©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - GRB CHEMISTRY (HINGLISH)

REDOX REACTIONS

Others

1. Find the of oxidation of Co in $\mathrm{Ag}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
A. 1
B. -1
C. Zero
D. None of these

Answer: b
2. Which of the following reactions involve oxidation and reduction?
A. $\mathrm{NaBr}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{HBr}$
B. $\mathrm{HBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
C. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
D. $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer: c

- Watch Video Solution

3. When ammonia is passed over heated copper oxide, the metallic coper is obtained. The reaction shows that ammonia is :
A. a dehydrating agent
B. an oxidising agent
C. a reducing agent
D. a nitrating agent

Answer: c

- Watch Video Solution

4. Manganese achieves its maximum oxidation state in its compound :
A. MnO_{2}
B. $\mathrm{Mn}_{3} \mathrm{O}_{4}$
C. KMnO_{4}
D. $\mathrm{K}_{2} \mathrm{MnO}_{4}$

Answer: c

5. Oxidation number of underlined elements are $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{SO}_{3}^{2-}, \mathrm{NH}_{4}^{+}$:
A. $+5,2+,-3$
B. $+6,-2,+3$
C. $+6,+2,-3$
D. $+5,+4,-3$

Answer: d

- Watch Video Solution

6. Phosphorous has the oxidation state of +3 in :
A. phosphours acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$
B. ortho phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
C. meta phosphoric acid $\left(\mathrm{HPO}_{3}\right)$
D. pyro phosphoric acid $\left(\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)$

Answer: a

- Watch Video Solution

7. Which statement is wrong?
A. Oxidation number of oxygen is +1 in peroxides
B. Oxidation number of oxygen is +2 in oxygen difluoride
C. Oxidation number of oxygen is $-\frac{1}{2}$ in superoxides
D. Oxidation number of oxygen is (-2) in most of its compounds

Answer: a

- Watch Video Solution

8. The incorrect order of decreasing oxidation number of S in compound is :
A. $H_{2} S_{2} O_{7}>N a_{2} S_{4} O_{6}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$
C. $S O_{3}>S O_{2}>S_{8}>H_{2} S$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: d

- Watch Video Solution

9. The reaction $3 \mathrm{ClO}^{-}(a q) \rightarrow \mathrm{ClO}_{3}^{-}(a q)+2 \mathrm{Cl}^{-}(a q)$ an example of:
A. oxidation
B. reduction
C. disproportionation
D. decomposition reaction

Answer: c

10. Oxidizing agents are species which :
A. lose electrons
B. gain electrons
C. neither lose nor gain electrons
D. take part of the solid-state reactions

Answer: b

- Watch Video Solution

11. In which of the following reactions does $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a resucing agents ?
A. $2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer: b

- Watch Video Solution

12. The oxidation number of an atom in a given species (molecule, ion of free atom) is the :
A. acutal charge of the atom
B. valency of the atom
C. formal charge of the atom
D. actual charge of the atom is the atom exits as a monotomic ion, or the hypothetical charge assigned to the atom in the species by sipmple rules.

Answer: d

13. The oxidation number of $C r$ is +6 in :
A. $\mathrm{FeCr} \mathrm{O}_{2} \mathrm{O}_{4}$
B. $\mathrm{Fe}_{2}\left(\mathrm{CrO}_{4}\right)_{2}$
C. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right) \mathrm{O}_{3}$
D. $\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}$

Answer: b

Watch Video Solution
14. A compound contains three elements A, B and C, if the oxidation number of $A=+2 B=+5$ and $C=-2$ then possible formula of the compound is
A. $A B C_{2}$
B. $A_{2}\left(B C_{3}\right)_{2}$
C. $A_{3}\left(B C_{4}\right)_{2}$
D. $A_{3}\left(B_{4} C\right)_{2}$

Answer: c

- Watch Video Solution

15. Oxidattion is a process in which :
A. oxidation number inceases
B. electrons are lost
C. de-electronation takes place
D. all the above happen

Answer: d
16. Which of the following is not a redox reaction?
A. $M g+N_{2} \rightarrow M g_{3} N_{2}$
B. $\mathrm{MnO}_{4}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$
C. $\mathrm{CuSO}_{4}+\mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
D. $\mathrm{AgCl}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$

Answer: d

- Watch Video Solution

17. Oxidation states of Cu and Fe in $\mathrm{CuFe} S_{2}$ are respectively:
A. I and II
B. II and III
C. I and III
D. II and II

Answer: a

D Watch Video Solution

18. What is the oxidation state of $S n$ in $C a_{2} S n_{2} S i_{6} O_{18}$?
A. I
B. II
C. III
D. IV

Answer: d

19. Consider the salt $\mathrm{K}_{x} \mathrm{H}_{y}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{z} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

The relationship between x, y and z is :
A. $x+y-z=0$
B. $x+y=2 z$
C. $x+y+z=0$
D. None of these

Answer: b

- Watch Video Solution

20. The average oxidation state of sulphur in sodium tetrathonate $\left(N a_{2} S_{4} O_{6}\right)$ is :
A. 0
B. 5
C. 2.5
D. 3.0

Answer: c

21. The difference in the oxidation numbers of two types of sulphul atoms in $N a_{2} S_{4} O_{6}$ is.....
A. 5
B. 4
C. 3
D. 2

Answer: a

- Watch Video Solution

22. Select the reaction which describes the existence of $I_{2} O_{5}(s)$ as $\left(\mathrm{IO}_{2}^{+}\right)\left(\mathrm{IO}_{3}^{-}\right):$

$$
\text { A. } \mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{HF} \rightarrow \mathrm{HIO}_{2}+\mathrm{FIO}_{3}
$$

B. $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{HF} \rightarrow \mathrm{IO}_{2} \mathrm{~F}+\mathrm{HIO}_{3}$
C. $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{HF} \rightarrow \mathrm{HOI}+\mathrm{IO}_{4} \mathrm{~F}$
D. $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{HF} \rightarrow \mathrm{IOF}+\mathrm{HIO}_{4}$

Answer: b

- Watch Video Solution

23. In $\mathrm{FeCr}_{2} \mathrm{O}_{4}$, the oxidation numbers of Fe and Cr are :
A. +2 and +3
B. 0 and +2
C. +2 and +6
D. +3 and +6

Answer: a

24. The oxidation number of P in $M g_{2} P_{2} O_{7}$ is
A. +3
B. +2
C. +5
D. -3

Answer: c

- Watch Video Solution

25. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$
B. $\mathrm{S}_{2-} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$

- Watch Video Solution

26. The resonating structures of cyanate ion are $O=C=\stackrel{1-}{N} \leftrightarrow \stackrel{1-}{O}-C \equiv N \leftrightarrow \stackrel{1+}{\equiv} C-\stackrel{2-}{N}$. The correct set of oxidation states of O, C and N respectively with the most stable structure out of the above is :
A. $-2,+4,3$
B. $-2,+4,-3$
C. $2,+4,-3$
D. $0,+4,-5$

Answer: b

- Watch Video Solution

27. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{Hno}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: b

- Watch Video Solution

28. In the reaction $2 \mathrm{Ag}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{40}$ acts as $a / a n$
A. an oxidizing agent
B. a reducing agent
C. a catalyst
D. an acid as well as an oxidant

Answer: d

- Watch Video Solution

29. Among these, identify the species with an atom in +6 oxidation state:
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: d

- Watch Video Solution

30. Oxidation number of iron $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}\left(\mathrm{NO}^{+}\right)\right]$is :
A. +2
B. +3
C. $+\frac{8}{3}$
D. None of these

Answer: a

- Watch Video Solution

31. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. -1
B. -3
C. +3
D. +5

Answer: c

- Watch Video Solution

32. The oxidation number of S in $S_{8}, S_{2} F_{2}$, and $H_{2} S$, respectively, are
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: a

33. Among es the following, the pair having both the metals in their highest oxidation state is :
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and MnO_{4}^{-}
C. TiO_{2} and MnO_{2}
D. $\left[\mathrm{MnCl}_{4}\right]^{2-}$ and $\left[\mathrm{NiF}_{6}\right]^{2-}$

Answer: b

- Watch Video Solution

34. Which of the following reaction depicts the oxidsing behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO} 4+\mathrm{HCl}$
D. $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{SO}_{2} \mathrm{Cl}_{2}$

Answer: a

- Watch Video Solution

35. The oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is:
A. +3
B. +2
C. +1
D. 0

Answer: a

- Watch Video Solution

36. which of the following is a redox reaction ?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C.
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}+{ }_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}+$
D. $Z n+2 A g C N \rightarrow 2 A g_{Z} n(C N)_{2}$

Answer: b

- Watch Video Solution

37. A substance which participates readily in both acid-base and oxidation-reduction reactions is:
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. KOH
C. KMnO_{4}
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

D Watch Video Solution

38. Which of the following may act as an oxidizing and reducing agent ?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. MnO_{2}
C. SO_{2}
D. All of these

Answer: d

Watch Video Solution
39. In compound HN_{3} (hydrazoic acid), oxidation state of N atoms are :
A. $0,0,3$
B. $0,-2,+1$
C. $1,1,-3$
D. $-3,-3,-3$

Answer: b

- Watch Video Solution

40. In the reaction $\mathrm{Ca}+\mathrm{H}_{2} \rightarrow \mathrm{CaH}_{2}$ select the incorrect statement.
A. Calcium undergoes oxidation
B. Hydrogen undergoes reduction
C. Calcium acts as oxidising agent
D. Hygrogen acts as oxidising agent

Answer: c

41. Which of the following is not a redox reaction ?
A. $\mathrm{CO}+\mathrm{NO}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}$
B. $3 \mathrm{SnCl}_{2}+6 \mathrm{HCl}+2 \mathrm{NO} \rightarrow 3 \mathrm{SnCl}_{4}+2 \mathrm{NH}_{2} \mathrm{OH}$
C. $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$
D. $\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: d

- Watch Video Solution

42. The oxidation states of the most electronegative elements in the products of the reaction between BaO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are
A. 0 and -1
B. -1 and -2
C. -2 and 0
D. -2 and +1

- Watch Video Solution

43. Which equation represents an oxidation-reduction reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Na} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
C. $2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cu} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$

Answer: d

- Watch Video Solution

44. For which substance is the oxiadation number of vandium the same as that in the VO_{3}^{-}ion ?
A. VN
B. $V C l_{3}$
C. VOSO_{4}
D. $V F_{5}$

Answer: d

- Watch Video Solution

45. A substance which participates readily in both acid-base and oxidation-reduction reactions is:
A. NaCO 3
B. KOH
C. KMnO_{4}
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: d

46. $p_{4}(s)+3 O H^{-}(a q)$. For this reaction the oxidizing and reducing agents are, respectively :
A. P_{4} and OH^{-}
B. OH^{-}and P_{4}
C. P_{4} and $\mathrm{H}_{2} \mathrm{O}$
D. P_{4} and P_{4}

Answer: d

- Watch Video Solution

47. What is the average oxidation number of tungesten in the ion, $W_{6} O_{6} C l_{12}^{2-}$?
B. 3.3
C. 3.7
D. 4.3

Answer: c

- Watch Video Solution

48. In which case does chromium undergo reduction?
A. $\mathrm{CrO}_{3} \rightarrow \mathrm{CrOF}_{3}$
B. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}(\mathrm{OH})_{4}^{-}$
C. $2 \mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. $\mathrm{Cr}^{3+} \rightarrow \mathrm{CrO}_{4}^{2-}$

Answer: a

49. In which species does the underlined elements have an oxidation number of +2 ?
A. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
B. $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$
C. HNO_{2}
D. $\mathrm{Ni}(\mathrm{CO})_{4}$

Answer: b

Watch Video Solution
50. Which transformation is an oxidation ?
A. $\mathrm{VO}_{3}^{-} \rightarrow \mathrm{VO}_{2}^{+}$
B. $\mathrm{CrO}_{2}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}$
C. $\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{3}^{2-}$
D. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{VO}_{2}^{+}$

- Watch Video Solution

51. Which represents an oxidation ?
A. $\mathrm{BrO}^{-} \rightarrow \mathrm{Br}_{2}$
B. $\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
C. $\mathrm{Cr}^{3+} \rightarrow \mathrm{CrO}_{4}^{2-}$
D. $\mathrm{VO}_{3}^{-} \rightarrow \mathrm{VO}_{2}^{+}$

Answer: c

Watch Video Solution

52. For the balanced equation :
$8 \mathrm{H}^{+}(a q)+5 \mathrm{Fe}^{2+}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow 5 \mathrm{Fe}^{3+}(a q)+\mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2}$
Which statement is correct ?
A. $\mathrm{Fe}^{2+}(\mathrm{aq})$ undergoes oxidation
B. $F e^{2+}(\mathrm{aq})$ is the oxidizing agent
C. $H^{+}(\mathrm{aq})$ undergoes oxidation
D. H^{+}(aq) is the oxidizing agent

Answer: a

- Watch Video Solution

53. Which substance can act only as a reducing agent ?
A. I_{2}
B. BrCl
C. NaBr
D. HIO_{4}

Answer: c

54. Which species can act an oxidizing agent but not as a reducing agent ?
A. Cl_{2}
B. Cl^{-}
C. ClO_{2}^{-}
D. ClO_{4}^{-}

Answer: d

- Watch Video Solution

55. What is the oxidation number of $T i$ in the compound $N a_{2} T i_{3} O_{7}$?
A. -2
B. +4
C. +6
D. +12

Answer: b

- Watch Video Solution

56. Which range includes the average oxidation state of S in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$?
A. Less than 0
B. 0 to +2
C. +2 to +4
D. Greater than +4

Answer: c

- Watch Video Solution

57. Which change represents an oxidation ?
A. $\mathrm{NO}_{2}^{-} \rightarrow \mathrm{N}_{2}$
B. $\mathrm{VO}^{2+} \rightarrow \mathrm{VO}_{3}^{-}$
c. $\mathrm{CIO}^{-} \rightarrow \mathrm{Cl}^{-}$
D. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Answer: b

- Watch Video Solution

58. What is the oxidation number of Mo in $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$?
A. 0
B. +3
C. +5
D. +6

Answer: d
59. All of the reaction below represent oxidation-reduction processes except the: s
A. combustion of tin n chlorine gas.
B. decomposition of potasssium chlorate.
C. neutralization of sodium hydrochloric acid.
D. reaction of magnesium with hydrochloric atoms.

Answer: c

- Watch Video Solution

60. In which pair of substances do the nitrogen atoms have the same oxidation state?
A. HNO_{3} and $\mathrm{N}_{2} \mathrm{O}_{5}$
B. NO and HNO_{2}
C. N_{2} and $\mathrm{N}_{2} \mathrm{O}$
D. HNO_{2} and HNO_{3}

Answer: a

- Watch Video Solution

61. In the equation below, which species acts the oxidation agent?

$$
\mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+\mathrm{H}^{+}(a q)+2 \mathrm{HSO}_{4}^{-}(a q) \rightarrow 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

A. $P b(s)$
B. $\mathrm{PbO}_{2}(s)$
C. $H^{+}(\mathrm{aq})$
D. $\mathrm{HSO}_{4}^{-}(\mathrm{aq})$

Answer: b

62. In which species does sulphur have the lowest oxidation state?
A. SCl_{2}
B. $O S F_{2}$
C. $\mathrm{H}_{2} \mathrm{SO}_{3}$
D. $S F_{6}$

Answer: a

Watch Video Solution
63. What is the average oxidation state of copper in the superconductor $\mathrm{Yba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$?
A. +2
B. +2.33
C. +2.67
D. +3

D Watch Video Solution

64. Which species has an atom with an oxidation number of +3 ?
A. ClO_{2}^{-}
B. PO_{4}^{3-}
C. $S_{2} \mathrm{O}_{3}^{2-}$
D. NO_{2}^{+}

Answer: a

65. What is the oxidation number of rhenium in $\mathrm{Ca}\left(\mathrm{ReO}_{4}\right)_{2}$?
A. +1
B. +3
C. +6
D. +7

Answer: d

- Watch Video Solution

66. When the half-reaction $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$ is balanced for one NO_{3}^{-}in acid solution Electrons(s) is (are)
A. 3 gained
B. 1gained
C. 1 lost
D. 3 lost

Answer: a

67. In the
$\mathrm{ClO}_{3}^{-}(a q)+5 \mathrm{Cl}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow 3 \mathrm{Cl}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \quad$ the oxidizing and reducing agents are, respectively :
A. $\mathrm{Cl}^{-}(\mathrm{aq})$ and ClO_{3}^{-}(aq)
B. ClO_{3}^{-}(aq) and H^{+}(aq)
C. $\mathrm{ClO}_{3}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$
D. $C l^{-0}(\mathrm{aq})$ and $H^{+}(\mathrm{aq})$

Answer: b

- Watch Video Solution

68. What is the oxidation number of C in formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$?
A. -2
B. 0
C. +2
D. +4

Answer: b

- Watch Video Solution

69. Which one of the following connot act as an oxidizing agent ?
A. S^{2-}
B. SO_{3}^{2-}
C. SO_{4}^{2-}
D. $S_{2} O_{8}^{2}$

Answer: a

70. What is the oxidation number of $A s$ in the compound $\mathrm{K}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{AsO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$?
A. -3
B. +1
C. +3
D. +5

Answer: d

- Watch Video Solution

71. $\mathrm{aMnO} \mathrm{M}_{4}^{-}+b \mathrm{I}^{-}+\mathrm{cH}^{+} \rightarrow \mathrm{Mnn}^{2+}+e \mathrm{I}_{2}+\mathrm{fH} \mathrm{H}_{2} \mathrm{O}$ In above balance reaction, value of $\left(\frac{c}{d}\right)$ will be :
A. 1.3
B. 1.2
C. 8
D. 5

Answer: c

- Watch Video Solution

72. In the reaction,
$x \mathrm{FeCl}_{3}+y \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{FeCl}_{2}+\mathrm{S}+\mathrm{HCl}$
A. $x=2, y=1$
B. $x=3, y=2$
C. $x=4, y=3$
D. $x=2, y=2$

Answer: a

73. For the redox reaction $x \mathrm{P}_{4}+y \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. $x=1, y=5$
B. $x=32, y=10$
C. $x=1, y=20$
D. $x=1, y=15$

Answer: c

- Watch Video Solution

74. In the reaction $x \mathrm{HI}+y \mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. $x=3, y=2$
B. $x=2, y=3$
C. $x=6, y=2$
D. $x=6, y=1$

Answer: c

- Watch Video Solution

75. For the redox reation
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The correct stoichiometric coefficients of $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and H^{+} respectively:
A. $2,5,16$
B. 16, 5, 2
C. $5,16,2$
D. 2, 16, 5

Answer: a

76. In the half reaction :
$2 \mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}$
A. 5 electrons are gained
B. 5 electrons are liberated
C. 10 electrons are gained
D. 10 electrons are liberated

Answer: c

- Watch Video Solution

77. In the reaction $A^{-n 2}+x e^{-} \rightarrow A^{-n 1}$. Here, x will be :
A. $n_{1}+n_{2}$
B. $n_{2}-n_{1}$
C. $n_{1}-n_{2}$
D. $n_{1} \times n_{2}$

Answer: c

D Watch Video Solution

78. Cu reacts with HNO_{3} according to the equation
$\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
If NO and NO_{2} are formed in a 2:3 ratio, what is the coefficient for Cu when the equation is balanced with the simplest whole numbers ?
A. 2
B. 3
C. 6
D. 9

Answer: d

79. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. Bromine is oxidized and the carbonate radical is reduced.
B. Bromine is reduced and the carbonate radical is oxidized.
C. Bromine is neither reduced nor oxidized .
D. Bromine is both reduced and oxidzed.

Answer: d

- Watch Video Solution

80. In which of the following reactions is there a change in the oxidation number of nitrogen atom?
A. $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
D. None of these

Answer: d

- Watch Video Solution

81. Which reaction does not represent auto redox or disproptionation?
A. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{+}+\mathrm{Cu}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: d

- Watch Video Solution

82. In the reaction $\mathrm{X}^{-}+\mathrm{XO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{X}_{2}+\mathrm{H}_{2} \mathrm{O}$, the molar ratio in which X^{-}and XO_{3}^{-}react is :
A. 1:5
B. 5:1
C. 2:3
D. 3:2

Answer: b

- Watch Video Solution

83. CN^{-}is oxidised by NO_{3}^{-}in presence of acid :
$\mathrm{can}^{-}+b \mathrm{NO}_{3}^{-}+c \mathrm{H}^{+} \rightarrow(a+b) \mathrm{NO}+a \mathrm{CO}_{2}+\frac{c}{2} \mathrm{H}_{2} \mathrm{O}$
What are the values of a, b, c in that order:
A. 3, 7, 7
B. 3, 10, 7
C. $3,10,10$
D. $3,7,10$

Answer: d

- Watch Video Solution

84. The following equations are balanced atomwise and chargewise.
(p) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} 3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
(q) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} 5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}^{3+}+9 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{O}_{2}$
(r) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} 7 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$

The precies equation/equations representing the oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$ is/are:
A. (P) only
B. (Q) only
C. (R) only
D. all the three

Answer: a

- Watch Video Solution

85. During the disproportionation of I_{2} to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is
A. 1:5
B. 5: 1
C. 3:1
D. 1:3

Answer: a

- Watch Video Solution

86. Which of the following equation is correctly balanced?
A. $5 \mathrm{BiO}_{3}^{-}+22 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 5 \mathrm{BiO}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
B. $5 \mathrm{BiO}_{3}^{-}+14 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{BiO}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}$
C. $5 \mathrm{BiO}_{3}^{-}+4 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 2 \mathrm{BiO}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
D. $5 \mathrm{BiO}_{3}^{-}+12 \mathrm{H}^{+}+3 \mathrm{Mn}^{2+} \rightarrow 6 \mathrm{BiO}^{3+}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{MnO}_{4}^{-}$

Answer: b

- Watch Video Solution

87. The values of x, y and z in the reaction are respectively:
$4 \mathrm{KO}_{2}+\mathrm{H}_{2} \mathrm{O}+x \mathrm{H}_{2} \mathrm{O}+y \mathrm{CO}_{2} \rightarrow 4 \mathrm{KHCO}_{3}+z \mathrm{O}_{2}$
A. $3,6,6$
B. $2,4,3$
C. $3,2,5$
D. $4,3,6$
88. For the balanced redox reaction:
$a \mathrm{NO}_{3}^{-}+b \mathrm{Cu}_{2} \mathrm{O}+c \mathrm{H}^{+} \rightarrow d \mathrm{NO}+e \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
where a, b, c, d and e are stoichiometric coefficients if 'c' is 14 , then the value of 'e' is :
A. 2
B. 3
C. 6
D. 7

Answer: c

- Watch Video Solution

89. Consider the balanced chemical reaction:
$\mathrm{AI}_{2} \mathrm{O}_{5}+b \mathrm{Br} \mathrm{F}_{3} \rightarrow \mathrm{cIF} F_{5}+d \mathrm{O}_{2}+e \mathrm{Br}_{2}$

Calculate the value of $(b+c+e) /(a)$.
A. 10
B. 7
C. 6
D. 3

Answer: b

- Watch Video Solution

90. What are the value of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s for the following reaction ?
$p \mathrm{O}_{3}+q \mathrm{HI} \rightarrow \mathrm{I}_{2}+s \mathrm{H}_{2} \mathrm{O}$
A. $1,6,3,1$
B. 1, 6, 3, 3
C. $1,6,6,3$
D. $1,6,3,6$

- Watch Video Solution

91. The unbalanced equation for the reaction of $P_{4} S_{3}$ with nitrate in aqueous acidic medium is given below :
$\mathrm{P}_{4} \mathrm{~S}_{3}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{4}^{2-}+\mathrm{NO}$
the number of moles of water reuired per mole of $P_{4} S_{3}$ is:
A. 18
B. $\frac{8}{3}$
C. 8
D. 28

Answer: b

92. _ $\mathrm{ClO}_{3}^{-}+$_- $^{-}+\mathrm{H}^{+} \rightarrow$ _- $^{\mathrm{Cl}^{-}}+{ }_{\ldots-} \mathrm{I}_{2}+{ }_{\text {_- }} \mathrm{H}_{2} \mathrm{O}$

When this equation is balanced with whole number coefficients, what is the H^{+} / I_{2} coefficient ratio ?
A. $\frac{2}{1}$
B. $\frac{3}{1}$
C. $\frac{6}{1}$
D. Some other ratio

Answer: a

- Watch Video Solution

$$
\text { 93. } \mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

When this equation is balanced correctly this equation is balanced with the smallest integer coefficients ?
A. 1
B. 6
C. 8
D. 16

Answer: b

- Watch Video Solution

94. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$

What is the coefficient for OH^{-}when this equation is balanced with the smallest interger coefficients?
A. 2
B. 3
C. 4
D. 6
95. __- $\mathrm{Sn}^{2+}(\mathrm{aq})+\ldots \mathrm{NO}_{3}^{-}(\mathrm{aq})+\ldots \mathrm{H}^{+}(\mathrm{aq}) \rightarrow$ _- $^{4+}(\mathrm{aq})+_{\ldots} \mathrm{NO}(\mathrm{g})+{ }_{-}$ $\mathrm{H}_{2} \mathrm{O}$

What is the coefficent for $H^{+}(\mathrm{aq})$ when the equation above is balanced correctly with the smallesr interger coefficients?
A. 2
B. 4
C. 6
D. 8

Answer: d

- Watch Video Solution

96. What is the coefficient for OH^{-}after the equation ${ }_{\ldots-} \mathrm{Br}_{2}+_{\ldots}$ $\mathrm{OH}^{-} \rightarrow \mathrm{Br}^{-}+{ }_{\ldots-} \mathrm{BrO}_{3}^{-}+{ }_{\ldots} \mathrm{H}_{2} \mathrm{O}$ is balanced with the smallest
interger coefficients ?
A. 3
B. 6
C. 12
D. 18

Answer: b

- Watch Video Solution

97. _- $\mathrm{Sn}^{2+}(\mathrm{aq})+_{-} \mathrm{MnO}_{4}^{-}(\mathrm{aq})+_\mathrm{H}^{+}(\mathrm{aq}) \rightarrow{ }_{\text {_- }} \mathrm{Sn}^{4+}(\mathrm{aq})+_{-} \mathrm{MnO}^{2+}(\mathrm{aq})$ _ $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

When this equation for the reaction of $\mathrm{Sn}^{2+}(\mathrm{aq})$ and MnO_{4}^{-}(aq) is balanced correctly, what is the ratio, $\mathrm{Sn}^{2+} / \mathrm{MnO}_{4}^{-}$?
A. $\frac{1}{1}$
B. $\frac{1}{2}$
C. $\frac{2}{1}$
D. $\frac{5}{2}$

Answer: d

- Watch Video Solution

98. What is ther coefficient for H^{+}when the half equation is balanced with the smallest whole number coefficients?
A. 2
B. 4
C. 6
D. 8

Answer: b

- Watch Video Solution

99. When the reaction: $\mathrm{CL}^{-}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced in acid solution what is the ratio of Cl^{-}to ClO_{3}^{-}?
A. $\frac{1}{1}$
B. $\frac{2}{1}$
C. $\frac{3}{1}$
D. $\frac{5}{1}$

Answer: d

- Watch Video Solution

100. What is the coefficient for O_{2} when the equation $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ is balanced with smallest whole number coefficients ?
A. 2
B. 3
C. 4
D. 8

Answer: d

- Watch Video Solution

101.

When the
equation $\quad S n^{2+}$
$+\mathrm{IO}_{3}^{-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)+\mathrm{I}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ is balanced,
what is the $\mathrm{Sn}^{2+}(a q) / \mathrm{IO}_{3}^{-}(a q)$ mole ratio?
A. $\frac{1}{1}$
B. $\frac{2}{1}$
C. $\frac{1}{2}$
D. $\frac{5}{2}$

Answer: d
102. Ethanol reacts with dichromate ion in acid solution according to the equation:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{Cr}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
What is the coefficient for $H^{+}(a q)$ when this equation is balanced with the smallest whole number coefficients?
A. 10
B. 12
C. 14
D. 16

Answer: d

- Watch Video Solution

103. What is the coefficient for $Z n$ when the equation below is balanced with the smallest whole number coefficient?
$\mathrm{Zn}+\mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
A. 2
B. 4
C. 6
D. 8

Answer: b

- Watch Video Solution

104. What is the coefficient for O_{2} when the following reaction
${ }_{-} A s_{2} S_{3}+Z_{2} \rightarrow A s_{2} O_{3}+{ }_{\text {_- }} S O_{2}$
is correctly balanced with the smallest integer coefficient
A. 5
B. 6
C. 8
D. 9

Answer: d

- Watch Video Solution

105. When the equation below is balanced correctly using the simplest whole number coefficients, what is the coefficient for $\mathrm{CO}_{2}(\mathrm{~g})$?
$__{-} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\quad{ }_{--} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+$ _- $_{2} \mathrm{O}(l) \rightarrow{ }_{-} \mathrm{Cr}^{3+}(a q)+{ }_{-}$ $\mathrm{CO}_{2}(\mathrm{~g})+{ }_{\text {_- }} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. 4
B. 6
C. 8
D. 12

Answer: b
106. How many H^{+}ions are required when the equation below is balanced with the smallest whole number coefficients?

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. 2
B. 4
C. 6
D. 8

Answer: d

- Watch Video Solution

107. When this equation is balanced using the smallest possible integers, what is the sum of the coefficients?
${ }_{-}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(a q)+{ }_{-} \mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+_{-} \mathrm{NH}_{4}(\mathrm{aq})$
A. 8
B. 9
C. 11
D. 12

Answer: d

- Watch Video Solution

108. Born carbide, $B_{4} C$, is made by the high temperature reaction of boron oxide with graphite, yielding carbon monoxide as a by-product
$\ldots_{-} \mathrm{B}_{2} \mathrm{O}_{3}+\ldots \ldots \mathrm{C} \rightarrow \mathrm{B}_{4} \mathrm{C}+\mathrm{CO}$
What is the total of the smallest coefficients for the reactants and and products in the balanced equation?
A. 9
B. 10
C. 15
D. 16

- Watch Video Solution

109. When the equation
$\ldots \mathrm{MnO}_{4}^{-}+\ldots \mathrm{SO}_{3}^{2-}+\ldots \mathrm{H}^{+} \mathrm{H}^{+} \rightarrow{ }_{\ldots} \mathrm{Mn}^{2+}+\ldots \ldots \mathrm{SO}_{4}^{2-}+$ $\ldots \quad H_{2} \mathrm{O}$
is balanced correctly with the smallest whole number coefficients, what is the coefficient for $\mathrm{H}_{2} \mathrm{O}$?
A. 3
B. 5
C. 8
D. 10

Answer: a

110. What is the coefficients of $I_{2}(\mathrm{~s})$ when the reaction below is balanced with smallest whole number coefficients?
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+$ \qquad $.{ }^{-}(a q)+$ \qquad $H^{+}(a q) \rightarrow$ \qquad $I_{2}(s)+$ \qquad $C r^{3+}(a q)$
A. 2
B. 3
C. 4
D. 6

Answer: b

- Watch Video Solution

111. The following redox reaction occurs in basic medium $\mathrm{NO}_{3}^{-} \mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}$when the above reaction is balanced such that the stoichiometric coefficients are in smallest whole number
ratio, then the difference of stoichiometric coefficient of $\mathrm{Zn}(\mathrm{s})$ and OH^{-} ion will be:
A. 4
B. 10
C. 6
D. None of these

Answer: c

- Watch Video Solution

112. Ratio of stoichiometric coefficient of $\mathrm{N}_{2} \mathrm{H}_{4}$ to Cl^{-}in the following reaction:
$\mathrm{ClO}_{3}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{Cl}^{-}$
A. $\frac{8}{15}$
B. 1
C. $\frac{2}{3}$
D. $\frac{6}{14}$

Answer: d

- Watch Video Solution

113. What is the atomic mass of a metal whose specific heat capaity $\frac{1}{9}$ cal/ $g m^{\circ} \mathrm{C}$ and whose percentage by mass in its superoxide is 36% ?
A. 57.6
B. 54
C. 36
D. 64

Answer: a

- Watch Video Solution

114. Equivalent weight of $B r_{2}$ in the following reaction is $\mathrm{Br}_{2}+\mathrm{HgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HgBr}_{2} . \mathrm{HgO}+\mathrm{HBrO}$
(given $B r=80$)
A. $\frac{160}{3}$
B. 80
C. 160
D. 160×3

Answer: c

- Watch Video Solution

115. In the reaction
$2 \mathrm{CuSO}+4 \mathrm{KI} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{I}_{2}+I_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$ the equivalent weight of CuSO 4 will be:
A. 31.75
B. 63.5
C. 127
D. 15.88

D Watch Video Solution

116. In the following reaction hydrazine is oxidized N_{2}
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{OH}^{-} \rightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}+e$ The equivalent weight of $\mathrm{N}_{2} \mathrm{H}_{4}$ (hydrazine) is:
A. 8
B. 16
C. 32
D. 64

Answer: a

117. Determine the equivalent weight of each given below, if formula weight of these compounds are X, Y and Z respectively:
(i) $\mathrm{Na}_{2} \mathrm{SO}_{4}$, (ii) $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
A. (I). $\frac{X}{2}$
(II). $\frac{Y}{3}$
(III). $\frac{Z}{6}$
B. (I). X
(II). $\frac{Y}{3}$
(III) $\frac{Z}{3}$
C. (I) $\frac{X}{2}$
(II). $\frac{Z}{3}$
(III). $\frac{Z}{3}$
D. ${ }^{`}(\mathrm{I}) \mathrm{X},(\mathrm{II}) \mathrm{Y},(\mathrm{III}) \mathrm{Z}$

Answer: a

D Watch Video Solution

118. When one mole NO_{3}^{-}is converted into 1 mole $\mathrm{NO}_{2} 0.5$ mole N_{2} and 0.5 mole $N_{2} O$ respectively,
accepts x, y and z mole of reaction $-x, y, z$ are respectively.
A. 1,5,4
B. 1,2,3
C. $2,1,3$
D. $2,3,4$

Answer: a

119. In the equation,
$\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2} \rightarrow \mathrm{HgCl}_{2}+\mathrm{SnCl}_{4}$
The equivalent weight of stannous schloride (molecular weight $=190$)
will be :
A. 190
B. 95
C. 47.5
D. 154.5

Answer: b

- Watch Video Solution

120. In the following reaction:
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$, if the atomic weight of iron is 56 , then its equivalent weight will be
A. 42
B. 21
C. 63
D. 84

Answer: b

- Watch Video Solution

121. Which of the following statements is corrected about equivalent weight of KMnO_{4} ?
A. Equivalent weight is $\frac{1}{3}$ of molecular mass in neutral and weak basic medium
B. Equivalent weight is $\frac{1}{5}$ of molecular mass in basic medium
C. Equivalent weight is equal to molecular mass in acidic medium
D. Equivalent weight is $\frac{1}{3}$ of molecular mass in acidic medium

Answer: a

- Watch Video Solution

122. Equivalent weight of NH_{3} in the change
$N_{2} \rightarrow \mathrm{NH}_{3}$ is :
A. $\frac{17}{6}$
B. 17
C. $\frac{17}{2}$
D. $\frac{17}{3}$

Answer: d

D Watch Video Solution

123. If M represents molecular mass of $M n_{3} O_{2}$ then what will be its equivalent mass if it undergoes disproportionation reaction as shown:
$\mathrm{Mn}_{3} \mathrm{O}_{4} \rightarrow \mathrm{Mn}_{4}^{-}+\mathrm{Mn}^{2+}$
A. $\frac{M}{13}$
B. $\frac{M}{2}$
C. $\frac{15 M}{26}$
D. $\frac{26 M}{15}$

Answer: c

- Watch Video Solution

124. What is the equivalent mass of $S_{2} O_{3}^{2-}$ ion as par the following disproportionation reaction.
$S_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{S}_{2}^{2-}$
Where the charge above species represents charge on the ion and not oxidation state?
A. 132
B. 22
C. 130.6
D. 113.15

Answer: c

- Watch Video Solution

125. The equivalent mass of MnSO_{4} is half its molecular mass when it is converted to
A. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. MnO_{2}
C. MnO_{4}^{-}
D. MnO_{4}^{2-}

Answer: b

126. When $K M n O_{4}$ acts as an oxidising agnet and ultimetely from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. $4,3,1,5$
B. 1, 5, 3, 7
C. $1,3,4,5$
D. 3, 5, 7, 1

Answer: c

- Watch Video Solution

127. Equivalent weight of chlorine molecule in the equation is :
$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
A. 42.6
B. 35.5
C. 59.1
D. 71

Answer: a

- Watch Video Solution

128.

In
the
reaction:
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+4 \mathrm{Cl}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HCl}$, the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ will be: ($\mathrm{M}=$ molecular weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$)
A. $\frac{M}{4}$
B. $\frac{M}{8}$
c. $\frac{M}{1}$
D. $\frac{M}{2}$
129. X gm of metal gave Y gm of its oxide, so equivalent mass of metal is :
A. $\left(\frac{X}{Y-X}\right) \times 8$
B. $\left(\frac{Y-X}{X}\right) \times 8$
c. $\left(\frac{Y+X}{X}\right) \times 8$
D. $\frac{X}{Y} \times 8$

Answer: a

- Watch Video Solution

130. In the following conversion of sulphide of phosphorous
$P_{4} S_{3} \rightarrow P_{2} O_{5}+S O_{2}$
Equivalent weight of $P_{4} S_{3}$ (molecular weight=M) is :
A. $\frac{M}{14}$
B. $\frac{M}{18}$
C. $\frac{M}{32}$
D. $\frac{M}{38}$

Answer: c

- Watch Video Solution

131.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CHCH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]_{2} \mathrm{~S}_{3} \xrightarrow{\text { oxidation }} \mathrm{Co}^{+4}+\mathrm{CO}_{3}^{-2}+\mathrm{NO}_{3}^{-}+\mathrm{SO}
$$

What is the equivalent weight of the reactant in the avobe reaction?
A. $\frac{3 M}{182}$
B. $\frac{M}{182}$
C. $\frac{11 M}{182}$
D. $\frac{7 M}{182}$

Answer: b
132.3.65gm equimole mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is titrated against 0.1 MHCl using phenolphathalein as an indicator, $V_{1} m L$ of acid was required to reach end point. In another experiment 3.65 gm of same mixture is titrated against 0.2 M HCl using methyl orange as an indicator, $V_{2} m L$ of acid was required to reach end point. $V_{1}+V_{2}$ is :
A. 875 mL
B. 750 mL
C. 500 mL
D. 1000 mL

Answer: a

- Watch Video Solution

133. How may millilitres of a $9 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution will be required to neutralize completely 20 mL of a 3.6 NNaOH solution ?
A. $18.0 m L$
B. 8.0 mL
C. 16.0 mL
D. 80.0 mL

Answer: b

- Watch Video Solution

134. What is the normality of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, 18.6 mL of which \neq utralizes 30.0 mL ofa1.55NKOH` solution
A. 5.0 N
B. 1.25 N
C. 2.5 N

D. 3.5 N

Answer: c

- Watch Video Solution

135. 50 ml of $5.6 \% \mathrm{KOH}(\mathrm{w} / \mathrm{v})$ os added to 50 mL of a $5.6 \% \mathrm{HCl}(\mathrm{w} / \mathrm{n})$ solution. The resulting solution will be :
A. neutral
B. alkaline
C. strongly alkaline
D. acidic

Answer: d

- Watch Video Solution

136. Calulate the normality of an NaOH solution, 21.5 mL of which is required 0.240 g of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in a solution to monohydrogen phosphate.
A. 1.093 N
B. 0.093 N
C. 0.048 N
D. 0.93 N

Answer: b

- Watch Video Solution

137. 2.00 g of a mixture of NaHCO_{3} and KCIO_{3} present in the mixture is:
A. 0.84 g
B. 1.84 g
C. 1.16 g

D. 0.16 g

Answer: c

- Watch Video Solution

138. A 25 mL HCl solution containing $3.65 \mathrm{~g} \mathrm{HCl} / \mathrm{L}$ is neutralized by 50 mL of NaOH solution. Again, 25 mL of an $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution of unknow strenght. The normally of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is :
A. 0.25 N
B. 0.025 N
C. 0.05 N
D. 0.05 N

Answer: b

- Watch Video Solution

139. 10 mL of $0.5 \mathrm{NHCl}, 30 \mathrm{~mL}$ of $0.1 \mathrm{NHNO}_{3}$ and 75 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed together. The normality of the resulting solution will be :
A. 0.2 N
B. 0.1 N
C. 0.4 N
D. 0.5 N

Answer: a

- Watch Video Solution

140. The amount of KMnO_{4} required to prepare 100 mL of a 0.1 N solution in an acidic medium is :
A. 3.16 g
B. 1.58 g
C. 0.316 g
D. 31.6 g

Answer: c

- Watch Video Solution

141. $0,185 \mathrm{~g}$ of an iron wire containing 99.8% iron is dissolved in an acid to from ferrous ions. The solution requires 33 mL of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution for complete reaction. The normality of the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is :
A. 0.05
B. 0.20
C. 0.02
D. 0.10

Answer: d

- Watch Video Solution

142. 8.7 gm of pyrolusite (impure MmO_{2}) were heated with concentrated HCl . The $C l_{2}$ gas evolved was passed through excess of KI solution. The iodine gas evolved required 80 ml of $\frac{N}{10}$ hypo solution. The precentage of MnO_{2} in pyrolusite will be : $[M n=55]$
A. 0.04
B. 0.4
C. 0.08
D. 0.8

Answer: a

- Watch Video Solution

143. Volume of 0.1 M ferrous oxalate solution required to react completely with 60 ml of 0.1 N acidified KMnO_{4} solution
A. 30 mL
B. 20 mL
C. 150 mL
D. 10 mL

Answer: b

- Watch Video Solution

144. An equimolar mixture of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4} 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required V_{1} litre of $0.1 \mathrm{MKMnO}_{4}$ ion acidic medium for complete oxidation. The same amount of mixture required V_{2} litre of 0.2 MNaOH for complete neutralization. What os the ratio of $V_{1}: V_{2}$?
A. $4: 7$
B. $10: 7$
C. 8:7
D. $2: 7$

Answer: a

145. What volume of $O_{2}(g)$ measured at 1 atm and 273 K will be formed buy action of 200 mL of $0.4 \mathrm{MKMnO}_{4}$ of hydrogen peroxide in acidic solution /
A. 4.48 litre
B. 2.24 litre
C. 8.96 litre
D. 1.12 litre

Answer: a

- Watch Video Solution

146. 10 moles of KMnO_{4} were consumed in each separate titration with oxalic acid, one in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and other in presence of HCl . Identify the correct option.
A. 25 moles of oxalic acid will be consumed in both cases.
B. 25 moles of oxalic acid will be consumed in with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and with

HCl more than 25 moles of oxalic acid will be consumed.
C. No oxalic acid will be consumed in case of HCl and less than 25
moles will be consumed in case of $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. 25 moles of oxalic acid will be consumed with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and less than

25 moles of oxalic acid will be consumed with HCl

Answer: d

D Watch Video Solution

147. 100 mL each of $1 \mathrm{NH}_{2} \mathrm{O}_{2}$ and $11.2 \mathrm{VH}_{2} \mathrm{O}_{2}$ solution are mixed, then the final solution is equivalent to:
(Assume 1 mole od an ideal gas occupies 22.4 L at STP)
A. $3 \mathrm{MH}_{2} \mathrm{O}_{2}$ solution
B. $0.5 \mathrm{NH}_{2} \mathrm{O}_{2}$ solution
C. $34 \mathrm{~g} / \mathrm{LH}_{2} \mathrm{O}_{2}$ solution
D. $2.55 \mathrm{~g} / \mathrm{LH}_{2} \mathrm{O}_{2}$ solution

Answer: c

- Watch Video Solution

148. The CO in a 20.3L sample of gas was converted to CO_{2} by passing the gas over iodine pentoxide heated to $150^{\circ} \mathrm{C}$:

$$
\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{CO}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

The iodine distilled at this temperature and was collected in an absorber containing 8.25 mL of $0.11101 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The excess hypo was backtitrated with 2.16 mL of $0.00947 \mathrm{MI}_{2}$ solution. The milligrams of $C O$ in
$1 L$ of the original gas sample was therefore:
A. $0.172 m g$
B. 0.283 mg
C. 0.349 mg
D. 0.506 mg

Answer: a

- Watch Video Solution

149. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.
$25 m L$ of household bleach solution was mixed with 30 mL of $0.50 M K I$ and 10 mL of $4 N$ acetic acid. In the titration of the liberated iodine, 48 mL of $0.25 \mathrm{NNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was used to reach the end point. The molarity of the household bleach solution is :
A. 0.48 M
B. 0.96 M
C. 0.24 M
D. 0.024 M

Answer: c

D Watch Video Solution

150. The number of moles of oxalate ions oxidised by one mole of MnO_{4}^{-} ion in acidic medium is :
A. $\frac{5}{2}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$

Answer: d

- Watch Video Solution

151. How many moles of KMnO_{4} are needed to oxidise a mixture of 1 mole of each $\mathrm{FeSO}_{4} \& \mathrm{FeC}_{2} \mathrm{O}_{4}$ in acidic medium :
A. $\frac{4}{5}$
B. $\frac{5}{4}$
C. $\frac{3}{4}$
D. $\frac{5}{3}$

Answer: a

- Watch Video Solution

152. An aqueous solution containing $0.10 \mathrm{~g}_{\mathrm{KIO}}^{3}$ (formula weight $=214.0)$ was treated with an excess of KI solution the solution was acidified with HCl . The liberated I_{2} consumed 45.0 mL of " thiosulphate solution to decolourise the blue starch-iodine complex. Calculate the molarity of the sodium thosulphate solution.
A. 0.0623 M
B. 0.0313 M
C. 0.126 M

Answer: a

- Watch Video Solution

153. When N_{2} is converted into NH_{3}, the equivalent weight of nitrogen will be:
A. 1.67
B. 2.67
C. 2.63
D. 4.67

Answer: d

154. In the conversion $\mathrm{NH}_{2} \mathrm{OH} \rightarrow \mathrm{N}_{2} \mathrm{O}$, the equivalent weight of $\mathrm{NH}_{2} \mathrm{OH}$ will be:
A. $\frac{M}{4}$
B. $\frac{M}{2}$
C. $\frac{M}{5}$
D. $\frac{M}{1}$

Answer: b

- Watch Video Solution

155. Which of the following relations is incorrect for solutions?
A. $3 \mathrm{NAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}=0.5 \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. $3 \mathrm{MH}_{2} \mathrm{SO}_{4}=6 \mathrm{NH}_{2} \mathrm{SO}_{4}$
C. $1 \mathrm{MH}_{3} \mathrm{PO}_{4}=1 / 3 \mathrm{NH}_{3} \mathrm{PO}_{4}$
D. $1 \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: c

D Watch Video Solution

156. How many millilitres of complete reaction with a solution containing
$0.125 g$ of pure $\mathrm{Na}_{2} \mathrm{CO}_{3}:$
A. $23.6 m L$
B. $25.6 m L$
C. $26.3 m L$
D. $32.6 m L$

Answer: a

D Watch Video Solution

157. If 25 mL of a $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution reacts completely with 1.06 g of pure $\mathrm{Na} \mathrm{C}_{2} \mathrm{CO}_{3}$, what is the normality of this acid sotution :
A. 1 N
B. 0.5 N
C. 1.8 N
D. 0.8 N

Answer: d

- Watch Video Solution

158. The mass of oxalic acid crystals $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ required to prepare 50 mL of a 0.2 N solution is:
A. 4.5 g
B. 6.3 g
C. 0.63 g
D. 0.45 g

Answer: c

159. 125 mL of $63 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution is made to react with 125 mL of a 40% (w/v) NaOH solution. The resulting solution is : (ignoring hydrolysis of ions)
A. neutral
B. acidic
C. strongly acidic
D. alkaline

Answer: a

Watch Video Solution

160. A certain weioght of pure CaCO_{3} is made to react completely with 200 mL of a HCl solution to given 227 mL of CO_{2} gas at STP. The notmality of the HCl^{\prime} solution is :
A. 0.05 N
B. 0.1 N
C. 1.0 N
D. 0.2 N

Answer: b

- Watch Video Solution

161. Volume $V_{1} m L$ of $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is needed for complete oxidation of $0.678 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}$ in acidic medium. The volume of $0.3 \mathrm{M} \mathrm{KMnO}_{4}$ needed for same oxidation in acidic medium will be :
A. $\frac{2}{5} V_{1}$
B. $\frac{5}{2} V_{1}$
C. $113 \mathrm{~V} V_{1}$
D. can not be determind

Answer: a

D Watch Video Solution

162. Which of the following solutions will exactly oxidize $25 m L$ of an acid solution of $0.1 \mathrm{MFe}(I I)$ oxalate?
A. $25 m L$ of $0.1 M K \mathrm{MnO}_{4}$
B. $25 m L$ of $0.2 \mathrm{MKMnO}_{4}$
C. $25 m L$ of $0.6 \mathrm{MKMnO}_{4}$
D. 15 mL of $0.1 \mathrm{MKMnO}_{4}$

Answer: d

- Watch Video Solution

163. An element A in a compound $A B D$ has oxidation number A^{n-}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium. In the experiment 1.68×10^{-3}
moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were used for 3.26×10^{-3} moles of $A B D$. The new oxidation number of A after oxidation is:
A. 3
B. 3-n
C. $\mathrm{n}-3$
D. $+n$

Answer: b

- Watch Video Solution

164. A mixture of 0.02 mole of KBrO_{3} and 0.001 mole of KBr was treated with excess of KI and acidified. The volume of $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to consume the liberated iodine will be :
A. 1000 mL
B. 1200 mL
C. 1500 mL
D. 800 mL

Answer: b

- Watch Video Solution

165. $\mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}$ oxidizes KI to I_{2} in acid medium and the other product containing iodine is $K_{2} \mathrm{HgI}_{4}$. If the I_{2} liberated in the number of moles of $H g_{5}\left(I O_{6}\right)_{2}$ that have reacted is :
A. 10^{-3}
B. 10^{-4}
C. 2.5×10^{-4}
D. 2.5×10^{-2}

Answer: c

- Watch Video Solution

166. The normality of 0.3 M phosphorous acid $\mathrm{H}_{3} \mathrm{PO}_{3}$ is:
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: d

- Watch Video Solution

167. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise $10 m L$ of this solution is
A. 40 mL
B. 20 mL
C. 10 mL
D. 4 mL

Answer: a

- Watch Video Solution

168. When I^{Θ} is oxidised by $\mathrm{MnO}_{4}^{\Theta}$ in an alkaine medium, I^{Θ} converts into
A. IO_{3}^{-}
B. I_{2}
C. IO_{4}^{-}
D. IO^{-}

Answer: a

169. The amount of wet NaOH containing 15% water required to prepare 70 liters of 0.5 N solution is:
A. 1.65 kg
B. 1.4 kg
C. 16.5 kg
D. 140 kg

Answer: a

- Watch Video Solution

170. 50 mL of $0.1 M$ solution of a salt reacted with 25 mL of $0.1 M$ solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is:
$\mathrm{SO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-}$
If the oxidation number of metal in the salt was 3 , what would be the new oxidation number of metal:
A. 0
B. 1
C. 2
D. 4

Answer: c

- Watch Video Solution

171. HNO_{3} oxidies NH_{4}^{+}ions to nitrogen and itself gets reduced to NO_{2}. The moles of HNO_{3} required by 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is:
A. 4
B. 5
C. 6
D. 2
172. 25 ml of a $0.1(M)$ solution of a stable cation of transition metal z reacts exactly with 25 ml of $0.04(\mathrm{M})$ acidified KMnO_{4} solution. Which of the following is most likely to represent the change in oxidation state of Z correctly?
A. $Z^{+} \rightarrow Z^{2+}$
B. $Z^{2+} \rightarrow Z^{3+}$
C. $Z^{3+} \rightarrow Z^{4+}$
D. $Z^{2+} \rightarrow Z^{4+}$

Answer: d

- Watch Video Solution

173. How many litres of $C l_{2}$ at STP will be liberated by the oxidation of NaCl with $10 \mathrm{gKMnO}_{4}$ in acidic medium: (Atomic weight:
$M n=55$ and $K=39$)
A. 3.59
B. 7.08
C. 1.77
D. None of these

Answer: a

- Watch Video Solution

174. One gram of $\mathrm{Na}_{3} \mathrm{AsO}_{4}$ is boiled with excess of solid KI in presence of strong HCl . The iodine evolved is absorbed in $K I$ solution and titrated against 0.2 N hyposolution. Assuming the reaction to be

$$
\mathrm{AsO}_{4}^{3-}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{AsO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2},
$$

calculate the volume of arsenate consumed. [Atomic weight of $A s=75$]
A. 48.1 mL
B. 38.4 mL
C. 24.7 mL
D. 30.3 mL

Answer: a

- Watch Video Solution

175. What happen when a solution of potassium chromate is treated with an excess of dil. Nitic acid?
A. Cr reduces in the oxidation state +3 from CrO_{4}^{-2}
B. Cr oxidies in the oxidation state +7 from CrO_{4}^{2-}
C. Cr^{+3} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ will be formed
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$ will be formed

Answer: d

176. The oxidation state of chrominium in the final product formed in the reaction between $K I$ and acidified potassium dichromate soluttion is
A. +4
B. +6
C. +2
D. +3

Answer: d

- Watch Video Solution

177. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is:
A. 3
B. 4
C. 5
D. 6

Answer: d

- Watch Video Solution

178. Dichloroacetic acid $\left(\mathrm{CHCI}_{2} \mathrm{COOH}\right)$ is oxidised to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $C I_{2}$ by 600 meq of an oxidising agent. Same amount of ammonia to form ammonium dichloroacetate:
A. 0.0167
B. 0.1
C. 0.3
D. 0.6

Answer: b
179. $20 \mathrm{mlofH} \mathrm{H}_{2} \mathrm{O}_{2}$ after acidification with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ required 30mlof $\frac{\mathrm{N}}{12} \mathrm{KMnO}_{4}$ for complete oxidation. The approximate strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (ing/L)is: [Molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}=34$]
A. $2 g / L$
B. $4 g / L$
C. $8 g / L$
D. $6 g / L$

Answer: a

- Watch Video Solution

180. What will be the volume strength of 100 mL of KMnO_{4} in acidic medium? (Given that 61 mL of KMnO_{4} reacts completely with 5 mL of $\left.1 \mathrm{MK}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right)\right]$ where it converts into $\mathrm{K}^{+}, \mathrm{Fe}^{3+}, \mathrm{CO}_{3}^{2-}$ and $\left.\mathrm{NO}_{3}^{-}\right)$
A. 17.31 V
B. 34.62 V
C. 18.8 V
D. 19.8 V

Answer: a

- View Text Solution

181. Consider the reactions shown below :

Silver chromate (VI)

$$
\begin{aligned}
& \mathrm{Cr}^{3+}(a q) \\
& \downarrow^{\downarrow n(s) / \mathrm{H}^{+}(a q)} \\
& \mathrm{Cr}^{2+}(a q)
\end{aligned}
$$

Which of the follwoing statements is false?
A. Silver chromate (VI) has the formula $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
B. The minimum mass of zinc required to reduce 0.1 mole of

$$
\mathrm{Cr}^{3+} \mathrm{toCr} r^{2+} \text { is } 6.54 \mathrm{~g}
$$

C. The conversion of CrO_{4}^{2-} into $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is not a redox reaction.
D. The
equation
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} 6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad$ correctly describes the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ by acidified FeSO_{4}.

Answer: b

- Watch Video Solution

182. 0.7 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample was boiled with 100 mL of 0.2 N NaOH solution was diluted to 250 ml . 25 mL of this solution was neutralised using 10 mL of a $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The percentage purity of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is :
A. 94.3
B. 50.8
C. 47.4
D. 79.8

Answer: a

- Watch Video Solution

183. A mixutre solution of KOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ requires 15 mLL of " $\frac{N}{20} \mathrm{HCl}$ when titrated with phenolphthalein as indicator.But the same amoound of the solutions when titrated with methyl orange as indicator requires 25 mL of " the same acid. Calculate the amount of KOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in the solution.
A. 0.014 g
B. 0.14 g
C. 0.028 g
D. 1.4g

Answer: a

- Watch Video Solution

184. The percentage of copper in copper (II) salt can be determined by using a thisulphate titration. A $0.305 g$ of copper (II) salt was dissolved in water and added to an excess of potassium iodide solution liberating iodine according to the following equation:
$2 C u^{2+}(a q)+4 I^{-}(a q) \rightarrow 2 C \underline{s}+I_{2}(a q)$ The iodine liberated required $24.5 \mathrm{~cm}^{3}$ of a 0.1 mole $d \mathrm{~m}^{-3}$ solution of sodium thiosulphate for titration according to reaction:

$$
2 S_{2} O_{3}^{2-}+I_{2}(a q)+S_{4} O_{6}^{2-}(a q)
$$

The percentage of copper by mass in the copper (II) salt is (Atomic mass of copper $=63.5$)
A. 64.2
B. 51
C. 48.4
D. 25.5

Answer: b

- View Text Solution

185. When the permanganate ion, MnO_{4}^{-}, acts as an oxidizing agent it forms different products depending on the Ph of the solution. Which species correspond to the conditions listed?

	Acidic	Basic	Neutral
A	Mn^{2+}	$\mathrm{Mn}(\mathrm{OH})_{2}$	MnO_{2}
B	Mn^{2+}	MnO_{4}^{2-}	MnO_{2}
C	MnO_{2}	MnO_{4}^{2-}	$\mathrm{Mn}(\mathrm{OH})_{2}$
D	Mn^{2+}	$\mathrm{Mn}(\mathrm{OH})_{2}$	MnO_{4}^{2-}

A. A
B. B
C. C
D. D

D Watch Video Solution

186. 10 mL of 1 NHCl is mixed with 20 mL of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ and 30 mL of 1 M NaOH . The resultant solution has:
A. 20meqof H^{+}ions
B. 20meq of OH^{-}
C. Omeq of H^{+}or OH^{-}
D. 30 mili moles of H^{+}

Answer: a

D Watch Video Solution

187. Which of the followjng statements are incorrect ?
A. 0.2 moles of KMnO_{4} will oxide one mole of ferrous ions ferric ions in acidic medium.
B. 1.5 moles of KMnO_{4} will oxidise 1 mole of ferrous oxalate in acidic medium.
C. 0.6 moles KMnO_{4} will oxidise 1 mole of ferrous oxalate to one mole of ferric ion and carbon dioxide in acidic medium.
D. 1 mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will oxidise 2 moles of ferrous oxalate to ferric ions and carbon dioxide in acidic medium.

Answer: b

- View Text Solution

188. $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as both oxidising and reducing agent. As oxidising agent, its product is $\mathrm{H}_{2} \mathrm{O}$ but as redusing agent, its product is O_{2}. Volume strength has great significance for chemical reactions. The strength of ' 10 V means 1 volume (or litre) of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition
$\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)$ gives 10 volumes (or litre) of oxygen at NTP.
$15 \mathrm{gBa}\left(\mathrm{MnO}_{4}\right)_{2}$ sample containing inert impurity is completely reacting with 100 mL of ' $11.2 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$, then what will be the $\%$ purity of $B a\left(M n O_{4}\right)_{2}$ in the sample: (Atomic mass: $B a=137, M n=55$)
A. 5%
B. 10%
C. 50%
D. None of these

Answer: c

- Watch Video Solution

189. 1.2 g of carbon is burnt completely in oxygen (limted supply) to produce CO and CO_{2}. This mixture of gases is treated with solid $\mathrm{I}_{2} \mathrm{O}_{5}$ (to know the amount of CO produced). The librated iodine required 120 ml of 0.1 m hypo solution for complete titration. The percentage carbon converted into CO is :
A. 70%
B. 100%
C. 50%
D. 30%

Answer: a

- Watch Video Solution

190. The valency factor of I_{2} when, (i) it is formed by the reaction of potassium iodide and potassium iodate in acid medium and (ii) when it reacts with hypo, are respectively:
A. 2,2
B. $\frac{5}{3}, 2$
C. $\frac{3}{5}, 2$
D. 5,2

- Watch Video Solution

191. x gram of pure $A s_{2} S_{3}$ is completely oxididsed to respective highest oxidation states by 50 ml of 0.1 M hot acidified KMnO_{4}, then mass of $A s_{2} S_{3}$ taken is :
A. $22.4 g$
B. $43.92 g$
C. $64.23 g$
D. None of these

Answer: d

192. The number of moles of oxalate ions oxidised by one mole of MnO_{4}^{-} ion in acidic medium is :
A. $\frac{5}{2}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$

Answer: a

- Watch Video Solution

193. What volume of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ solution will be required to completely reduce 1 litre of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ in acidic medium?
A. 2500 ml
B. 500 ml
C. 1000 ml
D. 1200 ml

Answer: a

- Watch Video Solution

194. Calculate the number of millimoles of SO_{2} if in the reaction, 10 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ solution are required for complete titration.
$\mathrm{SO}_{2}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{SO}_{4}^{-}+\mathrm{Mn}^{+2}$
A. 2.5
B. 0.5
C. 1.25
D. None of these

Answer: a

D Watch Video Solution

195. 10 moles of ferric oxalate is oxidised by x mole of MnO_{4}^{-}in acidic medium. The value of ' x ' is :
A. 12
B. 4
C. 40
D. 18

Answer: a

- Watch Video Solution

196. In iodometric estimation of Cu^{2+} ion, the following reaction took place
$2 \mathrm{Cu}^{2+}+4 I \rightarrow C u_{2} I_{2}+I_{2}$
$\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
If 100 mL OF CuSO_{4} solution added to excess KI requires 50 mL of 0.2 M
$\mathrm{Na}, \mathrm{S}_{2} \mathrm{O}_{3}$ the molarity of $\mathrm{CuSO} \mathrm{C}_{4}$ solution is :
A. $0.05 M$
B. $0.1 M$
C. $0.2 M$
D. $0.25 M$

Answer: b

- Watch Video Solution

197. Calculate the moles of KMnO_{4} required to react completely with 2 m and 1500 mL of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in acidic medium.
A. 0.8
B. 0.6
C. 1.6
D. 2.4

Answer: d

198. 4: 3 gm of an alkane is burnt in sufficient oxygen. The CO_{2} formed reacts cmpletely with $300 \mathrm{~mL}, 2 \mathrm{~N} \mathrm{NaOH}$ solution producing $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The alkane should be :
A. $C_{3} H_{8}$
B. $\mathrm{C}_{12} \mathrm{H}_{26}$
C. $C_{6} H_{14}$
D. $C_{2} H_{6}$

Answer: c

Watch Video Solution

199. What is the correct relation between normality (N) and molarity (M) of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ acting as oxidising agent in acidic medium?
A. $M=6 N$
B. $N=3 M$
C. $M=3 N$
D.

Answer: a

- Watch Video Solution

200. Number of moles of electorns in the reaction during formation of 1 mole of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ according to the reaction $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$ will be :
A. 1
B. 5
C. 3
D. 8

D Watch Video Solution

201. 25 ml of $\frac{N}{10}$ caustic soda solution exactly neuralised 20 ml of an acid solution contaning 7.875 gm of acid per litre. What will be the equivalent mass of acid?
A. 63
B. 126
C. 26
D. 25

Answer: a

202. 10 mL of $\mathrm{H}_{2} \mathrm{O}$ solution weighs 10 gm . The solution is diluted to 250 mL . 25 mL of this diluted solution required 40 mL of a $\mathrm{M} / 50$ solution of KMnO_{4}. Then, volume Strenght of original $\mathrm{H}_{2} \mathrm{O}_{2}$, solution is :

Given:

$5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+6 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
A. 22.7 V
B. 11.35 V
C. 45.4 V
D. 2.27 V

Answer: a

- Watch Video Solution

203. $0.8 \mathrm{M} \mathrm{FeSO}_{4}$ solution requires $160 \mathrm{~mL}, 0.2 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ in acidic medium. Calculate volume of FeSO_{4} consumed :
A. 480 mL
B. 240 mL
C. 720 mL
D. 40 mL

Answer: c

- Watch Video Solution

204. If valence factor (n-factor) of compound $\mathrm{NaHC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 3 \mathrm{FeC}_{2} \mathrm{O}_{4} \quad$ in acid base titration is x and redox titration with KMnO_{4} is y then value of y / x is:
A. 8.4
B. 9
C. 11.25
D. 12

D Watch Video Solution

205. In alkaline medium, ClO_{2} oxidises $\mathrm{H}_{2} \mathrm{O}_{2}$ to O_{2} and is itself reduced to Cl^{\ominus}. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ are oxidised by 1 mol of ClO_{2} ?
A. 1
B. 1.5
C. 2.5
D. 3.5

Answer: c

- Watch Video Solution

206. If equal volume of $1 \mathrm{M} \mathrm{KMnO}_{4}$ and $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution are used to react with Fe^{2+} oxidized will be :
A. more by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. more by KMnO_{4}
C. equal in both cases
D. Fe^{2+} cannot be oxidized

Answer: a

- Watch Video Solution

207. In a titration of $\mathrm{H}_{2} \mathrm{O}_{2}$ certain amount is treated with 'y' mole of KMnO_{4} in acidic medium. The mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ in solution will be :
A. $3 y$
B. $\frac{5 y}{2}$
C. $5 y$
D. 2 y
208. 5 mL of $\mathrm{N}-\mathrm{HCl}, 2 \mathrm{~mL}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 mL of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and the volume is made to $1 L$. The normality of the resulting solution is
A. lgm
B. 0.5 gm
C. 0.1 gm
D. 21.8 gm

Answer: d

- Watch Video Solution

209. In basic medium CrO_{4}^{2-} reacts with $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ resulting in the formation of $\mathrm{Cr}(\mathrm{OH})_{4}^{\ominus}$ and SO_{4}^{2-} How many " mL of " $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$ is required to react with 40 " mL of " $0.25 \mathrm{M} \mathrm{Na} a_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
A. 16 mL
B. 32 mL
C. 128 mL
D. 42 mL

Answer: c

- Watch Video Solution

210. What is the molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution whose 100 mL produce the 0.5 moles of I_{2}, when reacted with excess KI solution?
A. 0.5 M
B. 1 M
C. 2.5 M
D. 5 M

Answer: d

211. Moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ used to oxidise $1 \mathrm{~mol} \mathrm{Fe}_{0.92} \mathrm{O}$ to Fe^{3+} are :
A. $\frac{0.92}{6}$
B. $\frac{70}{92} \times \frac{1}{6}$
C. $\frac{0.76}{6}$
D. $\frac{70}{92} \times \frac{1}{3}$

Answer: c

- Watch Video Solution

212. In a titration certain amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ is treated with y mole of KMnO_{4} in acidic medium. The left out KMnO_{4} when treated with X^{+} in basic medium oxidizes X^{+1} to X^{+6} and $0.2 \mathrm{M}, \times \mathrm{L}$ of X^{+}was consumed. The mole of given $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is :
A. $\frac{y-x}{5}$
B. $5\left(\frac{y-x}{2}\right)$
C. $\frac{(5 y-x)}{10}$
D. $\frac{(5 y-x)}{5}$

Answer: b

- Watch Video Solution

213. x m mol of KIO_{3} reacts completely with y m mol of KI to give I_{2} quantitavely. If z m mol of hypo are required for complete titration against this I_{2}, then, which statement is incorrect?
A. $z=6 x$
B. $6 y=5 z$
C. $5 x=y$
D. $x+y=2 z$

- Watch Video Solution

214. In basic medium, CrO_{4}^{2-} oxidises $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ to form SO_{4}^{2-} and itself changes to $\mathrm{Cr}(\mathrm{OH})_{4}^{-}$. How many mL of $0.154 \mathrm{M} \mathrm{CrO}_{4}^{2-}$ are required to react with 40 mL of $0.308 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$?
A. 213 mL
B. 156.4 mL
C. 170.4 mL
D. 190.4 mL

Answer: a

215. What would be the normality of a $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution used as a oxidizing agent of $\mathrm{Pb}^{\wedge}(2+)$?
A. 0.1 N
B. 0.6 N
C. 0.4 N
D. 0.2 N

Answer: b

- Watch Video Solution

216. A solution of 0.4 g sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacted with 0.632 g of KMnO_{4} in presence of sulphuric acid. The percentage purity of the sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
A. 0.95
B. 0.85
C. 0.8
D. none of these

Answer: b

- Watch Video Solution

217. 0.3 g of an oxalate salts was dissolved in 100 mL solution. The solution required 90 mL of $\mathrm{N} / 20 \mathrm{KMnO}_{4}$ for complete oxidation. The \% of oxalate ion in salt is:
A. 0.33
B. 0.66
C. 0.7
D. 0.4

Answer: b
218. In the
redox reaction,
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ reacts quantitatively with:
A. 20 mL of 0.1 M oxalate
B. 40 mL of 0.1 M oxalate
C. 50 ml of 0.25 M oxalate
D. 50 mL of 0.1 M oxalate

Answer: d

(D) Watch Video Solution

219. 4-amino-3-methylbutanoic acid is treated with thionyl chloride followed by ammonia to obtain compound X . X on reaction with, bromine in an alkaline medium gave compound Y . For estimation, Y was titrated
with perchloric acid. The volume of 0.1 M perchloric acid needed to react with 0.22 g of Y is :
A. 50 mL
B. 80 mL
C. 120 mL
D. 200 mL

Answer: a

- Watch Video Solution

220. A 0.200 g sample of benzonic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, is titrated with a $0.120 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution. What volume of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is required to reach the equivalance point?

Substance Molar mass
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad 122.1 \mathrm{~g} \mathrm{~mol}^{-1}$
A. 6.82 mL
B. 13.6 mL
C. 17.6 mL
D. 35.6 mL

Answer: a

D Watch Video Solution

221. A 1.50 mL sample of a sulphuric acid solution from an automobile storage battery is titrated with 1.47 M sodium, hydroxide solution to a phenophthalein endpoint. Requiring 23.70 mL . What is the molarity of the sulphuric acid solution?
A. 23.3 M
B. 11.6 M
C. 6.30 M
D. 0.181 M
222.

$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{MnO}_{4}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow 2 \mathrm{Mn}^{2+}(a q)+10 \mathrm{CO}_{2}(g)+8$. Oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{2}$, reacts with permanganate ion accroding to the balanced equation above. How many mL of $0.0154 \mathrm{M} \mathrm{KMnO}_{4}$ solution are required to react with 25.0 mL of $0.208 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution?
A. 13.5 mL
B. 18.5 mL
C. 33.8 mL
D. 84.4 mL

Answer: a

- Watch Video Solution

223. A 25.00 mL sample of $0.1050 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is titrated with a NaOH solution of unknown concentration. The phenophthalein endpoint was reached when 17.23 mL of the NaOH solution had been added. What is the concentration of the NaOH ?
A. 0.07617 M
B. 0.1447 M
C. 0.1524 M
D. 0.3047 M

Answer: d

- Watch Video Solution

224. Acidified solution of dichromate ion, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ oxidize Fe^{2+} to Fe^{3+} , forming Cr^{3+} in the process. What volume of $0.175 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in mL is required to oxidize 60.0 mL of 0.250 M FeSO 44 ?
A. 14.3
B. 28.6
C. 42.9
D. 85.7

Answer: a

- Watch Video Solution

225. When potassium permanganate, KMnO_{4}, is added to an acidified solution of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, the products are CO_{2} gas and Mn^{2+} ions. What is the reducing agent in this reaction?
A. KMnO_{4}
B. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. CO_{2}

- Watch Video Solution

226. In the titration of a monoprotic acid with a solution of sodium hydroxide of known concentration, what quantites are equal at the equivalaence point?
A. The concentrations of hydroxide and hydronium ions
B. The number of moles of hydroxide ion added and the number of moles of hydronium ion initially present
C. The volume of sodium hydroxide solution added and the volume of acid solution initially present
D. The number of moles of hydroxide ion added and the number of moles of monoprotic acid initially present
227. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is standardizes iodometrically against 0.1262 g of KBrO_{3} where BrO_{3}^{-}changes to Br^{-}. This process requires 45 mL of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. What is the molariy fo the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$? [M.W. of $\left.\mathrm{KBrO}_{3}=167\right]$
A. 0.2
B. 0.1
C. 0.05
D. 0.01

Answer: b

- Watch Video Solution

228. For the following reaction $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ Choose the correct statement (s).
A. Number of electrons lost by one molecule of $C_{6} H_{5} \mathrm{NO}_{2}$ are 25
B. One mole $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ required 11.2 mole oxygen atoms for complete oxidation.
C. One mole $C_{6} H_{5} \mathrm{NO}_{2}$ on combustion give 22.4 litre $N_{2}(g)$ at 1atm and 273 K
D. One mole of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ on combution give 22.4 litre $\mathrm{H}_{2} \mathrm{O}(l)$ at 1 atm and 273K

Answer: a

D Watch Video Solution

229. $40 \mathrm{~mL} 0.1 \mathrm{~N} \mathrm{KMnO}_{4}$ is equivalent to $30 \mathrm{~mL} \mathrm{KHC}_{2} \mathrm{O}_{4}$ solution. How many mL of 0.1 N KOH are required to titrate 60 mL of same $\mathrm{KHC}_{2} \mathrm{O}_{4}$ solution?
A. 40 mL
B. 30 mL
C. 28.57 mL
D. 35.5 mL

Answer: a

- Watch Video Solution

230. An aqueous solution of 18 gm oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is made up to 400 ml . calculate the volume of 0.1 M NaOH required to completely neutralize of 50 mL of above solution.
A. 500 mL
B. 50 mL
C. 400 mL
D. 200 mL

Answer: a

231. How many milli grams of $F e_{0.9} O$ reacts completely with 10 mL 0.1 M KMnO_{4} solution in acidic conditions ? $(\mathrm{Fe}=56)$
A. 47
B. 402
C. 534
D. 570

Answer: b

- Watch Video Solution

232. 0.32 grams of $\mathrm{N}_{2} \mathrm{H}_{4}$ was oxidised by 100 mL , $0.1 \mathrm{M} \mathrm{KIO}_{3}$ in conc. HCl where $N_{2} \mathrm{H}_{4}$ is converted to N_{2}. possible conversion of KIO_{3} is
A. $\mathrm{KIO}_{3} \rightarrow I_{2}$
B. $\mathrm{KIO}_{3} \rightarrow \mathrm{Icl}$
C. $\mathrm{KIO}_{3} \rightarrow \mathrm{KIO}_{4}$
D. $\mathrm{KIO}_{3} \rightarrow \mathrm{Kl}$

Answer: b

- Watch Video Solution

233. A solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is standardized with potassium acid phthalate (abbreviated KHP), $\mathrm{KHC}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad(\mathrm{M}=204)$. If 1.530 g of KHP is titrated with 34.50 mL of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution, what is the molarity of $\mathrm{Ba}(\mathrm{OH})_{2}$?
A. 0.0217 M
B. 0.435 M
C. 0.109 M
D. 0.217 M

Answer: c

234. What volume (in mL) of 0.0500 M phospheric acid is needed to titrate completely 25.0 mL of 0.150 M barium hydroxide solution to a phenolphthalein end point?
$3 \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2}$
A. 50
B. 75
C. 100
D. 150

Answer: a

- Watch Video Solution

235. A studend gets fingerprints on a cuvette before using it to determine the concentration of a coloured species using its known extinction
coefficient. What is the effect on the absorbance and reported concentration ?

A.absorbance Reported concentration Increased too law	
B.absorbance Increased	Reported concentration to high
C.	
absorbance	Reported concentration
decreased	too low
D.absorbance	Reported concentration
decreased	too high

Answer: b

- View Text Solution

236. Amount of oxalic acid present in a solution can be determined by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl because HCl:
A. furnishes H^{+}ions in addition to those from oxalic acid.
B. reduced permanganate to Mn^{2+}
C. oxidised oxalic acid to carbon dioxide and water.
D. gets oxidised by oxalic acid to chlorine.

Answer: b

- Watch Video Solution

237. In the reaction $\mathrm{H}_{2} \mathrm{O}_{2}^{18}+\mathrm{O}_{3} \rightarrow$ water + oxygen, radioactivity will be shown by which of the product?
A. Water
B. oxygen
C. Both (a) and (b)
D. None of these

Answer: b

238. Which method (s) can be used to determine the concentration of HNO_{3} in an aqueous solution of nitric acid?
(P) Titration with a standard base
(Q) Titration with a standard oxidizing agent
(R) Precipitation with Ag^{+}
A. Ponly
B. R only
C. P and Q only
D. P,Q and R

Answer: a

- Watch Video Solution

239. Which separation technique is based on difference in the volatility of the of the substances to be separated ?
A. Filtration
B. Distillation
C. Solvent extraction
D. Paper chromatography

Answer: b

- Watch Video Solution

240. A student is asked to measure 12 mL of a liquid as precisely as possible. Which piece of equipment should she select for this task?
A. 25 mL beaker
B. 25 mL graduated cylinder
C. 25 mL conical flask
D. 25 mL volumetric flask

Answer: b

241. The principal reason that solid sodium hydroxide is not used as a primary standard for acid-base titration is that it :
A. absorbes water from air
B. has a low molar mass
C. reacts slowly with many acids
D. ionizes in water

Answer: a

- Watch Video Solution

242. What value should be reported for the buret reading shown for a coloured solution ?

A. 22.3 mL
B. 22.30 mL
C. 22.36 mL
D. 22.40 mL

Answer: a

243. Which piece of apparatus can measure a volume of 25.0 mL most precisely?
A. 25 mL beaker
B. 25 mL conical flask
C. 25 mL graduated cylinder
D. 25 mL pipet

Answer: d

- Watch Video Solution

244. Which solution can serve as both reactant and indicator when it is used in redox titrations?
A. $\mathrm{FeNH}\left(\mathrm{SO}_{4}\right)_{2}$
B. KMnO_{4}
C. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. $N a_{2} S_{2} O_{3}$

Answer: b

- Watch Video Solution

245. A standard HCl solution is titration to a pink phenolphtalein endpoint by adding NaOH solution while stirring. If a solution becomes pink throughout but loses its colour upon standing for a short time, what should be done to restore the coloure?
A. Add more phenolphthalein indicator
B. Add an additional drop of NaOH solution
C. Add an additional drop of HCl solution.
D. Stir more vigorously.

Answer: b

246. In the determination of the molar mass of a solid acid by titrating it with a standardized base, which procedural error will yield a molar mass that is smaller than the actual value?
A. Adding the standardized base to a buret containing drops of water
B. Dissolving the weighed solid acid in twic the recommended volume of water
C. Using half as many drops of indicator as suggested
D. Weighing out half of the recommended mass of solid acid

Answer: a

- Watch Video Solution

247. A NaOH solution is to be standarized by titrating its against a known mass of potassium hydrogen phthalate. Which procedure will give a molarity of NaOH that is too low?
A. Deliberately weighing one half the recommended amount of potassium hydrogen phtalate.
B. Dissoving the potassium hydrogen phtalate in more water than is recommeded.
C. Neglecting to fill the tip of the buret with NaOH solution before titrating.
D. Lossing some of the potassium hydrogen phthalate solution from the flask before

Answer: c

- Watch Video Solution

248.

Kinetics can be studied by titration using
A. $N a_{2} S_{2} O_{3}$
B. KmMnO_{4}
C. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

D.

Answer: a

249. For the reaction :
$\mathrm{Cl}_{2}(a q)+2 \mathrm{Br}^{-}(a q) \rightarrow \mathrm{Br}_{2}(a q)+2 \mathrm{Cl}^{-}(a q)$

Which of the following could be used to monitor the rate ?
(P) pH meter
(Q) Spectrophotometer
A. Ponly
B. Q only
C. Either P or Q
D. Neither P nor Q

Answer: b

- Watch Video Solution

250. All of the following can be used as primary standards in acid-base titration except :
A. oxalic acid
B. potassium hydrogen phthalate
C. sodium carbonate
D. sodium hydroxide

Answer: d

- Watch Video Solution

251. Which experimental procedure is best suited to determine the $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration in an aqueous solutions ?
A. Precipitaiton with standard MgCl_{2} solution
B. Reaction withb excess Zn to form H_{2}
C. Titration with standard $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. Titration with standard KMnO_{4}

Answer: d

- Watch Video Solution

252. The table below shows the data for three titrations to determine the concentration of a NaOH solution With standard 0.200 M HCl solution using phenolphthalein as the indicator

Trial	Vol HCl, $\mathbf{m L}$	Vol NaOH, $\mathbf{~ M L}$	$\mathbf{M}_{\mathrm{NaOH}}$, calc.
1	21.43	19.26	0.223
2	18.57	16.73	0.222
3	22.20	21.14	0.210

Which explanation best accounts for the lower value of the NaOH M in Trial 3 ?
A. Some of the neutralized solution from Trial 2 was left in the flask for Trial 3.
B. The numner of drops of phenolphtalein was doubled in Trial 3.
C. The HCl concentration was used as 0.250 M in the NaOH molarity calculation.
D. A few drops of NaOH solution were spilled on the desktop in Trial 3.

Answer: d

253. Statements 1:Moles of KmnO_{4} required for oxidation of Fe^{+2} in acidic and basic medium will be different.

Statement 2: Final oxidation state to which $M n^{+7}$ will be reduced will be different in case of acidic and basic medium.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: a

- Watch Video Solution

254. Statements 1: Both CrO_{4}^{2-} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions when treated with acidified $\mathrm{H}_{2} \mathrm{O}_{2}$ solution gives blue solution which turns green on standing.

Statement 2: Blue solution of CrO_{5} is stabilised in the presence of organic solvent,e.g., ether, pyridine, etc.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-2
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-2
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: b

- Watch Video Solution

255. Statement 1: The oxidation state of oxygen in superoxide ion in $\mathrm{KO}_{2}, \mathrm{CsO}_{2}$ and RbO_{2} is $-1 / 2$.

Statement 2: Since the oxidation state of an alkali metal in any compound is always +1 , the oxidation state of oxygen is $-1 / 2$ in the O_{2}^{-}ion.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-3
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-3
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: a

- Watch Video Solution

$8 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{NO}_{3}^{-}+6 \mathrm{Cl}^{-}+\mathrm{Sn}(\mathrm{s}) \rightarrow \mathrm{SnCl}_{6}^{2-}+4 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$. the reducing agent is $S n(s)$.

Reason In balacing half-reaction, $S_{2} O_{3}^{2-} \rightarrow S(s)$, the number of electrons added on the left is 4 .
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-4
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-4
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: b

- Watch Video Solution

257. Statement 1: In the reaction, $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+4 \mathrm{H}_{2} \mathrm{O}, \mathrm{MnO}_{4}^{-}$ acts as oxidising agent.

Statement 2: In the above reaction, Fe^{2+} is converted to Fe^{3+}.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-5
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-5
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: a

- Watch Video Solution

258. Assertion: If 200 mL of 0.1 NNaOH is added to 200 mL of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. Then the resulting solution is acidic.

Reason: If milliequivalent of acid is greater than milliequivalents of base, then upon mixing the solution is acidic.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-6
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-6
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: d

- Watch Video Solution

259. Assertion: Equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the reaction, $\mathrm{FeC}_{2} \mathrm{O}_{4}+$ Oxidising agent $\rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is $\mathrm{M} / 3$, where M is molar mass of $\mathrm{FeC}_{2} \mathrm{O}_{4}$.

Reason: In theabove reaction, total two mole of electrons are given up by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ to the oxidising agent.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-7
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-7
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: c

- Watch Video Solution

260. Assertion: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

Reason: Two moles of HCl are required for the complete neutralisation of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-8
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-8
C. Statement-1 Is True, Statement-2 is False .
D. Statement-1 is True False, Statement-2 is True.

Answer: b

- Watch Video Solution

261. Identify the incorrect statements.
A. At Boyle's temperature, there exists a pressure where compressibility of a real gas is more than that of ideal gas.
B. The parent and daughter nuclei in a α-decay are isodiaphers.
C. The magnetic moment of Cr^{+1} is more than that of Cr .
D. The equivalent weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in its titration with HCl is 106 when phenolphthalien is used as an indicator.

Answer: a,c

- View Text Solution

262. Which of the following reaction are example of redox reactions?
A. $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CO} \rightarrow$
B. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl} \rightarrow$
C. $\mathrm{CuSO}_{4}+\mathrm{KCN}($ excess $) \rightarrow$
D. $\mathrm{CuSO} \mathrm{O}_{4}+\mathrm{KI}($ excess $) \rightarrow$

Answer: a,b,c,d

263. 100 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution having volume strength 11.35 V is mixed with 50 mL of 0.5 M KI solution to liberate I_{2} gas. All the I_{2} gas liberated is trapped to form a 500 mL solution termed as X . 200 mL of the solution X of I_{2} required 50 mL hypo solution for conversion to I^{-}and $S_{4} O_{6}^{2-}$. Assuming all reactions to undergo 100% completion, identify to correct option (s)
A. Volume strength of remaining $\mathrm{H}_{2} \mathrm{O}_{2}$ solution will be 6.62 V
B. Molarity of I_{2} in solution X is 0.025 M
C. Molarity of hypo solution taken is 0.2 M
D. Moles of tetrathionate ions formed will be 0.01

Answer: a,b,c

- Watch Video Solution

264.25mL of $0.50 \mathrm{MH}_{2} \mathrm{O}_{2}$ solution is added to 50 mL of $0.20 \mathrm{MKMnO}_{4}$ is acid solution. Which of the following statements is true?
A. 0.010 mole of oxygen gas is liberated
B. 0.005 mole of $K M n O_{4}$ is left
C. 0.030 g of oxygen gas is evolved
D. 0.0025 mole $\mathrm{H}_{2} \mathrm{O}_{2}$ does not react with KMnO_{4}

Answer: a,c,d

- Watch Video Solution

265. Which of the following compounds acts both as an oxidising as wll as a reducing agent?
A. HNO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2} S$
D. SO_{2}

Answer: a,b,d

- Watch Video Solution

266. Which of the following samples of reducing agents is /are chemically equivalent to 25 mL of $0.2 \mathrm{~N} \mathrm{KMnO}_{4}$ to be reduced to Mn^{2+} and water?
A. 25 mL of $0.2 \mathrm{M} \mathrm{FeSO}_{4}$ to be oxidized to Fe^{3+}
B. 50 mL of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{AsO}_{3}$ to be oxidized to $\mathrm{H}_{3} \mathrm{AsO}_{4}$
C. 25 mL of $0.1 \mathrm{H}_{2} \mathrm{O}_{2}$ to be oxidized to H^{+}and O_{2}
D. 25 mL of $0.1 \mathrm{M} \mathrm{SnCl}_{2}$ to be oxidized to Sn^{4+}

Answer: a,c,d

- Watch Video Solution

267. In the titration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and ferrous sulphate, following data is obtained:
$V_{1} \mathrm{~mL}$ of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution of molarity M_{1} requires $V_{2} \mathrm{~mL}$ of FeSO_{4} solution of molarity M_{2}.

Which of the following relations is /are true for the above titration?
A. $6 M_{1} V_{1}=M_{2} V_{2}$
B. $M_{1} V_{1}=6 M_{2} V_{2}$
C. $N_{1} V_{1}=N_{2} V_{2}$
D. $M_{1} V_{1}=M_{2} V_{2}$

Answer: a,c

- Watch Video Solution

268. 0.1M solution of KI reacts with excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and KIO_{3} solutions, according to equation
$5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}^{2}+3 \mathrm{H}_{2} \mathrm{O}$, which of the following statements is /are correct:
A. 200 mL of the KI solution react with 0.004 mole KIO_{3}
B. 100 mL of the KI solution reacts with 0.006 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
C. 0.5 litre of the KI solution produced 0.005 mole of I_{2}
D. Equivalent weight of KIO_{3} is equal to $\left(\frac{\text { Molecular weight }}{5}\right)$.

Answer: a,b,d

- Watch Video Solution

269. The oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is:
A. 2 and 3
B. $\frac{8}{3}$
C. 2
D. 3

- Watch Video Solution

270. Consider the redox reaction
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 I^{\ominus}$
A. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ gets reduced to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ gets oxidised to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
C. I_{2} gets reduced to I^{-}
D. I_{2} gets oxidised to I^{-}

Answer: b,c

D Watch Video Solution

271. Which of the following are examples of disproportionation reaction?
A. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
B. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$
C. $\mathrm{KClO}_{3} \rightarrow \mathrm{KVlO}_{4}+\mathrm{KCl}$
D. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$

Answer: c,d

- Watch Video Solution

272. Two samples of HCl of 1.0 M and 0.25 M are mixed. Find volumes of these samples taken in order to prepare 0.75 MHCl solution. Assume no water is added.
(I) $20 m L, 10 m L$ (II) $100 m L, 50 m L k$
(III) $40 \mathrm{~mL}, 20 \mathrm{~mL}$ (IV) $50 \mathrm{~mL}, 25 \mathrm{~mL}$
A. $20 \mathrm{~mL}, 10 \mathrm{~mL}$
B. $100 \mathrm{~mL}, 20 \mathrm{~mL}$
C. $40 \mathrm{~mL}, 20 \mathrm{~mL}$
D. $50 \mathrm{~mL}, 25 \mathrm{~mL}$

Answer: a,b,c,d

- Watch Video Solution

273. Equal weights of X (atomic weight $=36$) and Y (atomic weight $=24$) are reacted to form the compound $X_{2} Y_{3}$, which of the following is/are correct
A. X is the limiting reagent
B. Y is the limiting reagent
C. no reactant is left over
D. Mass of $X_{2} Y_{3}$ formed is double the mass of 'X' taken

Answer: c,d

- Watch Video Solution

274. Choose the correct statement(s):
A. 1 mole of MnO_{4}^{-}ion can oxidise 5 moless of Fe^{2+} ion in acidic medium
B. 1 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion can oxidise 6 moles of Fe^{2+} ion in acidic medium
C. 1 mole of $\mathrm{Cu}_{2} S$ can be oxidised by 1.6 moles of MnO_{4}^{-}ion in acidic medium
D. 1 mole of $C u_{2} S$ can be oxidised by 1.33 moles of $C r_{2} O_{7}^{2-}$ ion in acidic medium

Answer: a,b,c,d

D Watch Video Solution

275. For the reaction $: I_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+\mathrm{NaI}+\mathrm{H}_{2} \mathrm{O}$. Identify the correct statements.
(At.wt. of $\mathrm{Na}=23$)
A. Reaction is an example of disproportionation
B. Equivalent weight of $I_{2}=\frac{3}{5} \times\left(\right.$ mol. wt.of $\left.I_{2}\right)$
C. Eq. wt of NaOH in the rection is 6.66
D. Eq. wt of NaOH in the reaction is 48

Answer: a,b,d

- Watch Video Solution

276. Three different solutions of oxidising agents $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and I_{2} is titrated separately with 0.158 gm of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. If molarity of each oxidising agent is 0.1 M and reactions are :
$\mathrm{I} . \mathrm{MnO}_{4}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{SO}_{4}^{2-}$
II $\mathrm{CrO}_{7}^{2-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{SO}_{4}^{2-}$
III. $I_{2}+S_{2} O_{3}^{2-} \rightarrow S_{4} O_{6}^{2-}+I^{-}$
A. Volume of KMnO_{4} used in maximum
B. volume of iodine used in minimum
C. weight of I_{2} used in titration is maximum
D. gram equivalent of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are same in all the reactions.

Answer: a,b

D Watch Video Solution

277. Choose the correct statement(s):
A. 1 mole of MnO_{4}^{-}ion can oxidise 10 moless of Fe^{2+} ion in acidic medium
B. 1 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion can oxidise 12 moles of Fe^{2+} ion in acidic medium
C. 2 mole of $C u_{2} S$ can be oxidize by 2.6 moles of $\mathrm{Mn} O_{4}^{-}$ion in acidic medium.

$$
\left(C u_{2} S \rightarrow C u^{2+}+S O_{2}\right)
$$

D. 2 moles of $C u_{2} S$ can be oxidize by $8 / 3$ moles of $C r_{2} O_{7}^{2-}$ ion in acidic medium

$$
\left(\mathrm{Cu}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{2}\right)
$$

Answer: a,b,c

- Watch Video Solution

278. A mixture containing substance ' X ' and ' Y ' is mixed with a substance 'Z' . If Z ' reacts with both X and Y then, select the correct option (s).
A. Moles of $X+$ Moles of $Y=$ Total moles of Z reacted " is always applicable"
B. Equivalent of X +equivalent of $Y=$ Total equivalent of Z reacted " is always applicable"
C.
$\frac{\text { Equivalent of } \mathrm{X}}{(\mathrm{n} \text {-factor of } \mathrm{Z} \text { in reaction with } \mathrm{X})}+\frac{\text { Equivalent of } \mathrm{Y}}{(\mathrm{n}-\text { factor of } \mathrm{Z} \text { in reaction with }}$
D.
$[$ Moles of Z reacted in reaction with X$]+[$ Moles of Z reacted in reacte

Answer: c,d

- Watch Video Solution

279. A compound can be formed by the elements A, B and C having oxidation state $+1,+2$ and -3 respectively. Then which compound may be formed?
A. ABC
B. $B_{3} C_{2}$
C. $A_{2} B C$
D. $A_{4} B C_{2}$

Answer: a,d

280. 66 gm sample of an oxalate salt $\mathrm{Al}_{x} \mathrm{H}_{y}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{z} \cdot n \mathrm{H}_{2} \mathrm{O}$ is dissolved in water to form 500 mL solution. 50 mL solution requires 60 mL of 0.5 M $\mathrm{Ba}(\mathrm{OH})_{2}$ and $240 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{KMnO}_{4}$ in acidic medium separately. If in salt x, y, z and n are present in simplest ratio, then select the correct statement(s).
A. Moles of oxalate salt in original sample is 0.2
B. Ratio of y / z is equal is 1
C. Value of $(x+y+z)-n=5$
D. Number of oxalate ion per molecule of oxalate salt is 2

Answer: a,b,c

- View Text Solution

281. x mol of oxalate $\mathrm{FeC}_{2} \mathrm{O}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ on reaction with $A l_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ requires 500 mL 0.4 M of it. Select the correct statement(s)
A. n-factor of $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ is 6
B. n-factor of $A l_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ is 18
C. Moles of oxalate which react with $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ is 0.4
D. Moles of oxalate which react with $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ is 0.65

Answer: b,c

- Watch Video Solution

282. A sample containing $1 \mathrm{~mol} \mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is titrated with different reagent. Select correct statement.
A. 1 mol of KOH are used
B. $\frac{3}{2}$ moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are used
C. $\frac{4}{5} \mathrm{~mol}$ of KMnO_{4} are used in alkaline medium
D. $\frac{2}{3}$ mol of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are used in acidic medium
283. Barium permangnate solution ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) is mixed with $0.1 \mathrm{~N} I^{-}$ giving precipitate fo IO_{3}^{-}and MnO_{2}. Resulting solution is filtered and titrated against Mo^{3+}, giving MoO_{2}^{2+} and Mn^{2+}. Which required 0.5 M , 10 mL acidified Mo^{3+}. Select the correct option (s).
A. Volume of I^{-}solution taken is 30 mL
B. Volume of I^{-}solution taken is 50 mL
C. Per mole Mn^{2+} formed, 4 moles of H^{+}are consumed
D. Per mole IO_{3}^{-}formed, 2 moles of MnO_{4}^{-}are consumed

Answer: a,d

- View Text Solution

284. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ behave as acids as well as reducing agents.
A. Equivalent weight of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ are equal to their molecular weights when behaving as reducing agents.
B. 100 mL of 1 N solution of each is neutralised by same volume of 1 N $\mathrm{Ca}(\mathrm{OH})_{2}$.
C. 100 mL of 1 N solution of each is neutralised by same volume of 1 M $\mathrm{Ca}(\mathrm{OH})_{2}$.
D. 100 mL of 1 N solution of each is oxidised by same volume of 1 N
$K \mathrm{MnO}_{4}$ solution in acidic medium.

Answer: b,d

- Watch Video Solution

285. Consider two reaction: (X represent an element)

Reaction I: $\mathrm{H}_{2} \mathrm{XO}_{4}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{XO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Reaction II: $\mathrm{H}_{2} \mathrm{XO}_{4}+\mathrm{KI} \rightarrow \mathrm{H}_{2} \mathrm{X}+\mathrm{I}_{2}$
which of the following statements (s) is/are incorrect ?
A. Molar mass of $\mathrm{H}_{2} \mathrm{XO}_{4}$ is equal in both reactions
B. Equivalent mass of $\mathrm{H}_{2} \mathrm{XO}_{4}$ is equal in both reactions
C. Equivalent mass of $\mathrm{H}_{2} \mathrm{XO}_{4}$ in Reaction-I is twice as in Reaction -II
D. One mole of $\mathrm{H}_{2} \mathrm{XO}_{4}$ will contain same number of equivalent in both reactions

Answer: b,c,d

- Watch Video Solution

286. A, B and C are three elements forming a compound in which their oxidation state are $+2,+5$, and -2 respectively. Which could not be the formula of compound?
A. $A_{2}(B C)$
B. $A_{2}\left(B C_{4}\right)_{3}$
C. $A_{3}\left(B C_{4}\right)_{2}$
D. $A B C_{2}$

D Watch Video Solution

287. A solution is prepared by dissolving a solid mixture of $K_{2} C_{2} O_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4}$. A 10 mL portion of this solution required $10 \mathrm{~mL}, 0.05 \mathrm{M} \mathrm{KOH}$ solution for titration reaction. In a separate analysis $10 \mathrm{~mL}, 0.06 \mathrm{M}$ acidified KMnO_{4} solution for titration. Which of the following are correct?
A. The original mixture contains $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4}$ in 2:1 molar ratio.
B. 20 mL of the original stock solution require 3 millimoles of acidified dichromate solution for titration
C. 20 mL of the original stock solution requires 6 milli-equivalents of acidified dichromate solution for titration
D. The original mixture contains $K_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4}$ in 1:2 molar ratio

Answer: a,c

- Watch Video Solution

288. One mole of KMnO_{4} is used for complete oxidation of $\mathrm{Fe}_{2} \mathrm{SO}_{4}, \mathrm{FeC}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ respectively (and seperately). Pick up the correct statements:
A. 5 mole of $\mathrm{Fe}_{2} \mathrm{SO}_{4}$ can be oxidised
B. $\frac{3}{5}$ mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ can be oxidised
C. $\frac{5}{3}$ mole of $\mathrm{Fe}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ can be oxidised
D. 2.5 mole of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ can be oxidised

Answer: c,d

289. If 1 mole of $H_{4} P_{2} O_{7}$ is reacted with 1 mole of $A(O H)_{3}$ as $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}+\mathrm{A}(\mathrm{OH})_{3} \rightarrow \mathrm{AHP}_{2} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{O}$ then:
(Atomic wt. of $\mathrm{A}=69, \mathrm{P}=31$)
A. equivalent weight of base is 40
B. equivalent weight of $H_{4} P_{2} O_{7}$ is 59.34
C. equivalent weight of base is 60
D. if maximum oxidation number of A is +5 then it can also participate in redox titration.

Answer: a,b,d

- Watch Video Solution

290. Choose correct statements.
A. In

$$
x A s_{2} \mathrm{~S}_{3}+y \mathrm{NO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow a \mathrm{As} \mathrm{O}_{4}^{3-}+b \mathrm{NO}+c \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}
$$

molar ratio of $x: y=3: 28$
B. when $\mathrm{NH}_{4} \mathrm{SCN}$ oxidizes into $\mathrm{SO}_{4}^{2-}, \mathrm{CO}_{3}^{2-}$ and NO_{3}^{-}its equivalent weight will be $\frac{M}{24}$
C. when $B i_{2} S_{3}$ converted into $B i^{5+}$ and S , n -factor will be 7
D. Equivalent weight of $H_{3} \mathrm{PO}_{2}$ when it disproportionates into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is $3 \frac{M}{4}$

Answer: a,b,d

- Watch Video Solution

291. Select the correct statements.
A. In a mixture of $\mathrm{KHC}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{KMnO}_{4}$ decolourises faster at higher temperature than lower temperature.
B. A catalyst participates in a chemical reaction by forming temporary bonds with the reactant resulting in an intermediate complex.
C. In collision theory, only activation energy determine the criteria for effective collision.
D. Collision theory assumes molecules to be soft spheres and consider their structural aspects.

Answer: a,b

- View Text Solution

292. In the following reaction:
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}^{-}$
A. IO_{3}^{-}is oxidising agent
B. $\mathrm{Cr}(\mathrm{OH})_{3}$ is oxidised
C. $6 e^{-}$are being taken per iodine atom

D. none of these

Answer: a,b

- Watch Video Solution

293. Equivalent Mass

The eqivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine. The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.
(a) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H^{+}ions or it is mass of acid which contains one mole of replaceable
H^{+}ions. It may be calculated as :
Equivalent mass of acid= $=\frac{\text { Molecular mass of acid }}{\text { Basicityof acid }}$
Basicity of acid = Number of replaceable hydrogen atoms present in one molecule of acid
(b) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH^{-} ions in molecules.

Equivalent mass of base $=\frac{\text { Molecular mass of acid }}{\text { Acidity of acid }}$
Acidity of base= Number of replaceable OH^{-}ions present in one molecule of the base

Equivalent mass of an oxidising agent
(a) Electron concept:

Equivalent mass of oxidising agent =
Molecular mass of oxidising agent
Number of electrons gained by one molecule
(b) Oxidation number concept:

Equivalent mass of oxidising
agent=
Molecular mass of oxidising agent
Total change in oxidation number per molecule of oxidising agent Equivalent mass of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic medium is:(where M stands for molar mass)
A. $\frac{M}{5}$
B. $\frac{M}{6}$
C. $\frac{M}{10}$
D. $\frac{M}{2}$

Answer: c

- Watch Video Solution

294. Equivalent Mass

The eqivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine. The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under
different experimental conditions.
(a) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H^{+}ions or it is mass of acid which contains one mole of replaceable H^{+}ions. It may be calculated as:
Equivalent mass of acid= $=\frac{\text { Molecular mass of acid }}{\text { Basicityof acid }}$ Basicity of acid = Number of replaceable hydrogen atoms present in one molecule of acid
(b) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH^{-} ions in molecules.

Equivalent mass of base $=\frac{\text { Molecular mass of acid }}{\text { Acidity of acid }}$
Acidity of base= Number of replaceable OH^{-}ions present in one molecule of the base

Equivalent mass of an oxidising agent
(a) Electron concept:

Equivalent mass of oxidising agent = Molecular mass of oxidising agent
Number of electrons gained by one molecule
(b) Oxidation number concept:

Equivalent

Total change in oxidation number per molecule of oxidising agent Equivalent mass of $\mathrm{Fe}_{0.9} \mathrm{O}$ in reaction with acidic $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is : (M= Molar mass)
A. $7 \frac{M}{10}$
B. $10 \frac{M}{7}$
C. $7 \frac{M}{9}$
D. $9 \frac{M}{7}$

Answer: b

- Watch Video Solution

295. Equivalent Mass

The eqivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine. The equivalent mass of a substance expressed in grams is called gram

equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.
(a) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H^{+}ions or it is mass of acid which contains one mole of replaceable H^{+}ions. It may be calculated as :

Equivalent mass of acid $=\frac{\text { Molecular mass of acid }}{\text { Basicityof acid }}$
Basicity of acid = Number of replaceable hydrogen atoms present in one molecule of acid
(b) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH^{-} ions in molecules.

Equivalent mass of base $=\frac{\text { Molecular mass of acid }}{\text { Acidity of acid }}$
Acidity of base= Number of replaceable OH^{-}ions present in one molecule of the base

Equivalent mass of an oxidising agent
(a) Electron concept:

Equivalent mass of oxidising agent = Molecular mass of oxidising agent
Number of electrons gained by one molecule
(b) Oxidation number concept:

Equivalent
mass
of
oxidising
agent=
Molecular mass of oxidising agent
Total change in oxidation number per molecule of oxidising agent Equivalent weight of oxalic acid salt in following reaction is :(Atomic masses:O=16,C=12,K=39) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaC} \mathrm{C}_{4}+\mathrm{H}_{2} \mathrm{O}$
A. 90
B. 45
C. 64
D. 128

Answer: c

- Watch Video Solution

296. Equivalent Mass

The eqivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine. The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.
(a) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H^{+}ions or it is mass of acid which contains one mole of replaceable H^{+}ions. It may be calculated as :
Equivalent mass of acid $=\frac{\text { Molecular mass of acid }}{\text { Basicityof acid }}$
Basicity of acid = Number of replaceable hydrogen atoms present in one molecule of acid
(b) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH^{-} ions in molecules.

Equivalent mass of base $=\frac{\text { Molecular mass of acid }}{\text { Acidity of acid }}$
Acidity of base= Number of replaceable OH^{-}ions present in one molecule of the base

Equivalent mass of an oxidising agent
(a) Electron concept:

Equivalent mass of oxidising agent =
Molecular mass of oxidising agent
Number of electrons gained by one molecule
(b) Oxidation number concept:

Equivalent mass
of
oxidising
agent=
Molecular mass of oxidising agent
Total change in oxidation number per molecule of oxidising agent Which of the following is not a disproportionation reaction?
A. $\mathrm{P}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
B. $B a C_{2}+N_{2} \rightarrow B a(C N)_{2}$
C. $\mathrm{Hg}_{2} \mathrm{I}_{2} \rightarrow \mathrm{HgI}_{2}+\mathrm{Hg}$
D. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

297. Equivalent Mass

The eqivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine.

The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.
(a) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H^{+}ions or it is mass of acid which contains one mole of replaceable H^{+}ions. It may be calculated as :
Equivalent mass of acid $=\frac{\text { Molecular mass of acid }}{\text { Basicityof acid }}$

Basicity of acid = Number of replaceable hydrogen atoms present in one molecule of acid
(b) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH^{-} ions in molecules.

Equivalent mass of base $=\frac{\text { Molecular mass of acid }}{\text { Acidity of acid }}$
Acidity of base $=$ Number of replaceable OH^{-}ions present in one molecule of the base

Equivalent mass of an oxidising agent
(a) Electron concept:
Equivalent mass of oxidising agent =

Molecular mass of oxidising agent
Number of electrons gained by one molecule
(b) Oxidation number concept:

Equivalent mass of oxidising agent=
Molecular mass of oxidising agent
Total change in oxidation number per molecule of oxidising agent When NO_{2} is dissolved in water solution become acidic. Equivalent weight of NO_{2} in this reaction $\left(\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow H \mathrm{HO}_{3}+\mathrm{HNO}_{2}\right)$ is :
A. 28
B. 46
C. 92
D. 14

Answer: c

D Watch Video Solution

298. In a balanced redox reaction net gain of electron (s) is equal to net loss of electrons (s). $n_{\text {factor }}$ is a reaction specific parameter and for intermolecular redox reaction n-factor of oxidising reducing agent is the no. of moles of electron gained /lost by one mole of compound.

The $n_{\text {factor }}$ of KI in the following reaction is:
$\mathrm{CuSO}+\mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
A. 1
B. 2
C. $\frac{1}{4}$
D. none of these

Answer: b

- Watch Video Solution

299. In a balanced redox reaction net gain of electron (s) is equal to net loss of electrons (s). $n_{\text {factor }}$ is a reaction specific parameter and for intermolecular redox reaction n-factor of oxidising reducing agent is the no. of moles of electron gained /lost by one mole of compound.

50 mL 0.1 M CuSO 4 are mixed with 50 mL of 0.1 M KI then, number of moles of electrons involved in the reaction will be:
A. 4
B. 2.5
C. 2.5×10^{-3}
D. none of these

Answer: c

300. In a balanced redox reaction net gain of electron (s) is equal to net loss of electrons (s). $n_{\text {factor }}$ is a reaction specific parameter and for intermolecular redox reaction n-factor of oxidising reducing agent is the no. of moles of electron gained /lost by one mole of compound.

Consider the following reaction:
$\mathrm{CrO} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
One mole of CrO_{5} will liberate how many moles of O_{2} ?
A. $\frac{7}{4}$
B. $\frac{5}{4}$
C. 1
D. none of these

Answer: a

301. A 100 mL solution containing $0.4 \mathrm{M} A s_{2} S_{3}, 5 \mathrm{M} \mathrm{NaOH}$ and $6 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ are reacted to form AsO_{4}^{3} and SO_{4}^{2-} as product.

What may be the correct coefficient of $\mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH respectively in a balanced reaction?
A. 1,14,12
B. 1,12,14
C. 1,28,20
D. 1,28,18

Answer: a

- View Text Solution

302. A 100 mL solution containing $0.4 \mathrm{M} A s_{2} S_{3}, 5 \mathrm{M} \mathrm{NaOH}$ and $6 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ are reacted to form AsO_{4}^{3} and SO_{4}^{2-} as product.

If final solution is allowed to stand for some time, what maximum volume of O_{2} at 1 atm and 273 K can be obtained by decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 112 mL
B. 224 mL
C. 336 mL
D. 448 mL

Answer: d

- View Text Solution

303. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromit $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ ore according to the following reactions:
(a) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(b) Acidifying filetered sodium chromate solution with sulphuric acid.
$\mathrm{Na} a_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(c) Treating sodium dichromate with potassium chloride.
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
Answer the following questions using above information.
If you are intially provided with 224 gm of pure chromite ore and 169.6 gm of sodium carbonate, the minimum volume of air required at 1 atm and 273 K to consume at least one of the reactant completely, if aire contains 20% by volume of oxygen gas is :
A. 156.8L
B. 196L
C. 28L
D. 152.4 L

Answer: a

D View Text Solution

304. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromit
($\mathrm{FeCr}_{2} \mathrm{O}_{4}$) ore according to the following reactions:
(a) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(b) Acidifying filetered sodium chromate solution with sulphuric acid.
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(c) Treating sodium dichromate with potassium chloride.
$\mathrm{Na} \mathrm{C}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
Answer the following questions using above information.
If the number of moles of reactants available for reactions are: $\left\{\mathrm{FeCr}_{2} \mathrm{O}_{4}\right.$
$=0.25$ moles, $\mathrm{O}_{2}=0.35$ moles, $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.60$ moles, $\mathrm{H}_{2} \mathrm{SO}_{4}=0.2$ mol,es,
$\mathrm{KCl}=0.1$ moles $\}$, then the maximum number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, that can be produced is :
A. 0.05 moles
B. 0.1 moles
C. 0.2 moles
D. 0.5 moles

Answer: a

305. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is an orange coloured compound, very frequently used in laboratory as an oxidising agent as well as in a redox titration. It is generally prepared from chromit $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ ore according to the following reactions:
(a) Fusion of chromite ore with sodium carbonate in excess of air.
$\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}$
(b) Acidifying filetered sodium chromate solution with sulphuric acid.
$\mathrm{Na} a_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(c) Treating sodium dichromate with potassium chloride.
$\mathrm{Na} \mathrm{C}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{NaCl}$
Answer the following questions using above information.
If whole of the chromite ore given in the previous question gets consumed and sufficient amount of rest of the reactants are given, then the mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ obtained is:
A. 14.7 gm
B. 7.35 gm
C. 73.5 gm
D. 147 gm

Answer: c

- View Text Solution

306. Drinking is injurious of health. But for revenue purpose government has fixed some permissible value for alcohol. The permissible value for the alcohol content in the blood is 1% mass. On analysis of blood sample of a driver of being drunk over than the pernissible value, it was obtained that 60 gm sample reacted with 30 mL of $8 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Acidic solution).

Reaction
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+11 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+$ Assume $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reacts only with the alcohol present in blood .

Will the driver be prosecuted for drunken driving?
A. yes
B. no
C. may or may not
D. Date insufficient

Answer: a

- View Text Solution

307. Drinking is injurious of health. But for revenue purpose government has fixed some permissible value for alcohol. The permissible value for the alcohol content in the blood is 1% mass. On analysis of blood sample of a driver of being drunk over than the pernissible value, it was obtained that 60 gm sample reacted with 30 mL of $8 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Acidic solution).

Reaction
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+11 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+$ Assume $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reacts only with the alcohol present in blood.

What is the percentage of alcohol in the blood sample?
A. 0.092
B. 0.088
C. 0.008
D. 0.072

Answer: a

- View Text Solution

308. Question 1 and 2 should be answered using the unbalanced equation,
$\mathrm{ClO}_{3}^{-}+\mathrm{Br}^{-} \rightarrow \mathrm{Cl}_{2}+\mathrm{Br}_{2}$
Which is the reducing agent?
A. CiO_{3}^{-}
B. $B r^{-}$
C. Cl_{2}
D. $B r_{2}$
309. Question 1 and 2 should be answered using the unbalanced equation,
$\mathrm{ClO}_{3}^{-}+\mathrm{Br}^{-} \rightarrow \mathrm{Cl}_{2}+\mathrm{Br}_{2}$
When this equation in balanced, what is the $\mathrm{Br}^{-} / \mathrm{ClO}_{3}^{-}$ratio?
A. 1 (1)
B. $\frac{2}{1}$
C. $\frac{3}{1}$
D. $\frac{5}{1}$

Answer: d

- Watch Video Solution

310. Match Column-I (Compounds) with Column-II (Oxidation states of Nitrogen) and select using the code given below the lists:

Column-I		Column-II	
(p)	NaN_{3}	(1)	+5
(q)	$\mathrm{N}_{2} \mathrm{H}_{2}$	(2)	+2
(r)	NO	(3)	$-\frac{1}{3}$
(s)	$\mathrm{N}_{2} \mathrm{O}_{5}$	(4)	-1

A. $\begin{array}{llll}p & q & r & s \\ 3 & 4 & 2 & 1\end{array}$
B. $\begin{array}{llll}p & q & r & s \\ 4 & 3 & 2 & 1\end{array}$
C. $\begin{array}{llll}p & q & r & s \\ 3 & 4 & 1 & 2\end{array}$
D. $\begin{array}{llll}p & q & r & s \\ 4 & 3 & 1 & 2\end{array}$

Answer: a

- Watch Video Solution

Column-I		Column-II	
(a)	$4.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{3}$	(p)	200 mL of 0.5 N base is used for complete neutralization
(b)	$4.9 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$	(q)	200 millimoles of oxygen atoms
(c)	4.5 g oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$	(r)	Central atom is in its highest oxidation state

- View Text Solution

D View Text Solution

313.

D Watch Video Solution

314.
(O.A=Oxidising agent, R.A= Reducing agent, $M=$ Molecular weight)

- View Text Solution

(Watch Video Solution

316. Calculate normality of a salt solution [of a metal sulphate] having concetration $21.6 \% \mathrm{w} / \mathrm{v}$ if its superoxide has 16% by mass of oxygen.

- Watch Video Solution

317. A 25 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of unknown molarity is reacted with KI solution of molarity 0.8 M and volume 80 mL . The excess acid required 10
mL of 2 M NaOH solution for complete neutralisation. Calculate molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ taken:
[Given : $\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

318. $0.0026 \mathrm{M} I_{2}$ solution having unknown volume is reacted with excess of ferrous thiocynate solution to form $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SO}_{4}^{2-}, \mathrm{CN}^{-}$along with I^{-}. If all the sulphate ions formed are precipitated using BaCl_{2} such that 16776 gm of BaSO_{4} is obtained, calculate volume of I_{2} consumed in litre.
(At. mass : $\mathrm{Ba}=137$)

- View Text Solution

319. 100 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution having volume strength 11.35 V is mixed with 500 mL of 0.5 M KI solution to liberate I_{2} gas such that equilibria gets established. All the I_{2} gas liberated is dissolved to form 500 mL solution.

200 ml of the solution required 50 mL of $\frac{2}{3} \mathrm{M}$ hypo solution. Calculate volume strength fo remaining $\mathrm{H}_{2} \mathrm{O}_{2}$ mixture. Round off your answer.

- View Text Solution

320. 100 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is consumed in its titration with oxalic acid in presence of dil. HCl whose excess amount was taken. The $C l_{2}(g)$ produced is reacted with excess of KI solution producing I_{2} which required 170 mL of 0.2 M hypo solution for complete reaction. Calculate millimoles of oxalic acid consumed.

- Watch Video Solution

321. $29.2 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}$ stock solution has a density of $1.25 \mathrm{~g} m L^{-1}$. The molecular weight of HCl is $36.5 \mathrm{~g} \mathrm{~mol}^{-1}$. The volume (mL) of stock solution required to prepare a 200 mL solution of 0.4 M HCl is :
322. Calculate the normality of a solution obtained by mixing 50 mL of 5 M solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 50 mL of $2 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium.

- Watch Video Solution

323. Calculate the normality of a solution containing 13.4 g fo sodium oxalate in 100 mL solution.

- Watch Video Solution

324. One litre of acidified KMnO_{4} solution containing $15.8 \mathrm{~g} \mathrm{KMnO}_{4}$ is decolourized by passing sufficient SO_{2}. If SO_{2} is produced by Fe_{2}, what is the amount of FeS_{2} required to give desired SO_{2} ?

- Watch Video Solution

325. Calculate the percentage of available chlorine in a sample of 3.55 g of bleaching powder which was dissolved in 100 mL of water. 25 mL of this
solution, on treatment with KI and dilute acid, required 20 mL of 0.125 N sodium thiosulphate solution.

- Watch Video Solution

326. In the following reaction, SO_{4} acts as a reducing agent:
$\mathrm{SO}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{HCl}$
Find the equivalent weight of SO_{2}.

- Watch Video Solution

327. It requires 40 mL of $1 \mathrm{MCe} e^{4+}$ to titrate 20 mL of $1 \mathrm{M} \mathrm{Sn}^{2+}$ to Sn^{4+} .What is the oxidation state of the cerium in the product?

- Watch Video Solution

328. 10 mL of sulphuric acid solution (specific gravity= 1.84) contains 98% by weight of pure acid. Calculate the volume (in mL) of 2 N NaOH solution
required to just neutrilize the acid.

- Watch Video Solution

329. What is the percentage of free $S O_{3}$ in an oleum sample that is labelled as ' $104.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

330.1 g of oleum sample is dilute with water. The solution required 54 mL of 0.4 N NaOH for complete neutralization. Find the percentage of free SO_{3} in the sample?

- Watch Video Solution

331. A 100 mL sample of water was treated to convert any iron present to Fe^{2+}. Addition of 25 mL of $0.002 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ resulted in the reaction.
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

The excess $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was back- titrated with 7.5 mL of $.01 \mathrm{M} \mathrm{Fe}^{2+}$ solution. Calculate the parts per million (ppm) of iron in the water sample.

- Watch Video Solution

332. A student of performs a titration with different burettes and finds titre values of $25.2 \mathrm{~mL}, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is ...

- Watch Video Solution

333. Among the following, the number of elements showing only one nonzero oxidation state is:

O,Cl,F,N,P,Sn,Tl,Na,Ti

- Watch Video Solution

334. 0.2828 g of iron wire was dissolved in excess dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the solution was made upto 100 mL . 20 mL of this solution required 30 mL of $\frac{\mathrm{N}}{30} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution for exact oxidation. Calculate percent purity of Fe in wire.

- Watch Video Solution

335. 2.6 g of an element X is reacted with an aqueous solution containing NaOH and NaNO_{3} to yield $\mathrm{Na}_{2} \mathrm{XO}_{2}$ and $\mathrm{NH}_{3} . \mathrm{NH}_{3}$ thus liberated is absorbed in 100 mL of $0.11 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid required 48 mL of 0.25 M NaOH for complete neutralisation. Find the atomic weight of X.

- Watch Video Solution

336. A sample consisting fo chocolate-brown powder of PbO_{2} is allowed to react with excess of KI and iodine liberated is reacted with $N_{2} H_{4}$ in another container. The volume of N_{2} gas liberated from this second container at STP was measured out to be 1.135 litre. Find the volume (in L)
of decimolar NaOH solution required to dissolved PbO_{2} completely and convert it to $\mathrm{Na}_{2} \mathrm{PbO}_{3}$. (Assume all reactions are 100% complete).

- Watch Video Solution

337. A $1 g$ sample of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100 mL . An aliquot of 25 mL of this solution requires $17 m L$ of $0.0167 M$ solution of an oxidant for titration. Calculate no.of electrons taken up by oxidant in the above titration.

- Watch Video Solution

338. A 0.56 g sample of limestones is dissolved in acid and the calcium is precipitated as calcium oxalate .The precipitate as calcium oxalate the prepcipate is filtered washed with water and dissolved in dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ The solution required 40 ml of $0.25 \mathrm{NKmnO}_{4}$ solutions for titration .Calculate percentage of CaO in limestone sample.
339.6 g of a mixture of ammonium sulphate and ammonium chloride was made up to 1000 cc with water. 25 cc of this solution was boiled with 50 cc of $\frac{M}{10}$ sodium hydroxide until no more ammonia waws evolved and it was then found that the excess of sodium hydroxided required 24.3 cc of $\frac{N}{10}$ hydrochloric acid for neutrilisation. What was the mass percentage of ammonium chloride in the mixture?

- Watch Video Solution

340. An aq. Solution of $0.5 \mathrm{M} \mathrm{KMnO}_{4}$ is divided into two parts. One part of it requires 125 mL of 1.5 M aq. Solution of oxalate ions in acidic medium, while another part requires 270 mL of 0.5 M aq. Solution of iodide ions in neutral medium which are converted into I_{2} only. Calculated total volume (mL) of intial KMnO_{4} solution.

- Watch Video Solution

341.1 mol of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 14 moles of electrons to from a new compound X. Assuming that the entire nitrogen appear in the new compound, what is the oxidation state of nitrogen in X ?

- Watch Video Solution

342. 50 mL aqueous solution of $\mathrm{Fe}_{2} \mathrm{SO}_{4}$ was neutralized with 100 mL of 0.2 M KMnO 4 and 200 ml of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Find the molarity of FeSO_{4} solution.

- Watch Video Solution

343. The number of specie(s) which can react with acidified KMnO_{4} out of the following specie(s) is /are $\mathrm{FeSO}_{4}, \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{O}_{3}, \mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{CuSO}_{4}, \mathrm{Cu}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{3}^{2}$

- Watch Video Solution

344. Certain moles of HCN are completely oxidized by 25 mL of KMnO_{4} into CO_{2} and NO_{3}^{-}. When all CO_{2} is passed through lime water $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right), 12.5 \mathrm{gm}$ of CaCO_{3} is formed. What is molarity KMnO_{4} used?

- Watch Video Solution

345. 1 mL of unknown solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diluted upto 100 mL and then its 25 mL is titrated with 10 mL of 0.2 M NaOH . The excess acid required 10 mL of $0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution. Find molarity of original $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- View Text Solution

346. Find the number of chemical species in which underlined atom is in negative oxidation state $\underline{N} H_{3}, \underline{C} H_{2} \mathrm{Cl}_{2}, \underline{N}_{2} \mathrm{O}, \mathrm{H} \underline{C} N, \mathrm{H}_{\underline{N}}^{2}, \underline{C} \mathrm{~N}_{2}^{2-}$
347. 2.5 g of a mixture containing $\mathrm{CaCO}_{3}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ and NaCl was dissolved in 100 mL water and its 10 mL portion required 10 mL 0.05 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution to reach the phenolphthalein end point. Another 10 mL portion of the same stock solution required 32.35 mL of the same acid solution to reach the methyl orange end point. Determine mass percentage ratio of CaCO_{3} and $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ in the original mixture.

- View Text Solution

348. For the reaction
$x I^{-}+y \mathrm{ClO}_{3}^{-}+z \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+w \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}$
The value of w is :

- Watch Video Solution

349. α-D-glucopyranose reacts with periodate ion as follows:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+\mathrm{IO}_{4}^{-}(a q) \rightarrow \mathrm{HCOOH}(a q)+\mathrm{HCHO}(a q)+\mathrm{IO}_{3}^{-}(a q)$
In a typical experiment, a 1 mL solution of α-D-Glucopyranose required

80 mL 0.25 M periodate solution to reach the equivalence point. The solution is made free from formic acid and iodate ion by extraction and then treated with $\mathrm{H}_{2} \mathrm{O}_{2}$, an oxidizing agent, oxidizing all formaldehyde into formic acid and finally titrated against 0.1 M NaOH solution. Titration required 40 mL of alkali to reach the equivalance point. Determine molarity of α-D-glucpyranose solution.

D Watch Video Solution

350. Maximum mole of $N a_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]$ which can be produced by 6 moles of $\mathrm{CuSO} \mathrm{C}_{4}$ and 10 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using following series of reaction-

$$
\mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{CuS}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

$$
2 \mathrm{Cu} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
$$

$$
3 \mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{Na} a_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na} a_{4}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]
$$

Fill your answer to nearest integer.

- Watch Video Solution

351. If average oxidation state of O in CrO_{5} is ' x . Then find out the value $|y|$. If $y=\mathrm{x} \times \frac{10}{3}$.

- Watch Video Solution

352. A mixture of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required $0.2 \mathrm{~N}, 25 \mathrm{~mL} \mathrm{KMnO}_{4}$ solution for complete oxidation. Same mixture needs $0.2 \mathrm{M}, 20 \mathrm{~mL} \mathrm{NaOH}$ solution for its complete neutralisation. Calculate mole percentage of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the given mixture.

- Watch Video Solution

353. The difference in the oxidation numbers of two types of sulphul atoms in $N a_{2} S_{4} O_{6}$ is.....

- Watch Video Solution

354. Calculate volume (in mL) of 3 M KMnO 4 in acidified condition required to neutralize 20 mL of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{KHC}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{FeC}_{2} \mathrm{O}_{4}$

- Watch Video Solution

355. 6×10^{-3} mole $K_{2} C r_{2} C_{7}$ reacts completely with 9×10^{-3} mole X^{n+} to give XO_{3}^{-}and Cr^{3+}. The value of n is:

- Watch Video Solution

356. Find the number of electrons lost by $\frac{1}{6}$ molecule of caffine in the given combustion reaction.
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$

- View Text Solution

357. When 0.36 gm of iron pyrite $\left(\mathrm{FeS}_{2}\right)$ was heated strongly in air following reaction takes place
$\mathrm{FeS}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})$
The $\mathrm{SO}_{2}(g)$ produced was titrated with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
Calculate the volume in mL of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution used in the redox titration. [Fe-56,S-32]

- Watch Video Solution

358. Given balanced chemical equation for oxidation of phosphrous (III) sulphide by nitric acid. The products include NO and SO_{2}
$a \mathrm{P}_{4} \mathrm{~S}_{6}+44 \mathrm{H}^{+}+b \mathrm{NO}_{3}^{-} \rightarrow c \mathrm{NO}+d \mathrm{H}_{3} \mathrm{PO}_{4}+e \mathrm{SO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Find the value of ($a=+b+c+d+e$)

- Watch Video Solution

