1135 mL of ozonised oxygen at STP weigh 1.76 g . Calculate the volume of oxygen in the ozonised oxygen.

- Watch Video Solution

55. 90.8 litres of a mixture of nitrogen and hydrogen measured at STP were passed over a catalyst. After the reaction, the volume of the mixture reduced to 68.1 litres. Ammonia thus formed was dissolved in 101 ml of an aqueous ammonia solution of density of $0.85 \mathrm{~g} / / \mathrm{ml}$ containing 12% by mass of $\mathrm{NH}_{4} \mathrm{OH}$. Determine the percent weight strength of the final solution.
[Give answer exculding decimal places]

- View Text Solution

56. A mixture of gases liberated upon decomposition of 33.1 gm of lead (II) nitrate is dissolved in 10 ml of water. What is the mass (in g) of 0.1 M KOH solution with density of $1.05 \mathrm{~g} / \mathrm{ml}$ required to neutralize this acid. The reactions are:
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
$\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
[Atomic mass of $\mathrm{Pb}=207$]
57. The measured density at STP of He is $0.1762 \mathrm{~g} / \mathrm{L}$. What is the weightof one mole of He ?

- Watch Video Solution

58. How many grams of CaO are required to neutralise 852 g of $\mathrm{P}_{4} \mathrm{O}_{10}$?

- Watch Video Solution

59. 252 mL of a sample of ozonised oxygen at 1 atm, 273 K , weighs 0.38 g .

On passing this sample through turpentine there was contraction in volume by 28 mL . Calculate the molecular weight of ozone.

- Watch Video Solution

60. The 'roasting' of 100.0 g of a copper ore yielded 71.8 g pure copper. If the ore is composed of $\mathrm{Cu}_{2} \mathrm{~S}$ and CuS with 4.5% inert impurity, calculate the percent of $C u_{2} S$ in the ore.

The reactions are:
$\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}+\mathrm{SO}_{2}$ and
$\mathrm{CuS}+\mathrm{O}_{2} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}$
[Atomic masses $\mathrm{Cu}=63.5 \mathrm{~m} \mathrm{~S}=32$]
[Give answer exculuding decimal places]

- Watch Video Solution

61. 1 g of a mixture of equal number of moles of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and $M_{2} \mathrm{CO}_{3}$. Required 44.44 ml of 0.5 M HCl for completion of the reactions, $\mathrm{Li}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
If the atomic mass of $L i$ is 7 , then find the Atomic mass of M.
62. 92 gm mixture of CaCO_{3} and MgCO_{3} was heated strongly in an open vessel. After complete decomposition of the carbonates it was found that the weight of residue left behind is 48 g . Find the mass of MgCO_{3} in grams in the mixture.

- Watch Video Solution

63. CCl_{4} can be produced by the reaction of 12 g of carbon with 213 g chlorine. Determine the mass of excess reagent that is left unreacted in grams.
(Given atomic mass of $\mathrm{C}=12, \mathrm{Cl}=35.5$)

- Watch Video Solution

64. What volume (in ml) of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution should be mixed with the 40 mL of 0.1 M NaOH solution such that the resulting solution has the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\frac{6}{55} \mathrm{M}$?
65. 100 ml of 5 M NaOH solution (density $1.2 \mathrm{~g} / \mathrm{ml}$) added to 200 mL of another NaOH solution which has a density of $1.5 \mathrm{~g} / \mathrm{ml}$ and contains 20 mass percent of NaOH . What will be the volume of the gas (at STP) in litres liberated when aluminium reacts with this (final) solution?
[Give answer excluding decimal places]
The reaction is $\mathrm{Al}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaAlO}_{2}+\mathrm{H}_{2}$
(At. wt. $N a=23,0=16, H=1$)

(D) Watch Video Solution

66. A piece of Al weighing 27 g is reacted with 200 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (specific gravity=1.8 and 54.5% by weight). After the metal is completley dissolved, 73 gm HCl is added and solution is further is further diluted to 500 ml solution then find the concentration of H^{+}ion in $\mathrm{mol} / \mathrm{litre}$.
67. 2.0 g of a sample containing $\mathrm{NaCl}, \mathrm{NaBr}$ and some inert impurity is dissolved in enough water and treated with excess of AgNO_{3} solution. A 3.0 g of precipitate was formed. Precipitate on shaking with aqueous NaBr gains 0.76 g of weight. Determine mass percentage of NaCl in the original sample.

- View Text Solution

68. In a compound C, H, N atoms are present in 9:1:3.5 by weight. Molecular weight of compound is 108 . Its molecular formula is:

- Watch Video Solution

69. Calculate moles of electrons in 1900 mg of PO_{4}^{3-} ion.

- Watch Video Solution

70. A 96 gm mixture containing CaCO_{3} and MgCO_{3} on heating produces a gas which dissolves in 1 litre of water to form $1 \mathrm{MH}_{2} \mathrm{CO}_{3}$ solution. Mole ratio of CaCO_{3} and MgCO_{3} in original mixture is:

- Watch Video Solution

71. 6 gm of nitrogen on successive reaction with different compounds gets finally converted into $30 \mathrm{gm}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{\mathrm{x}} \mathrm{Br}_{2}\right]$. Value of x is: [Atomic mass of $\mathrm{Cr}=52$]

- Watch Video Solution

72. Calculate the density (in $\mathrm{gm} / / \mathrm{ml}$) of aqueous NaOH solution of which molarity and (\% w//w) are equal.

- Watch Video Solution

73. If 40 gm of NaOH is added to 2 litre solution of 4 M NaOH , find the molality of final solution (density of solution $=0.68 \mathrm{~g} / \mathrm{ml}$).

Watch Video Solution

74. A mixture of Nal and CaBr_{2} having mole fraction of CaBr_{2} equal to $\frac{1}{3}$ is mixed with water and solution is made upto 1 litre, where, molality of

Nal is found to be $\frac{10}{9}$. If density of solution is $1.15 \mathrm{~g} / \mathrm{ml}$. Calculate mass of NaI in original mixture.

- Watch Video Solution

75. 0.5 gm of fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Oleum) is diluted with water. This solution is completely neutralised by 26.7 ml of 0.4 M NaOH solution. Calculate the percentage of free SO_{3} in the given sample. Give your answer excluding the decimal places.
76. A solvent X (mol mass 50) contains solute A (mol. Mass 125) and solute B (mol mass 100). If solution is 4 MA and 6 M B , then find simplest ratio of moles of
$\mathrm{A}: \mathrm{B}: \mathrm{X}\left[\right.$ Given: $\left.d_{\text {solution }}=1.3 \mathrm{gm} / \mathrm{ml}\right]$.
If your answer is $A: B: C$, then fill your answer is $A+B+C$.

- Watch Video Solution

77. Find the sum of molarity of all the ions present in an aqueous soultion of $5 \mathrm{M} \mathrm{NaNO}_{3}$ and 3 m BeCl 2 ? The specific gravity of the given solution is 1.665. Assume 100% dissociation of each salt. [$\mathrm{Be}=9$]

- Watch Video Solution

78. If 87 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ (molar mass=174g) is dissolved in enough water to make 250 mL of solution, calculate sum of concentration of $\left[K^{+}\right]+\left[\mathrm{SO}_{4}^{-2} \cdot\right]$

- Watch Video Solution

79. A 50 gm oleum sample contains $\left(\frac{400}{49}\right) \mathrm{gm}$ of combined SO_{3}. Find percent label of the oleum sample.

- Watch Video Solution

80. A 3 L gas mixture of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ on complete combustion at 25 C produced $10 \mathrm{~L} \mathrm{CO}_{2}$. Assuming constant P and T conditions what was volume of butane present in initial mixture?

- Watch Video Solution

81. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$, (sulphuryl chloride) reacts with water to give a mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl . What volume of $\left.0.1 \mathrm{M} \mathrm{Ba(OH}\right)_{2}$ (in ml) is needed to completely neutralize 5 millimole $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in water?
82. An alkene upon combustion produces $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. In this combustion process if there is no volume change, then, the no. of C atoms per molecule of alkene will be:

- Watch Video Solution

83. 100 gm oleum sample (labelled as 107.8%) is mixed with 7.8 gm water and requires, 1.1 L of x molar aq. Solution of NaOH for complete neutratization. The value of x is:

- View Text Solution

84. A hydrocarbon is burnt with just sufficient amount of oxygen. After combustion the volume contraction was 2.5 times of volume of hydrocarbon burnt. On passing this mixture through KOH , if volume contraction is twice the volume of hydrocarbon taken. Calculate no. of atoms in one molecule of the hydrocarbon.

Watch Video Solution

85. An oleum sample is labelled as $(100+x) \%$ and it contains $\frac{80}{3} \%$ free SO_{3}, by weight. Hence x is:

- Watch Video Solution

86. If volume of 1 M aqueous NaOH solution is required to react completely with 71 gm of an aqueous acetic acid solution in which mole fraction of acid is 0.18 is $\frac{1}{X}$ litre, then calculate value of x.

- Watch Video Solution

87. A complex compound of iron has molar mass=2800 and it contains 8% iron by weight. The number of iron atoms in one formula unit of complex compound is:
88. Find volume of $\mathrm{H}_{2} \mathrm{O}$ (in Litre) added to make 500 ml ,
$1 \mathrm{M} \mathrm{NaOH}(a q)$ solution to $\frac{1}{9} \mathrm{M}$.

Watch Video Solution

89. Calculate \% mass loss when $\mathrm{MgCO}_{3}(s)$ is thermally decomposed to
$\mathrm{MgO}(\mathrm{s})$ "and" $\mathrm{CO}_{2}(\mathrm{~g})$.
[Give answer excluding decimal places]

(D) Watch Video Solution

90. 0.9 gm of a volatile solid organic compound (molecular weight $=90$) containing carbon, hydrogen and oxygen was heated with 224 ml of oxygen at 1 atm and $0^{\circ} \mathrm{c}$. After combustion, the total volume of gases was 560 ml at same T and P . On treatment with KOH , the volume decreased to 112 ml . Determine the value of $x+y+z$ if molecular formula of organic compound is $\mathrm{C}_{x} \mathrm{H}_{y} O_{z}$.

(D) Watch Video Solution

91. 150 ml of an aq. Solution containing 5 millimoles of A (specific gravity=1.2) is mixed with 250 ml of another aq. Solution containing 10 millimoles of A (sepecific gravity $=1.4$). If on mixing the density of the solution becomes $\frac{5.3}{4.5} \mathrm{gm} / \mathrm{ml}$, then the molarity of A in the final solution becomes $\mathrm{x} M$. The value of $60 \mathrm{xx} \mathrm{x}^{\prime}$ is:

- Watch Video Solution

92. How many gram water should be added in 200gm of 104.5 \% labelled oleum sample to make the new
labelling equal to $\frac{5225}{52} \%$?

- Watch Video Solution

93. The mole fraction of glucose in an aqueous solution is $\frac{9}{109}$. The molality of solution is:

- Watch Video Solution

94. 50 ml of ' 20 V ' $\mathrm{H}_{2} \mathrm{O}_{2}$ is mixed with 200 ml , ' 10 V ' $\mathrm{H}_{2} \mathrm{O}_{2}$. The volume strength of resulting solution is:

- Watch Video Solution

95. 20 ml of $\frac{1}{3} \mathrm{M}$ solution of acid is required to neutralise $0.8 \mathrm{M}, 25 \mathrm{ml}$ NaOH solution. Hence, basicity of acid is:

- Watch Video Solution

96. 100 ml of 0.3 M HCl is mixed with 200 ml of $0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the final molarity of the H^{+}ions in the resulting solution. Fill your
answer by multiplying with 10 .

(Watch Video Solution

97. A 20 ml mixture of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ undergoes sparking in gas eudimeter with just sufficient

- View Text Solution

98. An impure sample of CaCO_{3} contains 38% of Ca . The percentage of impurity present in the sample is :

- Watch Video Solution

99. 500 ml of $2 \mathrm{MCH}_{3} \mathrm{COOH}$ solution is mixid with $600 \mathrm{ml} 12 \% \mathrm{w} / \mathrm{vCH} 3 \mathrm{COOH}$ solution then calculate the final molarity of solution.
100. 10 gm equimolar mixture of KHCO_{3} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ after treatment with KOH is dried and heated. What will be mass (in gm) of $\mathrm{CO}_{2}(\mathrm{~g})$ obtained after heating ?

- Watch Video Solution

101. A bottle is $12 \mathrm{M}, 75 \mathrm{ml} \mathrm{HCl}$ is diluted to 300 mL . What is the molarity of resulting HCl solution?

- Watch Video Solution

102. Mole fraction of dilute acetic acid is 0.6 then find the moles of water in 108 gm of solution

- Watch Video Solution

103. $35 \% \mathrm{w} / \mathrm{v} 400 \mathrm{ml}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is mixed with $12 \mathrm{M}, 600 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Find the molarity $\left[\mathrm{NH}_{4}^{+}\right]$in solution.

- Watch Video Solution

104. In order to remove Pb^{2+} from 10 litre
$\mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}(0.4 \mathrm{M}, 100 \mathrm{~mL})$ is required.
$\mathrm{PbCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA} \rightarrow 2 \mathrm{NaCl}+\mathrm{PbH}_{2}$ EDTA
Hence millimoles of PbCl_{2} present in 1 litre of $\mathrm{H}_{2} \mathrm{O}$ is :

- Watch Video Solution

105. How many blood cells of 5 ml each having $\left[\mathrm{K}^{+}\right]=0.1 \mathrm{M}$ should burst into 25 ml of blood plasma $\left[K^{+}\right]=0.02 M$ so as to give final $\left[K^{+}\right]=0.06 M$?

- Watch Video Solution

106. A sample of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ on heating undergoes 1.845 gm loss of mass. Approximate mass of NaHCO_{3} (in nearest integer) in gm is :

- Watch Video Solution

107. $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates into NO_{2}. If \% dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 33.33%, calculate average molecular weight of gaseous mixture formed.

- Watch Video Solution

108. Based on following reaction given, minimum possible value of x for 1 $\mathrm{mol} A F_{6}$ will be :
$A F_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow A O_{x}+\mathrm{HF}$.

- Watch Video Solution

109. An element has atomic mass 31 . Mass of 2.24 litres at 1 atm, $273 .{ }^{\circ} \mathrm{C}$ of vapours of element is 6.2 gm . Atomicity of element is :

- Watch Video Solution

110. Find number of moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ which contain as many ions as are present in 6840 gm of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (Assuming complete dissociation of salt and no reaction with H_{2})

- Watch Video Solution

111. 27 gm of Al reacts with excess of oxygen to give 4.59 gm of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Calculate percentage yield of reaction.

- Watch Video Solution

112. 90 g of a silver coin was dissolved in strong nitric acid and excess of sodium chloride solution added. The silver chloride precipitate was dried and weighed 71.75 g . Calculate the precentage of silver in the coil (Atomic mass of $\mathrm{Ag}=108$)
$\mathrm{Ag}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{AgNO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

- Watch Video Solution

113. Preparation of $\mathrm{Na}_{2} \mathrm{SnO}_{2}$ involves the following set of reactions :
[Sn = 119]
$(P) \mathrm{Sn}+2 \mathrm{HCl} \rightarrow \mathrm{SnCl}_{2}+\mathrm{H}_{2}$
$(\mathrm{Q}) \mathrm{SnCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Sn}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$
$(\mathrm{R}) \mathrm{Sn}(\mathrm{OH})_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
If \% yield of reaction $(P),(Q),(R) 25 \%, 50 \%, 40 \%$ respectively.
Calculate the mass of Sn (in kg required to produce 19.7 kg of $\mathrm{Na}_{2} \mathrm{SnO}_{2}$.

- Watch Video Solution

114. 5.00 moles of hydrogen gas, 3 moles of white phosphorus $\left\{P_{4}(s)\right\}$ and 12 moles of oxygen gas are taken in a sealed flask and allowed to react as follows :

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{P}_{4}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}
$$

Determine the moles of ortho-phosphoric acid that can be produced, considering that the reaction occurs in 90% yield.

- Watch Video Solution

115. A certain metal M forms an insoluble oxalate complex $\mathrm{M}_{4} \mathrm{O}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}$. If 2.38 gm of the complex are formed from 1 gm of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$, what is the atomic weight of M ?
[Write nearest integral valve].

- Watch Video Solution

116. When $\mathrm{C}_{2} \mathrm{H}_{4}$ is burnt in air, carbon dioxide and water are formed. If on combustion of $\mathrm{C}_{2} \mathrm{H}_{4}, 2$ moles of CO_{2} is produced, calculate the number of drops of water produced, calculate the number of drops of water produced along with this quantity of CO_{2} if each drop contains 6.022×10^{21} water molecules.
117. Fluorocarbon polymers can be made by florinating polyethylene according to the reaction
$2 \mathrm{CoF}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{CoF}_{3}$
$\left(\mathrm{CH}_{2}\right)_{n}+4 n \mathrm{CoF}_{3} \rightarrow\left(\mathrm{CF}_{2}\right)_{n}+2 n \mathrm{HF}+4 n \mathrm{CoF}_{2}$
The CoF_{3} can be regenerated by the reaction
$2 \mathrm{CoF}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{CoF}_{3}$
Calculate kg of fluorine consumed per kg of fluorocarbon produced $\left(C F_{2}\right)_{n}$
[Write the answer excluding the decimal places]

- View Text Solution

118. Cis-platin $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, a compound used in cancer treatment is prepared by reaction of ammonia with potassium tetrachloro platinate $\mathrm{K}_{2} \mathrm{PtCl}_{4}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{KCl}+\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$
(P) How many grams of cis-platin are formed from
$41.5 \mathrm{gK}_{2} \mathrm{PtCl}_{4}$ and $34 \mathrm{gNH}_{3}$ if the reaction takes place in 90% yield ? [Ans $=(\mathrm{x})$]
(Q) What is the maximum mass of KCl which can be produced if initially total 9 moles of reactant are taken. Assuming 100% reaction. [Ans = (y)]

- Watch Video Solution

119.45 g of gaseous mixture of $\mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}$ gas occupy 22.7 litre at STP. Find the mole \% of NO_{2} in the gaseous mixture.

- Watch Video Solution

120. The abundance of three isotopes of oxygen are as follows:
$\%$ of $O^{16}=90 \%$
$\%$ of $O^{17}+\%$ of $O^{18}=10 \%$
Assume at. Mass same as mass no. find $\%$ of O^{17}, if the isotopic mass is
16.12
121. Assume isotope of chlorine present on the unknown planet are .${ }^{34} \mathrm{Cl}$ and.${ }^{38} \mathrm{Cl}$. If average molecular weight of Clis found to be 35 , what is the sum of moles of proton and neutron in 7 gm sample of chlorine ?

- Watch Video Solution

122. Mr. Gupta has lost the secret code of his bag which consists of lots of chocolates.From the information given below help Mr. Gupta to recall his code. The code consists of five digits abcde:
(a) = represents moles of hydrogen gas formed by converting all the hydrogen in 6 moles of NH_{3}
(b) $=\frac{\text { density of } \mathrm{SO}_{2} \text { gas at same } \mathrm{T} \text { and } \mathrm{P}}{\text { density of } \mathrm{O}_{2} \text { gas at same } \mathrm{T} \text { and } \mathrm{P}}$
(c) $=\%$ moles of NH_{3} in a mixture of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ having an average molecular weight of 33.15
$(\mathrm{d}, \mathrm{e})=$ represents $\%$ yield of reaction if 16.8 L of O_{2} is produced at 1 atm and 273 K from 122.5 gm of KClO_{3}.
123. Calculate the percentage loss (nearest integral value) in the mass, when $2.02 \times 10^{2} \mathrm{gm} \mathrm{KNO}_{3}$ is completely decomposed by heating into $\mathrm{KNO}_{2}(s)$ and $\mathrm{O}_{2}(g)$
$\mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$

(Watch Video Solution

124. Calculate the amount of ZnO produced (in gm) when 195 gm of ZnS reacts with $89.6 \mathrm{LO}_{2}$ at 1 atm and 274 K . Write nearest integral value

$$
\mathrm{ZnS}+\mathrm{O}_{2} \stackrel{2}{\rightarrow} \mathrm{ZnO}+\mathrm{SO}_{2}
$$

- Watch Video Solution

125. 20 ml of pure acetic acid (density $=0.75 \mathrm{gm} \mathrm{ml}^{-1}$) is mixed with 50 gm of water (density $=1 \mathrm{gmml}^{-1}$) at a certain temperature. Calculate the molality of acetic acid in the final solution.
126. Calculate the minimum molarity of a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution which can produce at least 1 gm each of I_{2} and KOH , when 5 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is added to excess KI solution.
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KOH}$
(Given answer by multiplying with 560)

- Watch Video Solution

127. 100 g a calcium was burnt in excess of O_{2} and the oxide obtained was dissolved in water to make 1 litre solution. Calculate the molarity of OH^{-} ion of the alkaline solution.

- Watch Video Solution

128. Calculate molarity of NaOH in a solution made by mixing 2 L of $1.5 \mathrm{MNaOH}, 3 \mathrm{~L}$ of 2 M NaOH and 1 L water
[Give your answer after multiplying by 10]

- Watch Video Solution

129. An unknown solution [mol. Wt. of solute $=250$] is $20 \%(w / w)$. Molarity of solution is :
[Given : $d_{\text {solution }}$ is $=1.25 \mathrm{~g} / \mathrm{ml}$]

- Watch Video Solution

130.50 gm of 109% oelum is mixed with 50 gm of another 118% oleum.

Calculate the maximum weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which can be obtained from the resulting mixture. (Fill the OMR after multiplying with 10)

- Watch Video Solution

131. 100 gm oleum sample (labelled as $\mathrm{X} \%$) is mixed with excess water to make solution 4 litre. 1 L of this solution is neutralizes completely by

- Watch Video Solution

132. 34 gm of a mixture containing N_{2} and H_{2} in $1: 3$ by mole is partially coverted into NH_{3}. Calculate the molar mass of the mixture (containing remaining $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} formed) after reaction if it has been found that the NH_{3} formed required 0.5 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ for complete neutralization
$3 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
Write nearest integral value.

- Watch Video Solution

133. Calculate the moles of BaSO_{4} obtained in each case if excess of BaCl_{2} is reacted with :
(a) $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution produced from collecting only SO_{3} present in 100 gm of 104.5% oleum and reacted with excess of water
(b) only $\mathrm{H}_{2} \mathrm{SO}_{4}$ taken from $100 \mathrm{~g} 104.5 \%$ oleum
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution obtained when 4.5 gm water is added to 100 gm oleum labelled as 104.5 \%

Write the nearest integral value of $(a)+(b)+(c)$.

- View Text Solution

134. A mixture of sodium chloride (NaCl) and anhydrous sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ has a mole ratio, $2: 1$. It is dissolved in water and treated with BaCl_{2} solution. The mass of BaCO_{3} precipitated is 197 gm .

Calculate the mass (in gm) of NaCl in the mixture.

- Watch Video Solution

135. Certain metals have a tendency to form compounds which have a "comple structure" and are known as complex. M is a metal with such tendencies and is forming compound like $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\left[\mathrm{Br}_{2}\right.\right.$. If it is known that solution of these furnish only those ions which are outside the co-
ordination sphere "[]" (the bracketed part), then calculate the weight (in g) of AgBr ppt obtained when 1000 g solution of the complex compound containing 40% by wt. of the complex compound is reacted with 1000 g solution of AgNO_{3} containing $17 \% \mathrm{AgNO}_{3}$ by weight.
[Atomic weight of $M=75$]

- View Text Solution

136. Water is the working fluid used in Kota thermal power plant for generating electricity. Coal is combusted for generating heat as per reaction, $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} .0 .01 \%$ of the released CO_{2} gas is absorbed in water and gets coverted to weak acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$ which dissociated to give H^{+}as $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$. The percentage dissociattion of acid is 5 \%. Assume no ionisation of water. From this information answer the questions. if in a certain application $\left[\mathrm{H}^{+}\right]$concentration can maximum be $10^{-5} \mathrm{M}$, then,
(P) Calculate maximum moles of $\mathrm{H}^{+}(x)$ and $\mathrm{CO}_{3}^{2-}(y)$ in the water water if 10^{9} litres of $\mathrm{H}_{2} \mathrm{O}$ is used
(Q) Calculate maximum moles of carbon (z) which can be burnt so that
water remains fit to be used
Hence, write the value of $\left(x y^{2} / z\right)$

- View Text Solution

137. Calculate $\%$ yield of the reaction if $200 \mathrm{gKHCO}_{3}$ produces 22 g of CO_{2} upon strong heating.

Watch Video Solution

138. The weight (in gram) of pure potash alum $\left[\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right]$ which contains 0.64 kg oxygen. (Atomic weight of $K=39, S=32, A l=27$)

- Watch Video Solution

139. 280 g of a mixture containing CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ in $5: 2$ molar ratio is burnt in presence of excess of oxygen. Calculate total moles of CO_{2}
produced.

- Watch Video Solution

140. A mother cell disintegrates into sixty identical cells and each daughter cell further disintegrates into 24 smaller cells. The smallest cell is uniform cylindrical in shape with diameter of $120 \AA$ and each cell is $6000 \AA$ long. Determine molar mass of the mother cell, it density of the smallest cell is $1: 12 \mathrm{gm} / \mathrm{cm}^{3}$. Using scientific notation if your answer is $x \times 10^{y}$, then write the value of $[x]+y$, where [] is an integer function.

- Watch Video Solution

141. Calculate the number of Na^{+}ion present in 710 mg of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in aqueous solution

$$
\left(N_{A}=6 \times 10^{23}\right)
$$

If your answer is $x \times 10^{y}$ (in scientific notation) then fill x in OMR, where x is single digit number
142. What is the concentration of H^{+}in a solution that is prepared by mixing 50.0 mL of 0.50 MHCl with 200.0 mL of 0.25 M HCl ? Fill your Answer of the multiplying it with 10.

- Watch Video Solution

143. 1 gm of dry green algae absorbs 5 moles of CO_{2} per hour by photosynthesis. If fixied carbon atoms were all stored in the form of starch $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)_{n}$ after photosynthesis, then calculate time required (in sec) to double the weight of algae.

- Watch Video Solution

144. It is found that in 11.2 L at $0^{\circ} \mathrm{C}$ and 1 atm , of any gaseous compound of ' X ', there is never less than 15.5 gm of ' X '. It is also found that 11.2 L of vapours of ' X ' at $0^{\circ} \mathrm{C}$ and 1 atm , weighs 62 gm . The automicity of ' X ' is :
145. When 100 ml of $\mathrm{O}_{2}-\mathrm{O}_{3}$ mixture was passed through turpentine oil, there was reduction of volume by 20 ml . If 100 ml of such a mixture is heated, what will be the increase in the volume?
