©゙’ doubtnut

PHYSICS

BOOKS - GR BATHLA \& SONS PHYSICS

(HINGLISH)

VECTORS

Problem

1. What is the displacement of the point of a wheel initially in contact with the ground when the wheel rolls
forward half a revolution? Take the radius of the wheel as R and the x-axis as the forward direction?

- Watch Video Solution

2. A body is moving with uniform speed v on a horizontal circle in anticlockwise direction from A as shown in figure. What is the change in velocity in (a) half revolution (b) first quarter revolution.

3. What is the property of two vectores \vec{A} and \vec{B} if:
(A) $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ (b) $\vec{A}+\vec{B}=\vec{A}-\vec{B}$

- Watch Video Solution

4. The x and y -components of vector A are 4 m and 6 m respectively. The x and y -components of vector $\mathrm{A}+\mathrm{B}$ are

10 m and 9 m respectively. Calculate for the vector B the following:
(a) its x and y -components
(b) its length
(c) the angle it makes with x-axis.
5. A particle of mass 3 kg moves under a froce of $[4 \hat{i}+8 \hat{j}+10 \hat{k}]$ newton. Calcutale the acceleration (as vector) to which the particle is subjected. If the particle starts from rest and was at the origin initially. What are its new co - ordinates after 3 s ?

D Watch Video Solution

6. Under a force $(10 \hat{i}-3 \hat{j}+6 \hat{k})$ newton a body of mass 5 kg moves from position $(6 \hat{i}+5 \hat{j}-3 \hat{k}) \mathrm{m}$ to position $(10 \hat{i}-2 \hat{j}+7 \hat{k}) \mathrm{m}$. Deduce the work done.
7. A particle moves in the $x-y$ plane under the action of a force \vec{F} such that the value of its linear momentum \vec{P} at any time $\operatorname{tis} P_{x}=2 \cos t, P_{y}=2 \sin t$

The angle θ between vecF and vecPatagiventimet ${ }^{\text {will }}$ be:

- Watch Video Solution

8. Considering two vectors, $F=(4 \hat{i}-10 \hat{j})$ netwon and $\vec{r}=(-5 \hat{i}-3 \hat{j}) \mathrm{m}$ compute $(\vec{r} r \times \vec{F})$ and states what physical quaninty it respresents ?
9. The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12 . If the resultant is at 90° with the force of smaller magnitude, What are the magnitudes of forces?

D Watch Video Solution

10. The resultant of \vec{P} and \vec{Q} is \vec{R}. If \vec{Q} is doubled, \vec{R} is doubled, when \vec{Q} is reversed, \vec{R} is again doubled, find $P: Q: R$,

D Watch Video Solution

11. Four forces act along the sides of a smoth square frma ABCD in the order $A \rightarrow B, B \rightarrow C, C \rightarrow D$ and
$D \rightarrow A$. If the magnetiude of the force are F_{1}, F_{2}, F_{3} and F_{4} respectively, find the force acting on the frame . Assume $F_{1}=1 N, F_{2}=2 N, F_{3}=3 N$ and $F_{4}=N$

D Watch Video Solution

12. Find the components of a vector \vec{R} along two straight lines stiuated at both sides of the vector \vec{R} making angles α and β with it.

D Watch Video Solution

13. A particle is moving on a cicular path of radius ' R '.

As it moves through an angular displacement θ, its linear displacement will be :

D Watch Video Solution

14. A paarticle starts from origin at $t=0$ with a velocity
$5.0 \hat{i} m / s$ and moves in $x-y$ plane under action of a force
which produces a constant acceleration of $(3.0 \hat{i}+2.0 j) m / s^{2}$.
(a) What is the y-cordinate of the particle at the instant its x-coordinate is ${ }^{`} 84 \mathrm{~m}$? (b) What is the speed of the particle at this time?
15. The intantaneous coordinates of a particle are $x=(8 t-1) m$ and $y=\left(4 t^{2}\right) m$. Calculate (i) the average velocity of the particle during time interval from $t=2 s$ to $t=4 s$ (ii) the instantaneous velocity of the particle at $t=2 s$.

(D) Watch Video Solution

Problems For Parctice

1. Given an example of a physical quantity which :
(a) has neither unit nor direction
(b) has direction but not a vector
(c) can be either a scalar no vector
(d) is nether a scalar nor a vector.

D Watch Video Solution

2. What are the properties of two vectors \vec{A} and \vec{B} such that:
(a) $\vec{A}+\vec{B}=C$ and $A+B=C$
(b) $\vec{A}+\vec{B}=\vec{C}$ and $A^{2}+B^{2}=C^{2}$

D Watch Video Solution

3. Can the resultant be zero in case of :
(a) two unequal vectros
(b) three coplanar vectors
(c) three non- complanar vectors

D Watch Video Solution

4. Under what consition :
(a) resulant of tow vectors will be zero
(b) sum of the two vectors is equal to their differenc
(c) the magnitude of sum of two vectros is equal to the magnetude of diffrence between them .
5. State whether the following statements are prune or false giving reason in brief :
(a) As adiidtion of vector is commutive so subtraction must also be
(b) Component of a vector is equal to their difference to itself is zero
(c) Angle between two vectors can be greater than m 180°
(d) A vector cannot be divided by a vector.

D Watch Video Solution

6. A room has dimensions $3 m \times 4 m \times 5 m$. A fly
starting at one corner ends up at the diametrocally
opposite corner .
(a). What is the magnetic of its displacement ?
(b) Could the length of its path be less than this distance?
(c) Choosing a situtable cooridinate system find the position vector.
(d) If the fly does not fly but walks, what is the lenght of the shortest path it can take ?

- Watch Video Solution

7. A 5 kg object with speed of $30 \mathrm{~m} / \mathrm{s}$ strikes a steel
plants at an angle 45° and rebound at the same speed
and same angle (Fig. 3.43). Calculate.
(a) the magntiude of the change is momentum of the
object and

(b) the change in the magnitude of the momentum of the object.

D Watch Video Solution

8. A body is moving uniformly on a circle with speed v.

Find the magnitude of change in its velcotiy whem, it has turend an angle θ.
9. Why do use express the laws of physics in vector form ? Explain.

D Watch Video Solution

10. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel and same direction as \vec{A}.
11. What is the condition that two non-zero vectors are (a) orhtogonal and (b) collinera?

- Watch Video Solution

12. If $\vec{A}=2 \hat{i}+\hat{j}-3 \hat{k}, \vec{B}=\hat{i}-2 \hat{j}+\hat{k} \quad$ and
$\vec{C}=-\hat{i}+\hat{j}-4 \hat{k}, \quad$ Calculate
$\vec{A} \cdot(\vec{B} \times \vec{C}),(i i) \vec{C}(\vec{A} \times \vec{B}),(i i i) \vec{A} \times(\vec{B} \times \vec{C})$

- Watch Video Solution

13. Two constat forece $\vec{F}_{1}=(2 \hat{i}+3 \hat{j}+3 \hat{k})$ newton and $\vec{F}_{2}=(5 \hat{i}-6 \hat{j}-2 \hat{k})$ newton act toghter on a
particle during its displacement from the position $(20 \hat{i}+15 \hat{j}) \mathrm{m}$ to $8 \vec{K} \mathrm{~m}$. Calculate the work done.

D Watch Video Solution

14. Find the moment of force $\vec{F}=\hat{i}+\hat{j}+\hat{k}$ acting at point ($-2,3,4$) about the point $(1,2,3)$.

D Watch Video Solution

15. Compute the force (in vetcor notation) on an electron moving with velocity $\vec{V}=2.5 \times 10^{6} \hat{i} \mathrm{~m} / \mathrm{s}$ in a magnetic field $\vec{B}=(10 \hat{i}-6 \hat{k}) \times 10^{2} \mathrm{~Wb} / \mathrm{m}^{2}$, if charge on an electron $e=1.6 \times 10^{-19}$ coulomb.

- Watch Video Solution

16. The particle of mass m is projected at $t=0$ from a point O on the ground with speed v_{0} at an angle 45° to the horizontal as shown in Figure 3.44. Compute the magnitude and direction of the angular mometum of the particle about the point O at position :

When the velocity of the paticle is ,
$\vec{V}=\left(0,7 v_{0}\right) \hat{i}-\left(0.3 v_{0}\right) \hat{j}$
17. A river flows at $3 \mathrm{~m} / \mathrm{s}$ and is 300 m wide. A man swing across the rivers with a velocity of $2 \mathrm{~m} / \mathrm{s}$ directed always perpendicular to the flow of current . (a) How long does it take the man to cross the river ? (b) In what direction does he actually moves to cross the relative to the shore ? (c) How far down the fiver(from the starting point) does he reach the opposite bank?

- Watch Video Solution

18. A river is flowing from west to east at a speed of $5 \mathrm{~m} / \mathrm{s}$. A man on the south bank of the river capable of
swimming at $10 m / s$ in a still water wants to swim, across the river in a shortest time. He should swim in a direction

D Watch Video Solution

19. The width of a rivers is 25 m and in it water is flowing with a velocity of $4 m / \min$. A boatman is standing on the bank of the river. He want to sail the boat to a point at the other bank which is directly opposite to him. In what time will he cross the river, if he can sail the boat at $8 \mathrm{~m} / \mathrm{min}$. relative to the water ?

D Watch Video Solution

20. Given that $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$. Find \vec{B} such that $\vec{B} \cdot \vec{A}=38$ and $\vec{B} \times A=-\hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

21. A particle moves such that
$x=2 t^{3}+t+8, y=t^{2}+t+3 \quad$ and $\quad z=3 \sin \pi t$ where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in meter and t in seconds.

Calculate the acceleration of the particle at $t=3$ second.
22. A particle stats from rest at the origin with a constant acceleration

Calculate the position of the particle at $t=5$ second.

- Watch Video Solution

23. A particle moves along ellipatical path gives by

Calculate (i) radial component of acceleration $\left(\vec{a}_{r}\right)$
(ii) trasverse component of acceleration $\left(\vec{a}_{\theta}\right)$.

Objective Questions

1. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then angle between $2 \vec{a}$ and $-3 \vec{b}$ is :
A. $\pi / 3$
B. $2 \pi / 3$
C. $\pi / 6$
D. $5 \pi / 3$

Answer: B

- Watch Video Solution

2. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{7}\right)$

Answer: B
3. Vector \vec{a} is prepedicular to \vec{b}, componets of $\vec{a}-\vec{b}$ along $\vec{a}+\vec{b}$ will be :
A. zero
B. a-b
C. $\frac{a^{2}-b^{2}}{\sqrt{a^{2}+b^{2}}}$
D. $\sqrt{a^{2}+b^{2}}$

Answer: C

- Watch Video Solution

4. If $\vec{A} \times \vec{B}=\vec{C}+\vec{D}$, them select the correct alternative:
A. \vec{B} is parallel to $\vec{C}+\vec{D}$
B. \vec{A} is perpendicular to \vec{C}
C. Component of \vec{C} along $\vec{A}=$ Components of \vec{D} along \vec{A}
D. Component of \vec{C} along \vec{A} =-Components of \vec{D} along \vec{A}

Answer: D

- Watch Video Solution

5. If \vec{a} and \vec{b} are two non-collinear unit vectors and if $\left|\vec{a}_{1}+\vec{a}_{2}\right|=\sqrt{3}$, then the value of

$$
\left(\vec{a}_{1}-\vec{a}_{2}\right)\left(2 \vec{a}_{1}+\vec{a}_{2}\right) \text { is: }
$$

A. 2
B. $3 / 2$
C. $1 / 2$
D. 1

Answer: B

D Watch Video Solution

6. A ray of light is incident on a plane mirror along a vector $\hat{i}+\hat{j}-\hat{k}$.

The normal on incidence point is along $\hat{i}+\hat{j}$.Find a
unit vector along the
reflected ray.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \\
& \text { B. } \frac{-1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \\
& \text { C. } \frac{1}{\sqrt{2}}(\hat{i}+\hat{j}) \\
& \text { D. } \frac{-1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})
\end{aligned}
$$

Answer: B

D Watch Video Solution

7. A particle is moving along a circle with a uniform speed v. Find (a) change in the magnitude of velocity
and (b) the magnitude of change in the velocity when it has rotated an angle $\theta .\left(0<\theta<90^{\circ}\right)$
A. $2 v \sin \theta$
B. $2 v \sin (\theta / 2)$
C. $2 v \cos (\theta / 2)$
D. $\sqrt{2} v \cos (\theta / 2)$

Answer: B

D Watch Video Solution

8. A plane mirror is moving with vclocity. A point object in fornt of the mirror moves with a velocity. Here \widehat{K} is
along the normal to the plane mirror and facing towards the object. The velocity of the image is :
A. $-3 \hat{i}-4 \hat{j}+5 \hat{k}$
B. $3 \hat{i}+4 \hat{j}+11 \hat{k}$
C. $-4 \hat{i}+5 \hat{j}+11 \hat{k}$
D. $7 \hat{i}+9 \hat{j}+3 \hat{k}$

Answer: B

D View Text Solution

9. The angle between the vectors $(\hat{i}+\hat{j})$ and $(\hat{j}+\hat{k})$
A. 60°
B. 90°
C. 180°
D. 0°

Answer: A

D Watch Video Solution

10. A parallelogram is fromed with \vec{a} and \vec{b} as the sides let \vec{d}_{1} and \vec{d}_{2} be the diagonals of the parallelogram, them $a^{2}+b^{2}=$
A. $\frac{d_{1}^{2}+d_{2}^{2}}{2}$
B. $\frac{d_{1}^{2}+d_{2}^{2}}{1}$
C. $d_{1}^{2}+d_{2}^{2}$
D. $d_{1}^{2}-d_{2}^{2}$

Answer: A

- Watch Video Solution

11. If two non-parallel vectors \vec{A} and \vec{B} are equal in magntiude, them vectors $(\vec{A}-\vec{B})$ and $(\vec{A}+\vec{B})$ will be :
A. parallel to each other
B. parallel but oppositely directed
C. perpendicular to each other
D. inclined at an angle θ always less than 90°

Answer: C

D Watch Video Solution

12. If the vectors $(\hat{i}+\hat{j}+\hat{k})$ and $3 \hat{i}$ from two sides of a triangle, then area of triangle is :
A. $\sqrt{3}$
B. $2 \sqrt{3}$
C. $3 / \sqrt{2}$
D. $3 \sqrt{2}$

- Watch Video Solution

13. The value of p so that vectors
$(2 \hat{i}-\hat{j}+),(\hat{i}+2 \hat{j}-3 \hat{k})$ and $(3 \hat{i}+p \hat{j}+5 \hat{k})$ are coplaner should be:
A. 16
B. -4
C. 4
D. -8

(Watch Video Solution

14. The vector sum of three vectors \vec{A}, \vec{B} and \vec{C} is zero
. If \hat{i} and \hat{j} are the unit vectores in the vectors in the directions of \vec{A} and \vec{B} respectively, them:
A. \vec{C} is in the plane of \hat{i} of \hat{j}
B. \vec{C} is along $\hat{i} \times \hat{j}$
c. \vec{C} is along \hat{i}
D. \vec{C} is along \hat{j}

Answer: A
15. Three force $F_{1}=(3 \hat{i}+2 \hat{j}-\hat{k}) \vec{F}_{2}$ and that the particle may be in equilibrum, the value of 'a' is :
A. -6
B. 6
C. 9
D. -9

Answer: A

D Watch Video Solution

16. For the fig. 350 :

A. $\vec{A}+\vec{B}=\vec{C}$
B. $\vec{B}+\vec{C}=\vec{A}$
С. $\vec{C}+\vec{A}=\vec{B}$
D. $\vec{A}+\vec{B}+\vec{C}=0$

Answer: C

- Watch Video Solution

17. A vector may change if :
A. frame of refernce is translated
B. frame of reference id rotated
C. vector is translated parallel to itself
D. vector is rotated

Answer: D

- Watch Video Solution

18. When two vectors \vec{A} and \vec{B} of magnitudes a and b respectively are added, the magnitude of resultant vector is always
A. equal to $(a+b)$
B. less than ($a+b$)
C. greater than (a+b)
D. greater than $(a+b)$

Answer: D

D Watch Video Solution

19. The rectangular compounts of forces of 5 duye are :
A. 1 and 2 dyne
B. 2 and 3 dyne
C. 3 and 4 dyne

D. 2.5 and 2.5 dyne

Answer: C

D Watch Video Solution

20. To get a rsultant displacement of 10 m , two displacement vectors, one of magnetic 6 m and another of 8 m ,should be combined :
A. parallel
B. anti-parallel
C. at an angle 60°
D. perpendicular to each

D Watch Video Solution

21. A magnitude of vector \vec{A}, \vec{B} and \vec{C} are respectively 12, 5 and 13 units and $\vec{A}+\vec{B}=\vec{C}$ then the angle between \vec{A} and \vec{B} is
A. 0
B. π
C. $\pi / 2$
D. $\pi / 4$

- Watch Video Solution

22. If $\vec{A}=\vec{B}+\vec{C}$ and the magnitudes of \vec{A}, \vec{B} and \vec{C} are 5,4 and 3 units respecetively, the angle between \vec{A} and \vec{C} is :
A. $\cos ^{-1}(3 / 5)$
B. $\cos ^{-1}(4 / 5)$
C. $\pi / 2$
D. $\sin ^{-1}(3 / 4)$

Answer: A
23. If two waves of same frequency and same amplitude superimpose and produce third wave of same amplitude, then waves differ in phase by -
A. zero
B. π
C. $\pi / 2$
D. $\pi / 4$

Answer: D
24. The angle between $(\vec{A} \times \vec{B})$ and $(\vec{B} \times \vec{A})$ is:
A. zero
B. π
C. $\pi / 4$
D. $2 \pi / 3$

Answer: B

- Watch Video Solution

25. Two equal vector have a resultant equal to either of them, then the angle between them will be:
A. 120°
B. 90°
C. 60°
D. 0°

Answer: D

D Watch Video Solution

26. The resultant of two forces acting an anlge of 120° is 10 kg wt and is perpendicular to one of the forces.

That force is
A. $10 \sqrt{3} \mathrm{~kg} \mathrm{wt}$
B. $20 \sqrt{3} \mathrm{~kg}$ wt
C. 20 kg wt
D. $(20 \sqrt{3}) \mathrm{kg} \mathrm{wt}$

Answer: C

- Watch Video Solution

27. The vectors \vec{A} and \vec{B} uur are such that $|\vec{A}+\vec{B}|=\mid$
$\vec{A}-\vec{B} \mid$ The angle between the two vectors is
A. 0
B. $\pi / 3$
C. $\pi / 2$
D. π

Answer: C

D Watch Video Solution

28. For the resultant of two vectors to be maximum , what must be the angle between them ?
A. 0°
B. 60°
C. 90°
D. 180°

D Watch Video Solution

29. What are minmum number or unequal fores whose vector sum is zero?
A. two
B. three
C. four
D. any

Answer: B
30. Two vectors \vec{A} and \vec{B} lie in a plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A}+\vec{B}+\vec{C}$
A. can be zero
B. can never be zero
C. lies in a plane containing $\vec{A}+\vec{B}$
D. lies in a plane contaninig $\vec{A}-\vec{B}$

Answer: B

D Watch Video Solution

31. Two forces of magentude 7 newton and 5 newton act on a particle at an angle θ can have any value. The minimum magnitude of the resultant forces is :
A. 5 newton
B. 8 newton
C. 12 newton
D. 2 newton

Answer: D

- Watch Video Solution

32. Two forces of 4 dyne and 3 dyne act upon a body .

The resultant force on the body can be only be :
A. mare than 3 dyne
B. more than 4 dyne
C. between 3 and 4 dyne
D. between 1 and 7 dyne

Answer: D

- Watch Video Solution

33. A force of 6 kg and another of 8 kg can be applied togther to produce the effects of a signle froce of :
A. 1 kg
B. 11 kg
C. 15 kg
D. 20 kg

Answer: B

D Watch Video Solution

34. Out of the following the resultant of which cannot be 4 netwon?
A. 2 N and 2 N
B. 2 N and 4 N
C. 2 N and 6 N
D. 2 N and 8 N

Answer: D

- Watch Video Solution

35. In case of three vector quanitites of same type, whose resultant cannot be zero?
A. $120,10,10$
B. 10, 10, 20
C. $10,20,20$
D. $10,20,40$

Answer: D

D Watch Video Solution

36. Five equal forces of $10 N$ each are applied at one point and all are lying one plane. If the angles between them are equal, the resultant force will be
A. zero
B. 10 N
C. 20 N
D. $10 \sqrt{2} N$

D Watch Video Solution

37. If \widehat{n} is a unit vector in the direction of the vector \vec{A}, them :

$$
\begin{aligned}
& \text { А. } \widehat{n}=\vec{A} /|\vec{A}| \\
& \text { B. } \widehat{n}=\vec{A}|\vec{A}| \\
& \text { C. } \widehat{n}=|\vec{A}| / \vec{A} \\
& \text { D. } \widehat{n}=\vec{n} \times \vec{n}
\end{aligned}
$$

Answer: A

D Watch Video Solution

38. An aeroplane moving in a circular path with a speed $250 \mathrm{~km} / \mathrm{h}$. The change in velocity in half of the revolution is.
A. $500 \mathrm{~km} / \mathrm{hr}$
B. $250 \mathrm{~km} / \mathrm{hr}$
C. $125 \mathrm{~km} / \mathrm{hr}$
D. zero

Answer: A
39. A truck travelling due North at $50 \mathrm{kmh}^{-1}$ turns

West and travels at the same speed. What is the change in velocity?
A. $50 \mathrm{~km} / \mathrm{hr}$ north-west
B. $50 \sqrt{2} \mathrm{~km} / \mathrm{hr}$ north-west
C. $50 \mathrm{~km} / \mathrm{hr}$ south- west
D. $50 \sqrt{2} \mathrm{~km} / \mathrm{hr}$ south-west

Answer: D

- Watch Video Solution

40. A boat which has a speed of $5 \mathrm{~km} / \mathrm{hr}$ in steel water crosses a river of width 1 km along the shortest possible path in 15 min utes. The velocity of the river water in $k m / h r$ is
A. 1
B. 3
C. 4
D. $\sqrt{14}$

Answer: C

- Watch Video Solution

41. A river is flowing from west to east at a speed of 5 metres per minute.A man on the south bank of the river, capable of swimming at 10 metres per minute in
still water, wants to swim across the river in the shortest time. He should swim in a direction.
A. due north
B. 30° east of north
C. 30° west of north
D. 60° east of north

Answer: A

- Watch Video Solution

42. I started walking down a road to day-break facing the sun. After walking for some-time, I turned to my left, then I turned to the right once again. In which direction was I going then ?
A. East
B. North-west
C. North-east
D. South

Answer: A

Watch Video Solution

43. A man travels 1 mile due east. Then 5 miles due south, then 2 miles due east and finally 9 miles due north. His displacement is
A. 3 mile
B. 5 mile
C. 4 mile
D. Between 5 and 9 mile

Answer: B
44. I walked 4 mile, turned to my left and walked 6 mile, then turned to my right and walked 4 mile. Which of the choice mentions the distance from the starting poin to the palce where I stopped ?
A. 15 mile
B. 10 mile
C. 20 mile
D. 14 mile

Answer: B

45. A person moves 30 m north, then 20 m east and finally $30 \sqrt{2} m$ south-west. This displacement from the original position is :
A. 14 m south -west
B. 28 m south
C. 10m west
D. 15 m east

Answer: C

- Watch Video Solution

46. A body, under the action of a force
$\vec{F}=6 \hat{i}-8 \hat{j}+10 \hat{k}$, acquires an acceleration of
$1 m s^{-2}$. The mass of this body must be.
A. 200 kg
B. 20 kg
C. $10 \sqrt{2} \mathrm{~kg}$
D. $6 \sqrt{2} k g$

Answer: C

- Watch Video Solution

47. The angle made by the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ with Y axis is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}(3 / 2) \\
& \text { B. } \tan ^{-1}(2 / 3) \\
& \text { C. } \sin ^{-1}(2 / 3) \\
& \text { D. } \cos ^{-1}(3 / 2)
\end{aligned}
$$

Answer: B

- Watch Video Solution

48. If \vec{A} and \vec{B} are perpendicular vectors and vector $\vec{A}=5 \hat{i}+7 \hat{j}-3 \hat{k}$ and $\vec{B}=2 \hat{i}+2 \hat{j}-a \hat{k}$. The value
of a is
A. -2
B. 8
C. -7
D. -8

Answer: D

- Watch Video Solution

49. Consider a vector $\vec{F}=4 \hat{i}-3 \hat{j}$. Another vector that is perpendicular to \vec{F} is
A. $4 \hat{i}+3 \hat{j}$
B. $7 \hat{k}$
C. $6 \hat{i}$
D. $3 \hat{i}-4 \hat{j}$

Answer: B

- Watch Video Solution

50. The angle between the two vectors $-2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+4 \hat{k}$ is
A. 0°
B. 90°
C. 180°
D. None of these

Answer: B

D Watch Video Solution

51. The angle between the vectors $(\hat{i}+\hat{j})$ and $(\hat{j}+\hat{k})$ is
A. 90°
B. 180°
C. 0°
D. 60°

Answer: D

D Watch Video Solution

52. A bodys constrained to more in the Y-direction ,Is subject to a force $\vec{F}=(-2 \hat{i}+15 \hat{j}+6 \hat{k}) \mathrm{N}$ What is the work done by force in moving the body through a distance of 10 m along the Y -axis ?
A. 190 J
B. 160J
C. 150 J
D. 20 J

Answer: C

D Watch Video Solution

53. A vector \vec{F}_{1} is along the positive X-axis. If its vectors product with another vector \vec{F}_{2} is zero then \vec{F}_{2} could be
A. $4 \hat{i}$
B. $-(\hat{i}+\hat{j})$
c. $(\hat{j}+\hat{k})$
D. $-(4 \hat{j})$

- Watch Video Solution

54. The torque of the force $\vec{F}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) N$ acting at the point $\vec{r}=(3 \hat{i}+2 \hat{j}+3 \hat{k}) m$ about the origin be

$$
\begin{aligned}
& \text { A. } 6 \hat{i}-6 \hat{j}+12 \hat{k} \\
& \text { B. } 17 \hat{i}-6 \hat{j}-13 \hat{k} \\
& \text { C. }-6 \hat{i}+6 \hat{j}-12 \hat{k} \\
& \text { D. }-17 \hat{i}+6 \hat{j}-13 \hat{k}
\end{aligned}
$$

Answer: B
55. The position vector of a particle is
$r=a \sin \omega t \hat{i}+a \cos \omega t \hat{j}$
The velocity of the particle is
A. parallel to positive vector
B. perpendicular to position vector
C. directed towards the origin
D. directed away from the origin

Answer: B

- Watch Video Solution

56. The angle made by the vector $4 \hat{i}-3 \hat{j}+5 \hat{k}$ with $z-$ axis is :
A. 30°
B. 45°
C. 90°
D. 120°

Answer: B

- Watch Video Solution

57. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the relation $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \cdot \vec{c}=0$. The vector \vec{a} is parallel to
A. \vec{B}
В. \vec{C}
С. $\vec{B} \cdot \vec{C}$
D. $\vec{B} \times \vec{C}$

Answer: D

D Watch Video Solution

58. The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is \qquad ?
A. 120°
B. 60°
C. 90°
D. 150°

Answer: D

- Watch Video Solution

59. The value of n so that vectors
$2 \hat{i}+3 \hat{j}-2 \hat{k}, 5 \hat{i}+n \hat{j}+\hat{k}$ and $-\hat{i}+2 \hat{j}+3 \hat{k}$ may be coplanar.will be
A. 81
B. 36
C. 23
D. 9

Answer: C

- Watch Video Solution

60. A projectile of mass m is fired with a velocity v from point P at an angle 45°. Neglecting air resistance, the magnitude of the change in momentum leaving the
point P and arriving at Q is

A. $\frac{m v}{\sqrt{2}}$
B. 2 mv
C. $\sqrt{2} m v$
D. $\frac{\sqrt{2}}{m v}$

Answer: C

- Watch Video Solution

61. Magnitudes of four pairs of displacement vectors are given. Which pair of displacment vectors, under vector addition fails to gives a resultant vectore of magnitude 3 cm ?
A. $2 \mathrm{~cm}, 7 \mathrm{~cm}$
B. $1 \mathrm{~cm}, 4 \mathrm{~cm}$
C. $2 \mathrm{~cm}, 3 \mathrm{~cm}$
D. $2 \mathrm{~cm}, 4 \mathrm{~cm}$

Answer: A

- Watch Video Solution

62. Two forces of magnitudes 30,60 and P newton acting at a point are in equilibrium. If the angle between the first two is 60°, the value of P is :
A. $\frac{m v}{\sqrt{2}}$
B. 2 mv
C. $\sqrt{2} m v$
D. $\frac{\sqrt{2}}{m v}$

Answer: D

- View Text Solution

63. A force $F=a \hat{i}+b \hat{j}+c \hat{k}$ is acted upon a body of mass m. If the body starts from rest and was at athe origin initially, find its new coordinate after time t.
A. $\frac{a t^{2}}{2 m}, \frac{b t^{2}}{2 m}, \frac{c t^{2}}{2 m}$
B. $\frac{a t^{2}}{2 m}, \frac{2 b t^{2}}{m}, \frac{c t^{2}}{2 m}$
C. $\frac{a t^{2}}{m}, \frac{b t^{2}}{m}, \frac{c t^{2}}{2 m}$
D. none of these

Answer: A

D Watch Video Solution

64. Let \vec{F} be a force acting on a particle having positon vector \vec{r}. Let \vec{r} be the torque of this force about the origin then
A. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau} \neq 0$
B. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau}=0$
c. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau} \neq 0$
D. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau}=0$

Answer: D

- Watch Video Solution

65. If $|\vec{A} \times \vec{B}|=\sqrt{3} \vec{A} \cdot \vec{B}$ then the value of $|\vec{A} \times \vec{B}|$ is :

- Watch Video Solution

66. \vec{A}, \vec{B} and \vec{C} are vectosrs each having a unit magneitude. If $\vec{A}+\vec{B}+\vec{C}=0$, then $\vec{A} \cdot \vec{B} \cdot \vec{C}+\vec{C} \cdot \vec{A}$ will be:
A. 1
B. $\frac{-3}{2}$
C. $\frac{-1}{2}$
D. 0

D Watch Video Solution

67. Three forces act on a body. The body will certainly have an acceleration of these are:
A. $7 \mathrm{~N}, 8 \mathrm{~N}, 14 \mathrm{~N}$
B. $10 \mathrm{~N}, 4 \mathrm{~N}, 12 \mathrm{~N}$
C. $3 \mathrm{~N}, 15 \mathrm{~N}, 8 \mathrm{~N}$
D. $2 \mathrm{~N}, 6 \mathrm{~N}, 7 \mathrm{~N}$

Answer: C
68. If the sum and difference of two vectors are at right angles, show that the vectors are equal in magnitude.
A. perpendicular to each other
B. parallel to each other
C. of same magnitude
D. of unequal magnitude

Answer: B

D Watch Video Solution

69. Vectors \vec{A} and \vec{B} are mutually perpendicular. Component of $\vec{A}+\vec{B}$ in the direction of $\vec{A}-\vec{B}$ will be:
A. $\frac{A^{2}+B^{2}}{\sqrt{A^{2}-B^{2}}}$
B. $\sqrt{A^{2}-B^{2}}$
C. $\frac{A+B}{A-B}$
D. $\frac{A^{2}-B^{2}}{\sqrt{A^{2}+B^{2}}}$

Answer: D

D Watch Video Solution
70. For a particle in uniform circular motion, the acceleration \vec{a} at a point $p(R, \theta)$ on the circle of radiu
R is (Here θ is measured from the $x-a \xi s$)
A. $-\frac{v^{2}}{R} \sin \theta \hat{i}+\frac{v^{2}}{R} \cos \theta \hat{j}$
B. $-\frac{v^{2}}{R} \cos \theta \hat{i}+\frac{v^{2}}{R} \sin \theta \hat{j}$
C. $-\frac{v^{2}}{R} \cos \theta \hat{i}+\frac{v^{2}}{R} \sin \theta \hat{j}$
D. $-\frac{v^{2}}{R} \hat{i}+\frac{v^{2}}{R} \hat{j}$

Answer: B
71. A particle is given successive displacments. Which of the following sets of displacments could be capable of returning the particle to its initial position :
A. $10 \mathrm{~m}, 8 \mathrm{~m}, 6 \mathrm{~m}, 30 \mathrm{~m}$
B. $20 \mathrm{~m}, 10 \mathrm{~m}, 6 \mathrm{~m}, 50 \mathrm{~m}$
C. $70 \mathrm{~m}, 20 \mathrm{~m}, 40 \mathrm{~m}, 30 \mathrm{~m}$
D. $100 \mathrm{~m}, 18 \mathrm{~m}, 22 \mathrm{~m}, 32 \mathrm{~m}$

Answer: C

- Watch Video Solution

72. An expression which cannot be defined meaningfully

 among vectors is :A. $\vec{A} \cdot(\vec{B} \times \vec{C})$
B. $\vec{A} \times(\vec{B} \times \vec{C})$
c. $(\vec{A} \times \vec{B}) \times(\vec{C} \times \vec{D})$
D. $(\vec{A} \cdot \vec{B}) \times(\vec{C} \cdot \vec{D})$

Answer: D

- Watch Video Solution

73. $A B C D E F$ is a regular hexagon, Fig. 2 (c). 65 . What is the value of
$(\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F} ?$

A. $4 \vec{A} O$
B. $3 \vec{A} D$
C. $8 \vec{A} D$
D. zero

D Watch Video Solution

74. In the regular hexagon shown in Fig. 3.51, $\vec{A} B+\vec{B} C+\vec{C} D+\vec{D} E+\vec{E} F+\vec{A} F \quad$ can be expressed as :
A. $-2 \vec{F} A$
B. zero
C. $2 \vec{F} A$
D. $\vec{F} A$

- Watch Video Solution

75. In the regular hexagon shown in fig.3.51, $\vec{A} O+\vec{B} O+\vec{C} O+\vec{D} O+\vec{E} O+\vec{F} O$ can be expressed as :
A. zero
B. $-2 \vec{O} C$
C. $-2 \vec{O} F$
D. $\overrightarrow{O F}$

Answer: B

- View Text Solution

76. For vectors \vec{A} and $\vec{B},(\vec{A}+\vec{B}) \cdot(\vec{A} \times \vec{B})$ will be :
A. $A^{2} B^{2}$
B. $(A+B)(A B)$
C. zero
D. $\sqrt{A^{2}+B^{2}+A B}$

Answer: C

- Watch Video Solution

77. Minimum number of two coplanar vectors of equal magnitude whose vectors sum could be zero, is:
A. 2
B. 3
C. 4
D. 6

Answer: A

D Watch Video Solution

78. Assertion: The minimum number of non-coplanar

Reason: The resultant of two vectors of unequal magnitude can be zero.
A. 2
B. 3
C. 4
D. 6

Answer: B

D Watch Video Solution

79. In Fig. 3.52, D is the mid-point of $\vec{B} C$ Which of the following relations is correct ?

80. Sum of magnetic of two forces acting on a body is

15 N . The resultant force has magnitude 12 N and it is
perpendicular to the large forces, magnetiude of smaller forces is :
A. 2.7 N
B. 3.2 N
C. 1.8 N
D. 4.6 N

Answer: A

81. Resultant of two forces \vec{F}_{1} and \vec{F}_{2} has magnitude 50 N . The resultant is inclined to \vec{F}_{1} at 60° and to \vec{F}_{1} at 30°. Magnitudes of \vec{F}_{1} and \vec{F}_{2}, respectively, are:
A. $25 N, 25 \sqrt{3} N$
B. $20 N, 20 \sqrt{3} N$
C. $20 N, 30 N$
D. $30 \mathrm{~N}, 40 \mathrm{~N}$

Answer: A
82. \vec{A}, \vec{B} and \vec{C} are vectors such that $\vec{C}=\vec{A}+\vec{B}$ and $\vec{C} \perp \vec{A}$ and also $\mathrm{C}=\mathrm{A}$. Angle between \vec{A} and \vec{B} is:
A. $\pi / 2$
B. $\pi / 4$
C. $3 \pi / 4$
D. π

Answer: C

D Watch Video Solution

83. A person walks along the path shown in Fig. 3.53.

The path from B to C is semicircular and centred at O. If the magnitude of displacment of the person is $2 m$, distance travelled by him is nearly :

A. 18 m
B. 7 m
C. 14 m

Answer: D

- Watch Video Solution

84. ABCD is parallelogram $\vec{A}, \vec{B}, \vec{C}$ and \vec{D} are the position vectors of vecticles A, B, C, and D with respect to any origin, them:

$$
\text { A. } \vec{A}+\vec{B}=\vec{C}-\vec{D}
$$

B. $\vec{C}-\vec{B}=\vec{A}+\vec{D}$
c. $\vec{B}-\vec{C}=\vec{A}-\vec{D}$
D. $\vec{A}+\vec{B}+\vec{C}+\vec{D}=0$

Answer: C

- Watch Video Solution

85. A lion is at some instant a position
$A(2 m, 6 m,-1 m)$ and a goat is at position $B(1 m, 2 m, 8 m)$. The lion is free to move but the goat is unable to move due to some injury. The lion runs towards the goat and reches it in time 2 sec . A verage velocity of the lion can be expreseed as:
A. $\left(-\frac{\hat{i}}{2}-2 \hat{j}+\frac{9}{2} \hat{k}\right) m / s$
B. $\left(\frac{\hat{i}}{2}-2 \hat{j}+\frac{5}{2} \hat{k}\right) m / s$
C. $\left(\hat{i}-\frac{\hat{j}}{2}+\frac{\hat{k}}{2}\right) m / s$
D. $\left(3 \hat{i}-\frac{5}{2} \hat{j}+\frac{7}{2} \hat{k}\right)$

Answer: A

D Watch Video Solution

86. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector produce $\vec{A} \times \vec{B}$ is
A. east
B. west
C. vertically downward
D. south

D Watch Video Solution

87. A parallelogram is fromed with \vec{a} and \vec{b} as the sides let \vec{d}_{1} and \vec{d}_{2} be the diagonals of the parallelogram, them $a^{2}+b^{2}=$
A. $A^{2}+B^{2}$
B. $\frac{A^{2}-B^{2}}{2}$
C. $\frac{A^{2}+B^{2}}{2}$
D. $2\left(A^{2}+B^{2}\right)$

(D) Watch Video Solution

88. \vec{A} and \vec{B} and vectors expressed as
$\vec{A}=2 \hat{i}+\hat{j}$ and $\vec{B}=\hat{i}-\hat{j} \quad$ Unit vector
perpendicular to \vec{A} and \vec{B} is:
A. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
c. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. \hat{k}

Answer: D
89. The vector area of triangle position vectors of whose vertices are $\vec{a}, \vec{b}, \vec{c}$ is
A.

$$
\frac{\vec{A} \cdot(\vec{B} \times \vec{C})+\vec{B} \cdot(\vec{C} \times \vec{A})+\vec{C} \cdot(\vec{A} \times \vec{B})}{3}
$$

B. $\vec{A} \cdot(\vec{B} \times \vec{C})$
c. $\frac{\vec{A} \times \vec{B}+\vec{B} \times \vec{C}+\vec{C} \times \vec{A}}{6}$
D. $\vec{A} \times(\vec{B} \times \vec{C})$

Answer: C

D Watch Video Solution

90. Area of the parallelogram formed by vectors $\vec{A}=\hat{i}+2 \hat{j}+4 \hat{k}$ and $\vec{B}=3 \hat{i}-2 \hat{j}$ is :
A. $4 \sqrt{17}$ unit
B. $2 \sqrt{17}$ unit
C. $17 \sqrt{2}$ unit
D. $17 \sqrt{3}$ unit

Answer: A

- Watch Video Solution

91. Can a flight of a bird be an example of composition
A. addition of vectors
B. dot product of vectors
C. cross product of vectors
D. none of these

Answer: A

D Watch Video Solution

92. Find the torque of a force $\vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k}$ acting at the point $\vec{r}=7 \hat{i}+3 \hat{j}+\hat{k}$
A. $12 \hat{i}-14 \hat{j}+3 \hat{k}$
B. $-14 \hat{i}+38 \hat{j}-16 \hat{k}$
C. $-12 \hat{i}+14 \hat{j}-3 \hat{k}$
D. $14 \hat{i}-38 \hat{j}+16 \hat{k}$

Answer: D

- Watch Video Solution

93. \vec{R} is the resultant of \vec{A} and $\vec{B} \cdot \vec{R}$ is inclined to \vec{A} at angle θ_{1} and to \vec{B} at angle θ_{2}, then :
A. $\frac{3}{4}(\hat{i}-\hat{j})$
B. $\frac{5}{2}(\hat{i}-\hat{j})$
C. $\hat{i}-\hat{j}$
D. $\frac{1}{2}(\hat{i}+\hat{j})$

D Watch Video Solution

94. Projection of $2 \hat{i}+6 \hat{j}$ on Z-axis is :
A. 2
B. 6
C. 4.5
D. none of these

Answer: D
(D) Watch Video Solution
95. \vec{R} is the resultant of \vec{A} and $\vec{B} \cdot \vec{R}$ is inclined to \vec{A} at angle theat t_{1} and to \vec{B} at angle θ_{2}, then :
A. $\theta_{1}<\theta_{2}$
B. $\theta_{1}<\theta_{2}$ if $A>B$
C. $\theta_{1}<\theta_{2}$ if $A<B$
D. $\theta_{1}<\theta_{2} \quad$ if $\quad A=B$

Answer: B

- Watch Video Solution

96. \widehat{a}, \hat{b} and \hat{c} are unit vectors. If the $\hat{a}+\hat{b}=\hat{c}$, them the magnitude of $\widehat{a}-\hat{b}$ is :
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: D

D Watch Video Solution

97. Diagonals of a parallelogram are respresented by vectors $\quad \vec{A}=5 \hat{i}-4 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}-\hat{k}$.

Area of the parallelogram is :
A. $\sqrt{171} u n i t s$
B. $\sqrt{72}$ units
C. $\sqrt{72}$ units
D. 72 units

Answer: A

- Watch Video Solution

98. A particle is moving on a cicular path of radius ' R ' .

As it moves through an angular displacement θ, its
linear displacement will be :
A. $R \sin \theta$
B. $2 R \cos \theta / 2$
C. $2 R \sin \theta / 2$
D. $R \cos \theta$

Answer: C

D Watch Video Solution

99. If \vec{A} makes an angle α, β and γ from x, y and z axis respectively then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. 3
B. 2
C. 1
D. 0

Answer: B

D Watch Video Solution

100. Magnitudes of vectors \vec{P}, \vec{Q} and \vec{R} are equal, If $\vec{P}+\vec{Q}+\vec{R}=0$, then angle between \vec{R} and \vec{Q} is α while if $\vec{P}+\vec{Q}=\vec{R}$, the angle between \vec{R} and \vec{P} is
β, then :
A. $\alpha=2 \beta$
B. $\alpha=\beta$
C. $\alpha=\frac{\beta}{2}$
D. none of these

- View Text Solution

101. A vector \vec{A} is rotated through angle θ about its tail. Change of position vector of its tip of is:
A. $A \sin \theta$
B. $2 A \cos . \frac{\theta}{2}$
C. $2 A \sin . \frac{\theta}{2}$
D. $A \cos \theta$

Answer: C
102. A particle is moving on a circular path with a constant speed 'v'. Its change of velocity as it moves from A to B is:

A. $2 v \sin \theta$
B. $v \sin \theta / 2$
C. $v \cos \theta$
D. $2 v \sin \theta / 2$

Answer: D

- Watch Video Solution

103. Linear momentum of an object can be expressed as
$\vec{P}=(4 \cos t) \hat{i}+(4 \sin t) \hat{j}$. Angle between the forces acting on the object and its linear momentum is :
A. $(\pi) /(2)$
B. $(\pi) /(4)$
C. $(3 \pi) /(4)$
D. π

Answer: A

D Watch Video Solution

104. \vec{A} and \vec{B} are two vectors.
$(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$ can be expressed as :
A. $\vec{B} \times \vec{A}$
B. $2(\vec{B} \times \vec{A})$
C. $2(\vec{A} \times \vec{B})$
D. zero

D Watch Video Solution

105. Vertices of a triangle are $A(3,1,2), B(1,-1,2)$ and $C(2,1,1)$. Area of the triangle will be :
A. $\sqrt{2}$ units
B. $2 \sqrt{2}$ units
C. $\sqrt{3}$ units
D. $2 \sqrt{3}$ units

Answer: C
106. A vector remins unchanged on :
A. rotating it through some angle
B. taking its cross product with a units vector
C. taking its cross product with a unit vector
D. shifting it parallel to itself

Answer: D

- Watch Video Solution

107. The velocity of a particle is $v=6 \hat{i}+2 \hat{j}-2 \hat{k}$ The component of the velocity parallel to vector
$a=\hat{i}+\hat{j}+2 \hat{k}$ invector from is
A. $6 \hat{i}+2 \hat{j}+2 \hat{k}$
B. $2 \hat{i}+2 \hat{j}+2 \hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $6 \hat{i}+2 \hat{j}-2 \hat{k}$

Answer: B

- Watch Video Solution

108. A particle is displaced from a position $2 \hat{i}-\hat{j}+\hat{k}(m)$ to another position $3 \hat{i}+2 \hat{j}-2 \hat{k}(m)$
under the action of a force $2 \hat{i}+\hat{j}-\hat{k}(N)$. The work done by the force is
A. 8
B. 10
C. 12
D. 16

Answer: A

D Watch Video Solution

109. Two vectors \vec{P} and \vec{Q} that are perpendicular to each other are :
A. $\vec{P}=3 \hat{i}+3 \hat{j}+2 \hat{k}, \vec{Q}=2 \hat{i}-2 \hat{j}+2 \hat{k}$
B. $\vec{P}=2 \hat{i}+3 \hat{j}+2 \hat{k}, \vec{Q}=2 \hat{i}-2 \hat{j}+2 \hat{k}$
C. $\vec{P}=2 \hat{i}-3 \hat{j}+2 \hat{k}, \vec{Q}=2 \hat{i}-2 \hat{j}-2 \hat{k}$
D. $\vec{P}=\hat{i}-3 \hat{j}+2 \hat{k}, \vec{Q}=2 \hat{i}-2 \hat{j}+\hat{k}$

Answer: B

D Watch Video Solution

110. The angle between the two vectors $\vec{A}=5 \hat{i}+5 \hat{j}$ and $\vec{B}=5 \hat{i}-5 \hat{j}$ will be
A. 90°
B. 45°
C. 0°
D. 60°

Answer: C

- Watch Video Solution

111. A paricle starting from the origin $(0,0)$ moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 30°
B. 45°
C. 60°
D. 0°

Answer: C

- Watch Video Solution

112. The sum of two vectors A and B is at right angles to their difference. Then
A. $A=B$
B. $A=2 B$
C. $B=2 A$
D. \vec{A} and \vec{B} have the same direction

D Watch Video Solution

113. If $\vec{A}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{B}=-\hat{i}+3 \hat{j}+4 \hat{k}$ then projection of \vec{A} on \vec{B} will be
A. $\frac{3}{\sqrt{13}}$
B. $\frac{3}{\sqrt{26}}$
C. $\sqrt{\frac{3}{26}}$
D. $\sqrt{\frac{3}{13}}$

Answer: B
114. A particle acted upon by constant forces $4 \hat{i}+\hat{j}-4 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displacment from the point $\hat{i}+2 \hat{j}+\hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$.Total work done by the forces in SI unit is :
A. 20
B. 40
C. 50
D. 30

Answer: B
115. The component of vector $A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$ and the directioin of $\hat{i}-\hat{j}$ is

$$
\begin{aligned}
& \text { A. } a_{x}-a_{y}+a_{z} \\
& \text { B. } a_{x}-a_{y} \\
& \text { C. } \frac{a_{x}-a_{y}}{\sqrt{2}} \\
& \text { D. } a_{x}+a_{y}+a_{z}
\end{aligned}
$$

Answer: C

- Watch Video Solution

116. The angle subtended by vector
$\vec{A}=4 \hat{i}+3 \hat{j}+12 \hat{k}$ with the x-axis is :
A. $\sin ^{-1}\left(\frac{3}{13}\right)$
B. $\sin ^{-1}\left(\frac{4}{13}\right)$
C. $\cos ^{-1}\left(\frac{4}{13}\right)$
D. $\cos ^{-1}\left(\frac{3}{13}\right)$

Answer: C

D Watch Video Solution

117. \vec{A} and \vec{B} are two vectors gives by $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=\hat{i}+\hat{j}$. The magnetiude of the component of \vec{A} along \vec{B} is :
A. $\frac{5}{\sqrt{5}}$
B. $\frac{3}{\sqrt{2}}$
C. $\frac{7}{\sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

118. Given $\vec{C}=\vec{A} \times \vec{B}$ and $\vec{D}=\vec{B} \times \vec{A}$. What is the angle between \vec{C} and \vec{D} ?
A. 30°
B. 60°
C. 90°
D. 180°

Answer: D

D Watch Video Solution

119. The resultant of two vectors \vec{P} and $\vec{Q} i s \vec{R}$. If the magnitude of \vec{Q} is doudled, the new resultant becomes perpendicuar to \vec{P}. Then the magnitude of \vec{R} is:
A. $P+Q$
B. Q
C. P
D. $\frac{P+Q}{2}$

Answer: B

- Watch Video Solution

120. A particle moves in the $x y$ plane under the influence of a force such that its linear momentum is $\vec{P}(t)=A[\hat{i} \cos (k t)-\hat{j} \sin (k t)]$, where A and k are constants. The angle between the force and momentum is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

More Than One Choice Is Correct

1. Which of the following will not depend on orientation of frame of reference?
A. A scalar
B. A vector
C. The magnitude of a vector
D. Component of a vector

Answer: A::B::C

- Watch Video Solution

2. The momentum of a particle is given by $\vec{P}=(2 \sin t \hat{i}-2 \cos t \hat{j}) \mathrm{kgm} / \mathrm{s}$. Select the correct option:
A. Momentum \vec{p} of the particle is always perpendicular to \vec{F}
B. Momentum \vec{p} of the particle is always parallel t

$$
\vec{F}
$$

C. Magnitude of momentum remains constant
D. None of the above

Answer: A::C

D Watch Video Solution

3. Which of the following relation are worng ?
A. $\vec{A}+\vec{B}=C$
B. $\vec{A}+\vec{B}=C$
c. $\vec{A}+\vec{B}=\vec{C}$
D. $A+\vec{B}=\vec{C}$

Answer: A::B::D
4. If \widehat{n} is a unit vector in the direction of the vector \vec{A}, them :
A. $A=\vec{A} / \widehat{n}$
B. $\widehat{n}=\vec{A} / A$
C. $1=|\vec{A}| / A$
D. $\vec{A}=A \widehat{n}$

Answer: B::C::D
5. For two vectors \vec{A} and \vec{B} which of the following relations are not commutative?
A. $\vec{A}+\vec{B}$
B. $\vec{A}-\vec{B}$
C. $\vec{A} \times \vec{B}$
D. $\vec{A} \cdot \vec{B}$

Answer: B::C

- Watch Video Solution

6. The angle made by the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ with Y axis is
A. $\tan ^{-1} 3 / 2$
B. $\tan ^{-1} 2 / 3$
C. $\cos ^{-1} \cdot \frac{3}{\sqrt{13}}$
D. $\sin ^{-1} 2 / 3$

Answer: B::C

D Watch Video Solution

7. If $\vec{X}=\vec{A} \times(\vec{B} \times \vec{C})$, then \vec{X} can be expressed as:
A. linear combination of \vec{A} and \vec{B}
B. linear combinations of \vec{B} and \vec{C}
C. linear combation of \vec{A} and \vec{B}
D. $\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{B} \cdot \vec{A})$

Answer: B::D

- Watch Video Solution

8. The vector triple production $\vec{A} \times(\vec{B} \times \vec{C})$ will be zero if :
A. $\vec{B}=\vec{C}$
B. \vec{A}, \vec{B} and \vec{C} are mutually perpendicular
C. \vec{A}, \vec{B} and \vec{C} are coplanar vectors
D. \vec{A}, \vec{B} and \vec{C} are collinear vectors

- Watch Video Solution

9. The magnitude of the vectors product of two vectors $|\vec{A}|$ and $|\vec{B}|$ may be
A. greater than $A B$
B. equal to $A B$
C. less than $A B$
D. equal to zero

Answer: B::C::D
10. The following sets of three vectors act on a body, whose resultant can be zero. These are :
A. $10,10,10$
B. 10,10, 20
C. $10,20,20$
D. 10,20, 40

Answer: A::B::C

- Watch Video Solution

11. $\vec{A}+\vec{B}=\vec{C}$. Vectors \vec{A} and \vec{B} if rotated by angle θ in the same sense to from \vec{A} and \vec{B} then $(\theta \neq 0)$:
A. $\vec{A}+\vec{B}=\vec{C}$
B. $\vec{A}+\vec{B} \neq \vec{C}$
C. $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{B}$
D. $|\vec{A}+\vec{B}|=|\vec{C}|$

Answer: $\mathrm{B}:$:C::D

D Watch Video Solution

12. Which of the following expressions have no meaning
A. $(\hat{i} . \hat{j}) \times \hat{j}$
B. $\frac{1}{(\hat{i} \times \hat{k}) \times \hat{j}}$
C. $\frac{1}{(\hat{i} \times \hat{k}) \cdot \hat{j}}$
D. $\frac{1}{(\hat{j} \times \hat{k}) \cdot \hat{j}}$

Answer: A::B::D

- View Text Solution

13. 2 vectors fo the same physical quantites are unequalities are unequal if:
A.they have the same magnitudes and same direction
B. they have different magnitudes but same directions
C. they have same but different directions
D. they have differement magntiudes and different directions

Answer: B::C::D

- View Text Solution

14. Two vectors \vec{P} and \vec{Q} lie one plane. Vectors \vec{R} lies in a differenct plane. In such a case, $\vec{P}+\vec{Q}+\vec{R}$
A. can be zero
B. cannot be zero
C. lies in the sama plane as \vec{P} or \vec{Q}
D. lies in the plane different from that of any two of 3 vectors

Answer: B::C
15. Choose the correct statements:

$$
\begin{aligned}
& \text { А. } \vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B}) \times \vec{C} \\
& \text { в. } \vec{A} \cdot(\vec{B} \times \vec{C})=\vec{C} \cdot(\vec{A} \times \vec{B})
\end{aligned}
$$

C. The area of parallelogram of sides \vec{A} and \vec{B} is equal to magitude of $\vec{A} \times \vec{B}$ D. $\vec{B} \times \vec{C}=\vec{C} \times \vec{B}$

Answer: A: C

(D) Watch Video Solution

1. (A) : A vectors will not change when the fram of reference in which it is existing is rotated .
(R) : A scalar quantity may (or) may not be independent of arientation of frame of reference :
A. If both A and R are trun and R is the correct explanation of A .
B. If both A and R are true, but R is not correct expalanation of A .
C. If A is true, but R is fasle .
D. If A is fasle, but R is true.

Answer: C

Matrix Match

1. The two vectors \vec{A} and \vec{B} are drawn from a common point and $\vec{C}=\vec{A}+\vec{B}$. In column- I are given the conditions regarding the magnitudes of \vec{A}, \vec{B} and \vec{C} as A, B, C respectively. Column- II gives the angle between the vectors \vec{A} and \vec{B}. Match them.

Columin - I		Column - II	
(a)	$A^{2}+B^{2}=C^{2}$	(p)	$\theta>90^{\circ}$
(b)	$A^{2}+B^{2}>C^{2}$	(q)	$\theta<90^{\circ}$
(c)	$A^{2}+B^{2}<C^{2}$	(r)	$\theta=90^{\circ}$
(d)	$A^{2}=B^{2}-C^{2}$	(s)	$\theta=0^{\circ}$

2. Column-I gives operation of vectors \vec{A} and \vec{B} and column- II gives the angle (θ) between \vec{A} and $\vec{B}(\vec{A}$ and \vec{B} are not zero vectors).

Column - I		Column - II	
(a)	$\|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\|\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\|$	(p)	0°
(b)	$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$	(q)	$\pi / 2$
(c)	$\|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\|=\|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}\|$	(r)	$\pi / 4$
(d)	$\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{C}}$ and $A+B=C$	(s)	$3 \pi / 4$

D Watch Video Solution

3. Match the column-I and column-II .

Column -		Column - II		
(a)	Triangle law of vectors (b)	(p) Parallelogram law of eectors	Addition of two vectors (q)	
Subtraction of two vectors				

(c)	Polygon law of vectors	(r)	Addition of more than two vectors
(d)	Component method	(s)	Lami's theorem

D Watch Video Solution

4. Consider three vectors \vec{A}, \vec{B} and \vec{C} having magnitudes 4, 5, and 3 . These vectors are of similar nature, e.g. these could be there displacement. Apply your answer understanding of vectors algebra to match

Column-I with Column-II.

Column - I		Column - II	
(a)	Maximum magnitude of $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ will be	(p)	zero
(b)	Minimum magnitude of $\rightarrow \rightarrow \rightarrow$ $\mathbf{A}+\mathbf{B}-\mathbf{C}$ will be	(q)	12
(c)	Maximum magnitude of $\rightarrow \quad \rightarrow$ $\mathbf{A} \cdot(\vec{B}-\overrightarrow{\mathbf{C}})$ will be	(r)	9
(d)	Maximum magnitude of $\rightarrow \quad \rightarrow$ $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{C}}$ will be	(s)	32

- Watch Video Solution

Interger Answer

1. A point moves according to the
law $\quad x=a t, y=a t(1-\alpha t)$ where a and α are positive constants and t is time. If the moment at
which angle between velocity vecotrs and acceleration vectors is $\frac{\pi}{4}$ is given by $\frac{A}{\alpha}$. Find the value of A .

(D) Watch Video Solution

2. If $A B C$ is a right angled triangle with hypotenuse $\mathrm{AB}=\mathrm{P}$. Then $\vec{A} B \cdot \vec{A} C+\vec{B} C \cdot \vec{B} A+\vec{C} A \cdot \vec{C} B=m p^{2}$.

Find m.

D Watch Video Solution

3. Two foreces \vec{P} and \vec{Q} are acting at a point. If \vec{P} is reversed, the new resultant becomes between magnitudes of P and Q is given by $P=K Q$. Find k .

(.) Watch Video Solution

4. Given $\vec{r}=A \cos \alpha t \hat{i}+B \sin \alpha t \hat{j}$. Then if $\frac{d^{2} \vec{r}}{d t^{2}}=-\alpha^{n} \vec{r}$ find the value of n .

- Watch Video Solution

5. If vector A is perpendicular to vectors B and $|\vec{A}+\vec{B}|=n|\vec{A}+\vec{B}|$ then the value of n .

- Watch Video Solution

6. If $0.8 \hat{i}+0.2 c \hat{j}$ represents direction, then the value of c will be:

- Watch Video Solution

7. If the angle between $2 \hat{i}+2 \hat{j}-\hat{k}$ and vector $\hat{i}+c \hat{k}$
is acute, then the maximum value of c is :

- Watch Video Solution

8. $|\vec{A}+\vec{B}|^{2}-|\vec{A}-\vec{B}|^{2}=n \vec{A} \cdot \vec{B}$

The value of n is :
9. For the value of a, $\vec{A}=2 \hat{i}+a \hat{j}+\hat{k}$ is prependicular to $\vec{B}=4 \hat{i}-2 \hat{j}-2 \hat{k}$?

D Watch Video Solution

Passage 1

1. Sppose that a point mass ' m ' is moving under a constant force $\vec{F}=2 \hat{i}-\hat{j}+\hat{k}$ netweon. At some instant, $t=0$, point $P(x m, y m,-1 m)$ [m - metre] is the instantaneous position of the mass. We know that torque can be expressed as the cross- product of position vector and forces vector, i.e.,
$\tau=\vec{r} \times \vec{F}$. At P , torque can be expessed as
$\tau=(-4 \hat{j}-4 \hat{k}) \mathrm{Nm}$ At some other instant, $\mathrm{t}=3 \mathrm{sec}$,
the point mass has another instantaneous position
$Q\left(x_{1}, y_{1}, z_{1}\right)$ such that the displacement vectors between points P and Q and the given force are mutually perpendicular. Also, x-component of torqure at
Q is zero and $\mathrm{y} z$-components are equal in magnitude and direction along the negative direction of the respective axes. Using a definite scale, if we construct a parallelogram with the position vectors of Q and the gives force \vec{F} as its adjacent sides, area of this parallelogram is $2 \sqrt{2} m^{2}$. Area of the given parallelogram, in fact, represents a physical quantity whose magnitude in SI system can be expressed as 5 times the gives are

$Q\left(x_{1}, y_{1}, z_{1}\right)$

$$
P(x, y,-1)
$$

Z

Answer the following questions.
At Q torque acting on the mass can be expressed as :

- Watch Video Solution

2. Sppose that a point mass ' m ' is moving under a constant force $\vec{F}=2 \hat{i}-\hat{j}+\hat{k}$ netweon. At some instant, $\mathrm{t}=0$, point $\mathrm{P}(\mathrm{xm}, \mathrm{ym},-1 \mathrm{~m})$ [m- metre] is the
instantaneous position of the mass. We know that torque can be expressed as the cross- product of position vector and forces vector, ie.,
$\tau=\vec{r} \times \vec{F}$. At P , torque can be expessed as
$\tau=(-4 \hat{j}-4 \hat{k}) \mathrm{Nm}$ At some other instant, $\mathrm{t}=3 \mathrm{sec}$,
the point mass has another instantaneous position
$Q\left(x_{1}, y_{1}, z_{1}\right)$ such that the displacement vectors between points P and Q and the given force are mutually perpendicular. Also, x-component of torque at

Q is zero and y z-components are equal in magnitude
and direction along the negative direction of the respective axes. Using a definite scale, if we construct a parallelogram with the position vectors of Q and the gives force \vec{F} as its adjacent sides, area of this parallelogram is $2 \sqrt{2} m^{2}$. Area of the given
parallelogram, in fact, represents a physical quantity whose magnitude in SI system can be expressed as 5 times the gives are

Answer the following questions.
Coordinates of P are :
3. Sppose that a point mass ' m ' is moving under a constant force $\vec{F}=2 \hat{i}-\hat{j}+\hat{k}$ netweon. At some instant, $t=0$, point $P(x m, y m,-1 m)$ [m - metre] is the instantaneous position of the mass. We know that torque can be expressed as the cross- product of position vector and forces vector, i.e.,
$\tau=\vec{r} \times \vec{F}$. At P , torque can be expessed as $\tau=(-4 \hat{j}-4 \hat{k}) \mathrm{Nm}$ At some other instant, $\mathrm{t}=3 \mathrm{sec}$,
the point mass has another instantaneous position $Q\left(x_{1}, y_{1}, z_{1}\right)$ such that the displacement vectors between points P and Q and the given force are mutually perpendicular. Also, x-component of torqure at
Q is zero and y z-components are equal in magnitude and direction along the negative direction of the respective axes. Using a definite scale, if we construct a
parallelogram with the position vectors of Q and the gives force \vec{F} as its adjacent sides, area of this parallelogram is $2 \sqrt{2} m^{2}$. Area of the given parallelogram, in fact, represents a physical quantity whose magnitude in SI system can be expressed as 5 times the gives are

Answer the following questions.

Work done the for the motion of the points mass from P to Q is:

D Watch Video Solution

Passage 2

1. Consider a point object of mass ' m ' moving in a circle of radius $\mathrm{a}=1 \mathrm{~m}$. For any instantaneous position of the object, θ is the angle that the radial line joining the object and the centre makes with the position X-axis of a cartesian coordinate system with the centre of circle
O as the origin. \hat{i} and \hat{j} are unit vectors along X-axis and Y-axis, respectively. Suppose that the motion is a
'Unifrom Circular Motion ' with a constant angular speed $\frac{\pi}{36} \mathrm{rad} / \mathrm{sec}$ and that the sense of rotation is counterclockwise with $\theta=0 a t t=0$. For an object which moves in a circle, it is usually convenient to introduce two mutually perpendicular unit vectors \hat{r}_{r} and \hat{r}_{t}, as shown in the fig 3.57. Here \hat{r}_{r} is the radial unit vector and \hat{r}_{t}, the tangential unit vector.

Answer the following questions:

For any instantantaneous position of the objected P, the radial unit vector \hat{r}_{r} can be expressed as :

- View Text Solution

2. Consider a point object of mass ' m ' moving in a circle of radius $\mathrm{a}=1 \mathrm{~m}$. For any instantaneous position of the object, θ is the angle that the radial line joining the object and the centre makes with the position X -axis of a cartesian coordinate system with the centre of circle

O as the origin. \hat{i} and \hat{j} are unit vectors along X -axis
and Y -axis, respectively. Suppose that the motion is a
'Unifrom Circular Motion ' with a constant angular speed $\frac{\pi}{36} \mathrm{rad} / \mathrm{sec}$ and that the sense of rotation is counterclockwise with $\theta=0 a t t=0$. For an object
which moves in a circle, it is usually convenient to introduce two mutually perpendicular unit vectors \hat{r}_{r} and \hat{r}_{t}, as shown in the fig 3.57. Here \hat{r}_{r} is the radial unit vector and \hat{r}_{t}, the tangential unit vector.

Answer the following questions:
For any position of the objected P , the tangential unit vector can be expressed as :
3. Consider a point object of mass ' m ' moving in a circle of radius $\mathrm{a}=1 \mathrm{~m}$. For any instantaneous position of the object, θ is the angle that the radial line joining the object and the centre makes with the position X-axis of a cartesian coordinate system with the centre of circle O as the origin. \hat{i} and \hat{j} are unit vectors along X-axis and Y -axis, respectively. Suppose that the motion is a
'Unifrom Circular Motion ' with a constant angular speed $\frac{\pi}{36} \mathrm{rad} / \mathrm{sec}$ and that the sense of rotation is counterclockwise with $\theta=0 a t t=0$. For an object which moves in a circle, it is usually convenient to introduce two mutually perpendicular unit vectors \hat{r}_{r} and \hat{r}_{t}, as shown in the fig 3.57. Here \hat{r}_{r} is the radial unit
vector and \hat{r}_{t}, the tangential unit vector.

Answer the following questions:
In trems of \hat{r}_{r}, \hat{r}_{t} and θ, \hat{i} can be expressed as :

- Watch Video Solution

1. Five vectors $\vec{A}, \vec{B}, \vec{C}, \vec{D}$ and \vec{E} have magnitude $10,12 \sqrt{2}, 20,20$ and 10 unit respectively, they are direacted as shown in the fig. 3.58

Answer the following questions:

- View Text Solution

2. Five vectors $\vec{A}, \vec{B}, \vec{C}, \vec{D}$ and \vec{E} have magnitude $10,12 \sqrt{2}, 20,20$ and 10 unit respectively, they are direacted as shown in the fig. 3.58

Answer the following questions:

D View Text Solution
3. Five vectors $\vec{A}, \vec{B}, \vec{C}, \vec{D}$ and \vec{E} have magnitude $10,12 \sqrt{2}, 20,20$ and 10 unit respectively, they are direacted as shown in the fig. 3.58

Answer the following questions:

- View Text Solution

1. We can order events in time and there is a sense of time, distinguishing past,present and futher. Is therefore, time a vector?

- Watch Video Solution

2. Explain why current is not a vector though it appears to possess a direction .

D Watch Video Solution

3. Discuss whether or not, angular displacement is a vector quantity ?

D Watch Video Solution

4. Does it make a sense to call a physical quantity a vector, when its magnitude is zero ?

D Watch Video Solution

5. Can a vector be zero if any of its components is not zero?

- View Text Solution

6. Can you associate vectors with (a) the length of a wire bent into a loop (b) a plane area (c) a sphere ? Explain.

D Watch Video Solution

7. If current density \vec{J} is defined as a vecto with magniutde equal tpo current per unit area, area being normal to the current and direction in which current flows, show that $I=\int \vec{J} \cdot d \vec{s}$
8. If \vec{L} and \vec{L} are two length vectors, what physical quantity does $[\vec{L} \times \vec{L}]$ represent ?

- Watch Video Solution

9. If a particle of mass m is moving with constant velocity v parallel to x-axis in $x-y$ plane as shown in
fig. Its angular moment with respect to origin at any time t will be
