©゙ doubtnut

 India's Number 1 Education App
CHEMISTRY

BOOKS - GRB CHEMISTRY (HINGLISH)

CHEMICAL BONDING-I

STRAIGHT OBJECTIVE TYPE(A)

1. The electronic configuration of four elements are :
(P) $[X e] 6 s^{2}$
(Q) $[X e] 4 f^{14}, 5 d^{1}, 6 s^{2}$
(R) $[A r] 4 s^{2}, 4 p^{5}$
(S) $[A r] 3 d^{10}, 4 s^{2}, 4 p^{3}$

Which of the following is/are correct?
A. (P) is a d-block element
B. (Q) is a d-block element
C. (R) has highest electron affinity among given elements
D. (S) shows maximum covalency of 4

Answer: C

- Watch Video Solution

2. The compound which contains both ionic and covalent bonds is:
A. CH_{4}
B. H_{2}
C. KCN
D. KCl

Answer: C

3. In SnCl_{3}^{-}ion, calculate the formal charge on Sn :
A. +1
B. -1
C. 0
D. -2

Answer: B

- Watch Video Solution

4. Which of following species follows the octet rule for all of its atoms?
A. $B F_{3}$
B. $T e F_{6}$
C. XeF_{6}
D. $C_{2} F_{6}$

Answer: D

- Watch Video Solution

5. Which is corrent Lewis structure with formal charge on particular atom?
A.
B.
C.
D.

Answer: A

D View Text Solution

6. Which of the following is a hypovalent molecule species?
A. $N a F$
B. COCl_{2}
C. $N F_{4}^{+}$
D. BeCl_{2}

Answer: D

- Watch Video Solution

7. Which of the following has a giant covalent structure?
A. Sodium chloride
B. Silica
C. Aluminium chloride
D. Lead oxide

Answer: B

8. The maximum covalency for representative elements is equal to (excluding 1st and 2nd period)
A. the number of unpaired p-electrons
B. the number of paired d-electrons
C. the number of unpaired s and p-electrons
D. the actual number of s and p-electrons in the outermost shell

Answer: D

- View Text Solution

9. Which of the following contains both covalent and ionic bond?
A. CH_{4}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. none of these

Answer: C

- Watch Video Solution

10. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are .
A. only covalent
B. only ionic
C. ionic and covalent
D. covalent and coordinate

Answer: D

- Watch Video Solution

11. Bonds presents in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. electrovalent and covalent
B. electrovalent and coordinate
C. covalent and coordinate
D. electrovalent, covalent and coordinate

Answer: D

- Watch Video Solution

12. Example of super octet molecule is :
A. $S F_{6}$
B. PCl_{5}
C. IF_{7}
D. all of these

Answer: D

13. The octet rule is not obeyed in :
A. CO_{2}
B. $B C l_{3}$
C. PCl_{5}
D. (b) and (c) both

Answer: D

- Watch Video Solution

14. Select the element which can donate it's lone pair from it's 'd' orbital during co-ordinate bond formation :
A. S
B. Cl
C. Ar
D. none of these

Answer: D

(Watch Video Solution

15. Which of the following species are hypervalent?
(P) ClO_{4}^{-}
(Q) $B F_{3}$
(R) SO_{4}^{2-}
(S) CO_{3}^{2-}
A. P, Q, R
B. P, R
C. R, S
D. P, Q

Answer: B

16. BF_{3} and NH_{3} combine readily because of the formation of
A. a covalent bond
B. a hydrogne
C. a coordinate bond
D. an ionic bond

Answer: C

- Watch Video Solution

17. Which of the following species does not contain $N-N$ covalent bond?
A. $\mathrm{N}_{2} \mathrm{O}_{3}$
B. $\mathrm{N}_{2} \mathrm{O}_{2}^{2-}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

18. Which of the following Lewis diagram is incorrect?
A. $\mathrm{Na}^{+}\left[\begin{array}{cc}\ldots & \ldots \\ O . & -C . I:\end{array}\right]^{-}$
: Cl:

B.

$$
: C . . l-C-C . . l:
$$

$$
\mid
$$

: C. . l:
C. $\left[\begin{array}{c}{ }^{H} \\ H-N \mid H-H\end{array}\right]^{+}[: .]^{2-}$
D. $H-N \ldots-N \ldots-H$

Answer: C

19. The possible structure (s) of monnthio-carbonate ion is:
A.
B.
B.
C.
D.

Answer: D

- Watch Video Solution

20. Pick out among the following, species isoelectronic with CO_{2}.
A. N_{3}^{-}
B. $(C N O)^{-}$
C. $(N C N)^{2-}$
D. All of these

Answer: D

- Watch Video Solution

21. Which of the following is weak bond?
A. Ionic bond
B. Covalent bond
C. Hydrogen bond
D. Metallic bond

Answer: C

- View Text Solution

22. Which species is isoelectronic with NO_{2}^{+}?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{2}^{-}
C. NH_{2}^{-}
D. SO_{2}

Answer: A

- Watch Video Solution

23. In the Lewis structure for the selenite ion, SeO_{3}^{2-}, how many lone pairs are around the central atom?
A. 0
B. 1
C. 2
D. 3
24. Which of the following are ionic compounds?
(P) $\mathrm{NH}_{2} \mathrm{NO}_{2}$
(Q) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
A. Ponly
B. Q only
C. Both P and Q
D. Neither P nor Q

Answer: B

Watch Video Solution
25. Which atom is least likely to violate the octet rule in its compounds?
A. B
B. Cl
C. F
D. H

Answer: C

- Watch Video Solution

26. In the Lewis structure for formic acid, HCOOH , how many bonding pairs and lone pairs of electrons are present?
A. 4 bonding, 2 lone
B. 4 bonding, 5 lone
C. 5 bonding, 0 lone
D. 5 bonding, 4 lone

Answer: D

27. What is the formal charge on the oxygen atom in : $\mathrm{C}:: \mathrm{O}:$?
A. +1
B. 0
C. -1
D. -2

Answer: A

Watch Video Solution

28. Write the various steps involved in the Lewis structure for nitrate $\left(\mathrm{NO}_{3}^{-}\right)$ion.
A. $\left[\begin{array}{l}\ldots \\ O \ldots=N \mid: O \ldots:=O \ldots\end{array}\right]-$
B.
C.
D.

Answer: B

- Watch Video Solution

29. Which Lewis dot structure is a valid representation for the sulfite ion, $\left[\mathrm{SO}_{3}^{2-}\right]$?
A.
B.
C.
D.

Answer: D

30. Which species contains only covalent bonds?
A. $A l F_{3}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: C

D Watch Video Solution

31. From a consideration of the Lewis structure,
$[: \ddot{N}=C=O:-$
What are the formal charges?

$$
\text { A. } N=-1, C=0, O=0
$$

B. $N=0, C=0, O=-1$
C. $N=-1, C=+1, O=-1$
D. $N=-1, C=-1, O=+1$

Answer: A

D Watch Video Solution

32. In the Lewis structure of nitrous acid:

What is the formal charge on nitrogen?
A. -1
B. 0
C. +1
D. +3
33. How many valence electrons are in a persulphate ion, SO_{5}^{2-} ?
A. 32
B. 34
C. 36
D. 38

Answer: D

- Watch Video Solution

34. What is the formal charge on the nitrogen atom in HNO_{3} ?
$H-O \stackrel{: O}{\mid}_{\|}+\cdots$
A. 0
B. +1
C. +3
D. +5

Answer: B

D Watch Video Solution

35. Which property or properties of metals can be accounted for the electron sea model?
(P) Electrical conductivity
(Q) Malleability
A. P only
B. Q only
C. Both P and Q
D. Neither P nor Q

Answer: C

- Watch Video Solution

36. According to the Lewis dot structure for ozone, what is the formal charge on the central oxygen atom?
$O . .=O-O \ldots$:
A. -2
B. -1
C. 0
D. +1

Answer: D

37. What is the total number of valence elctrons in the thisoulphate ion, $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$?
A. 28
B. 30
C. 32
D. 34

Answer: C

- Watch Video Solution

38. For which species is the electron pair geometry around the central atom of the Lewis dot structure the same as the geometry of the atoms?
A. CO_{2}
B. SO_{2}
C. BrO_{2}^{-}
D. NO_{2}^{-}

Answer: A

- Watch Video Solution

39. Which molecule is least stable?
A. $O F_{2}$
B. OF_{4}
C. $S F_{2}$
D. $S F_{4}$

Answer: B

- Watch Video Solution

40. Which substance has both covalent and ionic bonds?
A. $\mathrm{NH}_{4} \mathrm{Br}(\mathrm{s})$
B. $K I(s)$
C. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})$
D. $\mathrm{SiF}_{4}(g)$

Answer: A

- Watch Video Solution

41. Which species have one or more atoms that violate the octet rule?
(P) NO
(Q) $S F_{2}$
(R) $P F_{4}^{+}$
A. P only
B. R only
C. P and Q only
D. Q and R only

- Watch Video Solution

42. Assuming a Lewis structure for SO_{2} in which all the atoms obey the octet rule, the formal charge on S is:
A. +1
B. +2
C. -1
D. -2

Answer: A

D Watch Video Solution

43. In the Lewis structure what are the formal charges on the sulphur and oxygen atoms, respectively?

A. 0,0
B. $-2,0$
C. $+2,-1$
D. $+6,-2$

Answer: C

- Watch Video Solution

44. Which statement is true about the most stable Lewis structure for CH_{2} ?
A. tThere are no lone pairs.
B. All bonds are double bonds.
C. The central atom does not have an octet of electrons.
D. A sulphur atom must be the central atom for the structure to be stable.

Answer: B

- View Text Solution

45. The formula for terbium phosphate is TbPO_{4}. The formula for terbium sulphate is:
A. $\mathrm{Tb}_{2} \mathrm{SO}_{4}$
B. TbSO_{4}
C. $\mathrm{Tb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D. $\mathrm{Tb}\left(\mathrm{SO}_{4}\right)_{2}$

Answer: C

46. According to the Lewis dot structure shown, what are the formula charges of the O, C and N atoms, respectively, in the cyanate ion?
A. $0,0,0$
B. $-1,0,0$
C. $-1,+1,-1$
D. $+1,0,-2$

Answer: D

- View Text Solution

47. In which species is the central atom not surrounded by exactly 8 valence electrons?
A. $B F_{4}^{-}$
B. NCl_{3}
C. PCl_{4}^{+}
D. SF_{4}

Answer: D

- Watch Video Solution

48. Which atom can have more than eight valence electrons when it is forming covalent bonds ?
A. H
B. N
C. F
D. Cl

Answer: D

49. What is the total number of valence electrons in the peroxydisulfate, $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$, ion?
A. 58
B. 60
C. 62
D. 64

Answer: C

D Watch Video Solution

50. Which species contains only covalent bonds?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. NaOCl
D. $\mathrm{K}_{2} \mathrm{CrO}_{4}$

Answer: A

- Watch Video Solution

51. Which pair of the ions has the same shape?
A. CO_{3}^{2-} and NO_{3}^{-}
B. CO_{3}^{2-} and SO_{3}^{2-}
C. NO_{3}^{-}and ClO_{3}^{-}
D. CO_{3}^{2-} and ClO_{3}^{-}

Answer: A

52. Which Lewis dot structure is the best representation of the bonding in the thiocyanate ion, $S C N^{-}$?
A. $[: \ddot{S}: C::: \ddot{N}:]^{-}$
в. $[: \ddot{S}: \ddot{C}: \ddot{N}:]^{-}$
c. $[: \ddot{S}:: \ddot{C}: \ddot{N}:]^{-}$
D. $[: \ddot{S}:: \ddot{C}:: \ddot{N}:]^{-}$

Answer: D

- View Text Solution

53. In which species does the central atom obey the octet rule?
A. XeF_{4}
B. $S F_{4}$
C. SiF_{4}
D. ClF_{4}^{-}

Answer: C

- Watch Video Solution

54. What is the formal charge on the chlorine atom in the oxyacid HOClO_{2} if it contains only single bonds?
A. -2
B. -1
C. +1
D. +2

Answer: D

55. Which is the best description of a covalent bond?
A. Electrons are simultaneously attracted by more than one nucleus.
B. Filled orbitals of two or more atoms overlap on another.
C. Unoccupied orbitals of two or more atoms overlap one another.
D. Oppositely-charged ions attract one another.

Answer: A

- Watch Video Solution

56. For which element would XH_{3} be a stable species?
A. C
B. Cl
C. P
D. S

Answer: C

- View Text Solution

57. Which species has a Lewis diagram and structure most like that of the carbonate ion, CO_{3}^{2-} ?
A. NO_{3}^{-}
B. CH_{3}^{+}
C. SO_{3}^{2-}
D. PO_{4}^{3-}

Answer: A

- Watch Video Solution

58. Which compounds contain both ionic and covalent bonds?
(P) BaSO_{4}
(Q) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(R) $\mathrm{NH}_{3} \mathrm{Cl}$
A. Ponly
B. Pand R only
C. Q and R only
D. P, Q and R

Answer: D

Watch Video Solution
59. Which set contains only covalently bonded molecules ?
A. $\mathrm{BCl}_{3}, \mathrm{SiCl}_{4}, \mathrm{PCl}_{3}$
B. $\mathrm{NH}_{4} \mathrm{Br}, \mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{HBr}$
C. $I_{2}, H_{2} \mathrm{~S}, \mathrm{NaI}$
D. $\mathrm{Al}, \mathrm{O}_{3} \mathrm{As}_{4}$

D Watch Video Solution

60. What is the formal charge on the central atom in $\mathrm{N}_{2} \mathrm{O}$?
$: N \equiv N-O . .:$
A. +1
B. 0
C. -1
D. -2

Answer: A

D Watch Video Solution

61. The species having co-ordinate bond from the following options is/are
A. CO_{3}^{2-}
B. NO_{3}^{-}
C. NO_{2}^{-}
D. $B F_{3}$

Answer: B

- Watch Video Solution

62. The incorrect structure of $\mathrm{N}_{2} \mathrm{O}$ will be :
A. $N \leftarrow \overrightarrow{O-N}$
B. $N \equiv N \rightarrow O$
C. $O \leftarrow N \equiv N$
D. Both (b) and (c)

Answer: A
63. $A F_{3}(I) \xrightarrow{+2 F} A F_{5}(\mathrm{II}) \xrightarrow{+2 F} A F_{7}(\mathrm{III})$

For the above change which statement is correct?
A. Central atom 'A' belongs to 15th group
B. In each step two coordinate bonds are formed
C. Central atom 'A' has five electron in ' p ' subshell of its valence shell
D. No such change is possible

Answer: C

(Watch Video Solution

64. Choose the incorrect formula out of the four compounds for an element X below :
A. $X_{2} O_{3}$
B. XPO_{4}
C. $\mathrm{X}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D. $X_{2} \mathrm{Cl}_{3}$

Answer: D

- Watch Video Solution

65. If the electronic configuration of an element is $1 s^{2} 2 s^{2} 2 p^{6} 3 p^{6} 3 d^{2} 4 s^{2}$, the four electrons involved in chemical bond formation will be :
A. $3 p^{6}$
B. $3 p^{6}, 4 s^{2}$
C. $3 p^{6}, 3 d^{2}$
D. $3 d^{2}, 4 s^{2}$

Answer: D

- View Text Solution

66. In PO_{4}^{3-} ion the formal charge on the oxygen atom of $\mathrm{P}-\mathrm{O}$ bond is
A. +1
B. -1
C. -0.75
D. +0.75

Answer: B

67. In NO_{3}^{-}ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are :
A. 2, 2
B. 3,1
C. 1, 3
D. 4,0

Answer: D

D Watch Video Solution

68. $O F_{2}$ exists but $O F_{4}$ does not because:
A. oxygen has no vacant 2 d -orbitals
B. $O F_{4}$ is unstable
C. oxygen is much smaller than fluorine
D. oxygen is highly inert

Answer: A

- Watch Video Solution

69. Lewis theory of octet does not explain :
A. reactivity of Xe
B. paramagnetic character of oxygen gas
C. structure of odd electron molecules
D. all of the above

Answer: D

- Watch Video Solution

STRAIGHT OBJECTIVE TYPE(B)

1. Which one of the following molecules are formed by $\mathrm{p}-\mathrm{p}$ overlapping?
A. Cl_{2}
B. HCl
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}
2. The ratio of sigma and pi bonds in benzene is
A. 2
B. 6
C. 4
D. 8

Answer: C

- Watch Video Solution

3. $P C I_{5}$ exists but $N C I_{5}$ does not because
A. Nitrogen has no vacant 2 d -orbitals
B. NCl_{5} is unstable
C. Nitrogen atom is much smaller than P
D. Nitrogen is highly inert

Answer: A

- Watch Video Solution

4. The hybridisation of carbon atoms in C - C single bond is $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is
A. $s p^{3}-s p^{3}$
B. $s p^{2}-s p$
C. $s p-s p^{2}$
D. $s p^{3}-s p$

Answer: B

- Watch Video Solution

5. Shape of NH_{3} is very similar to :
A. CH_{4}
B. CH_{3}^{-}
C. BH_{3}
D. CH_{3}^{+}

Answer: B

- View Text Solution

6. In $\mathrm{C}_{3} \mathrm{O}_{2}$, the hybridization state of carbon is:
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $d s p^{3}$

D View Text Solution

7. Which shows a changes in the type of hybridisation when :
A. NH_{3} combines with H^{+}
B. $\mathrm{AlH} \mathrm{H}_{3}$ combines with H^{-}
C. NH_{3} forms NH_{2}^{-}
D. $\mathrm{H}_{2} \mathrm{O}$ forms $\mathrm{H}_{3} \mathrm{O}^{+}$

Answer: B

- Watch Video Solution

8. VSEPR theory does bot state :
A. the order of repulaion between different pair of elctrons is $l p-l p>l p-b p>b p=b p(l p=$ lone pair electrons, $b p=$ bond pair electrons)
B. as the number of lone pair of electrons on central atom increases, the deviation in BA form normal BA (Bond-Angle) also increases.
C. the number of lone pairs on O in $\mathrm{H}_{2} \mathrm{O}$ is 1 while on N in NH_{3} is 2 .
D. the structures of xenon-fluorides and xenon-oxyfluorides could be explained on the basis of VSEPR theory.

Answer: C

- View Text Solution

9. In which of the following N atom is not $s p^{2}$ hybridised?
A. HNO_{4}
B. FNO_{3}
Θ
C. NH_{2}
D. $B_{3} N_{3} H_{6}$

Answer: C

- View Text Solution

10. Decreasing order of size of various hybrid orbitals is: (when principal quantum number ' n ' will remains same)
A. $s p>s p^{2}>s p^{3}$
B. $s p^{3}>s p^{2}>s p$
C. $s p^{2}>s p>s p^{3}$
D. $s p>s p^{3}>s p^{2}$

Answer: B

11. Carbon atoms in $\mathrm{C}_{2}(\mathrm{CN})_{2}$ are :
A. all sp-hybridised
B. $s p^{3}, s p^{2}$,sp-hybridised
C. $s p^{2}, s p, s p^{3}$-hybridised
D. $s p, s p^{3}, s p^{2}$-hybridised

Answer: A

- Watch Video Solution

12. The correct order of increasing s character (in percentage) in the hybrid orbitals in below molecules / ions is (assume all hybrid orbitals are exactly equivalent) :

A. II It III It IV It I It V
B. II It IV It III It V It I
C. III It II It It V It IV
D. II It IV It III It It V

Answer: A

- Watch Video Solution

13. Which of the following species given below have shape similar to XeOF_{4} ?
A. XeO_{3}
B. $I F_{5}$
C. PCl_{5}
D. $X e F_{5}^{\oplus}$

Answer: B

14. What is the hybridisation of cation of XeF_{6} solid ?
A. $s p^{3}$
B. $s p^{3} d^{2}$
C. $s p^{3} d$
D. $s p^{3} d^{3}$

Answer: B

- Watch Video Solution

15. Which of the following optian is incorrect regarding N_{3}^{-}?
A. Average oxidation state of N is $-\frac{1}{3}$
B. It has linear structure
C. Its having $p \pi-p \pi$ as well as $p \pi-d \pi$ linkage
D. Hybridisation of central atom is sp

Answer: C

- View Text Solution

16. Which of the following has only σ bonds?
A. $\left[\mathrm{XeOF}_{3}\right]$ -
B. XeOF_{4}
C. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$

Answer: A

Watch Video Solution
17. Maximum number of lone pair electrons present in the molecules among the following :
A. XeF_{2}
B. XeF_{4}
C. XeOF_{4}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- View Text Solution

18. If all the F atoms are replaced by ' O ' atom from SF_{4} without changing the covalency of 'S' atom then, which of the following property undergoes change in the process?
A. Oxidation state of 'S' atom
B. d-orbital participation in bonding
C. Hybridisation of 'S' atom
D. Number of lone pairs on 'S' atom

Answer: C

D View Text Solution

19. In $\mathrm{XeO}_{3} \mathrm{~F}_{2}$, d-orbital which is not used in bonding is :
A. $d_{x^{2}-y^{2}}$
B. $d_{z^{2}}$
C. $d_{x y}$
D. $d_{y z}$

Answer: A

20. A hybrid orbital formed from s and p-orbital can contribute to
A. σ bond only
B. π bond only
C. either σ and π bond
D. can not be predicted

Answer: A

D Watch Video Solution

21. Which of the following has $s p^{3}$ hybridisation?
A. XeF_{2}
B. $X e F_{4}$
C. XeO_{3}
D. $X e F_{5}^{-}$

Answer: C

22. Which of the following is $s p^{3} \mathrm{~d}$ hybridised as well as has trigonal bipyramidal geometry?
A. SH_{4}
B. PCl_{5}
C. XeF_{2}
D. ClF_{3}

Answer: B

23. Which of the following is linear in shape?
A. CO_{2}
B. XeF_{2}
C. Both (a) and (b)
D. none of these

D Watch Video Solution

24. Which of the molecules listed have an $s p^{3}$ hybridized central atom?
(P) PCl_{3}
(Q) COCl_{2}
(R) SF_{4}
A. P only
B. P and R only
C. Q and R only
D. P, Q and R

Answer: A

25. Which of the following set of species are isostructural?

$$
+
$$

A. $\mathrm{CH}_{3}, \mathrm{CH}_{3}^{-}, \mathrm{NH}_{3}$
B. $\mathrm{XeF}_{2}, \mathrm{BeCl}_{2}, \mathrm{NO}_{2}^{+}$
C. $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{4}$
D. $\mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{XeF}_{4}$

Answer: B

- Watch Video Solution

26. Which of the following are $s p^{2}$ hybridised species?
A. CO_{3}^{2-}
B. NO_{3}^{-}
C. $B F_{3}$
D. All are correct

Answer: D

D Watch Video Solution

27. Which of the following is the correct representation for formation of σ bond?
A.
B.
.
C.
D.

Answer: A

- View Text Solution

28. The pair of compounds having similar geometry are :
A. $B F_{3}, N F_{3}$
B. $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
D. $\mathrm{BF}_{3}, \mathrm{CH}_{3}^{+}$

Answer: D

- Watch Video Solution

29. Choose the correct set from the following options regarding the hybridisation of central atom and shape.
A. $\mathrm{SnCl}_{2}, s p^{2}$, linear
B. $A l C l_{4}^{-}, s p^{3}$, square planar
C. $\mathrm{SOCl}_{2}, \mathrm{sp}^{2}$, planar
D. $\mathrm{COF}_{2}, s p^{2}$, planar
30. The ratio of σ bond in $P_{4} O_{10}$ and $P_{4} O_{6}$ is respectively:
A. $4: 3$
B. 3:4
C. 1:4
D. $4: 1$

Answer: A

- Watch Video Solution

31. Which of the following has trigonal bipyramidal structure?
A. $\mathrm{PCl}_{5}(\mathrm{~s})$
B. $\mathrm{PCl}_{5}(\mathrm{~g})$
C. $\mathrm{PBr}_{5}(\mathrm{~s})$
D. $\left[S F_{5}\right]$ -

Answer: B

- Watch Video Solution

32. Which of following pair of species have definite geometry?
A. $S F_{4}$ and $B F_{4}^{-}$
B. $B F_{4}^{-}$and $C F_{4}$
C. BF_{3} and SO_{2}
D. COCl_{2} and CO_{3}^{2-}

Answer: B

- Watch Video Solution

33. If the z-axis is internucleus axis, which of the following orbital can't form δ-bond?
A. $d_{z^{2}}$
B. $d_{x^{2}-y^{2}}$
C. $d_{x y}$
D. all can form

Answer: A

- Watch Video Solution

34. Which of the following compound has number of $p \pi-p \pi$ bond is equal to number of $p \pi-d \pi$ bond?
A. SO_{2}
B. CO_{2}
C. SO_{3}
D. SOCl_{2}

Answer: A

- Watch Video Solution

35. The correct increasing order of molecules in accordance with number of lone pair of electrons on central-atom is :
A. $\mathrm{XeF}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
B. $\mathrm{XeF}_{2}<\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{XeF}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}=\mathrm{XeF}_{2}=\mathrm{NH}_{3}$

Answer: C

36. Select the ion having $p \pi-d \pi$ bond :
A. SO_{4}^{-2}
B. PO_{4}^{-3}
C. ClO_{4}^{-}
D. all of these

Answer: D

- Watch Video Solution

37. Select the molecule which is planar:
A. $B F_{4}^{-}$
B. $C F_{4}$
C. $S F_{4}$
D. XeF_{4}

Answer: D

- Watch Video Solution

38. If z-axis is internucleus axis then which of the following d-orbital can be used in π-bond formation?
A. $d_{x y}$ and $d_{x y}$
B. p_{z} and p_{z}
C. $d_{x z}$ and $d_{x z}$
D. All of these

Answer: C

- Watch Video Solution

39. The correct order of hybridisation of the central atom in the following species.
$\mathrm{NH}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SeF}_{4}, \mathrm{NO}_{2}^{+}$
A. $s p^{3}, s p^{3}, s p^{3} d, s p$
B. $s p^{3}, s p^{3} d, s p^{3} d, s p$
C. $s p^{3}, s p^{3} d^{2}, s p^{3} d, s p^{2}$
D. $s p^{2}, s p^{3} d, s p^{3} d^{2}, s p$

Answer: B

- Watch Video Solution

40. Which of the following does not contain polyatomic anion in the solid state?
A. PCl_{5}
B. PBr_{5}
C. $\mathrm{I}_{2} \mathrm{Cl}_{6}$
D. ICl

Answer: B

- Watch Video Solution

41. Which of the following overlaps of atomic orbitals does not form π^{-} bond if z -axis is the internuclear axis?
A. $d_{z x}-p_{x}$
B. $p_{y}-p_{y}$
C. $d_{y z}-p_{y}$
D. $d_{z^{2}}-d_{z^{2}}$

Answer: D

- Watch Video Solution

42. If z-axis be the internuclear axis, which of the following combination of orbitals would not form π-bond?
A. $p_{x}+p_{x}$
B. $d_{x y}+d_{x y}$
C. $d_{z x}+d_{z x}$
D. $d_{y z}+d_{y z}$

Answer: B

- Watch Video Solution

43. Which of the following pair of species have different hybridisation but similar shape?
A. CO_{2} and XeF_{2}
B. SO_{3} and SO_{2}
C. $C F_{4}$ and $X e F_{4}$
D. $\mathrm{N}_{2} \mathrm{O}$ and CO_{2}
44. The d-orbital involved in $s p^{3} d$ hybridisation is
A. $d_{z^{2}}$
B. $d_{x^{2}-y^{2}}$
C. $d_{x y}$
D. $d_{y z}$

Answer: B

- Watch Video Solution

45. The cationtic part of $I_{2} \mathrm{O}_{6}(s)$ has central iodine as :
A. sp hybridised
B. $s p^{2}$ hybridised
C. $s p^{3}$ hybridised
D. monoatomic cation

Answer: B

- Watch Video Solution

46. Hybridisation of phosphorus in the compound $x y$ is :
$\mathrm{PBr}_{5}(s)+B r_{2}(g) \rightarrow x y(s)[x y=$ lonic compound $]$
A. $s p^{3}, d^{3} s$
B. $s p^{3} d, s p^{3}$
C. $s p^{3}, s p^{3} d^{2}$
D. $s p^{3}$

Answer: D

- Watch Video Solution

47. Which of the following is 'T' shaped?
A. IOF_{4}^{+}
B. IOF_{2}^{-}
C. XeO_{6}^{4-}
D. XeF_{2}

Answer: B

- Watch Video Solution

48. Select pair of compounds in which both have different hybridization but have same molecular geometry:
A. $B F_{3}, \mathrm{BrF}_{3}$
B. $\mathrm{ICI}_{2}^{-}, \mathrm{BeCl}_{2}$
C. $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
D. $\mathrm{PCl}_{3}, \mathrm{NCl}_{3}$

- Watch Video Solution

49. What will be the ratio of $\pi: \sigma$ bond in a Borax molecule?
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
A. 0
B. 34
C. 17
D. none of these

Answer: A

D Watch Video Solution

50. From the given structures, the correct structure(s) of $P F_{3} C l_{2}$ is a :
A. only P
B. only Q
C. only R
D. P, Q and R

Answer: A

- View Text Solution

51. Structure of $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$ contains
A. two triangular and two tetrahedral units of boron
B. three triangular and one tetrahedral units of boron
C. all tetrahedral units of boron
D. all triangular units of boron

Answer: A

52. The types of hybridization that take and place in the central atom of the species $\mathrm{NH}_{4}^{+}, \mathrm{BF}_{4}^{-}$and BeCl_{2} respectively are :
A. $s p^{2}, s p^{3}$ and $s p$
B. $s p^{3}, s p^{3}$ and $s p$
C. $s p^{3}, s p^{2}, s p^{2}$
D. $s p^{2}, s p^{3}, s p^{3}$

Answer: B

- Watch Video Solution

53. The number of lone pair of electrons on the central atom of $S F_{4}, C F_{4}$ and XeF_{4} are :
A. $2,0,1$
B. $0,1,2$
C. $1,1,1$
D. $1,0,2$

Answer: D

- Watch Video Solution

54. The d-orbital which is not involed is $s p^{3} d^{3}$ hybridisation in pentagonal bipyramidal geometry is:
A. $d_{x y}$
B. $d_{x^{2}-y^{2}}$
C. $d_{z^{2}}$
D. $d_{y z}$

Answer: D

55. The number or $p \pi-d \pi$ bonds in SO_{3} molecule is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

56. Tri-iodide ion has a linear symmetry with bond-angle of 180°. In the structure of I_{3}^{-}ion :
A. I_{2} acts as a lewis acid while I^{-}as a lewis base
B. I_{2} acts as a lewis base and I^{-}as a lewis acid
C. both I_{2} and I^{-}as a lewis base
D. both I_{2} and I^{-}as a lewis acid

D Watch Video Solution

57. Which species has the largest $F-A-F$ bond angle where A is the central atom?
A. $B F_{3}$
B. $C F_{4}$
C. $N F_{3}$
D. OF_{2}

Answer: A

- Watch Video Solution

58. In which of the following set of molecules central atoms are $s p^{3}$ hybridised ?
A. $\mathrm{PCl}_{3}, \mathrm{BCl}_{3}, \mathrm{NCl}_{3}$
B. $\mathrm{SnCl}_{2}, I_{3}^{+}, I_{3}^{-}$
C. $\mathrm{NH}_{2}^{-}, \mathrm{PCl}_{3}, \mathrm{CH}_{3}^{-}$
D. $\mathrm{NH}_{4}^{+}, B F_{4}^{-}, S F_{4}$

Answer: C

- Watch Video Solution

59. Which of the following statements are correct about HCN and HCP?
(P) HCN is linear with triple bond between carbon and nitrogen
(Q) HCP does not exist because P does not form triple bond due to large size
(R) In HCP molecule two σ-bond and two π bonds are present
(S) Carbon atom is sp hybridised in HCN
A. Only P
B. P and S
C. P, Q, S
D. P, R and S

Answer: D

- Watch Video Solution

60. Which of the folowing have undistorted octahedral structures:(1) $S F_{6}(2) P F_{6}^{-}(3) S I F_{6}^{2-}{ }^{(4) X e F_{6}}$

Select the correct answer using the codes given below
A. P, R and S
B. P, R and S
C. Q and R
D. P, Q and S

Answer: C

61. Which of the following has same hybridisation in cationic and anionic part in the solid state?
A. $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
B. ICl
C. XeF_{6}
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A

- Watch Video Solution

62. The compound having maximum number of $p \pi-d \pi$ bonds is :
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HNO_{3}
D. HClO_{4}

Answer: D

- Watch Video Solution

63. Give the molecular structures of:
$\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$
XeOF_{4} and XeO_{3}
A.
B.
.
C.
D.

Answer: C

64. Which of the following compound having number of $p \pi-d \pi$ bond is equal to $p \pi-d \pi$ bonds?
A. SO_{2}
B. SO_{3}
C. O_{3}
D. POCl_{3}

Answer: A

D View Text Solution

65. Which of the following compound number of $p \pi-d \pi$ bond is equal to number of $p \pi-d \pi$ bond?
A. SO_{2}
B. CO_{2}
C. SO_{3}
D. SOCl_{2}

Answer: A

- View Text Solution

66. Which of the following does not exist as ionic substance in solid state?
A. PBr_{5}
B. $\mathrm{N}_{2} \mathrm{O}_{5}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: D
67. Which of the following statement is incorrect regarding the structure of $\mathrm{XeO}_{2} \mathrm{~F}_{4}$ molecule?
A. $\mathrm{Xe}=\mathrm{O}$ bonds are present in axial position
B. All $X e-F$ bond lengths are identical
C. Shape of the molecule is octahedral
D. Shape of the molecule is octahedral

Answer: A

- Watch Video Solution

68. Choose the correct set from the following options regarding the hybridisation of central atom and shape.
A. $\mathrm{SnCl}_{2}, s p^{2}$, linear
B. $A l C l_{4}^{-}, s p^{3}$, square planar
C. $\mathrm{SOCl}_{2}, \mathrm{sp}^{2}$, planar
D. $\mathrm{COF}_{2}, s p^{2}$, planar

Answer: D

- View Text Solution

69. Which of the following has regular octahedral geometry?
A. SbCl_{6}^{3-}
B. XeF_{6}
C. $I F_{6}^{-}$
D. $\mathrm{PF}_{3} \mathrm{Cl}_{3}^{-}$

Answer: A

70. The correct order of hybridisation of the central atom in the following species.
$\mathrm{NH}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SeF}_{4}, \mathrm{NO}_{2}^{+}$
A. $s p^{3}, s p^{3}, s p^{3} d, s p$
B. $s p^{3}, s p^{3} d, s p^{3} d, s p$
C. $s p^{3}, s p^{3} d^{2}, s p^{3} d, s p^{2}$
D. $s p^{2}, s p^{3} d, s p^{3} d^{2}, s p$

Answer: B

- View Text Solution

71. Which of the following orbitals does not participate in the hybridisation in IF_{7} ?
A. $d_{x^{2}-y^{2}}$
B. $d_{x y}$
C. p_{z}
D. $d_{y z}$

Answer: D

D Watch Video Solution

72. Which of the following statements is not correct?
A. Hybridisation is the mixing of atomic orbitals of large energy difference.
B. $s p^{2}$-hybrid orbitals are formed from two p -atomic orbitals and one s-atomic orbitals.
C. $d s p^{2}$-hybrid orbitals are all at 90° to one another
D. $d^{2} s p^{3}$-hybrid orbitals are directed towards the corners of a regular octahedron.

Watch Video Solution

73. The correct order of hybridisation of the central atom in the following species,
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{XeO}_{4}, \mathrm{SF}_{4}$ and NO_{3}^{-}is :
A. $d s p^{2}, s p^{3} d, s p^{3}, s p^{2}$
B. $d s p^{2}, s p^{3}, s p^{3} d, s p^{2}$
C. $s p^{3}, d s p^{2}, s p^{3} d, s p^{2}$
D. $d s p^{3}, s p^{3} d, s p^{3}, s p^{2}$

Answer: B

- Watch Video Solution

74. Which statement is incorrect for OSF_{4} ?
A. S atom has $s p^{3} d$ hybridisation
B. $O S F_{4}$ have distorted trigonal bipyramidal geometry
C. O atom at one of the two axial positions having $\mathrm{S}=\mathrm{O}$ bond
D. O atom at one of the equatorial position having $\mathrm{S}=\mathrm{O}$ bond

Answer: C

- Watch Video Solution

75. Which of the following overlaps is incorrect [assuming z-axis to be the internuclear axis]?
(P) $2 p_{y}+2 p_{y} \rightarrow \pi 2 p_{y}$
(Q) $2 p_{z}+2 p_{z} \rightarrow \sigma 2 p_{z}$
(R) $2 p_{x}+2 p_{x} \rightarrow \pi 2 p_{x}$
(S) $1 s+2 p_{y} \rightarrow \pi\left(1 s-2 p_{y}\right)$
A. P and Q
B. Q and S
C. Only S
D. none of these

Answer: C

- Watch Video Solution

76. Effective overlapping will be shown by:
A.
B.
C.
D. all of these

Answer: C

- Watch Video Solution

77. In which of the following pairs hybridization of the central atoms are different?
A. $\mathrm{ClF}_{3}, \mathrm{ClF}_{3} \mathrm{O}$
B. $\mathrm{ClF}_{3} \mathrm{O}, \mathrm{ClF}_{3} \mathrm{O}_{2}$
c. $\left[\mathrm{ClF}_{2} \mathrm{O}\right]^{+},\left[\mathrm{ClF}_{4} \mathrm{O}\right]^{-}$
D. $\left[\mathrm{ClF}_{4} \mathrm{O}\right]^{-},\left[\mathrm{XeOF}_{4}\right]$

Answer: C

- Watch Video Solution

78. As the tendency to from $p \pi-d \pi$ bond decreases, the tendency for the polymerisation increases. So the correct order of tendency of polymerisation is :
A. $\mathrm{SiO}_{4}^{4-}<\mathrm{PO}_{4}^{3-}<\mathrm{SO}_{4}^{2-}<\mathrm{ClO}_{4}^{-}$
B. $\mathrm{PO}_{4}^{2-}<\mathrm{SiO}_{4}^{4-}<\mathrm{SO}_{4}^{2-}<\mathrm{ClO}_{4}^{-}$
C. $\mathrm{ClO}_{4}^{-}<\mathrm{SO}_{4}^{2-}<\mathrm{SiO}_{4}^{4-}<\mathrm{PO}_{4}^{3-}$
D. $\mathrm{SiO}_{4}^{4-}\left\langle\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{ClO}_{4}^{-}\right.$

Answer: D

- Watch Video Solution

79. Identify the correct match :
A. (i-a), (ii-b), (iii-c), (iv-d)
B. (i-d), (ii-b), (iii-a), (iv-c)
C. (i-b), (ii-cc), (iii-a), (iv-d)
D. (i-d), (ii-c), (iii-b), (iv-a)

Answer: D

80. Which of the following is true statement?
A. All the carbon is $H_{2} C=C|H-C=C-C| H=C H_{2}$ are in $s p^{2}$ hybridization.
B. In $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{CN})_{2}$ there are six ' σ ' bonds.
C. In diamond ' C ' is in $s p^{2}$ hybridization
D. In $C_{3} \mathrm{O}_{2}$ all the carbons are in sp hybridization.

Answer: D

- Watch Video Solution

81. Among the following the pair in which the two species are not isostructural is
A. SiF_{4} and $S F_{4}$
B. IO_{3}^{-}and XeO_{3}
C. BH_{4}^{-}and NH_{4}^{+}
D. $P F_{6}^{-}$and $S F_{6}$

Answer: A

- Watch Video Solution

82. Which among the following molecules have $s p^{3} d$ hybridization with one lone pair of electrons on the central atom?
(P) SF_{4}
(Q) $\left[\mathrm{PCl}_{4}\right]^{+}$
(R) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(S) ClOF_{3}
A. P, Q and R only
B. P, R and S only
C. P and R only
D. R and S only
83. Hybridization of iodine atoms in ICl_{3} (in its stable form, found in solid state) and $I_{2} \mathrm{Cl}_{4} \mathrm{Br}_{2}$ are :
A. $s p^{3}$ and $s p^{3} d^{2}$
B. $s p^{3} d^{2}$ and $s p^{3} d^{3}$
C. both $s p^{3} d$
D. both $s p^{3} d^{2}$

Answer: D

- Watch Video Solution

84. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{6}(\mathrm{~g})$ the number of lone pairs on Xe respectively are :

$$
\text { A. } 2,3,1
$$

B. 1, 2, 3
C. $4,1,2$
D. $3,2,1$

Answer: D

- Watch Video Solution

85. The non-linear molecule is :
A. CO_{2}
B. HCN
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. SO_{2}

Answer: D

86. In which of the following compounds B atoms are in $s p^{2}$ and $s p^{3}$ hybridisation states both?
A. Borax
B. Diborane
C. Borazole
D. All of these

Answer: A

- View Text Solution

87. The hybridisation of central atoms in $\mathrm{N}_{3}^{-}, \mathrm{NOCl}$ and $\mathrm{N}_{2} \mathrm{O}$ respectively are :
A. $s p, s p^{2}, s p$
B. $s p, s p, s p^{3}$
C. $s p^{2}, s p, s p$
D. $s p^{2}, s p^{2}, s p$

Answer: A

- Watch Video Solution

88. The difference in the coordination number of the central atom in the anionic and cationic part of $\mathrm{Cl}_{2} \mathrm{O}_{6}$ is :
A. 0
B. 1
C. 2
D. 3

Answer: C

89. Which reaction involves a change in the electron-pair geometry for the underlined element?
A. $\underline{B} F_{3}+F^{-} \rightarrow \underline{B} F_{4}^{-}$
B. $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
C. $2 \underline{S O}_{2}+O_{2} \rightarrow 2 \underline{S O}_{3}$
D. $\mathrm{H}_{2} \underline{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \underline{\mathrm{O}}^{+}$

Answer: A

- Watch Video Solution

90. Which of the following structure is having same shape as SO_{3}^{2-} ?
A. $\mathrm{F}_{2} \mathrm{SeO}$
B. $\mathrm{F}_{2} \mathrm{SeO}_{2}$
C. SO_{4}^{2-}
D. SO_{2}

D Watch Video Solution

91. Which molecule $A X_{3}, A X_{4}, A X_{5}, A X_{6}$ is most likely to have a trigonal bipyramidal structure if A has no lone pair?
A. $A X_{3}$
B. $A X_{5}$
C. Both (a) and (b)
D. $A X_{6}$

Answer: B

D Watch Video Solution

92. In which of the following process, hybridisation of the central atom changes?
A. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
B. $N F_{3}+F \rightarrow N F_{4}^{+}$
C. $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$
D. $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$

Answer: C

- Watch Video Solution

93. Incorrect matched pair is :
A. $\mathrm{XeO}_{2} \mathrm{~F}_{2}-s p^{3} d$-hybridized with one lone pair on Xe
B. $I(C N)_{2}^{\Theta}-s p^{3} d$ and sp-hybridised on 'I' and 'C' respectively
C. $X e F_{5}^{\Theta}-s p^{3} d^{3}$ hybridised with two lone pair on Xe
D. None of these

Answer: D

94. Observe the following reaction:
$\mathrm{BF}_{3} \mathrm{NH}_{3} \rightarrow\left[\mathrm{~F}_{3} \mathrm{~B} \leftarrow \mathrm{NH}_{3}\right]$
Choose the correct statement regarding product :
A. Hybridisation state of ' B ' is unchanged
B. Formal charge on N atom is -1
C. Covalency of B is changed from 3 to 4
D. All of these

Answer: C

- Watch Video Solution

95. T-shaped geometry is obtained when :
96. The minimum number of 90° angles between hybrid orbitals is observed in :
A. $s p^{3} d^{2}$
B. $d^{2} s p^{3}$
C. $d s p^{2}$
D. $s p^{3} d$

Answer: C

- Watch Video Solution

97. Chemical bond results when between combining atoms:
$F_{A}=$ attraction force
$F_{R}=$ repulsion forces
P.E. = potential energy
A. $F_{A}>F_{R}$, P.E. minimum
B. $F_{A}<F_{R}$, P.E. maximum
C. $F_{A}=F_{R}$, P.E. minimum
D. $F_{A}=F_{R}$, P.E. maximum

Answer: C

- Watch Video Solution

98. Which of the following statement is true of $\mathrm{H}_{2} \mathrm{~S}$?
A. The sulphur atom is $s p^{3}$ hybridized and bonding take place in excited state.
B. $\mathrm{H}_{2} \mathrm{~S}$ and BF_{3} form adduct readily through coordinate bond between boron and sulphur
C. Its molecular geometry is non-linear and $H-S-H$ bond angle is smaller than $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$
D. (b) and (c) both

D Watch Video Solution

99. The structure of $\mathrm{F}_{2} \mathrm{SeO}$ is analogous to :
A. SO_{3}
B. ClO_{3}^{-}
C. XeO_{3}
D. (b) and (c) both

Answer: D

D Watch Video Solution

100. Which of the following statements is true for $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$?
A. The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared.
B. If has $s p^{3} d$ hybridisation and is T-shaped.
C. Its structure is analogous to SF_{4}.
D. (a) and (c) both

Answer: D

- Watch Video Solution

101. Which of the following statements are correct?
(I) $\mathrm{N}_{2} \mathrm{H}_{4}$ is pyramidal about each N atom.
(II) $\mathrm{NH}_{2} \mathrm{OH}$ is pyramidal about the N atom and bent about the O atom.
(III) $\mathrm{CH}_{3} \mathrm{COCl}$ is trigonal planar about the carbon atom (attached to O and Cl).
A. S_{1} and S_{2} only
B. S_{1} and S_{3} only
C. S_{2} and S_{3} only
D. S_{1}, S_{2} any S_{3}

Answer: D

- Watch Video Solution

102. Choose the molecules in which hybridization occurs in the ground state?
(P) BCl_{3}
(Q) NH_{3}
(R) PCl_{3}
(S) BeF_{2}
A. P, Q, S
B. P, Q, R
C. Q, R
D. R, S

Answer: C

D Watch Video Solution

103. Number and type of bonds between two carbon atoms in $C a C_{2}$ are :
A. one sigma (σ) and one $\mathrm{Pi}(\pi)$ bond
B. one σ and two π bonds
C. one σ and one and a half π bond
D. one σ bond

Answer: B

- Watch Video Solution

104. The structure of ICl_{2}^{+}would be :
A.
B.
C.
D. none of these

Answer: D

- Watch Video Solution

105. Give the molecular structures of:
$\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$
XeOF_{4} and XeO_{3}
A.
B.
C.
D.

Answer: C

106. In which of the following molecules number of lone pairs and bond pairs on central atom are not equal?
A. $\mathrm{H}_{2} \mathrm{O}$
B. I_{3}^{-}
C. $O_{2} F_{2}$
D. SCl_{2}

Answer: B

Watch Video Solution
107. How many bonds are there in
A. 13
B. 23
C. 20
D. 26

Answer: B

- View Text Solution

108. Which of the statements is correct about SO_{2} ?
A. Two σ, two π and two lone pair of electrons on 'S'
B. Two σ and one π
C. Two σ, two π and one lone pair on 'S'
D. none of these

Answer: C

109. Number of sigma bonds in $P_{4} O_{10}$ is :
A. 6
B. 7
C. 17
D. 16

Answer: D

- Watch Video Solution

110. Number of $p \pi-d \pi$ bond(s) in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is/are:
A. 1
B. 3
C. 0
D. 2

D Watch Video Solution

111. In which of following option the $(X-A-X)$ adjacent angle difference in cationic part and anionic part is maximum in the solid state?
A. PCl_{5}
B. $\mathrm{Cl}_{2} \mathrm{O}_{6}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. BeH_{2}

Answer: C

- Watch Video Solution

112. The ion which is not tetrahedral in shape :
A. $B F_{4}^{-}$
B. NH_{4}^{+}
C. XeO_{4}
D. ICl_{4}^{-}

Answer: D

- Watch Video Solution

113. Which of the following species given below have shape similar to XeOF_{4} ?
A. XeO_{2}
B. IOF_{4}^{+}
C. PCl_{5}
D. $\mathrm{XeF}_{5}^{\oplus}$

Answer: D

114. For the molecule $M A_{2} L_{n}$ (where A is number of single bonded surrounding atoms, L indicates lone pair and n is the number of lone pair and M is the central atom of s or p block element). The possible range of ' n ' is :
A. 1 to 4
B. zero to 4
C. 1 to 3
D. 0 to 3

Answer: D

- Watch Video Solution

115. Which species is planar?
A. CO_{3}^{2-}
B. SO_{3}^{2-}
C. ClO_{3}^{-}
D. $B F_{4}^{-}$

Answer: A

- Watch Video Solution

116. In which of the following $N-N$ bond length is shortest?
A. $\mathrm{N}_{2} \mathrm{O}$
B. N_{3}^{-}
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{3}$ (unsymm)

Answer: A

117. The correct order of single bond energies is :
A. $N-N>P-P$
B. $P-P>N-N$
C. $\mathrm{O}-\mathrm{O}>\mathrm{S}-\mathrm{S}$
D. $C-C<S i-S i$

Answer: B

- Watch Video Solution

118. On the basis of VSEPR theory, what geometry is predicted for the central sulphur atom in SOCl_{2} ?
A. Tetrahedral
B. T-shaped
C. Trigonal planar
D. Trigonal pyramidal

Answer: D

- View Text Solution

119. How many sigma bonds are present in P_{4} ?
A. 3
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

120. Using VSEPR theory, the molecular structure of $I F_{5}$ best described as

A. octahedral
B. square pyramidal
C. trigonal bipyramidal
D. trigonal pyramis

Answer: B

- Watch Video Solution

121. When arranged in orderof increasing bond strength, which order is correct?
A. $O-O<S-S<O=O<S=S$
B. $O-O<S-S<S=S<O=O$
C. $S-S<S-S<S=S<O-O$
D. $S-S<O-O<S=S<O=O$

Answer: B

- Watch Video Solution

122. What is the geometry of ICl_{4}^{-}according to VSEPR theory?
A. See-saw
B. Square planar
C. Tetrahedral
D. T-shaped

Answer: B

- Watch Video Solution

123. Which species has a different number of pi bonds than others?
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. CO_{2}
C. N_{2}
D. O_{3}

Answer: D

- Watch Video Solution

124. Which molecule is correctly matched with its shape as predicted by VSEPR theory?
A. PCl_{3} trigonal pyramidal
B. $O F_{2}$ linear
C. ClF_{3} trigonal planar
D. $S F_{6}$ hexagonal
125. Formamide has the structure $\mathrm{HC}(\mathrm{O}) \mathrm{NH}_{2}$. Which atoms in formamide have a trigonal planar geometry?
A. C only
B. N only
C. Both C and N
D. none of these

Answer: C

- Watch Video Solution

126. Which species are linear?
(P) NO_{2}^{+}
(Q) I_{3}^{-}
A. P only
B. Q only
C. Both P and Q
D. Neither P nor Q

Answer: C

- Watch Video Solution

127. Which statement about bonding is correct?
A. A σ bond has cylindrical symmetry about the bonding axis.
B. A σ bond is twice as strong as a σ bond.
C. A double bond consists of two π bonds always.
D. A π bond results from the sideways overlap of hybridized orbitals.

Answer: A

128. What is the geometry of the chlorate ion, ClO_{3}^{-}?
A. Trigonal planar
B. Trigonal pyramidal
C. T-shaped
D. Zig-zag

Answer: B

- Watch Video Solution

129. Which of the following species have square pyramidal geometry?
A. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
B. $\mathrm{XeO}_{3} \mathrm{~F}_{2}$
C. $\left[\mathrm{XeO}_{6}\right]^{4-}$
D. XeOF_{4}

Answer: D

- Watch Video Solution

130. Which bonds are formed by a carbon atom with $s p^{2}$ hybridization
A. 4π bonds
B. 2π bonds and 2σ bonds
C. 1π bond and 3σ bonds
D. 4σ bonds

Answer: C

- Watch Video Solution

131. Which of the following molecules are planar?
A. XeCl_{2}
B. XeBr_{2}
C. XeCl_{4}
D. All are planar

Answer: D

D Watch Video Solution

132. What is the geometry of $B r F_{3}$?
A. See-saw
B. T-shaped
C. Trigonal planar
D. Trigonal bipyramidal

Answer: D

133. Which of the following species have same shape and hybridisation?
A. $\mathrm{XeF}_{5}^{+}, \mathrm{XeF}_{3}^{+}$
B. $\mathrm{BrF}_{4}^{-}, \mathrm{XeF}_{5}^{-}$
C. $\mathrm{TeF}_{5}^{-}, \mathrm{XeO}_{2} \mathrm{~F}_{4}$
D. $\mathrm{XeF}_{5}^{+}, \mathrm{TeF}_{5}^{-}$

Answer: D

- Watch Video Solution

134. Which reaction forms a product with a trigonal planar geometry?
A. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow$
B. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow$
C. $\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
D. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow$

Answer: D

- Watch Video Solution

135. What is the best description of the hybridization of each of the carbon atoms (from left to right) in the compound $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{H}$?
A. $s p, s p^{3}, s p^{2}$
B. $s p, s p^{2}, s p^{3}$
C. $s p^{2}, s p^{3}, s p^{2}$
D. $s p^{2}, s p^{3}, s p^{3}$

Answer: A

- Watch Video Solution

136. In which species can we describe the central atom as having $s p^{2}$ hybridization?
A. BeF_{2}
B. CO_{2}
C. KrF_{2}
D. SO_{2}

Answer: D

- Watch Video Solution

137. A triple bond is found in which of the following species?
(P) CO
(Q) $\mathrm{C}_{2} \mathrm{H}_{2}$
(R) CN^{-}
A. P only
B. Q only
C. P and Q only
D. P, Q ,R

Answer: D

- Watch Video Solution

138. The silicon-oxygen bonds in SiO_{2} are best described as :
A. Coordinate covalent
B. Ionic
C. Non-polar covalent
D. Polar covalent

Answer: D

139. Which bond is strongest?
A. $C=C$
B. $\mathrm{C}=\mathrm{N}$
C. $\mathrm{C}=\mathrm{O}$
D. $\mathrm{C}=\mathrm{S}$

Answer: C

- Watch Video Solution

140. In the gas phase PCl_{5} exists as individual molecules but in the solid it takes on the ionic structure $\mathrm{PCl}_{4}^{+} \mathrm{PCl}_{6}^{-}$. What are the geometries of these three species?

$$
\mathrm{PCl}_{5}
$$

$\mathrm{PCl}_{4}^{+} \quad \mathrm{PCl}_{6}^{-}$
A.
(a) trigonal bipyramidal see-saw octahedral
B. $\quad \mathrm{PCl}_{5}$
PCl_{4}^{+} PCl_{6}^{-}
(b) trigonal bipyramidal tetrahedral octahedral

$P C l_{5}$

C.
(c) trigonal bipyramidal square planar distorted octahedral $\mathrm{PCl}_{5} \quad \mathrm{PCl}_{4}^{+} \quad \mathrm{PCl}_{6}^{-}$
D.
(d) trigonal bipyramidal see-saw square planar

Answer: B

- Watch Video Solution

141. Which species has exactly five pairs of electrons around the central atom?
A. ClF_{5}
B. $S F_{4}$
C. $S F_{5}^{-}$
D. XeF_{4}

Answer: B

142. Which species has a trigonal planar geometry?
A. ClF_{3}
B. NCl_{3}
C. CO_{3}^{2-}
D. I_{3}^{-}

Answer: C

- Watch Video Solution

143. Which diatomic molecule contains the strongest bond?
A. $\mathrm{H}-\mathrm{Cl}$
B. $H-F$
C. $\mathrm{Cl}-\mathrm{Cl}$
D. F-F

- Watch Video Solution

144. How many pi bonds and how may lone pairs are in the Lewis structure of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$?
A. 2π bonds, 0 lone pairs
B. 1π bond, 0 lone pairs
C. 1π bond, 1 lone pair
D. 0π bonds, 2 lone pairs

Answer: D

D Watch Video Solution

145. What is the shape of the ClF_{3} molecule?
A. Trigonal planar
B. Trigonal pyramidal
C. T-shaped
D. Tetrahedral

Answer: C

D Watch Video Solution

146. The hybridization of $A s$ in $A s F_{5}$ is best described as :
A. $s p^{3}$
B. $s p^{4}$
C. $s p^{3} d$
D. $d^{2} s p^{3}$

Answer: C

147. Which species below has the same general shape as NH_{3} ?
A. SO_{3}^{2-}
B. CO_{3}^{2-}
C. NO_{3}^{-}
D. SO_{3}

Answer: A

- Watch Video Solution

148. Which diatomic molecule has the shortest bond length?
A. N_{2}
B. O_{2}
C. F_{2}
D. S_{2}

Answer: A

- Watch Video Solution

149. In which species are all the carbon atoms considered to be $s p^{2}$ hybridized?
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{8}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}$

Answer: B

150. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?
A. Trigonal planar
B. See-Saw
C. Linear
D. T-shaped

Answer: A

- Watch Video Solution

151. The triple bond in carbon monoxide consists of :
A. 3 sigma bonds
B. 2 sigma bonds and 1 pi bond
C. 1 sigma bond and 2 pi bonds
D. 3 pi bonds

Answer: C

- Watch Video Solution

152. When is molecules N_{2}, O_{2}, F_{2} are arranged in order of increasing bond strength, which order is correct?
A. N_{2}, O_{2}, F_{2}
B. N_{2}, F_{2}, O_{2}
C. O_{2}, N_{2}, F_{2}
D. F_{2}, O_{2}, N_{2}

Answer: D

D Watch Video Solution

153. The geometry of I_{3}^{-}is
A. Bent
B. Linear
C. T-shaped
D. Triangular

Answer: B

D Watch Video Solution

154. What is the shape of the TeF_{5}^{-}anion?
A. See-saw
B. square pyramidal
C. Trigonal pyramidal
D. Trigonal bipyramidal

Answer: B

155. In which species does the central atom have one or more lone pairs of valence electrons?
A. AlCl_{4}^{-}
B. CO_{2}
C. PCl_{4}^{+}
D. SO_{2}

Answer: D

- Watch Video Solution

156. Describe the shapes of $B F_{3}$ and $B H_{4}^{\ominus}$. Assign the hybridisation of boron in these species.
A. Planar
B. See-Saw
C. Tetrahedral
D. Triangular pyramidal

Answer: C

- Watch Video Solution

157. Which species has the same electron distribution around the central atom as SiF_{4} ?
A. $S F_{4}$
B. XeF_{4}
C. ClF_{4}^{+}
D. $B F_{4}^{-}$

Answer: D

158. According to VSEPR theory, in which species do all the atoms lie in the same plane ?
159. $\mathrm{CH}_{3}^{+} \quad$ 2. CH_{3}^{-}
A. Ponly
B. Q only
C. Both P and Q
D. Neither P nor Q

Answer: A

- Watch Video Solution

159. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angles in $\mathrm{H}_{3} \mathrm{O}^{+}$are approximately 107°. The orbitals used by oxygen in these bonds are best described as :
A. p orbitals
B. sp hybrid orbitals
C. $s p^{2}$ hybrid orbitals
D. $s p^{3}$ hybrid orbitals

Answer: D

- Watch Video Solution

160. Which of these compounds is not adequately represented by a valence bond model?
(P) CO_{2}
(Q) SO_{2}
(R) SiO_{2}
A. Ponly
B. Q only
C. P and Q only
D. Q and R only

Answer: B

161. What is the state of hybridisation of P atom in PH_{4}^{+}?
A. No hybridisation
B. $s p^{3}$
C. $s p^{3} d$
D. $s p^{2}$

Answer: B

- Watch Video Solution

162. Find the ratio of number of σ-bond to π-bonds in $B_{3} N_{3} H_{6}$.
A. 4
B. 6
C. 2

Answer: A

- Watch Video Solution

163. Which species has the same shape as the NO_{3}^{-}ion?
A. SO_{3}
B. SO_{3}^{2-}
C. ClF_{3}
D. ClO_{3}^{-}

Answer: A

- Watch Video Solution

164. How many bonding pairs and lone pairs surround the central atom in the I_{3}^{-}ion?

$|$| | Bonding pairs | Lone Pairs |
| :--- | :--- | :--- |
| (a) | 2 | 2 |
| (b) | 2 | 3 |
| (c) | 3 | 2 |
| (d) | 4 | 3 |

- Watch Video Solution

165. What hybrid orbitals are employed by carbon atoms 1,2 and 3 respectively, as labeled in the compound shown?

$$
\begin{gathered}
: \mathrm{O} \\
1 \mid \\
\mathrm{H}_{3} \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \equiv \mathrm{~N}:
\end{gathered}
$$

A. $s p^{3}, s p, s p$
B. $s p^{2}, s p^{2} s p$
C. $s p^{3}, s p^{2}, s p$
D. $s p^{3}, s p^{2}, s p^{2}$

Answer: C

- Watch Video Solution

166. How many unpaired electrons does a gaseous atom of phosphorus, P, have in its ground state?
A. 1
B. 3
C. 5
D. 7

Answer: B

167. How many sigma and pi bonds are shown in this compound?
$\mathrm{H}-\mathrm{N}=\stackrel{H}{\mid} \stackrel{H}{\mathrm{C}}-\mathrm{C} \mid \mathrm{O}-\mathrm{O}-\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
A. 8σ and 7π
B. 8σ and 3π
C. 11σ and 3π
D. 11σ and 4π

Answer: D

- Watch Video Solution

168. Pair of molecules or ions which are isostructural (similar molecular structure) is :
A. $\mathrm{CO}_{2}, \mathrm{I}_{3}^{-}$
B. $\mathrm{PCl}_{4}^{+}, \mathrm{PCl}_{5}$
C. $\mathrm{XeO}_{4}, \mathrm{XeO}_{3}$
D. $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}^{-}$

Answer: A

D Watch Video Solution

169. Arrange the species according to the increasing order of the number of lone pair on their cental atom from left to right :
A. $\mathrm{XeF}_{2}, \mathrm{ICl}_{3}, \mathrm{SO}_{2}$
B. $\mathrm{ICl}_{3}, \mathrm{SO}_{2}, \mathrm{XeF}_{2}$
C. $\mathrm{SO}_{2}, \mathrm{ICl}_{3}, \mathrm{XeF}_{2}$
D. $\mathrm{SO}_{2}, \mathrm{XeF}_{2}, \mathrm{ICl}_{3}$

Answer: C

170. In which of the follwing molecule / ion bond angle is not affected due to presence of lone pair on central atom from left to righ?
A. BrF_{2}^{-}
B. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
C. $\mathrm{XeO}_{2} \mathrm{~F}_{4}$
D. $S F_{4}$

Answer: A

- Watch Video Solution

171. The maximum number of bond and π-bond can be formed between two atoms are respectively:
A. 4,3
B. 3, 2
C. 2, 3

D. 3,1

Answer: B

- Watch Video Solution

172. Which of the following specie(s)/are linear?
A. $\mathrm{H}_{2} \mathrm{O}$
B. SnCl_{2}
C. I_{3}^{+}
D. $C S_{2}$

Answer: D

- Watch Video Solution

173. Which of the folowing angles corresponds to $s p^{2}$ hybridisation ?
A. 90°
B. 120°
C. 180°
D. 109°

Answer: B

- Watch Video Solution

174. The order of $p \pi-d \pi$ interaction in the compounds containing bond between $\mathrm{Si} / \mathrm{P} / \mathrm{S} / \mathrm{Cl}$ and oxygen is in the order :
A. Pgt Sigt Cl gt S
B. Silt P It S It Cl
C. Slt Cl It P It Si
D. Sigt Pgt Sgt Cl

Answer: B

175. The structure of XeOF_{4} is
A. trigonal bipyramidal
B. octahedral
C. pentagonal planar
D. square pyramidal

Answer: D

- Watch Video Solution

176. Isostructrual species are those which have the same shape and hybridisation. Among the given identify the isostructural pairs.
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$
C. $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: B

- Watch Video Solution

177. The types of hybrid orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+} respectively are expected to be :
A. $s p, s p^{3}$ and $s p^{2}$
B. $s p, s p^{2}$ and $s p^{3}$
C. $s p^{2}, s p$ and $s p^{3}$
D. $s p^{2}, s p^{3}$ and $s p$

Answer: B

- Watch Video Solution

178. Which of the following species has tetrahedral geometry?
A. BH_{4}^{-}
B. NH_{2}^{-}
C. CO_{3}^{2-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$

Answer: A

179. In which of the following molecule/ion all the bonds are not equal?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $\mathrm{C}_{2} \mathrm{H}_{4}$
D. SiF_{4}

Answer: C

D Watch Video Solution

180. The pair having similar geometry is :
A. $B F_{3}, N F_{3}$
B. $\mathrm{BCl}_{3}, \mathrm{AlCl}_{3}$
C. $\mathrm{BeF}_{2}, \mathrm{OF}_{2}$
D. $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$

Answer: B

Watch Video Solution

181. A: tetracynomethance, B: Carbon dioxide , C: Benzene, D: 1, 3 butadiene

Ratio of s and p bond is in order
A. $A=B$ It C It D
B. $A=B$ lt D It C
C. $A=B=C=D$
D. C It D It A B

Answer: A

- Watch Video Solution

182. The geometry of ammonia molecule can be best described as :
A. nitrogen at one vertex of a regular tetrahedron, the other three vertices being occupied by the three hydrogens
B. nitrogen at the centre of the tetrahedron, 3 of the vertices being occupied by 3 hydrogens
C. nitrogen at the centre of an equilateral triangle, 3 corners being occupied by 3 hydrogens
D. nitrogen at the junction of T, 3 open ends being occupied by 3 hydrogens

Answer: B

- Watch Video Solution

183. Which of the following set of overlap can not provide π-bond formation
A. 3 d and 2 p
B. $2 p$ and $3 p$
C. $2 p$ and $2 p$
D. $3 p$ and 1 s

Answer: D

184. The ratio of number of σ-bond to π-bond in N_{2} and CO molecules are
A. 2.0, 2.0
B. $2, \frac{1}{2}$
C. $\frac{1}{2}, \frac{1}{2}$
D. 2, 2

Answer: C

- Watch Video Solution

185. The compound $M X_{4}$ is tetrahedral. The number of $\angle X M X$ angles formed in the compound is
A. three
B. four
C. five
D. six

Answer: D

- Watch Video Solution

186. What is hybridisation of central atom of anionic part of PBr_{5} in crystalline state
A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. Not applicable

Answer: D
187. The \% p-character in the orbitals forming $\mathrm{C}-\mathrm{H}$ bond in CH_{4} is :
A. 25
B. 50
C. 75
D. 100

Answer: C

- Watch Video Solution

188. In the following compound :
$\stackrel{1}{\mathrm{C}^{\mathrm{C}}} \mathrm{H}_{2}=\stackrel{2}{\mathrm{C}} \stackrel{3}{\mathrm{H}}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{5}{\mathrm{C}} \equiv \mathrm{C} \mathrm{H}$, the $\mathrm{C}_{3}-\mathrm{C}_{4}$ bond is of the type :
A. $s p-s p^{2}$
B. $s p^{3}-s p^{3}$
C. $s p^{3}-s p$
D. $s p^{2}-s p^{3}$

Answer: C

- Watch Video Solution

189. Which of the following molecule/ion has maximum $\sigma: \pi$ bond ratio?
A. $C_{3} N_{3} \mathrm{Cl}_{3}$
B. CO_{2}
C. NO_{3}^{-}
D. $\mathrm{P}_{4} \mathrm{O}^{10}$

Answer: D

- Watch Video Solution

190. Which of the following statements is incorrect for the bonding in

CaC_{2} ?

A. Ionic bond is present
B. Covalent bond is present
C. One σ and two π bond and present
D. Co-ordiante bond is present

Answer: D

- Watch Video Solution

191. The shapes of $P C I_{4}^{\oplus}, P C I_{4}^{\Theta}$ and $A s C I_{5}$ and are respectively .
A. square planar, tetrahedral and see-saw
B. tetrahedral, see-saw and trigoanl bipyramidal
C. tetrahedral, square planar and pentagonal bipyramidal
D. trigonal bipyramidal, tetrahedral and square pyramidal

Answer: B

- Watch Video Solution

192. consider the structures of the following two molecules:
$X: F_{2} C=C=C F_{2}$
$Y: F_{2} B-C \equiv C-B F_{2}$
In which of these two it is impossible for all the four F-atoms to lie in the same plane?
A. X
B. Y
C. Both of these
D. none of these

Answer: A

1. Nodal planes of π-bonds in $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ are located in,
A. all are in molecular plane
B.two in molecular plane and one in a plane perpendicular to molecular plane which contains C - $C \sigma$-bond
C. one in molecular plane and two in plane perpendicular to molecular plane which contains C-C σ-bond
D.two in molecular plane and one in a plane perpendicular to molecular plane which bisects C - C σ-bond at right angle

Answer: B

- Watch Video Solution

2. If 'XY' plane contains all the atoms of COCl_{2}, nodal plane of π-bond in COCl_{2} is in :
A. XY
B. XZ
C. YZ
D. cannot be determined

Answer: A

- Watch Video Solution

3. Which of the following would result in the formation of strongest π bond if the molecular axis is X -axis?
A. $2 p_{x}+2 p_{x}$
B. $3 p_{y}+3 p_{y}$
C. $3 p_{y}+3 d_{x y}$
D. $3 p_{x}+3 d_{x y}$

Answer: C

- Watch Video Solution

4. IF z-axis is the bond forming axis, then which of the following type of overlap cannot form π-bond [orbitals given are of two different atoms]?
A. p_{y} and p_{y}
B. $d_{x y}$ and $d_{x z}$
C. $d_{x z}$ and $d_{x z}$
D. none of these

Answer: B

- Watch Video Solution

5. For the following molecule :

Consider the following statement, if π electron cloud of $C_{1}-C_{2}$ is present in the plane of papar.
(P) Fluorine is perpendicular to the plane of paper
(Q) Chloring is present in the plane of paper
(R) Nodal plane of π - electron cloud of $C_{2}-C_{3}$ is in plane of paper
(S) Nodal plane of π-electron cloud of $C_{3}-C_{4}$ and $C_{1}-C_{2}$ are in the plane of chlorine atom

Select the correct option.
A. TTTT
B. FFTT
C. FTTT
D. FFTF

Answer: B

6. For the given compound :
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}|\mathrm{H}-\mathrm{C}| \mathrm{H}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
If π-electron cloud of $C_{1}-C_{2}$ carbon atoms is perpendicular to the plane of paper, then total number of H -atoms lying in the plane of paper will be
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

7. Which of the following statement is incorrect regarding to the bonding in $\mathrm{C}_{3} \mathrm{O}_{2}$?
A. Nodal planes of adjacent π-bonds are perpendicular to each other
B. Nodal planes of adjacent π - bond are in same plane
C. Nodal planes of alternative π-bond in same plane
D. All carbon atoms are sp-hybridized

Answer: B

- Watch Video Solution

8. In which species do the atoms not lie in a single plane?
A. $B F_{3}$
B. $P F_{3}$
C. ClF_{3}
D. XeF_{4}

Answer: B

9. In which of the following overlap/hybridisation will result in planar geometry in XY plane only?
A. $s+p_{x}$
B. $s+p_{x}+p_{z}$
C. $s+p_{y}+p_{z}$
D. $s+p_{x}+p_{y}+d_{x^{2}-y^{2}}$

Answer: D

- Watch Video Solution

10. If the molecular axis is Z then which of the following overlapping is not possible
A. $p_{z}+p_{z}=\sigma$ bond
B. $p_{x}+p_{y}=\pi$ bond
C. $p_{x}+p_{y}=\pi$ bond
D. $p_{y}+p_{y}=\pi$ bond

Answer: B

- Watch Video Solution

11. If y-axis is the approaching axis between two atoms, then which of the set of orbitals can not form the π bond between two atoms in general
A. $p_{z}-p_{z}$
B. $p_{x}-p_{x}$
C. $p_{x}-p_{y}$
D. none of these

Answer: C

12. If ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ molecule lies along x-axis, then nodal planes of π bond will lie in :
A. xy plane
B. yz plane
C. xz plane
D. both (a) and (c)

Answer: D

- Watch Video Solution

13. Identify the incorrect statement about the molecule :

$$
\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}
$$

A. Ratio of no. sp carbons to no. of $s p^{3}$ carbons is $4: 1$
B. The molecule may have maximum 11 atoms in the same plane.
C. Maximum 3 nodal plane of various π-bonds can be in theplane where maximum atoms may be present.
D. Maximum 7 carbon atoms can be along one of the axis.

Answer: D

D Watch Video Solution

14. If ethene molecule is present on $Y Z$ plane then nodal plane of its π bond will lie on :
A. XY plane
B. YZ plane
C. molecular plane
D. (b) and (c) are correct

Answer: D

15. Which of the following molecule is planar ?
A. $F_{2} C=C=C=C=C F_{2}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. All of these

Answer: C

16. The total number of π-bonds present in a single plane in the compound $C_{3} S_{2}$ is :
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

17. Which is the correct statement?
A. In $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$, both the π bonds in same plane.
B. In $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$, all the four hydrogens in same plane.
C. $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ molecule is a non-planar molecule.
D. (a) and (b) both are correct.

Answer: C

- Watch Video Solution

18. The number of planes in which at least 4 atoms are present in $I F_{7}$, is :
A. 6
B. 5
C. 4
D. 7

Answer: A

- Watch Video Solution

19. Order of number of planes present in molecule which contains maximum number of atoms of correoponding molecule:
A. $\mathrm{IF}_{7}>\mathrm{SF}_{6}>\mathrm{CH}_{4}$
B. $\mathrm{CH}_{4}>S F_{6}>I F_{7}$
C. $\mathrm{SF}_{6}>\mathrm{IF}_{7}>\mathrm{CH}_{4}$
D. $\mathrm{CH}_{4}>\mathrm{IF}_{7}>\mathrm{SF}_{6}$

Answer: B

20. Which of the following statements is correct in the context of the allene molecule, $\mathrm{C}_{3} \mathrm{H}_{4}$?
A. The central carbon is $s p$ hybridized
B. The terminal carbon atoms are $s p^{2}$ hybridized
C. The planes containing the CH_{2} groups are mutually perpendicular to permit the formation of two separate π-bonds.
D. All correct

Answer: D

- Watch Video Solution

21. The maximum number of atoms in a plane in PCl_{5} is
A. 3
B. 4
C. 2
D. 5

Answer: B

- Watch Video Solution

22. Which statement best describes the structure of the allene molecule,
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$?
A. The C atoms form an angle of 120° and the H atoms lie in the same plane as the C atoms.
B. The C atoms form and angle of 120° and the H atoms lie in a plane perpendicular to that of the C atoms.
C. The C atoms form an angle of 180° and the four H atoms lie in the same plane.
D. The C atoms form an angle of 180° and the two CH_{2} groups are perpendicular to one another.

Answer: D

- Watch Video Solution

D.

1. Consider the following statements :
(P) Steric number ' 7 ' gives $s p^{3} d^{3}$ hybridisation
(Q) In ClF_{3}, at least one bond angle is exactly 180°
(R) Lone pair does not cause any distrotion in the bond angle

The above statements $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ respectively are : ($\mathrm{T}=\mathrm{True}, \mathrm{F}=$ False)
A. TFF
B. TTF
C. FTF

Answer: A

- Watch Video Solution

2. In XeF_{2}, molecule the angle between two lone pair orbitals is α, the angle between lone pair orbital and bond pair orbital is β and the angle between bond pair orbitals is γ :
A. $\alpha=\beta=\gamma$
B. $\alpha>\beta>\gamma$
C. $\gamma>\beta>\alpha$
D. $\gamma>\alpha>\beta$

Answer: D

- Watch Video Solution

3. Which of the following has highest bond angle?
A. $\mathrm{Cl}_{2} \mathrm{O}$
B. OF_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. All have equal bond angle

Answer: A

- Watch Video Solution

4. Which of the following has the highest bond energy?
A. F_{2}
B. Cl_{2}
C. $B r_{2}$
D. I_{2}

Answer: B

- Watch Video Solution

5. Choose the correct order among the following option.
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$: Bond angle order
B. $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$: Bond angle order
C. $\mathrm{XeF}_{4}<\mathrm{XeO}_{3}<\mathrm{XeF}_{2}$: Number of lone pair on the central atom
D. $2 p \pi-2 p \pi>2 p \pi-3 р \pi>2 p \pi-3 d \pi$: Relative strength of the π-bonds

Answer: B

- Watch Video Solution

6. Arrange the following in increasing order of total number of possible adjecent bond angles?
A. $\mathrm{CCl}_{4}>S F_{6}>I F_{7}$
B. $\mathrm{CCl}_{4}<\mathrm{SF}_{6}<\mathrm{IF}_{7}$
C. $\mathrm{CCl}_{4}=S F_{6}-I F_{7}$
D. none of these

Answer: B

- View Text Solution

7. Select the correct option of the following statements.
(P) Energy of an $s p^{2}$ hybrid orbital is equal to that of an $s p^{3}$ hybrid orbital.
(Q) \% s character in each $s p^{3} d^{2}$ hybrid orbitals are at 90° to one another.
(S) Bond order of $\mathrm{C}-\mathrm{O}$ bond in CO_{3}^{2-} is $\frac{4}{3}$
A. TTTT
B. FFTF
C. FFFT

D. FFTT

Answer: D

- Watch Video Solution

8. Consider the following statements :
(P) The hybridisation found in cation of solid PCl_{5} is $s p^{3}$.
(Q) In $A B_{2} L_{2}$ type the BAB bond angle is always greater than the normal tetrahedral bond angle.
(R) In $\mathrm{ClO}_{3}^{-}, \mathrm{NH}_{3}$ and XeO_{3}, the hybridisation and the number of lone pairs on the central atoms are same.
(S) In P_{4} molecule, there are six $P-P$ bonds and four lone pairs of electrons.

Of these statements :
A. P, Q and R are correct only
B. P, R and S are correct only
C. R and S are correct only
D. All are correct

Answer: B

- Watch Video Solution

9. Which of the following molecules has maximum number of 90° bond angle?
A. XeF_{4}
B. $X e F_{5}^{-}$
C. $S F_{6}$
D. $I F_{7}$

Answer: C

10. The difference of maximum number of atoms that are present in a plane and minimum number of atoms that are present in a same plane is $S F_{6}$ is :
A. 4
B. 6
C. 2
D. 1

Answer: C

- Watch Video Solution

11. Select the compound having all equivalent bond lengths :
A. PCl_{5}
B. $B F_{3}$
C. $P F_{5}$
D. $I F_{7}$

Answer: B

- Watch Video Solution

12. The correct order of bond angles of following species are:
A. $\mathrm{NH}_{3}<\mathrm{NH}_{4}^{\oplus}<\mathrm{NH}_{2}^{\oplus}$
B. $\mathrm{O}_{3}<\mathrm{NO}_{2}^{\oplus}<\mathrm{NO}_{3}^{\Theta}$
C. $I_{3}^{\Theta}>\mathrm{XeF}_{4}>\mathrm{CIF}_{3}$
(consider only adjacent bond angle)
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{F}_{2} \mathrm{O}<\mathrm{Cl}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

13. Consider the following molecules :
$\mathrm{H}_{2} \mathrm{OH}_{2} \mathrm{SH}_{2} \mathrm{SeH}_{2} \mathrm{Te}$

IIIIIIIV

Arrange these molecules in increasing order of bond angles
A. I It II It III It IV
B. IV It III It II It I
C. I It II It IV It III
D. II It IV It III It I

Answer: B

Watch Video Solution

14. Which has the smallest bond angles $(X-S-X)$ in the given molecules?
A. OSF_{2}
B. OSCl_{2}
C. OSBr_{2}
D. OSI_{2}

Answer: A

- Watch Video Solution

15. Consider the following iodides :
$\begin{array}{lll}\mathrm{PI}_{3} & \mathrm{AsI}_{3} \quad \mathrm{SbI}_{3}\end{array}$
$102^{\circ} 100.2^{\circ} 99^{\circ}$
The bond angle is maximum in PI_{3}, which is :
A. due to small size of phosphorous
B. due to more bp-pb repulsion in PI_{3}
C. due to less electronegativity of P
D. none of the above

Answer: B

16. Select the correct statement(s) regarding $B r F_{5}$ molecule.
A. It has square pyramidal shape
B. All $\angle F B r F$ bond angles are equal to 90°
C. All $\mathrm{Br}-\mathrm{F}$ bond lengths are equal
D. all of the above

Answer: A

- Watch Video Solution

17. Select the correct statement regarding XeO_{4} and IO_{4}^{-}.
A. Both are isoelectronic
B. Both have equal number of $p \pi-d \pi$ bonds.
C. Both have different shapes.
D. $\angle O X e O$ and $\angle O C l O$ are different bond angles.

- Watch Video Solution

18. The correct order of LOClO bond angles in $\mathrm{ClO}_{2}^{-} \mathrm{ClO}_{2}$ and ClO_{2}^{+}is :
A. $\mathrm{ClO}_{2}=\mathrm{ClO}_{2}^{+}=\mathrm{ClO}_{2}^{-}$
B. $\mathrm{ClO}_{2}^{+}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$
C. $\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{+}$
D. $\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}^{+}<\mathrm{ClO}_{2}$

Answer: C

- Watch Video Solution

19. Select the correct statement regarding $I F_{7}$.
A. Axial bond length is longer than equatorial bond length.
B. Axial bond length is shorter than equatorial bond length.
C. All bonds are of equal length
D. It is polar in nature.

Answer: B

- Watch Video Solution

20. Consider the structure of $\mathrm{P}_{4} \mathrm{O}_{10}$ given below :

Which of the following is correct ?
A. P-O-P linkage in $P_{4} O_{10}$ is longer than that in $P_{4} O_{6}$
B. $P_{4} O_{10}$ is less acidic than $P_{4} O_{6}$
C. $\alpha>\beta$
D. $\alpha<\beta$

Answer: D

21. Which of the following has all equal total angles ?
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{~F}_{2}$
C. NH_{3}
D. $\mathrm{NH}_{2}-\mathrm{OH}$

Answer: C

- Watch Video Solution

22. Arrange the following molecules in the correct order of decreasing C-C bond length:

$$
\begin{aligned}
& \text { A. } \mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{2} \\
& \text { B. } \mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \text { is benzene }\right)
\end{aligned}
$$

C. $\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{6} \mathrm{H}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{6} \mathrm{H}_{6}$

Answer: B

- Watch Video Solution

23. Which of the following molecules or species has different bond angles between adjacent atoms?
A. $S F_{6}$
B. NCl_{3}
C. XeF_{5}^{-}
D. SeF_{4}

Answer: D

24. In which of the following $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles is highest ?
A. NO_{2}^{+}
B. NO_{3}^{-}
C. NO_{2}^{-}
D. None of these

Answer: A

Watch Video Solution

25. The correct order of bond angle in the given molecules is :
A. $\mathrm{PH}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{4}^{+}$
B. $\mathrm{PH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NH}_{4}^{+}$
C. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{H}_{3} \mathrm{O}<\mathrm{NH}_{4}^{+}$
D. $\mathrm{NH}_{4}^{+}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{PH}_{3}$

D Watch Video Solution

26. Which of the following molecules or ions has different bond lengths ?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $S F_{4}$
D. SiF_{4}

Answer: C

- Watch Video Solution

27. Which of the following molecules has two lone pairs and bond angle (need not to be all bond angles) $<109.5^{\circ}$?
A. $S F_{2}$
B. XeF_{4}
C. ICl_{4}^{-}
D. All of these

Answer: D

- Watch Video Solution

28. Which of the following has maximum bond angle in the anionic part in the solid state?
A. XeF_{6}
B. ICN
C. $\mathrm{N}_{2} \mathrm{O}_{3}$
D. $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: B

29. Which of the following has maximum bond angle in its anionic part in the solid state?
A. PCl_{5}
B. PBr_{5}
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{Cl}_{2} \mathrm{O}_{6}$

Answer: C

- Watch Video Solution

30. Shape of $\mathrm{O}_{2} \mathrm{~F}_{2}$ is similar to that of
A. $C_{2} F_{2}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2} F_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: B

- Watch Video Solution

31. The ONO angle is maximum in :
A. HNO_{3}
B. NO_{2}^{+}
C. HNO_{2}
D. NO_{2}^{+}

Answer: B

32. Arrange the following in the increasing order of deviation from normal tetrahedral angle :
A. $\mathrm{P}_{4}<\mathrm{PH}_{3}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{PH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{P}_{4}$
C. $\mathrm{P}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{PH}_{3}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{PH}_{3}<\mathrm{P}_{4}$

Answer: D

- Watch Video Solution

33. Which of the following bond angle order is correct?
A. $\mathrm{PH}_{3}>\mathrm{PH}_{4}^{+}$
B. $\mathrm{NH}_{4}^{+}>\mathrm{PH}_{4}^{+}$
C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{OF}_{2}<\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

34. Hydridisation of the central atom in BrF_{5} molecule is:
A. $B F_{3}$
B. $C F_{4}$
C. NH_{3}
D. $O F_{2}$

Answer: D

- Watch Video Solution

35. The infrated frequency of the CX vibration for $\mathrm{CH}_{3} X$ depends on which of the following?
(P) Mass of X
(Q) Strength of the CX bond
(R) Type of CX vibration (stretch or bend)
A. Ponly
B. Q only
C. Q and R only
D. P, Q and R

Answer: D

- View Text Solution

36. What is the geometry of the IBr_{2}^{-}ion ?
A. Linear
B. Bent with a bond angle of about 90°
C. Bent with a bond angle of about 109°
D. Bent with a bond angle of about 120°

- Watch Video Solution

37. When the molecules $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ are arranged in order of decreasing $N-N$ bond length which order is correct?
A. $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{N}_{2}$
B. $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{4}$
C. $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

38. Which molecule contains the smallest $F-S-F$ angle ?
A. $S F_{2}$
B. SOF_{2}
C. $\mathrm{SO}_{2} \mathrm{~F}_{2}$
D. $S F_{6}$

Answer: D

- Watch Video Solution

39. Which of the following species does not have all types of bond length same?
A. $S i F_{6}^{2-}$
B. CIF $_{3}$
C. SO_{4}^{-2}
D. XeF_{4}

Answer: B

40. In which choice are molecules listed in order of increasing bond angle?
A. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
B. $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$
D. $\mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

41. What is the $I-I-I$ bond angle in the I_{3}^{-}ion ?
A. 180°
B. 120°
C. 90°
D. More than 90° but less than 120°

Answer: A

- Watch Video Solution

42. When the species $\mathrm{NH}_{4}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$are arranged in order of increasing $H-X-H$ bond angles, what is the correct order?
A. $\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{H}_{2} \mathrm{~F}^{+}$
B. $\mathrm{H}_{2} \mathrm{~F}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{NH}_{4}^{+}$
C. $\mathrm{NH}_{4}^{+}<\mathrm{H}_{2} \mathrm{~F}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{NH}_{4}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{H}_{2} \mathrm{~F}^{+}$

Answer: B

- Watch Video Solution

43. When the species listed are arranged in order of increasing bond angle, which order is correct?
A. $\mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$

Answer: A

- Watch Video Solution

Θ

44. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{\oplus}$ and NH_{2} are in the order .
A. $\mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}$
B. $\mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}$
D. $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$

Answer: D

- Watch Video Solution

45. Which is true about $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$?
A. All three have different bond angles
B. All three have different number of bond angles
C. All three have different hybridisation of nitrogen
D. All three are isoelectronic with each other and can act as a Lewis base

Answer: C

- Watch Video Solution

46. Identify the correct order in the following :
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}$ (bond angle)
B. $\mathrm{CO}_{3}^{2-}>\mathrm{NO}_{3}^{-}$(bond angle)
C. $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{3}^{-}(\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle)
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{O}-\mathrm{C}-\mathrm{O}$ in $\mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$ (bond angle)

Answer: C

- Watch Video Solution

47. In which of the following case the $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angle is less than 90° ?
A. $B r F_{3}$
B. $B r F_{4}^{-}$
C. BrF_{5}
D. both (a) and (c)

Answer: D

48. What is the difference between bond angles in cationic species of PCl_{5} and PBr_{5} in solid state?
A. 60°
B. $109^{\circ} 28^{\prime}$
C. 0°
D. 90°

Answer: C

- Watch Video Solution

49. All possible bond angles in anionic part of PCl_{5} are
A. $190^{\circ}, 28^{\prime}$ only
B. $90^{\circ}, 180^{\circ}$
C. $90^{\circ}, 120^{\circ}, 180^{\circ}$
D. $72^{\circ}, 90^{\circ}, 180^{\circ}$

Answer: B

- Watch Video Solution

50. If bond lengths by x, y and z respectively, then, estimate the order of bond lengths.
A. xgt y gtz
B. ygt xgtz
C. ygt zgt x
D. $\operatorname{zgt} \mathrm{yg} \mathrm{x}$

Answer: A

51. Which of the following order is correct for bond angle ?
A. $P B r_{5}>P C l_{5}>P F_{5}$
B. $\mathrm{CCl}_{4}>\mathrm{SnCl}_{4}>\mathrm{SiCl}_{4}$
C. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$

Answer: D

- Watch Video Solution

52. Strongest $C-H$ bond is observed amongst which of the following molecule?
A. I, II, III are equally strong
B. Only I
C. Only II
D. Only III

Answer: B

- View Text Solution

53. Which of the following compound have maximum three identical bond angles?
A. $B F_{4}^{\Theta}$
B. NH_{3}
C. PCl_{5}
D. All are correct

Answer: B

54. Which of the following pair of species have different hybridisation but equal bond angle?
A. $\mathrm{I}_{3}^{-}, \mathrm{Icl}_{2}^{-}$
B. $\mathrm{CO}_{2}, \mathrm{XeF}_{2}$
C. $I_{3}^{+}, \mathrm{Br}_{3}^{-}$
D. $\mathrm{NH}_{3}, \mathrm{COCl}_{2}$

Answer: B

- Watch Video Solution

E.Bond Polarity/Dipole Moment

1. Which of the following molecule is/are non-polar?
A. XeF_{2}
B. $\mathrm{PCl}_{3} \mathrm{~F}_{2}$
C. XeF_{4}
D. All of these

Answer: D

- Watch Video Solution

2. The correct order of dipole moment is :
A. $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{I}$
B. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
C. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
D. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}$

Answer: B

- Watch Video Solution

3. Correct order od dipole moment is :
A.
B. $\mathrm{PCl}_{3} \mathrm{~F}_{2}>\mathrm{PF}_{3} \mathrm{Cl}_{2}$
C. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{C}_{3} \mathrm{O}_{2}>\mathrm{CO}>\mathrm{CO}_{2}$

Answer: A

- View Text Solution

4. What is the dipole moment of $\mathrm{XeO}_{3} \mathrm{~F}_{2}$?
A. Zero
B. Greater than XeO_{3}
C. Equal to XeO_{3}
D. None of these

D Watch Video Solution

5. Find the molecule which is planar and polar.
A. $B_{3} N_{3} H_{6}$
B. $F_{2} C=C=C=C F_{2}$
C. $\mathrm{BrF}_{2} \mathrm{Cl}$
D. $F_{2} C=C=C F_{2}$

Answer: C

Watch Video Solution

6. In which type of molecule, the dipole moment may be nonzero ($\mathrm{L} \rightarrow$ Lone pair) :-
A. $A B_{2} L_{2}$
B. $A B_{2} L_{3}$
C. $A B_{4} L_{2}$
D. $A B_{4}$

Answer: A

- Watch Video Solution

7. The correct order of dipole moment of $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$ and H_{2} is :
A. $\mathrm{H}_{2}<\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
B. $\mathrm{H}_{2}<\mathrm{HF}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HI}$
C. $\mathrm{H}_{2}<\mathrm{HI}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HF}$
D. $\mathrm{H}_{2}<\mathrm{HI}<\mathrm{HBr}<\mathrm{HF}<\mathrm{HCl}$

Answer: C

8. Which of the following are non-polar and planar?
A. $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CCl}_{2}$
B. $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CCl}_{2}$
C. $B_{2} H_{6}$
D. $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

Answer: B

- Watch Video Solution

9. The molecule having least dipole moment (Assume benzene molecule to be a regular hexagon) :
A.
B.
c.
D.

Answer: D

- View Text Solution

10. A polar molecule AB have dipole monment 3.2 D (Debye) while the bond length is $1.6 \AA$. Find the percentage ionic character in the molecule.
A. 31%
B. 41.6%
C. 39.6%
D. None of these

Answer: B

- Watch Video Solution

11. The dipole moment of is 1.5 D . Then, the dipole moment of is : (assume benzene ring is a regular hexagon)
A. 0 D
B. 1.5 D
C. 2.86 D
D. 2.25 D

Answer: B

- View Text Solution

12. The correct order of dipole moment is :
A. $\mathrm{PCl}_{3} \mathrm{~F}_{2}>\mathrm{PF}_{3} \mathrm{Cl}_{2}$
B.
B. ${ }^{2}$
C. $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{SO}_{2}<\mathrm{SO}_{3}$

Answer: C

D View Text Solution

13. Which of the following molecule is polar as well as planar?
A.
.
B.
.
C.
D. None of these

Answer: C

- View Text Solution

14. Which of the following pair of species: Ist has more dipole moment than IInd?
A. $\mathrm{HF}, \mathrm{HCl}$
B. $\mathrm{PF}_{2} \mathrm{Cl}_{3}, \mathrm{PF}_{4} \mathrm{Cl}$
C. $\mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Answer: A

D Watch Video Solution

15. Which of the following species are planar as well as non-polar ?
A. $\mathrm{C}_{3} \mathrm{O}_{2}$
B. PCl_{5}
C. CCl_{4}
D. SO_{4}^{2-}

Answer: A

16. The polar as well as planar compound is
A. ClF_{3}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $B F_{3}$
D. SF_{4}

Answer: A

- Watch Video Solution

17. Which has maximum dipole moment?
A.
B.
.
C.
D.

Answer: A

- View Text Solution

18. Which of the following statement is true?
A. The dipole moment of NH_{3} is zero
B. The dipole moment of NF_{3} is less than NH_{3}
C. The dipole moment of NF_{3} is more than NH_{3}
D. The dipole moment of NH_{3} is zero

Answer: B

- Watch Video Solution

19. The geometry of $\mathrm{H}_{2} \mathrm{~S}$ and its dipole moment are :
A. angular and non zero
B. angular and zero
C. linear and non zero
D. linear and zero

Answer: A

- Watch Video Solution

20. Of the following molecules the one which has permanent dipole moment is:
A. SiF_{4}
B. $B F_{3}$
C. $P F_{3}$
D. $P F_{5}$

Answer: C

21. Which of the following has the least dipole moment?
A. $N F_{3}$
B. CO_{2}
C. SO_{2}
D. NH_{3}

Answer: B

- Watch Video Solution

22. Which of the following compounds possesses zero dipole moment ?
A. Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
B. Carbone tetrachloride
C. Boron trifluoride
D. All of these

Answer: D

- Watch Video Solution

23. $\mathrm{CH}_{3} \mathrm{Cl}$ has more dipole moment than $\mathrm{CH}_{3} \mathrm{~F}$ because :
A. electron affinity of chlorine is greater than that of fluorine
B. the charge separation is larger in $\mathrm{CH}_{3} \mathrm{Cl}$ compared to $\mathrm{CH}_{3} \mathrm{~F}$
C. the repulsion between the bond pairs and non-bonded pairs of electrons is greater in $\mathrm{CH}_{3} \mathrm{Cl}$ than $\mathrm{CH}_{3} \mathrm{~F}$
D. chlorine has higher electronegativity than fluorine

Answer: B

24. Which of the following molecule is polar as well as planar?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. SO_{2}
C. CO_{2}
D. XeF_{2}

Answer: B

- Watch Video Solution

25. Identify the correct order of dipole moment in the following:
A. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}$
B. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}$
C. $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$
D. $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}$

- Watch Video Solution

26. Which of the following compound is planar and non-polar?
A. ClF_{3}
B. ICl_{4}^{-}
C. I_{3}^{-}
D. $O C N^{-}$

Answer: B

Watch Video Solution
27. Which of the following molecules has a dipole moment of zero?
A. HCN
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. SO_{2}
D. CO_{2}

Answer: D

- Watch Video Solution

28. Moecules with a permanent dipole moment include which of the
following?
(P) HCN
(Q) O_{3}
(R) XeF_{2}
A. Ponly
B. P and Q only
C. Q and R only
D. P, Q and R

D Watch Video Solution

29. Which of the following compounds has a non-zero dipole moment/
A. CO_{2}
B. AsH_{3}
C. CCl_{4}
D. $P F_{5}$

Answer: B

- Watch Video Solution

30. Which molecule has no permanent dipole moment?
A. BCl_{3}
B. NCl_{3}
C. CHCl_{3}
D. PCl_{3}

Answer: A

- Watch Video Solution

31. Molecules with non-zero dipole moments include which of those listed?
(P) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCl}$
(Q) cis- $\mathrm{ClHC}=\mathrm{CHCl}$
(R) trans-ClHC-CHCl
A. Ponly
B. R only
C. P and Q only
D. P, Q and R

Answer: C

- Watch Video Solution

32. Among the following compounds the one that is polar and has central atom with $s p^{3}$ hybridisation is:
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. SiF_{4}
C. $B F_{3}$
D. HClO_{2}

Answer: D

- Watch Video Solution

33. Which species has a diople moment other than zero?
A. $B r F_{3}$
B. $C F_{4}$
C. SbF_{5}
D. $S F_{6}$

Answer: A

- Watch Video Solution

34. Which pair of molecules are polar species ?
A. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{2}$ and $P C l_{3}$
C. SO_{2} and SCl_{2}
D. CS_{2} and NO_{2}

Answer: C

35. Which species is non-polar?
A. HCl
B. OCl_{2}
C. NCl_{3}
D. CCl_{4}

Answer: D

- Watch Video Solution

36. Which of the following hydrocarbons has the lowest dipole moment?
A.
B. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

Answer: B

- Watch Video Solution

37. The incorrect statement(s) is/are :
A. NH_{3} has higher dipole moment than that of NF_{3}
B. The pair of $\mathrm{CO}_{3}^{2 \theta}$ and $\mathrm{SO}_{3}^{2 \theta}$ is not isostructeural
C. The shape of XeF_{4} is tetrahedral
D. $P F_{5}$ contains five bonding pairs and zero lone pair of electrons on phosphorous

Answer: C

38. Find the molecule having least dipole-moment :
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{3}
D. CCl_{4}

Answer: D

- Watch Video Solution

39. Molecule AB has a bond length of $1.617 \AA$ and a dipole moment of 0.38
D. The fractional charge on each atom (absolute magnitude) is :
$\left(e_{0}=4.802 \times 10^{-10} \mathrm{esu}\right)$
A. 0
B. 1.0
C. 0.5

D. 0.05

Answer: D

- Watch Video Solution

40. Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule. Which of the following has the highest dipole moment?
A. CO_{2}
B. HI
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{2}

Answer: C

- Watch Video Solution

41. Which of the following is polar and planar molecule?
A. $B C l_{3}$
B. CH_{4}
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: C

- Watch Video Solution

42. Which has maximum dipole me
A.
B.
.
C.
D.

Answer: A

- View Text Solution

43. Find out the incorrect order of the dipole moment among the following pair of compound :
A. $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
B. p-dichloro benzene > o-dichloro benzene
C. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. $\mathrm{SiF}_{4}>S F_{4}$

Answer: B

D Watch Video Solution

44. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule $X Y_{2}$ shown below? Itvegt
A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$
D. $\theta=180^{\circ}$

Answer: A

- View Text Solution

45. Which of the following species is planar and polar?
A. SO_{3}
B. POCl_{3}
C. NH_{2}^{-}
D. SO_{3}^{-2}

Answer: C

46. In a hypothetical molecule of $\mathrm{PCl} \mathrm{BrF}_{3}$, choose the incorrect statement:
A.

$$
(P-F)_{\text {axial bond length }}>(P-B r)_{\text {equatorial bond length }}>(P-C l)_{\text {equatorial bond leng }}
$$

B. Number of planes containing one each of F, Br and Cl are 3
C. Bond angle order

$$
\left(F_{\text {equatorial }}-P-B r\right)>\left(F_{\text {equatorial }}-P-C l\right)>\left(F_{\text {axial }}-P-C l\right)
$$

D. It's analogue molecule, $P F_{5}$ has dipole moment zero

Answer: A

- View Text Solution

47. Magnitude of dipole moment generated in chloro benzene will be same as that of dipole moment generated in :
A. benzene
B. para-dichloro benzene
C. meta-dichloro benzene
D. cannot be similar with any molecule?

Answer: C

- View Text Solution

48. Select correct order of dipole moment?
A. $B_{3} N_{3} H_{6}>C_{6} H_{6}$
B.
.
C.
D. trans-1,2-dibromoethene gt cis-1,2-dibromoethene

Answer: C

49. The observed dipole moment of HI is 0.38 D . Calculate the percentage ionic character of the $\mathrm{H}-\mathrm{I}$ bond distance is $1.61 \AA$.
A. 16.4%
B. 12%
C. 5%
D. 20%

Answer: C

- Watch Video Solution

50. Which of the following planar molecule has maximum dipole moment?
A. NH_{3}
B. $N F_{3}$
C. $B F_{3}$
D. ICl_{3}

Answer: D

- Watch Video Solution

51. The incorrect statement is :
A. XeO_{3} and $\mathrm{ClO}_{3}^{\Theta}$ are isostructural
B. Cl_{2} has highest bond energy among the halogen
C. each carbon in $\mathrm{C}_{2}(\mathrm{CN})_{2}$ is sp-hybridised
D. NH_{3} is less polar than NF_{3}

Answer: D

52. Amongst the trihalides of nitrogen, which one has the highest dipole moment
A. $N F_{3}$
B. NI_{3}
C. NCl_{3}
D. NBr_{3}

Answer: B

- Watch Video Solution

53. Which species is polar?
A. CO_{2}
B. SO_{2}
C. SO_{3}
D. O_{2}

Answer: B

- Watch Video Solution

54. Three monosulphur fluorides are known $S F_{2}, S F_{4}$ and $S F_{6}$. Of these, polar species include :
A. $S F_{2}$ only
B. $S F_{4}$ only
C. $S F_{2}$ and $S F_{4}$ only
D. $S F_{2}, S F_{4}$ and $S F_{6}$

Answer: C

D Watch Video Solution

55. Molecule $A X_{4}$ have all bond angles equal and molecule is non-polar also then which of the following conclusion in incorrect?
A. Molecule may be tetrahedral
B. Molecule may be square planar
C. Central atom 'A' must have atleast six valence electrons
D. Central atom 'A' has either zero lone pair oR two lone pairs

Answer: C

- Watch Video Solution

56. What will be the correct formula for super oxide?
A. $\mathrm{Cs}_{2} \mathrm{O}_{2}$
B. CsO_{2}
C. KO_{3}
D. BaO_{2}

Answer: B

57. Consider a molecule $M X_{3}$ which has three $p \pi-d \pi$ bonds and non-zero dipole moment. Then select the correct statement.
['X' belongs to ' p ' block, consider no co-ordinate bond is present in molecule]
A. Molecule is hypovalent
B. Central atom has two lone pairs
C. X ' uses it's 'd' orbital for π bond formation
D. Hybridisation of ' M ' is $s p^{3}$

Answer: D

- Watch Video Solution

1. The correct order of increasig $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$
B. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
C. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
D. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}=\mathrm{CO}$

Answer: A

- Watch Video Solution

2. Select the correct statement(s) regarding N_{3}^{-}ion.
A. All d_{N-N} bonds are of equal length.
B. It has linear shape.
C. The central nitrogen is sp-hybridised.
D. all of the above

Answer: D

3. Which option is incorrect for 'A' NaClO_{4} and ' B ' HClO_{4} among the following?
A. All $\mathrm{Cl}-\mathrm{O}$ bond length are equal in 'A'
B. All $\mathrm{Cl}-\mathrm{O}$ bond length are not equal in ' B '
C. All $\mathrm{Cl}-\mathrm{O}$ bond length are equal in ' B '
D. All $\mathrm{Cl}-\mathrm{O}$ bond length are equal in ' B '

Answer: D

- Watch Video Solution

4. Which of the following option is correct regarding (I) and (II) structure?
A. P - O bond length of (I) gt (II)
B. P-O bond order of (I) gt (II)
C. (II) is having more resonating structures than (I)
D. all of the above

Answer: A

- View Text Solution

5. For hydrazoic acid, which of the following resonating structure well be least stable?
$H-N=\stackrel{+}{N}=\stackrel{-}{N}(\mathrm{I}) \leftrightarrow \stackrel{+}{N}^{-}-\stackrel{+}{N}=N^{2-}($ (II) $\leftrightarrow H-\stackrel{-}{N}-\stackrel{+}{N} \equiv N($ III)
A. 1
B. II
C. III
D. Both (I) and (III)

Answer: B

6. Which one(s) the following structures cannot represent resonance forms for $\mathrm{N}_{2} \mathrm{O}$ (diamagnetic)?
(P) $: N \ldots=N=O:$
(Q) $: N \equiv N-O \ldots$:
(R) $: N . .-N \equiv O$:
(S) $: N=O=N$:
(T) $: N .=N=O .:$
A. P and R
B. R, S and T
C. S and T
D. R and S

Answer: C

7. Which of the following pair of species have all the bond lengths equivalent? (in individual species)
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and SO_{4}^{2-}
B. $S F_{6}$ and $P F_{5}$
C. $I F_{7}$ and $S F_{6}$
D. SF_{6} and CO_{3}^{2-}

Answer: D

- Watch Video Solution

8. The extent of π bonding order in $M-O$ is ($M=$ central atom) :
A. $\mathrm{CO}_{3}^{2-}=\mathrm{NO}_{3}^{-}=\mathrm{BO}_{3}^{3-}$
B. $\mathrm{CO}_{3}^{2-}>\mathrm{NO}_{3}^{-}>\mathrm{BO}_{3}^{3-}$
C. $\mathrm{BO}_{3}^{3-}>\mathrm{CO}_{3}^{2-}>\mathrm{NO}_{3}^{-}$
D. $\mathrm{NO}_{3}^{-}>\mathrm{CO}_{3}^{2-}>\mathrm{BO}_{3}^{3-}$

Answer: D

D Watch Video Solution

9. Arrange the following in order of decreasing N - O bond length $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}$
A. $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}^{+}$
C. $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
D. $\mathrm{NO}_{2}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}$

Answer: B

- Watch Video Solution

10. When the carbon-oxygen bonds in $\mathrm{H}_{3} \mathrm{COH}, \mathrm{H}_{2} \mathrm{CO}$, and HCO_{2}^{-}are arranged in order of increasing length, what is the correct order?
A. $\mathrm{H}_{3} \mathrm{COH}, \mathrm{H}_{2} \mathrm{CO}, \mathrm{HCO}_{2}^{-}$
B. $\mathrm{HCO}_{2}^{-}, \mathrm{H}_{3} \mathrm{COH}, \mathrm{H}_{2} \mathrm{CO}$
C. $\mathrm{H}_{2} \mathrm{CO}, \mathrm{HCO}_{2}^{-}, \mathrm{H}_{3} \mathrm{COH}$
D. $\mathrm{H}_{3} \mathrm{COH}, \mathrm{HCO}_{2}^{-}, \mathrm{H}_{2} \mathrm{CO}$

Answer: C

- Watch Video Solution

11. In the dichromate dianion,
A. $4 \mathrm{Cr}-\mathrm{O}$ bonds are equivalent
B. 6 Cr - O bonds are equivalent
C. All $\mathrm{Cr}-\mathrm{O}$ bonds are equivalent
D. All Cr - O bonds are non-equivalent

Answer: B

12. Select the correct statement regarding KHSO_{5}.
A. All S-O bonds are of equal length.
B. Total three $S-O$ bonds are of equal length.
C. Total two $S-O$ bonds are of equal length.
D. It does not have peroxy linkage.

Answer: B

- Watch Video Solution

13. Which of the following options is correct regarding $C-O$ bond length?
A. $\mathrm{C}_{3} \mathrm{O}_{2}>\mathrm{CO}>\mathrm{CO}_{3}^{2-}$
B. $\mathrm{C}_{3} \mathrm{O}_{2}<\mathrm{CO}<\mathrm{CO}_{3}^{2-}$
C. $\mathrm{CO}<\mathrm{C}_{3} \mathrm{O}_{2}<\mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}=\mathrm{C}_{3} \mathrm{O}_{2}=\mathrm{CO}_{3}^{2-}$

Answer: C

- View Text Solution

14. If bond length is represented by ' x ' and ' y ', then select the option where $x>y$.
CO

and
 CO_{2}

A.
($C-O$ bond length $=\mathrm{x}$)
($C-O$ bond length $=\mathrm{y}$)
NO_{3}^{-}
and
NO_{2}^{-}
B.
$(N-O$ bond length $=x)$
($\mathrm{N}-\mathrm{O}$ bond length $=\mathrm{y}$)
CO
and
CO_{3}^{2-}
C.
$(C-O$ bond length $=\mathrm{x})$
($C-O$ bond length $=\mathrm{y}$)
D.

($C-O$ bond length $=\mathrm{x}$)
CO_{3}^{2-}
($C-O$ bond length $=\mathrm{y}$)

Answer: B

15. In the following there are three carbon-oxygen bonds denoted by x, y

$$
\text { and } \mathrm{z} \cdot \mathrm{H}_{3} \mathrm{C}-\stackrel{O}{\mathrm{C}} \mathrm{C}_{\mathrm{C}}-\mathrm{yO}-\mathrm{z} \mathrm{CH}_{3} \text { Their lengths are in order }
$$

A. $x=y=z$
B. x It ylt z
C. x It $y=z$
D. z It y It x

Answer: B

- Watch Video Solution

16. Which of the following order is correct with respect to the given property?
A. $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$ (acidic strength)
B. $\mathrm{B}_{2} \mathrm{O}_{3}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{Ga}_{2} \mathrm{O}_{3}<\mathrm{In}_{2} \mathrm{O}_{3}<\mathrm{Tl}_{2} \mathrm{O}$ (acidic nature)
C. $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<I^{-}$(basic nature)
D. $\mathrm{H}-\mathrm{F}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$ (thermal stability)

Answer: A

- Watch Video Solution

17. Choose the correct option on the $\mathrm{Cl}-\mathrm{O}$ bond length in NaClO_{4}.
A. All $\mathrm{Cl}-\mathrm{O}$ bons are of equal length.
B. Three $\mathrm{Cl}-\mathrm{O}$ bonds are of equal length and one longer.
C. Two $\mathrm{Cl}-\mathrm{O}$ bonds are of same length which are longer compound to other two $\mathrm{Cl}-\mathrm{O}$ bond length.
D. All $\mathrm{Cl}-\mathrm{O}$ bond lengths are different

Answer: A

18. The nitrite ion, NO_{2}^{-}, may be represented by two major resonance forms. The lengths of the nitrogen-to-oxygen bonds in this ion are expected to be :
A. the same as the length of nitrogen-to-oxygen double bonds.
B. the same as the length of nitrogen-to-oxygen triple bonds.
C. between the lengths of a nitrogen-to-oxygen single bond and a nitrogen-to-oxygen double bond.
D. between the lengths of a nitrogen-to-oxygen double bond and a nitrogen-to-oxygen triple bond.

Answer: C

(D) Watch Video Solution

19. Which resonance form makes the greatest contribution to the structure of $\mathrm{N}_{2} \mathrm{O}$?
A. : N. . : N::: O:
B. : $\mathrm{N}::: \mathrm{N}: \mathrm{O} . \mathrm{I}$
C. : $N:$: $\mathrm{N}:: ~ O$:
D. $: N:: N: O$:

Answer: B

20. For which species are both bonds of equal length?
(P) ClO_{2}^{-}
(Q) NO_{2}^{-}
A. P only
B. Q only
C. Both P and Q
D. Neither P nor Q

D Watch Video Solution

21. The nitrite ion can be represented,

$$
\text { I. }\left[\begin{array}{cc}
\ldots & \cdots \\
: O & -N
\end{array}\right]^{-}
$$

$$
\text { II. }\left[\begin{array}{ccc}
\ldots & \cdots & \ldots \\
N & O-O
\end{array}\right]
$$

Which of the structure represents possible resonance forms of this ion?
A. I only
B. II only
C. Both I and II
D. Neither I nor II
22. In which species is resonance most useful in explaining the observed bond lengths?
A. NF_{3}
B. NH_{4}^{+}
C. NO_{2}^{+}
D. NO_{2}^{-}

Answer: D

- Watch Video Solution

23. The $O-N-O$ bond angle in the nitrite ion, NO_{2}^{-}, is closest to :
A. 180°
B. 150°
C. 120°
D. 109°

Answer: C

- Watch Video Solution

24. Which is a resonance form of the Lewis structure shown here?

$$
\begin{aligned}
& {[: S . .: \mathrm{C}::: \mathrm{N}]^{-}} \\
& (P)[: S . .: \mathrm{N}::: \mathrm{C}]^{-} \quad(Q)[: S \ldots: \mathrm{C}:: N \ldots]^{-}
\end{aligned}
$$

A. Ponly
B. Q only
C. Both P and Q
D. Neither P nor Q
25. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles in the nitrate ion, NO_{3}^{-}are best described as being :
A. all 120°
B. all 109.5°
C. all 90°
D. two 90°, one 180°

Answer: A

- Watch Video Solution

26. How many resonance structures can be drawn for the nitrate ion, NO_{3}^{-}
?
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

27. What is the relationship between the two species shown below?
$N . .=N=O . \quad: N \equiv N-O . .:$

They are :
A. geometric isomers
B. enantiomers
C. resonance forms
D. structural isomers

Answer: C

28. How many stable resonance forms can be written for the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$?
A. Two
B. Three
C. Four
D. Five

Answer: C

- Watch Video Solution

29. The concenpt of resonance is used to describe molecular structures which :
A. oscillate between two structures.
B. have mirror images.
C. can be isolated in several isomeric forms.
D. have more than one possible Lewis structure.

Answer: D

- Watch Video Solution

G.Hydrogen Bonding

1. Consider the following set of H -bonds :

The correct order of H -bond strength is :
A. $Q>P>S>R$
B. $R>Q>S>P$
C. $R>S>P>Q$
D. $P>Q>R>S$

Answer: D

- Watch Video Solution

2. Hydrogen bond is not defined in ammonia due to :
A. flipping of ammonia
B. delocalisation of lone pair electrons is more in ammonia
C. more electronegative nature of nitrogen
D. none of the above

Answer: A

3. Intermolecular hydrgoen bond is present in which of the following pair of molecules?
A. SiF_{4} and SF_{4}
B. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{3} \text { and } \mathrm{CHCl}_{3}}{ }$

D. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$

Answer: C

- Watch Video Solution

4. The increasing order of the strength of hydrogen bond in the following mentioned linkage is :
(P) O - H---S
(Q) $\mathrm{S}-\mathrm{H}--\mathrm{O}$
(R) F-H---F ${ }^{-}$
(S) F - H---O
A. $\mathrm{P}<\mathrm{Q}<\mathrm{S}<\mathrm{R}$
B. Q
C. $\mathrm{P}<\mathrm{Q}<\mathrm{R}<\mathrm{S}$
D. $\mathrm{Q}<\mathrm{P}<\mathrm{R}<\mathrm{S}$

Answer: B

- Watch Video Solution

5. Pure phosphoric acid is very viscous, because :
A. It is a strong acid
B. It is tribasic acid
C. It is hygroscopic
D. It has PO_{4}^{3-} groups which are bounded by many hydrogen bonds

Answer: D

- View Text Solution

6. Which of the following is most volatile compound?
A. HF
B. HCl
C. HBr
D. HI

Answer: A

7. Which of the following exhibits H-bonding ?
A. CH_{4}
B. $\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: C

- Watch Video Solution

8. Intermolecular hydrogen bonding increases the enthalpy of a liquid due to the :
A. decrease in the attraction between molecules
B. increase in the attraction between molecules
C. decrease in the molar mass of unassociated liquid molecules
D. increase in the effective molar mass of hydrogen-bonded molecules

Answer: B

9. Which of the following compounds would have significant intermolecular hydrogen bonding?
$\mathrm{HF}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{CH}_{4}$
A. $\mathrm{HF}, \mathrm{N}_{2} \mathrm{O}_{4}$
B. $\mathrm{HF}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{4}$

Answer: C

- Watch Video Solution

10. Which one of the following does not have intermolecular H -bonding ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. o-nitro phenol
C. HF
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: B

- Watch Video Solution

11. The order of strength of hydrogen bond is:
A. $\mathrm{Cl}-\mathrm{H} \mathrm{Cl}>\mathrm{N}-\mathrm{H} \mathrm{N}>\mathrm{O}-\mathrm{H} \mathrm{O}>F-H \ldots . . \mathrm{F}$
B. $\mathrm{N}-\mathrm{H} . \ldots . \mathrm{N}>\mathrm{Cl}-\mathrm{H} . \ldots . \mathrm{Cl}>\mathrm{O}-\mathrm{H} \mathrm{O}>F-\mathrm{H} F$
C. $\mathrm{O}-\mathrm{H} \ldots . . \mathrm{O}>\mathrm{N}-\mathrm{H} \ldots . . \mathrm{N}>\mathrm{Cl}-\mathrm{H} . . . \mathrm{Cl}>F-\mathrm{H} F$
D. F-H.... F > O-H.... O > N-H.... $N>C l-H . \ldots . C l$

Answer: D

12. The hydrogen bond is strongest in :
A. O - $\mathrm{H}---\mathrm{S}$
B. S - $\mathrm{H}---\mathrm{O}$
C. F - H---F
D. $\mathrm{O}-\mathrm{H}-\mathrm{-} \mathrm{O}$

Answer: C

- Watch Video Solution

13. Which of the following can form intermolecular H -bonding between its molecules?
A. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{N}_{2} \mathrm{H}_{4}$

Answer: D

- Watch Video Solution

14. The most volatile compound is :
A.
.
B.
.
C.
D.

Answer: A

View Text Solution
15. Select compound having maximum solubility in water.
A.
B.
C.
D.

Answer: A

- Watch Video Solution

16. The correct order of boiling point of the given compounds is :
A. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{HF}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{NH}_{3}>\mathrm{HF}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
D. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$

Answer: C

17. Acetylene does not form hydrogen bond because :
A. C is less electronegative than hydrogen
B. Electronegativity of C and H are exactly equal
C. Carbon does not have any lone pair of electrons
D. None of the above

Answer: C

- Watch Video Solution

18. Ice made form heavy water is put in container A having normal water and ice made from normal water is put in container B containing heavy water.

The observation are :
A. Ice sinks in both container A and B.
B. Ice floats in both container A and B.
C. Ice sinks in container A and floats in container B.
D. Ice floats in containers A and sinks in container B.

Answer: C

- Watch Video Solution

19. Compound ' X ' is used in bordeaux mixture. It has electrovalent, covalent, coordinate as well as H -bonds. In compound X based on the nature of bonds and interaction, the number of types of water molecules is:
A. 1
B. 2
C. 3
D. 4

Answer: C

20. Which species can form intermolecular hydrogen bonds with other molecules or ions of the same type?
(P) HF
(Q) $\mathrm{CH}_{3} \mathrm{~F}$
(R) NH_{4}^{+}
A. Ponly
B. R only
C. P and R only
D. P, Q and R

Answer: A

- Watch Video Solution

21. Which of the following is not correct representation of H -bond?
A.
B.
C.
D. All are correct

Answer: A

D View Text Solution

22. Which compound has the lowest normal boiling point?
A. HF
B. HCl
C. HBr
D. HI

Answer: B

23. Which of these pure substances has the highest normal boiling point?
A. CH_{4}
B. NH_{3}
C. SiH_{4}
D. PH_{3}

Answer: B

- Watch Video Solution

24. Which substance has the loweset boiling point?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: B

- Watch Video Solution

25. On the basic intermolecular force predict the correct order of decreasing bolling point of the compound ?
A. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
B. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
C. $\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}$
D. $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}$

Answer: B

- Watch Video Solution

26. When the compounds $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and CH_{4} are listed in order of increasing boiling point, which order is correct?
A. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
B. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
C. $\mathrm{HF}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
D. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

27. Which pure compounds form intermolecular hydrogen bonds?
(P) HF
(Q) $\mathrm{H}_{2} \mathrm{~S}$
(R) CH_{4}
A. Ponly
B. R only
C. P and Q only
D. Q and R only

Answer: A

D Watch Video Solution

28. What is the order of the boiling points (from lowest to highest) for the hydrogen halides?
A. $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
B. $\mathrm{HI}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HF}$
C. $\mathrm{HCl}<\mathrm{HF}<\mathrm{HBr}<\mathrm{HI}$
D. $\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}<\mathrm{HF}$

Answer: D

29. Which compound is expected to be the most soluble in water at $25^{\circ} \mathrm{C}$
?
A. $N_{2}(g)$
B. $O_{2}(g)$
C. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}(\mathrm{l})$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}(\mathrm{l})$

Answer: C

- Watch Video Solution

30. In which of the following compound Cl -atom is involved in H -bonding :
A. m-chlorophenol
B. p-chlorophenol
C. o-chlorophenol
D. hydrochloric acid

Answer: C

- Watch Video Solution

31. Which of the following property will be more in case of molecule having inter molecular hydrogen bonding in comparison to other isomeric molecule having intra-molecular H -bonding:
A. boiling point
B. vapour pressure
C. viscosity
D. both (a) and (c)

Answer: D

- Watch Video Solution

32. In which of the following substances will hydrogen bond be strongest?
A. HCl
B. $\mathrm{H}_{2} \mathrm{O}$
C. HI
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: B

- Watch Video Solution

33. Hydrogen bonds are formed in many compounds e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}$. The boiling point of such compounds depends to a extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points above compounds is
A. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$

Answer: B

- Watch Video Solution

34. Which of the following molecule have maximum type of bonds?
A. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. NaClO_{4}
C. HF
D. NH_{3}

Answer: A

35. Which of the following molecule have intramolecular hydrogen bonding?
A. Boric acid(s)
B. Chloral
C. Orthonitrophenol
D. Ice

Answer: C

- Watch Video Solution

36. Which of the reasons cannot be attributed to the low volatility of HF?
A. It's strong covalent bond.
B. It's small molecular mass.
C. Both (a) and (b)
D. It's strong hygrogen bonding.

Answer: C

D Watch Video Solution

37. Urea and phosphoric acid undergo H -bonding in the following manner
x_{1}, x_{2} are H -bond length
y_{1}, y_{2} are covalent bond length
Select the only incorrect option :
A. $x_{1}<x_{2}$
B. $y_{2}>y_{1}$
C. $\theta_{1}<\theta_{2}$
D. Number of $p \pi-d \pi$ bonds present in the diagram is one

Answer: C

38. Which of the following has lower viscosity?
A. Liquid HF
B. Liquid $\mathrm{H}_{2} \mathrm{O}$
C. Liquid $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. Liquid $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: A

Watch Video Solution
39. Pure samples of which of the following exhibit hydrogen bonding?
(P) $\mathrm{CH}_{3} \mathrm{OH}$
(Q) $\mathrm{CH}_{3} \mathrm{NO}_{2}$
(R) $\mathrm{CH}_{3} \mathrm{CN}$
A. P only
B. P and Q only
C. Q and R only
D. P, Q , R

Answer: A

- Watch Video Solution

40. Which of the following property is not related to the hydrogen bonding ?
A. Boric acid is solid at room temperature.
B. Viscous nature of glycerol.
C. Boiling point of hydrocarbon is greater than that of respective
fluorocarbon (for higher carbon members).
D. Solubility of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in water.

Answer: C

41. Which of the following statements are incorrect?
(P) In HCN liquid, hydrogen bonding is present.
(Q) HBr_{2}^{-}does exist.
(R) $\ln P\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CF}_{3}\right)_{2}$ number of maximum atoms may lie in one plane is
42.

(S) In solid PCl_{5}, the maximum number of equal angles is 12 .
A. Q, R, S
B. Q, R
C. R, S
D. S,P

Answer: B

42. Which statement is wrong about $\mathrm{H}_{2} \mathrm{O}$?
A. It has high specific heat relative to other liquids or solids (with similar m. wt.) due to strong intermolecular H -bonding.
B. Each $\mathrm{H}_{2} \mathrm{O}$ molecule has capacity to form 4 H -bonds.
C. $\mathrm{H}_{2} \mathrm{O}$ has open cage like structure due to intermolecular H -bonding which give rise to low density to ice than liquid $\mathrm{H}_{2} \mathrm{O}$.
D. $\mathrm{H}_{2} \mathrm{O}$ has maximum density at $4^{\circ} \mathrm{C}$, the intermolecular H -bonding persists more thereby decreasing volume and increasing density

Answer: D

- Watch Video Solution

43. The correct order of viscosity of alcohol, ethylene glycol and glycerol is
A. alcohol > glycol > glycerol
B. glycerol > glycol > alcohol
C. glycol > glycerol > alcohol
D. alcohol > glycerol > glycol

Answer: B

- Watch Video Solution

44. Glacial acetic acid dissolves in :
(P) liquid $\mathrm{H}_{2} \mathrm{~S}$, as $\mathrm{H}_{2} \mathrm{~S}$ is a polar covalent compound
(Q) liquid NH_{3}, as it can form hydrogen bond
(R) liquid HClO_{4}, as it can protonate acetic acid

The correct option is :
A. only P
B. only Q
C. only R
D. P, Q and R

Answer: D

- Watch Video Solution

45. Cotton fibers consist of cellulose polymers with neighboring polymers chains held together by hydrogen bonds between -OH groups in the glucose units. Due to these hydrogen bonds :
A. cotton is insoluble in water
B. cotton can easily absorb ghee and oils and therefore are used to make wicks in traditional lamps
C. it is easier to iron cotton clothes when they are slightly wet or by applying steam to the clothes
D. cotton clothes have a high wear and tear than other fibers

Answer: C

46. Which of the following order is correct for strength and extent of H bonding between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ respectively:
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$

Answer: C

- Watch Video Solution

47. Which substance will form hydrogen bonds to water molecules but will not will not form hydrogen bonds with its own molecules?
A. HF
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{NH}_{2}$

D. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Answer: D

- Watch Video Solution

48. The boiling point of methanol is greater than that of Methyl thiol because
A. There is intramolecular hydrogen bonding in methanol and intermolecular hydrogen bonding in methane thiol.
B. There is intermolecular hydrogen bonding in methanol and no hydrogen bonding in methane thiol.
C. There is no hydrogen bonding in methanol and intermolecular hydrogen bonding in methane thiol.
D. There is intramolecular hydrogen bonding in methanol and no hydrogen bonding in methane thiol.

Answer: B

- Watch Video Solution

49. When compared to most other substances of similar molar mass the values of which properties of liquid $\mathrm{H}_{2} \mathrm{O}$ are unusually large?
(P) Boiling point
(Q) Specific heat capacity
(R) Surface tension
A. Ponly
B. P and Q only
C. Q and R only
D. P, Q and R

Answer: D

50. Which solute is least soluble in water?
A. 1-butanol
B. Ethanol
C. Methanol
D. 1-propanol

Answer: A

D Watch Video Solution

H. Oxyacids, Naming of Inorganic Compounds, Important Structures

1. When cyclic trimetaphosphoric acid is converted into tripolyphosphoric acid then, which of the following is changed during this conversion?
A. Covalency of phosphorus
B. Oxidation state of phosphorus
C. Total number of $P-O-P$ linkage
D. Total number of $P-H$ bonds

Answer: C

D Watch Video Solution

2. Which of the following has two π bonds and planar structure?
A. CO_{2}
B. SO_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. All of these

Answer: D

3. Hydrated borax has how many $B-O-B$ linkage?
A. 5
B. 4
C. 3
D. 6

Answer: A

- Watch Video Solution

4. Find the rate of π bond in Marshall's acid to Caro's acid?
A. 2
B. 4
C. 3
D. 8

D Watch Video Solution

5. Which of the following pairs is (are) isostructural?
A. SF_{4} and SiF_{4}
B. $S F_{6}$ and $S i F_{6}^{2-}$
C. $\operatorname{SiF}_{6}^{2-}$ and $\operatorname{SeF}_{6}^{2-}$
D. XeO_{6}^{4-} and TeF_{6}^{2-}

Answer: B

Watch Video Solution

6. Which of the following molecule does not have open book structure?
A. $O_{2} F_{2}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{S}_{2} \mathrm{Cl}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: D

- Watch Video Solution

7. Which of the following statements are true about $P_{4} O_{6}$ and $P_{4} O_{10}$?
A. Both oxides have a closed cage like structure.
B. Both the oxides contains individual twelve equivalent $P-O$ bonds.
C. (a) and (b) are correct.
D. None of the above.

Answer: C

8. Which of the following statement(s) is incorrect about $P_{4} O_{6}$ and $P_{4} O_{10}$?
A. Both oxides have a closed cage like structure.
B. Both oxide contains six equivalent $P-O-P$ bonds.
C. Both $P_{4} O_{6}$ and $P_{4} O_{10}$ molecules have $p \pi-d \pi$ bonds.
D. P-O-P bond length of $P_{4} O_{6}$ is greater than $P_{4} O_{10}$.

Answer: C

D Watch Video Solution

9. Which of the following compounds does not have peroxide bond?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
D. CrO_{5}

- Watch Video Solution

10. Which of the following will not have cyclic structuregt
A. $P_{4} O_{10}$
B. $P_{4} O_{6}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
D. $H_{3} P_{3} O_{9}$

Answer: C

Watch Video Solution

11. In a polythionic series $\left(\mathrm{H}_{2} \mathrm{~S}_{n} \mathrm{O}_{6}\right)$ if [$\mathrm{n}=4$]. Which of the following option is incorrect?
A. Absolute oxidation state of S is +5 as well as zero.
B. Number of $S-S$ linkage are three.
C. It has four $s p^{3}$ sulphur atom.
D. It has only non-polar bonds.

Answer: D

- Watch Video Solution

12. Oxoanion $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ oxoacid $+\mathrm{OH}^{-}$Oxoanion is converted into oxoacid by abstraction of proton from water which is initiated by H -bond formation. The increasing strength of H -bond of the given oxoanion is :
A. $\mathrm{ClO}_{4}^{-}<\mathrm{SO}_{4}^{2-}<\mathrm{PO}_{4}^{3-}<\mathrm{SiO}_{4}^{4-}$
B. $\mathrm{SO}_{4}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{PO}_{4}^{3-}<\mathrm{SiO}_{4}^{4-}$
C. $\mathrm{ClO}_{4}^{-}<\mathrm{SO}_{4}^{2-}<\mathrm{SiO}_{4}^{4-}<\mathrm{PO}_{4}^{4-}$
D. $\mathrm{ClO}_{4}^{-}<\mathrm{PO}_{4}^{3-}<\mathrm{SO}_{4}^{2-}<\mathrm{SiO}_{4}^{4-}$

D View Text Solution

13. The compound having $S-S$ linkage is:
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
D. $\left(\mathrm{SO}_{3}\right)_{3}$

Answer: C

Watch Video Solution

14. 2 moles of phosphoric acid
+1 (Oxygen atom)
$-\mathrm{H}_{2} \mathrm{O} \rightarrow(\mathrm{X}) \quad \rightarrow \quad(Y)$

The number of σ-bonds in compound Y is :
A. 12
B. 13
C. 11
D. 9

Answer: B

(Watch Video Solution

15. In $H_{6} P_{6} O_{18}, P_{4} O_{10}$ how many $P-O-P$ bonds are present respectively?
A. 6,6
B. 6,4
C. 6,5
D. 6,2

Answer: A

16. $2 \times$ sulphuric acid $-\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \rightarrow X$
$2 \times$ sulphurous acid $-\mathrm{H}_{2} \mathrm{O} \rightarrow Y$
Which option is ocrrect for above information?
A. X has $S-O-S$ bond
B. Y has $S-O-S$ bond
C. Y has $S-S$ bond
D. X has $S-S$ bond

Answer: C

- Watch Video Solution

17. Which of the following compound is having maximum number of $P-O-P$ linkage and must have $-O H$ linkage?
A. $H_{5} P_{3} O_{10}$
B. $H_{5} P_{5} O_{15}$
C. $H_{7} P_{5} O_{16}$
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

Answer: B

- Watch Video Solution

18. Select correct statement with respect to pyrosulphuric acid and pyrophosphoric acid.
A. Pyrophosphoric acid has P - P linkage whereas pyrosulphuric acid has S-O-S linkage.
B. Both have same number of acidic hydrogens per unit.
C. Both have same number of $p \pi-d \pi$ bonds.
D. Both have two tetrahedral sharing one corner
19. Which of the following statement is correct about metaboric acid?
A. It has one hydrogen which is attached with boron atom.
B. Boron has covalency '5'.
C. Orthoboric acid is produced on addition of one mole $\mathrm{H}_{2} \mathrm{O}$ to one mole metaboric acid.
D. Metaboric acid is not an oxy-acid.

Answer: C

- Watch Video Solution

20. Which of the following oxoacids has maximum number of hydrogen attached to the central atoms?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{3} \mathrm{PO}_{2}$

Answer: D

- Watch Video Solution

From the above process, find the total number of $P-O-P$ linkage in $H_{6} \mathrm{P}_{4} \mathrm{O}_{13}$.
A. 5
B. 4
C. 3
D. 2
22. Choose the correct statement in both acids.
$\mathrm{H}_{5} \mathrm{P}_{5} \mathrm{O}_{15}, \mathrm{H}_{7} \mathrm{P}_{5} \mathrm{O}_{16}$
A. Both have equal number of $P-O-P$ linkages
B. Both have same basicity
C. Both have equal number of $s p^{3}$ hybridised ' P '
D. Both have different number of $p \pi-d \pi$ linkage?

Answer: C

- Watch Video Solution

23. Which of the following does not have peroxy linkage.
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$
B. $\mathrm{N}_{2} \mathrm{O}_{5}$
C. CrO_{5}
D. HNO_{4}

Answer: B

D Watch Video Solution

24. Which of the following statement is correct for both $P_{2} O_{8}^{4-}$ and $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$ ions?
A. Both ions have cyclic structure.
B. Both ions have $X-O-X$ linkage (where ' X ' is central atom).
C. Oxidation state of central atom is maximum.
D. Hybridisation of ' P ' and 'Si' in respective ions is not same.

Answer: C

25. Which of the following are linear?
A. $(C N)_{2}$
B. $(S C N)_{2}$
C. O_{3}
D. HgCl_{2}

Answer: A

Watch Video Solution

26. Which of the following is correct?
A. $S_{3} O_{9}$ - contains no $S-S$ linkage
B. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ - contains no - $\mathrm{O}-\mathrm{O}$ - linkage
C. $\left(\mathrm{HPO}_{3}\right)_{3}$ - contains no $P-P$ linkage
D. $S_{2} O_{8}^{2-}$ - contains no $S-S$ linkage

D Watch Video Solution

27. Which of the following compounds does not have peroxy linkage?
A. Marshall's acid
B. Caro's acid
C. Perchloric acid
D. Pernitric acid.

Answer: C

- Watch Video Solution

28. The molecular formula of sodium hydrgoen phosphate is :
A. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
B. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
C. $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
D. $\mathrm{Na}_{2} \mathrm{HPO}_{3}$

Answer: B

- Watch Video Solution

29. Number of $S-O-S$ linkage in trithionate ion $\left(S_{3} O_{6}^{2-}\right)$ is/are :
A. 3
B. 2
C. 0
D. 1

Answer: C

30. Which of the following compound is having maximum number of $P-O-P$ linkage and must have - OH linkage?
A. $H_{5} P_{3} O_{10}$
B. $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
D. $P_{4} O_{10}$

Answer: B

- Watch Video Solution

31. Which of the following statement is incorrect regarding $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ molecule?
A. It may have $P-P$ linkage
B. It must have $P-O-P$ linkage
C. It's basicity may be three
D. The number of $p \pi-d \pi$ bonds is 2

Answer: B

- Watch Video Solution

32. The oxyacid contains $E-O-E$ types of linkage?
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
B. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ (hypophosphoric acid)
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
D. $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$

Answer: A

- Watch Video Solution

33. Find the number of $B-O-B$ linkage present in anionic part of borax :
A. 4
B. 3
C. 5
D. none of these

Answer: C

- Watch Video Solution

34. Which of the following statement is correct for $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$?
A. Trimetaphosphoric acid
B. Tribasic acid
C. Has cyclic structure
D. All the correct

Answer: D

35. Which of the following is having $S-O-S$ linkage?
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{O}_{6}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$

Answer: B

- Watch Video Solution

36. In which of the following oxyacid basicity may be three?
A. $\mathrm{H}_{3} \mathrm{PO}_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{2}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
D. All of these

Answer: C

- Watch Video Solution

37. Find the ions which do not have $X-O-X$ type of linkage :
A. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
B. $\left(P_{3} O_{9}\right)^{3-}$
C. $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$
D. $H_{2} P_{2} O_{5}^{2-}$

Answer: A

- Watch Video Solution

38. Find the total number of sigma bonds in $H_{n} P_{n} O_{3 m}$, where $n>2$ is :
A. $3 n$
B. 4 n
C. $5 n$
D. $3(\mathrm{n}-1)$

Answer: C

- Watch Video Solution

39. Which of the following oxoacid does not contain $(S-O-S)$ linkage?
(P) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(Q) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$
(R) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
A. P, Q
B. Q, R
C. P, R
D. P, Q, R

D Watch Video Solution

40. If x, y, z represents the bond length of P - O linkage as in a given ion, then which order is correct in given options?

O
||z
$\mathrm{H}_{2} \mathrm{PO}_{3}^{-} \quad \mathrm{H}-\mathrm{P} \mid x \mathrm{OH}-$ у O^{-}
A. $x>y>z$
B. $x=y>z$
C. $x>y=z$
D. $x=y=z$

Answer: C

- Watch Video Solution

41. Incorrect statement out of the following is / are :
(P) Ortho-nitrophenol is more volatile than para-nitrophenol
(Q) Basicity of boric acid, $B(O H)_{3}$ is 3 in aqueous medium
(Q) Molecular formula of calcium dihydrogen phosphate is $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
A. P only
B. Q ony
C. Q, R
D. P, R

Answer: B

- Watch Video Solution

42. Which of the following do not have a peroxy linkage?
(P) $\mathrm{O}_{2} \mathrm{~F}_{2}$
(Q) Perxenic acid
(R) Perchloric acid
(S) Pernitric acid
A. Only R
B. Only P
C. P, Q, R
D. Q, S

Answer: C

- Watch Video Solution

43. Which oxides exist as individual molecules?
(P) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(Q) SiO_{2}
(R) $P_{4} O_{10}$
A. Q only
B. R only
C. P and R only
D. Q and R only

Answer: B

- Watch Video Solution

44. Which of the following name of compounds are matched correctly against their molecular formula?
A. NaN_{3}-Sodium nitride
B. $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$-Potassium thionate
C. $\mathrm{Na}_{2} \mathrm{P}_{2} \mathrm{O}_{5}$-Sodium pyrophosphate
D. $\mathrm{CaS}_{2} \mathrm{O}_{3}$-Calcium thiosulphate

Answer: D

45. Which of the following oxy-acid consists of $S-S$ linkage and both sulphur have difference in oxidation state of 2 ?
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

46. Which of the following compounds may have a P - P bond :
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
B. $\left(\mathrm{HPO}_{3}\right)_{3}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$

Answer: D

- Watch Video Solution

47. Which of the following oxide/oxy-anions does not contain P-O-P linkage?
A. $\mathrm{P}_{4} \mathrm{O}_{10}$
B. $H P O_{3}^{2-}$
C. $\left(P_{3} O_{9}\right)^{3-}$
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

48. Which of the following oxyacid/oxysalt/compound does not contain peroxy linkage?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
C. $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
D. CrO_{5}

Answer: B

- Watch Video Solution

49. (P) on removal of one mole water produces (Q)
(P) An oxyacid $-\mathrm{H}_{2} \mathrm{O} \rightarrow(Q)$ An oxyacid
Which of the following will not follow the above process?
A. $\mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}$
D. Both (b) and (c)

Answer: D

- Watch Video Solution

50. Oxyacid which have same number of $X-H$ and $X-O H$ bonds is (where X is central atom) :
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
B. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: B

D Watch Video Solution

51. How many valence electrons are in the pyrophosphate ion, $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$?
A. 48
B. 52
C. 54
D. 56

Answer: D

D Watch Video Solution

52. What is the oxidation of state of S in $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
A. $+8,+7$
B. $+7,+7$
C. $+6,+5$
D. $+6,+6$

Answer: D

53. The peroxymonosulphate anion, HSO_{5}^{-}, has :
A. five sulphr-oxygen bonds and no oxygen-oxygen bonds.
B. four sulphur-oxygen bonds and one oxygen-oxygen bond.
C. three sulphur-oxygen bonds and two oxygen-oxygen bonds.
D. one sulphur-oxygen bond and four oxygen-oxygen bonds.

Answer: B

- Watch Video Solution

54. Which of the acids below has the most number of ionizable hydrogen atoms per molecule?
(P) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(Q) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(R) $\mathrm{H}_{3} \mathrm{PO}_{2}$
A. P only
B. Q ony
C. R only
D. Each one contains the same number of ionizable H atoms.

Answer: A

- Watch Video Solution

55. Which of the following is incorrect characteristic(s) of calcium phosphite?
A. Formula is $\mathrm{Ca}\left(\mathrm{PO}_{3}\right)_{2}$
B. P - H bond is present
C. Oxidation state of phosphorus is +3
D. All O-P - O bond angles are same
56. Which of the following species has ring structure but not six membered?
A. $\left(\mathrm{B}_{3} \mathrm{O}_{6}\right)^{3-}$
B. $\left[\mathrm{B}_{2} \mathrm{O}_{4}(\mathrm{OH})_{4}\right]^{2-}$
c. $\left(P_{6} O_{18}\right)^{6-}$
D. All of these

Answer: C

- Watch Video Solution

57. Which of the following statement is correct?
A. $B F_{3}$ and $B C l_{3}$ is isostructural but having different bond length and bond angle.
B. In $P C l_{5}$ two $d_{P-C l}$ bond length are same and less than other three $d_{P-C l}$ bond.
C. In $\mathrm{C}_{3} \mathrm{O}_{2}$, the number of π-bond in the same plane is 4 .
D. In $S_{3} O_{9}$, number of $S-S$ linkage is zero.

Answer: D

- Watch Video Solution

58. The correct statement is :
A. There is no $S-S$ linkage in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
B. $P_{4} O_{6}$ contains six $P-O-P$ linkage.
C. Acidic strength of oxoacid of sulphur is $\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}$.
D. Paranitrophenol is more volatile than ortho nitrophenol.

Answer: B

59. The total number of σ - bonds in $P_{6} O_{18}^{6-}$ ion is:
A. 18
B. 20
C. 22
D. 24

Answer: D

- Watch Video Solution

60. Compound which is not an oxyacid is :
A. $B(\mathrm{OH})_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}$
D. HClO_{2}

Answer: C

- Watch Video Solution

61. $P_{4} O_{10}$ has short and long $P-O$ bonds. The number of short $P-O$ bonds in this compounds is
A. 1
B. 2
C. 3
D. 4

Answer: D
I. Allotropy

1. Inorganic graphite and graphite have many similarties. Choose among the following, the property which is dissimilar.
A. Layered structure, where layers are inter connected by weak van der Waals' forces
B. Slippery nature
C. Hybridisation of all atoms in the layer is $s p^{2}$
D. Good conductor of electricity

Answer: D

- View Text Solution

2. Which of the following order is incorrect?
A. Graphite gt diamond (C - C bond length)
B. Graphite It diamond (Thermal conductivity)
C. Graphite gt diamond (Electrical conductivity)
D. Graphite gt diamond (Reactivity)

Answer: A

- Watch Video Solution

3. Which of the following is most thermodynamically stable allotrope of carbon?
A. Graphite
B. Diamond
C. Fullerene
D. None of these

Answer: A

4. Which of the following phosphorus is the most reactive?
A. White phosphorus
B. Red phosphorus
C. Black phosphorus
D. All of these

Answer: A

- Watch Video Solution

5. Which of the following crystalline allotrope found in given arrangement of atoms?
A. Graphite
B. Black phosphorus
C. Rhombic sulphur
D. Red phosphorus

Answer: B

- View Text Solution

6. Select the correct order.
A. Graphite > Diamond: Electrical conductancae
B.

Black phosphorus > Red phosphorus > White phosphorus:Thermodynamic
C. Diamond > Graphite : C - C bond length
D. All of the above

Answer: D

- Watch Video Solution

7. In which allotropic form of phosphorus covalency of each phosphorus is five?
A. White phosphorus
B. Red phosphorus
C. Black phosphorus
D. None of these

Answer: D

- Watch Video Solution

8. Find the molecule which does not have a pie (π) bond.
A. Graphite
B. Fullerene
C. Benzene
D. NOF_{3}

Answer: D

D Watch Video Solution

9. When a phosphorus atom is converted to a phosphide ion, what happens to the number of unpaired electrons and the total number of electrons around the phosphorus?

Unpaired electrons Total electrons
A.
(a) increases increases

Unpaired electrons Total electrons
B.
(b) decreases increases

Unpaired electrons Total electrons
C.
(c) increases remains the same

Unpaired electrons Total electrons
D.
(d) decreases remains the same

Answer: B

D Watch Video Solution

10. All these elements have common allotropes except :
A. C
B. O
C. Kr
D. S

Answer: C

- Watch Video Solution

11. Select correct statement .
A. In diamond, graphite and fullerene carbon uses all it's valence electron for bond formation.
B. Water is non-planar molecule in which all hydrogen atoms are in different plane.
C. Distortion in geometry of molecule takes place due to absence of
lone pairs generally.
D. More number of resonating structures are formed in NO_{3}^{-}in comparison to PO_{4}^{3-}

Answer: A

- Watch Video Solution

12. The correct increasing order of carbon-carbon bond lengths in benzene, ethane, ethene, acetylene and graphite is :
A. bencene It ethane It ethene It acetylene It graphite
B. acetylene It ethene It benzene It graphite It ethane
C. acetylene It ethene It graphite It benzene It ethane
D. benzene It graphite It acetylene It ethene It ethane

Answer: B

- Watch Video Solution

13. Choose the correct code for following statement.
(P) In graphite inter layer spacings is more than $C-C$ bond length within the layer.
(Q) Graphite is more reactive compared to diamond.
(R) Graphite is more stable compared to diamond.
(S) Graphite is sufficiently inert compared to other elements.
A. TTFT
B. TFTF
C. TTTT
D. TTFF

Answer: C

D View Text Solution

1. Assertion : Amongst the oxo acids of halogens, $\mathrm{HOCl}, \mathrm{HOBr}$ and HOI , the HOl is the most acidic acid.

Reason :The conjugate base stability is $\mathrm{CIO}>\mathrm{BrO}>\mathrm{IO}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- Watch Video Solution

2. Statement-1 : Molecular species like $S F_{6}, P F_{5}, I_{3}^{-}$and $X e F_{2}$ violate the octet rule.

Statement-2 : Compounds with an expanded octet are called hypervalent compounds.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

3. Statement-1 : In tetrahedral hybridisation, i.e., in $s p^{3}$ hybridisation all p orbitals of valence shell are involved and non p-orbitals of valence shell are involved and no p-orbitals is left for forming π - bonds.

Statement-2 :: Central atom cannot form double bonds in the molecules or species having $s p^{3}$ hybridisation.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

4. Assertion : All F-S - F angle in SF_{4} are greater than 90° but less than 180°.

Reason :The lone pair -bond pair repulsion is weaker than bond pair bond pair repulsion
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

D Watch Video Solution

5. Statement-1 : The bond angles of $\mathrm{BrNO}, \mathrm{CNO}$ and FNO are approximately $11.45^{\circ}, 113.3^{\circ}$ and 110.1° respectively.

Statement-2 : The hybridisation of central N atom in all three compounds is $s p^{2}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- View Text Solution

6. Assertion : NF_{3} has tendency to act as a donor molecule.

Reason : The highly electronegative F atoms atract electron and these moments partly cancel the moment from the lone pair.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

7. Assertion : In IOF_{4}^{-}a single lone pair is present an iodine atom trans to oxygen to have minimum repulsion between the $I=0$ and the lone pair of electrons.

Reason : The VSEPR model consider double and triple bonds to have slightly greater repulsive effect then single bonds bonds because of the repulsive effective π electrons
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

8. Assertion : Molecular having different hybridisation can have same shape.

Reason :The shape of a molecule does not depend on the hybridisation but it depends on the energy factor.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement- 1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

D Watch Video Solution

9. Assertion : Aluminium chloride in acidified aqueous solution from octahedral $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion.

Reason :In $\left[A I\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complest ion the $3 d$ orbital of al are involved and the hybridisation state of Al is $s p^{3} d^{2}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

10. Assertion : $\mathrm{SO}_{2}, \mathrm{NO}_{3}^{-}$and CO_{3}^{2-} are isoelectronic as well as isostructural species.

Reason :The d and f-orbital do not shield the nuclear charge very effectively. Therefore there is signified rediduction in the size of the ions, just after d or f orbital have been completely filled.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement- 1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

11. Statement-1 : NO_{3}^{-}and PO_{3}^{-}have similar formula type but differ structurally, i.e., they have different type of hybridisation.

Statement-2 : NO_{3}^{-}ion exists as free ion. On the other hand PO_{3}^{-}exists as cyclic or linear polymeric structure.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- View Text Solution

12. Assertion : Carbon has unique ability to form $р \pi-р \pi$ multiple bonds with itself and with other atomic of small size and high electronegativety. Reason : Heaviur elements of group 14th do not form $p \pi-p \pi$ bonds because their atomic orbital are too large and diffuse to have effective sideways overapping.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

13. Statement-1 : In graphite, on increasing the temperature the conductivity decreases along the layers of carbon atoms.

Statement-2 : Graphite cleaves easily, because the force of attraction between the layers is weak van der Wall,s force.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- View Text Solution

14. Assertion :A molecule of Buckminsterfullerene exhibita aromatic character.

Reason :All the carbon atom undergo $s p^{2}$ hybridisation. Each carbon atom atomic three sigma bonds with other three carbon atom. The remaining electron at each carbon is delocalised in molecular orbitals.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

15. Statement-1 : In hydrazine each nitrogen atom is tetrahedrally surrounded by one N , two H and a lone pair. The $N-N$ bond length is $1.45 \AA$ (normal $N-N$ bond length).

Statement-2 : The two halves of the molecules are rotated 95° about the $N-N$ bond and adopt gauche (non-eclipsed) conformation.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- View Text Solution

16. Statement-1 : The hybridisation of N atom in acetamide is $s p^{3}$.

Statement-2 : There occurs delocalisation of lone pair of electrons present on N atom.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- Watch Video Solution

17. Statement-1 : $P F_{5}$ keeps trigonal bipyramidal strucure in gas as well as in solid state.

Statement-2 : PCl_{5} in gas and liquid state is covalent but in solid state it is ionic and exist as $\left[\mathrm{PCl}_{4}\right]^{+}$and $n\left[\mathrm{PCl}_{5}\right]^{-}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement- 1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

18. Statement-1 : Fluoromethane $\left(\mathrm{CH}_{3} \mathrm{~F}, \mu=1.85 \mathrm{D}\right)$ has smaller dipole moment than chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}, \mu=1.87 \mathrm{D}\right)$.

Statement-2 : Fluorine has less electron affinity than that of chlorine.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

19. Statement-1 : Allene is a non polar molecule.

Statement-2 : Allene is non planar molecule.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

20. Statement-1 : Dipole moment of NF_{3} is less than that of NH_{3}.

Statement-2 : Polarity of $N-F$ bond is less than that of $N-H$ bond.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

21. Statement-1 : The dipole moment of $\mathrm{O}_{2} \mathrm{~F}_{2}$ is not zero.

Statement-2 : All atoms are lying in the same plane.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

22. Statement-1 : In case of persulphuric acid, the $K_{1} \gg K_{2}$.

Statement-2 : The anion of persulphuric acid is intermolecular hydrogen bonded.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- View Text Solution

23. Statement-1 : Ortho boric acid crystals are hard and cannot be broken easily into the powder form.

Statement-2 : In the solid state $B(\mathrm{OH})_{3}$ units are hydrogen bonded together into two dimensional sheets.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- View Text Solution

24. Assertion :The orystal sturctures of NaHCO_{3} and KHCO_{3} both show intermolecule hydrogen bonding but are different.

Reason :In NaHCO_{3} the HCO_{3} ions are linked togather through intermolecular hydrogen bond into an inflate chain white in
$\mathrm{KHCO}_{3} \mathrm{HCO}_{3}^{-}$ions form dimerics anions through intermolecular hydrogen bonds.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

25. Assertion : Elemental nitrogen exist as a diatomic molecule and phospours as tetratomic molecule.

Reason :Nitrogen does not have vacant d-orbital wheras phosphorus have vacant d-orbital.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

26. Statement-1 : $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ molecule is planar.

Statement-2 : Nodal planes of all π-bonds are lying in the same plane.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 and Statement-2 both are False.

Answer: D

- Watch Video Solution

27. Statement-1 : Dipole moment of $\mathrm{H}_{2} \mathrm{O}$ is more than that of OF_{2}.

Statement-2 : In $\mathrm{H}_{2} \mathrm{O}$, the resultant bond dipole of $\mathrm{O}-\mathrm{H}$ bond and the resultant lone pair moment are in opposite direction.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

28. Statement-1 : Allene is a non polar molecule.

Statement-2 : Allene is non planar molecule.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

29. Statement-1 : PCl_{5} is covalent in gaseous and liquid state but ionic in solid state.

Statement-2 : The solid state of PCl_{5} consists of tetrahderal cation and octahedral anion.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

30. Assertion : $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a diabasic acid.

Reason: There are two H atoms directly attached to P .
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

31. Statement-1 : Among chalcogens, tendency of catenation is maximum for sulphur.

Statement-2 : S-S single bond is stronger than $O-O$ single bond.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

D Watch Video Solution

32. Statement SO_{2} can be used as reductant as well as oxidant.

Explanation The oxidation number of S in +4 in SO_{2} which lies between its minimum (-2) and maximum (+6) values.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

33. Statement-1 : PH_{3} and BF_{3} both are electron deficient molecule.

Statement-2 : P - H bond length are identical in PH_{3} and all $B-F$ bond length are also identical in $B F_{3}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- Watch Video Solution

34. SiO_{2} is solid while CO_{2} is gas. Why?
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

35. Assertion (A): Sodium chloride formed by the action of chlorine gas on sodium metal is a stable compound.

Reason: (R) This is because sodium and chloride ions acquire octet in sodium chloride formation.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

36. Assertion (A): Though the central atom of both NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ molecules are $s p^{3}$ hybridised, yet $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle is greater thant that

of $\mathrm{H}-\mathrm{O}-\mathrm{H}$.

Reason(R): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

37. Assertion (A): Among the two $\mathrm{O}-\mathrm{H}$ bonds in $\mathrm{H}_{2} \mathrm{O}$ molecule, the energy required to break the first $\mathrm{O}-\mathrm{H}$ bond and the other $\mathrm{O}-\mathrm{H}$ bond is the same.

Reason (R) This is because the electronic environment around oxygen is the same even after brekage of one $\mathrm{O}-\mathrm{H}$ bond.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 and Statement-2 both are False.

Answer: D

- Watch Video Solution

38. Statement-1 : There is no scope of axial and equatrorial position in case of tetraheral and octahedral geometry.

Statement-2 : Both are perfect geometry in which all positions are identical.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

- Watch Video Solution

39. Statement-1 : Glycerol is more viscous than methanol.

Statement-2 : This is due to intramolecular H-bonding.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

40. Statement-1 : $F_{2} C=C=C F_{2}$ molecule is having all F-atoms in one plane.

Statement-2 : The molecule is non-polar.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- Watch Video Solution

41. Single $N-N$ bond is weaker than the single P - P bond. This is because of :
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

42. Statement-1 : Boric acid is a weak monobasic acid.

Statement-2 : Boric acid has only one replacable H -atom.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

Multiple Objective Type

1. In which of the following molecule, bonding is taking place in excited state?
A. CH_{4}
B. $B F_{3}$
C. ICI_{3}
D. PCl_{3}

Answer: A::B::C

- Watch Video Solution

2. Indicate the wrong statement.
A. A sigma bond has no free rotation along its axis.
B. p-orbitals always have only sidewise overlapping.
C. s-orbitals never form π-bonds.
D. There can be more than one sigma bond between two atoms.

- Watch Video Solution

3. Which of the following has more than four 90° bond angle among following?
A. PCl_{5}
B. $S F_{6}$
C. $I F_{7}$
D. CH_{4}

Answer: A::B::C

- Watch Video Solution

4. Which of the following species are pyramidal in shape?
A. NH_{3}
B. XeO_{3}
C. ClF_{3}
D. XeF_{4}

Answer: A::B

- Watch Video Solution

5. Hybridisation of PCl_{5} solid is :
A. $s p_{3}$
B. $s p^{3} d^{2}$
C. $s p^{2}$
D. $d s p^{2}$

Answer: A::B

6. From octahedral geometry of central atom which of the following shape of the molecule/species may be possible?
A. Square pyramidal
B. Square planar
C. Linear
D. Bent

Answer: A: B

- Watch Video Solution

7. Which of the following species has $\mathrm{X}-\mathrm{O}-\mathrm{X}$ linkage? $(\mathrm{X}=$ central atom)
A. $P_{4} O_{10}$
B. $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{5}^{2-}$
D. $\mathrm{S}_{3} \mathrm{O}_{9}$

Answer: A::B::D

- Watch Video Solution

8. $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ and $\mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{6}$ compounds are different in :
A. absolute oxidation state of sulphur
B. number of S-S linkage
C. average oxidation state of sulphur
D. hybridisation of central atom sulphur

Answer: B::C

- Watch Video Solution

9. In which of the following $X-O-X$ bonds are present? $[\mathrm{X}=\mathrm{P}, \mathrm{S}, \mathrm{Cr}]$
A. $H_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: A::B::C

- Watch Video Solution

10. d-orbital used by 'S' in $S F_{6}$ molecule are :
A. $d_{x^{2}-y^{2}}$
B. $d_{x y}$
C. $d_{y z}$
D. $d_{z^{2}}$

Answer: A::D

11. Which of the following d-orbital participates in the hybridization of central atom in the molecule of IF_{7} ?
A. $d_{x^{2}-y^{2}}$
B. $d_{z}{ }^{2}$
C. $d_{x y}$
D. d_{y}

Answer: A::B::C::D

- Watch Video Solution

12. Which have linear structure?
A. $B e F_{2}$
B. $\mathrm{Ag}[\mathrm{CN}]_{2}^{-}$
C. CO_{2}
D. XeF_{2}

Answer: A::B::C::D

- Watch Video Solution

13. Correct order regarding bond angle in the following species?
A. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}\left(\begin{array}{c}\Lambda \\ H N H\end{array}\right.$ bond angle $)$
B. $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}\binom{\Lambda}{\mathrm{ONO}$ bond angle }
C. $\mathrm{OCl}_{2}>\mathrm{OF}_{2}>\mathrm{OH}_{2}\binom{\Lambda}{\mathrm{XOX}}(X=$ terminal atom $)$
D. $\mathrm{BCl}_{3}>\mathrm{PCl}_{3}>\mathrm{NCl}_{3}\left(\begin{array}{cc}\Lambda \\ \mathrm{Cl} & \mathrm{X} \\ \mathrm{Cl}\end{array}\right)(X=$ central atom $)$

Answer: A::B::D

- Watch Video Solution

14. Which of the following has cyclic structure?
A. $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
B. $P_{4} O_{6}$
C. $\mathrm{S}_{3} \mathrm{O}_{9}$
D. $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$

Answer: B::C::D

- Watch Video Solution

15. In which of the following cases the number of lone pairs on central atom is two?
A. XeF_{2}
B. XeF_{4}
C. ICI_{2}^{+}
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$

- Watch Video Solution

16. The compounds having 8 or more bond angles equal to 90°, are :
A. $S F_{6}$
B. IF_{7}
C. BrF_{5}
D. XeF_{6}

Answer: A: B

- Watch Video Solution

17. Consider the structure of $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ given below :

Select the correct option.
A. $x<y$
B. $w<z$
C. $\alpha<\beta$
D. $u=v$

Answer: A::B::C::D

D View Text Solution

18. Which of the following have non-zero dipole moment?
A.
B.
C.
D.

Answer: A::B::C::D

19. Select the compounds which have polyatomic anion in their solid state?
A. PCl_{5}
B. XeF_{6}
C. BrF_{3}
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A::C::D

- Watch Video Solution

20. In which of the following all the hybrid orbitals lie at same angle to one another?
A. $s p^{3}$-tetrahedral
B. $s p^{3}$ d-trigonal bipyramidal
C. $s p^{2}$-trigonal planar
D. $d s p^{2}$-square planar

Answer: A::C::D

- Watch Video Solution

21. Which of the following statement is/are correct about $P_{4} O_{10}$ molecule?
A. Each ' P ' atom can be considered to be $s p^{3}$ hybridized
B. There are six POP bonds in the molecule
C. There are two types of P-O bond lengths
D. POP angle is 180°

Answer: A::B::C

- Watch Video Solution

22. Select the correct statement.
A. Perxenate ion is $\left[\mathrm{XeO}_{6}\right]^{4-}$ with octahedral geometry
B. XeF_{2} is linear molecule with 3 lone pairs (l.p.)
C. $\mathrm{XeOF}_{4}, \mathrm{XeF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ all containes one lone pair only
D. $\operatorname{In} \mathrm{XeF}_{6}$, Xe has covalency $=7$

Answer: A::B

- Watch Video Solution

23. Select the correct statement.
A. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ and XeOF_{4} have same number of lone pair(s) of electrons and different structure
B. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ and $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ have same structure and different number of lone pair(s) of electrons.
C. XeOF_{4} and XeF_{5}^{+}have same structure and same number of lone pair(s) of electrons.
D. XeF_{4} and XeF_{5}^{-}have different structure and same number of lone pair(s) of electrons.

Answer: A::C::D

- Watch Video Solution

24. Which of the following compounds contain(s) both ionic and covalent bonds?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. KCN
C. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
D. NaOH
25. To which of the following species in the octet rule not applicable?
A. BrF_{5}
B. $S F_{6}$
C. $I F_{7}$
D. CO_{2}

Answer: A::B::C

- Watch Video Solution

26. In which on the following, molecules central atom involves expansion of octet?
A. PCl_{5}
B. SO_{4}^{2-}
C. NO_{3}^{-}
D. ClO_{3}^{-}

Answer: A::B::D

- Watch Video Solution

27. Which statement is correct about hybridisation?
A. In hybridisation, orbitals take part.
B. In hybridisation, electrons take part.
C. In hybridisation, fully filled, half filled or empty orbitals can take part.
D. Hybridized orbitals only contains bond pair electron.

Answer: A::C

28. Which is true about OF_{2} and $\mathrm{Cl}_{2} \mathrm{O}$?
A. Both have $s p^{3}$ hybridized oxygen.
B. Bond angle in $O F_{2}$ less than $109^{\circ} 28^{\prime}$.
C. Bond angle in $\mathrm{Cl}_{2} \mathrm{O}$ is greater than $109^{\circ} 28$.
D. Bond angle in both cases are $109^{\circ} 28$.

Answer: A::B::C

- Watch Video Solution

29. The halogen form compounds among themselves with formula XX ', $X X^{\prime}{ }_{3}, X X_{5}{ }_{5}$ and $X X^{\prime}{ }_{7}$ where X is the heavier halogen. Which of the following pairs representing their structures and being polar and nonpolar are correct?
A. XX' - Linear-polar
B. $X X_{3}^{\prime}$ - T-shaped-polar
C. $X X_{5}^{\prime}$ - Square pyramidal-polar
D. $X X_{7}^{\prime}$ - Pentagonal bipyramidal-non-polar

Answer: A::B::C::D

- Watch Video Solution

30. Which is true about $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$?
A. Hybridization of N is same
B. No. of lone pair of electron on N are same
C. Molecular geometry (i.e., shape) is different
D. Bond angle is same

Answer: A::C

31. Which is/are in linear shape?
A. NO_{2}^{+}
B. $X e F_{2}$
C. I_{3}^{-}
D. I_{3}^{+}

Answer: A::B::C

- Watch Video Solution

32. Which combination of the compounds and their geometry / shape are correct?
A. HgCl_{2} - Linear
B. XeF_{5}^{+}- Square pyramidal
C. $C l F_{3}-\mathrm{T}$ - shaped
D. ICl_{4}^{-}, Square-planar

D Watch Video Solution

33. Incorrect order about bond angle is :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
B. $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$
C. $\mathrm{SF}_{6}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}$
D. $\mathrm{ClO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{SF}_{6}$

Answer: A::B::D

Watch Video Solution

34. Which is(are) true about VSEPR theory?
A. Lone pair-lone pair repulsion is maximum
B. Lone pair and double bond occupy equatorial position in trigonal bipyramidal structure
C. More electronegative atom occupies axial position in trigonal bipyramidal structure
D. Bigger atom occupy axial positions in trigonal bipyramidal structure

Answer: A::B::C

- Watch Video Solution

35. Identify the correct option(s).
A. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$[order of bond angle]
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$ is a trigonal planar molecule (not considering the H -atom on 'C')
C. In $\mathrm{NH}_{4} \mathrm{Cl},{ }^{\prime} N^{\prime}$ atom is in $s p^{3} d$ hybridisation
D. In S_{8} molecule, a total of 16 electrons are left on all the 'S' atoms after bonding

Answer: A: B

- Watch Video Solution

36. Which of the following is / are correct statement(s) for dipole moment?
A. Lone pair of electrons present on central atom can give rise to dipole moment
B. Dipole moment is a vecter quantity
C. CO_{2} molecule has non-zero dipole moment
D. Different in electrongativity of combining atoms can also lead to dipole moment
37. Which of the following are significantly polar ?
A. XeF_{4}
B. XeF_{6}
C. XeOF_{4}
D. XeF_{5}^{-}

Answer: C

- Watch Video Solution

38. Which of the following statements are correctly matched with their geometries according to the VSEPR theory?
A. $\mathrm{BrF}_{6}^{+} \rightarrow$ octahedral
B. $\mathrm{SnCl}_{5}^{-} \rightarrow$ trigonal bipyramidal
C. $\mathrm{ClF}_{2}^{-} \rightarrow$ linear
D. $\mathrm{IF}_{4}^{+} \rightarrow$ see-saw

Answer: A::B::C::D

- Watch Video Solution

39. Which of the following statements is/are true about the structure of fullerene (Buckminster fullerene) ?
A. All the carbon atoms undergo $s p^{2}$ hybridization.
B. Remianing fourth electron at each carbon is delocalised in molecular orbvitals which in turn gives aromatic character to molecule.
C. It has a shape like rugby ball.
D. It contains both single and double bonds and has two $C-C$ distances of 143.5 pm and 138.3 pm respectively.

- Watch Video Solution

40. Which of the following statements are true for $P_{4} S_{3}$ molecule?
A. It contains six $P-S$ bonds and three $P-P$ bonds
B. It contains six P - S bonds and ten lone pairs
C. It has all atoms $s p^{3}$ hybridised
D. It contains six P - P bonds and ten lone pairs

Answer: A::B::C

- Watch Video Solution

41. $p \pi-d \pi$ bonding occurs between oxygen and :
A. phosphorus in $P_{4} O_{10}$
B. xenon in $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
C. nitrogen in $\mathrm{N}_{2} \mathrm{O}_{2}$
D. sulphur in SO_{2}

Answer: A::B::D

- Watch Video Solution

42. Species in which sulphur has $s p^{3}$ hybridisation?
A. $S F_{4}$
B. SCl_{2}
C. SO_{4}^{2-}
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: B::C

43. Hypervalent compound is (are) :
A. SO_{3}^{2-}
B. PO_{4}^{3-}
C. SO_{4}^{2-}
D. ClO_{4}

Answer: A::B::C::D

- Watch Video Solution

44. Which of the following statements is /are correct for polythionic acid series?
A. The average oxidation state of S -atom increases with decrease in number of S -atoms.
B. The absolute oxidation state of S -atoms increases with decrease in
C. The average oxidation state of S -atom decreases with increase in number of S -atoms.
D. The absolute oxidation state of S -atoms remains same with increase or decrease in number of S -atoms.

Answer: A::C::D

- Watch Video Solution

45. The molecule is/are having $N-N$ bond:
A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{N}_{2} \mathrm{O}_{3}$ (unsymm).
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: A::B::D

46. Which molecular geometry are most likely to result, from an octahedral electron geometry?
A. Square planar
B. Square pyramidal
C. Linear
D. V-shaped

Answer: A: B

- Watch Video Solution

47. Which of the following oxyacid/oxysalt/compound contains peroxy linkage?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
D. CrO_{5}

Answer: A::C::D

- Watch Video Solution

48. Select the correct Lewis dot representation.
A.
B.
C.
D.

Answer: A::B::C

49. Which of the following molecules do not follow octet rule?
A. $A s F_{5}$
B. BeH_{2}
C. $S F_{6}$
D. BCl_{3}

Answer: A::B::C::D

- Watch Video Solution

50. Select the correct statements.
A. Octet theory does not account for the shape of molecule.
B. It does not explain the relative stability of the molecules being totally silent about the energy of molecule.
C. Octet theory account for the shape of molecule.
D. Octet theory can not be used on hypervalent molecule.

Answer: A::B::D

- Watch Video Solution

51. Define the types of hybridisation of central atom for $A X_{3}$ molecule if dipole moment value, $\mu \neq 0$:
A. $s p^{3}$
B. $s p^{2}$
C. $s p^{3} d$
D. $s p^{3} d^{2}$

Answer: A::C

- Watch Video Solution

52. Consider two hydrogen atoms A and B approaching each other having nuclei N_{A} and N_{B} and electrons present in them are represented by e_{A} and e_{B}. Select the correct statements.
A. When the two atoms are at large distance from each other there is no interaction between them.
B. Attractive forces exist betweeen nucleus of one atom and its own electron that is $N_{A}-e_{A}$ and $N_{B}-e_{B}$.
C. Attractive forces arise between nucleus of one atom and electron of other atom that is $N_{A}-e_{B}$ and $N_{B}-e_{A}$.
D. Similarly repulsive forces arise between electron of two atoms like $e_{A}-e_{B}$ nuclei of two atoms $N_{A}-N_{B}$.

Answer: A::B::C::D

- Watch Video Solution

53. Which of the following molecules have coordinate bond in it's Lewis structure?
A. NH_{4}^{+}
B. $B F_{4}^{-}$
C. $B e F_{4}^{2-}$
D. CO

Answer: A::B::C::D

- Watch Video Solution

54. Which of the following molecules are hypovalent in nature?
A. AlCl_{3}
B. BeF_{2}
C. $B F_{3}$
D. AlF_{3}

D Watch Video Solution

55. Select the correct statements :
A. C-O bond length of CO molecule is higher than the $C-O$ bond length of CO_{2}
B. C-O bond length of CO molecule is lower than the $C-O$ bond length of CO_{2}
C. $\mathrm{N}-\mathrm{O}$ bond length of NO_{3}^{-}molecule is higher than the $\mathrm{N}-\mathrm{O}$ bond length of NO_{2}^{-}
D. $N-O$ bond length of NO_{3}^{-}molecule is lower than the $\mathrm{N}-\mathrm{O}$ bond length of NO_{2}^{-}

Answer: B::C

56. Which of the following property have been changed when all the oxygen atoms are replaced by fluorine atoms from XeO_{3} without changing the covalency of xenon?
A. Oxidation state of xenon
B. Total number of lone pairs
C. Hybridisation of Xe in molecule
D. Shape of molecule

Answer: A::C::D

- Watch Video Solution

57. Which of the following are correct characteristics for hybrid orbitals?
A. It is a single lobe orbital.
B. \% p-charcter will remain same for similar type of hybrid orbitals.
C. With increase in $\%$ s-character, the length of the orbital decreases.
D. Shape of hybrid orbital determines the shape of the molecule.

Answer: B::C

- Watch Video Solution

58. In which of the following process(es) hybridisation of underlined atom does not change?
A. $\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N} . \mathrm{BF}_{3}$
B. $\mathrm{SiF}_{4}+2 \mathrm{~F}^{-} \rightarrow\left[\mathrm{SiF}_{6}\right]^{2-}$
C.
D. $\mathrm{H}_{3} \underline{B O}_{3} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{B}(\mathrm{OH})_{4}\right]-$

Answer: A::C

59. Select correct statements out of following.
A. Hybrid orbitals formed by the s and p_{X} orbitals may lie in XY plane or XZ plane.
B. Maximum distance between hybrid orbitals will present in $s p^{2}$
hybridisation out of $\mathrm{sp}, s p^{2}, s p^{3}$ hybridisation.
C. Lone pair and bond pair occupy different volume around central atom.
D. Central atom is always more electronegative than surrounding atoms in a molecule.

Answer: A: :C

- Watch Video Solution

60. Which of the following molecule is /are planar?
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. $B_{3} N_{3} H_{6}$
C. SO_{3}
D. NF_{3}

Answer: B::C

- Watch Video Solution

61. Which of the following d-orbital(s) participate in the hybridisation for $X e$ in the cationic part of $\mathrm{XeF}_{6}(s)$?
A. $d_{x y}$
B. $d_{x^{2}-y^{2}}$
C. $d_{z^{2}}$
D. $d_{y^{2}}$

Answer: B::C

62. Which of the following ion pairs are incorrect for the given substance?
A. $P B r_{5}(s):\left[P B r_{4}\right]^{+}\left[P B r_{6}\right]^{-}$
B. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~s}):\left[\mathrm{NO}_{2}\right]^{+}\left[\mathrm{NO}_{2}\right]-$
C. $\mathrm{XeF}_{6}(s):\left[\mathrm{XeF}_{5}\right]^{+}\left[\mathrm{XeF}_{7}\right]-$
D. Common salt : $[\mathrm{Na}]^{+}[\mathrm{Cl}]^{-}$

Answer: A: B

- Watch Video Solution

63. Which of the following statements are incorrect regarding HPO_{3}^{2-} ion?
A. All HPO bond angles are identical due to resonance
B. All bond lengths are identical due to resonance
C. All bond angles are identical due to resonance
D. All OPO bond angles are identical due to resonance

Answer: B::C

- Watch Video Solution

64. Which of the following statement(s) is/are correct?
A. Between the layers of graphite van der Waal's forces are present.
B. Graphite is thermally more stable than diamond.
C. $\mathrm{S}_{5} \mathrm{O}_{6}^{2-}$ has cyclic structure.
D. C - C bond length is greater in diamond than graphite.

Answer: A::B::D

- Watch Video Solution

65. $d_{z^{2}}$ orbital is used in hybridisation of:
A. $\mathrm{PCl}_{5}(g)$
B. Cationic part of $\mathrm{PCl}_{5}(\mathrm{~s})$
C. Anionic part of $\mathrm{PCl}_{5}(\mathrm{~s})$
D. $\mathrm{PCl}_{3}(g)$

Answer: A::C

- Watch Video Solution

66. Which of the following molecule is /are planar?
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. $B_{3} N_{3} H_{6}$
C. $\mathrm{SO}(3)$
D. $N F_{3}$

Answer: B::C

67. Which of the following molecules have bent shape?
[Where A is central atom, B is surrounding atom and E is lone pair]
A. $A B_{2} E_{2}$
B. $A B_{2} E$
C. $A B_{3} E$
D. $A B_{2}$

Answer: A::B

- Watch Video Solution

68. In which of the following compound/ions the $d \pi-p \pi$ is not present?
A. N_{3}^{-}
B. NO_{2}^{+}
C. SO_{2}
D. HPO_{3}^{2-}

Answer: A::B

- Watch Video Solution

69. Which of the following molecule(s) is / are having see-saw geometry?
A. TeBr_{4}
B. BrF_{5}
C. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
D. SeCl_{4}

Answer: A::C::D

- Watch Video Solution

70. Which of the following statement is incorrect?
A. $X e F_{6}$ has perfect octahedral strucuture
B. XeF_{2} and XeF_{4} are non polar
C. XeF_{2} and XeF_{4} are planar
D. $X e F_{5}^{-}$does not exist

Answer: A::D

- Watch Video Solution

71. Which of the following molecule is polar (i.e., has permanent dipole moment)?
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CF}_{2}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CF}_{2}$
C. $\mathrm{Cl}-\mathrm{C} \stackrel{\mathrm{H}}{\mid} \mathrm{H}-\mathrm{Cl}$
D. SO_{2}

Watch Video Solution

72. Which of the following closest bond angle order(s) is/are correct?
A. $\mathrm{OSO}: \mathrm{SO}_{3}^{2-}<\mathrm{SO}_{4}^{2-}$
B. $\operatorname{FIF}\left(\mathrm{IF}_{5}\right)=\operatorname{FXeF}\left(\mathrm{XeF}_{4}\right)$
C. $\mathrm{OCO}\left(\mathrm{CO}_{3}^{2-}\right)=\mathrm{ONO}\left(\mathrm{NO}_{3}^{-}\right)$
D. $\operatorname{FCF}\left(\mathrm{CF}_{3}^{-}\right)<\mathrm{ClCCl}\left(\mathrm{CCl}_{3}^{-}\right)$

Answer: A::C::D

- Watch Video Solution

73. Which of the following bond angle order is/are correct in the following pair?
A. $\mathrm{OF}_{2}<\mathrm{OCl}_{2}$
B. $\mathrm{Ocl}_{2}<\mathrm{OBr}_{2}$
C. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NF}_{3}<\mathrm{NCl}_{3}$

Answer: A::B::D

- Watch Video Solution

74. Structure of $\mathrm{FXeN}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2}$ (pale yellow solid) and FXeOSO_{2} are given below :

Select the correct statements. (It is observed that geometry of nitrogen is planar with respect to its surrounding atom)
A. Maximum seven atoms may lie in one plane in structure (I)
B. 10 atom are $s p^{3}$ hybridized in structure (I)
C. 9d-orbitals are involved in bonding in structure (I)
D. S - O bond length of (II) is similar than $S-N$ bond length in (I)

D View Text Solution

75. Which of the following statements is/are correct?
A. $\mathrm{SO}_{4}^{2-}=\mathrm{NO}_{3}^{-}=I_{3}^{-}=\mathrm{XeF}_{5}^{-}$(dipole moment)
B. $p \pi-d \pi$ bond is present in both POCl_{3} and XeO_{3}
C. MnO is a basic oxide
D. $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}$ (acidic strength)

Answer: A::B::C::D

- Watch Video Solution

76. If in an allene system, nodal plane of first π - bond and last π-bond are in same plane then select the correct statement.
A. Allene will be non-planar
B. Allene will be planar
C. Total no. of π-bonds will be in odd number
D. Total no. of carbons in allene will be in even number

Answer: B::C::D

- Watch Video Solution

77. An element M forms three types of compounds with fluorine :

Compound (i) polar with complete octet
Compound (ii) polar with expanded octet
Compound (iii) non-polar with expanded octet then element 'M' can't be :
A. P
B. S
C. Xe
D. O

- Watch Video Solution

78. Select the correct statements.
A. 2nd period element can't form more than four covalent bonds
B. All oxyacids of 'S' has basicity two generally
C. Hybrid orbitals of diamond have more s-character than the hybrid orbitals of graphite
D. Number of covalent bonds formed by a single phosphorus is more in black phosphorus than the white phosphorus

Answer: A: B

- View Text Solution

79. Out of two tetrahedral molecules ' X ' and ' Y ', molecule ' X ' has more dipole moment than molecule ' Y ', then, select the correct statement.
A. Molecule ' X ' must have at least one lone pair
B. Molecule 'Y' can't have zero dipole moment
C. At least one bond angle of molecule ' X ' will not be equal to the $109^{\circ} 28^{\prime}$
D. Molecule 'X' can't have perfect tetrahedral molecular geometry

Answer: C::D

- Watch Video Solution

80. Select the correct order.
A. Graphite = fullerene It diamond (no. of carbon atoms connected per carbon atom with covalent bond only)
B. NaF It KCl It RbBr (electrical conductance in aqueous solution)
C. NaF It MgO It AlN (lattice energy)
D. $\mathrm{Li}^{+}(g)>\mathrm{Mg}^{2+}(g)>\mathrm{Be}^{2+}(g)$ (hydration enegty)

Answer: A::B::C

- View Text Solution

81. Which of the following order is / are incorrect for bond angle?
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
B. $\mathrm{OF}_{2}<\mathrm{OCl}_{2}<\mathrm{OBr}_{2}>\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<\mathrm{BI}_{3}$
D. $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{3}^{-}$

Answer: A:C

82. Which of the following property is / are associated with hydrogen bonding?
A. Slippery nature of graphite
B. Dimerization of $\mathrm{CH}_{3} \mathrm{COOH}$ in vapour phase
C. Viscous nature of glycerol
D. Cage like structure of ice

Answer: B::C::D

- Watch Video Solution

83. Which of the following molecules have following :
ionic bond, covalent σ-bond, covalent π-bond ?
A. CaC_{2}
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CN}$

Answer: A:C

- Watch Video Solution

84. The formal charges possible on three N -atoms in N_{3}^{-}molecule is / are
: [If N atoms are connected in the sequence $N-N-N$]
A. $0,+1,-2$
B. $-1,0,-1$
C. $-1,+1,-1$
D. $-2,+1,0$

Answer: A::C::D

- Watch Video Solution

85. In the reaction
$\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{NH}_{3} \cdot \mathrm{BF}_{3}$ (Adduct)
Choose the correct statement.
A. Hybridisaton of ' N ' in NH_{3} changes in adduct
B. Hybridisation of ' N ' in adduct is $s p^{3}$
C. Here, NH_{3} is acting as a Lewis base while BF_{3} as a Lewis acid
D. Hybridisation of ' B ' in $B F_{3}$ changes in adduct

Answer: B::C::D

- Watch Video Solution

86. The correct order of bond angles (smallest first) in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, B F_{3}$ and SiH_{4} is
A. $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{BF}_{3}>\mathrm{SiH}_{4}$
C. $\mathrm{SiH}_{4}>\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{SiH}_{4}>\mathrm{NH}_{3}$

Answer: A::B::C::D

- Watch Video Solution

87. In which of the following molecules/ions, all bonds are equal?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $S F_{4}$
D. SiF_{4}

Answer: A::B::D

- Watch Video Solution

88. Select the correct order sequence(s).
A. $C-C$ bond length :
B. Order of dipole moment : $\mathrm{CO}>\mathrm{NH}_{3}$
C. Boiling point : $\mathrm{AsH}_{3}>\mathrm{NH}_{3}$
D. Bond order of $\mathrm{M}-\mathrm{O}$ bond ($\mathrm{M}=$ central atom) : $\mathrm{CO}_{3}^{2-}>\mathrm{PO}_{4}^{-3}$

Answer: A: D

- View Text Solution

89. Which of the following statement is correct for $\mathrm{C}_{3} \mathrm{~N}_{3}\left(\mathrm{~N}_{3}\right)_{3}$ (cyanuric triazide)?
A. All carbon and nitrogen atoms are $s p^{2}$ hybridised
B. All carbon and nitrogen atoms are in same plance
C. All carbon atoms are $s p^{2}$ hybridised
D. Nitrogen atoms which are present in ring, $s p^{2}$ hybridised

Answer: B::C::D

- Watch Video Solution

90. Which of the following compound does not consist of inter molecular hydrogen bonding?
A. Chloral hydrate
B. o-chloro phenol
C. o-hydroxy benzaldehyde
D. Acetic acid (liquid)

Answer: A::B::C

- Watch Video Solution

91. Which molecule(s) has the maximum \% p-character in the central atom hybridisation?
A. NH_{3}
B. $S F_{4}$
C. PCl_{5}
D. OF_{2}

Answer: A:D

- Watch Video Solution

92. Which of the following molecule(s) is/are having $s p^{3} d^{2}$ hybridisation for their central atom?
A. TeCl_{6}
B. XeF_{4}
C. $S F_{4}$
D. XeF_{5}^{+}

Answer: A::B::D

- Watch Video Solution

93. Which of the following statements is correct in the context of the
allene molecule, $\mathrm{C}_{3} \mathrm{H}_{4}$?
A. The central carbon atom is sp hybridized.
B. The terminal carbon atoms are $s p^{2}$ hybridized.
C. The planes containing the CH_{2} groups are mutually perpendicular to permit the formation of two separate π-bonds.
D. $\mathrm{C}_{3} \mathrm{H}_{4}$ is a planar molecule.

Answer: A::B::C

94. Structure of $\left.\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5} \mathrm{OH}\right)_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$ contains :
A. two triangular and two tetrahedral units of boron
B. three triangular and one tetrahedral units of boron
C. four identical B-O-B linkages
D. one peroxy linkage

Answer: A: C

- Watch Video Solution

95. P in PCl_{5} has $s p^{3} d$-hybridisation which of the following statements are correct about PCl_{5} structure?
A. All $P-C l$ bond lengths are identical.
B. Two $P-\mathrm{Cl}$ bonds are axial and longer than three $P-\mathrm{Cl}$ equatorial bonds.
C. $P C l_{5}$ has trigonal bipyramidal geometry with non-polar nature.
D. PCl_{5} decomposes into PCl_{3} and Cl_{2} on heating.

Answer: B::C::D

- Watch Video Solution

96. Which of the following are non-polar?
A. SiF_{4}
B. $X e F_{4}$
C. $S F_{4}$
D. $B F_{3}$

Answer: A::B::D

- Watch Video Solution

97. Which of the following is not a preferred resonating structure for azide ion N_{3}^{-}?
A.
B. $\left[\begin{array}{c}\ldots \\ : N-N \equiv N:-1 .\end{array}\right.$
C. $[: N \equiv N-N . .:]$
D. $\left[\begin{array}{l}\because \\ : N=N=N:\end{array}\right]$

Answer: B::C::D

D Watch Video Solution

98. Which of the following structures are planar?
A. XeF_{4}
B. ICl_{2}^{-}
C. ClF_{3}
D. ICl_{4}^{-}

Answer: A::B::C::D

- Watch Video Solution

99. In which of the following molecules $p \pi-d \pi$ bonds are not present?
A. SO_{4}^{-2}
B. PO_{4}^{3-}
C. NO_{3}^{-}
D. ClO_{4}^{-}

Answer: A::B::D

- Watch Video Solution

100. Which of the following attain the linear structure ?
A. BeCl_{2}
B. NCO^{-}
C. NO_{2}
D. $C S_{2}$

Answer: A::B::D

- Watch Video Solution

101. CO is isoelectronic with
A. NO^{+}
B. N_{2}
C. SnCl_{2}
D. NO_{2}^{-}

- Watch Video Solution

102. Which of the following species have the same shape?
A. CO_{2}
B. CCl_{4}
C. O_{3}
D. NO_{2}^{-}

Answer: A::B

- Watch Video Solution

103. Which of the following statements are correct about CO_{3}^{2-} ?
A. The hybridisation of central atom is $s p^{3}$.
B. Its resonance structure has one $C-O$ single bond and two $C=O$ double bonds.
C. The average formal charge on each oxygen atom is 0.67 units.
D. All C-O bond lengths are equal

Answer: C::D

- Watch Video Solution

104. Which of the following statements are incorrect ?
A. NaCl being an ionic compound is a good conductor of electricity in the solid state.
B. In canonical structures, there is a difference in the arrangement of atoms.
C. Hybrid orbitals form stronger bonds than pure orbitals.
D. VSEPR theory can explain the square planar geometry of $X_{e} F_{4}$.

D View Text Solution

105. Select oxyacid(s) which must have $P-H, \quad P-O H$ and $P=0$ linkage(s) in its structure.
A. $\mathrm{H}_{3} \mathrm{PO}_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

Answer: A::C

D Watch Video Solution

106. Which of following statements are incorrect?
A. X^{+}ion is smaller than X^{-}ion
B. o-nitrophenol has low volatility as compared to m-nitrophenol
C. Dipole moment of OF_{2} is greater than $\mathrm{H}_{2} \mathrm{O}$
D. Dipole moment measurement can confirm the shape of the $A X_{4}$ molecule

Answer: B::C::D

- Watch Video Solution

107. In which of following molecule/species all angles between adjacent atoms are identical.
A. $S F_{6}$
B. NCl_{3}
C. $X e F_{5}^{-}$
D. SeF_{4}

- Watch Video Solution

108. Choose the incorrect match :

	Name	Formula
(a)	Sodium hydrogen pyrophosphate	$\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
(b)	Sodium phosphite	NaPO_{3}
(c)	Ammonium isohypophosphate	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{HP}_{2} \mathrm{O}_{6}$
(d)	Sodium manganate	NaMnO_{4}

- View Text Solution

109. Some azides are very pure source of nitrogen Identify all the azides.
A. $B a\left(N_{3}\right)_{2}$
B. $N a N_{3}$
C. $M g_{3} N_{2}$

- Watch Video Solution

110. Which of the following elements can show covalency greater than 4 ?
A. Be
B. P
C. S
D. B

Answer: B::C

- Watch Video Solution

111. Find the imposible overlapping if z-axis is considered to be intermolecular axis :
A. $s+p_{x}$
B. $p_{z}+d_{z^{2}}$
C. $s+p_{z}$
D. $d_{x^{2}-y^{2}}+d_{z^{2}}$

Answer: A::D

- Watch Video Solution

Comperhension Type-1

1. Element 'A' having 5 electrons in its valence shell and principle quantum number value for last electron is 3 . The 'ic' acid of element ' A ' is tribasic acid and its corresponding salts is known as 'atc' salt. The 'ous acid' 'A' is dibasic acid and its corresponding salts is known as 'its' salts.
["For example : The salt of sulphuric acid is sulphate salt " and the salt of sulfurous acid is sulphite salt]
$2 \times$ ' ic' acid of 'A' $-\mathrm{H}_{2} \mathrm{O}={ }^{\prime} \mathrm{x}^{\prime}$
How many σ bonds are present in ' x '?
A. 10
B. 12
C. 8
D. None of these

Answer: B

- Watch Video Solution

Comperhension Type

1. Element ' A ' having 5 electrons in its valence shell and principle quantum number value for last electron is 3 . The 'ic' acid of element ' A ' is tribasic acid and its corresponding salts is known as 'atc' salt. The 'ous acid' 'A' is
dibasic acid and its corresponding salts is known as 'its' salts.
["For example : The salt of sulphuric acid is sulphate salt " and the salt of sulfurous acid is sulphite salt]
$n \times{ }^{\prime}$ ic' acid 'A' $-\mathrm{H}_{2} \mathrm{O}=(y)_{n}$, if $\mathrm{n}=3$
How many atoms are $s p^{3}$ hybridised in 'y' ?
A. 9
B. 10
C. 3
D. 12

Answer: A

- View Text Solution

2. Element ' A ' having 5 electrons in its valence shell and principle quantum number value for last electron is 3 . The 'ic' acid of element ' A ' is tribasic acid and its corresponding salts is known as 'atc' salt. The 'ous acid' ' A ' is dibasic acid and its corresponding salts is known as 'its' salts.
["For example : The salt of sulphuric acid is sulphate salt " and the salt of sulfurous acid is sulphite salt]
'x' - one oxygen atom = 'z' How many $A-A$ bonds are present in 'z'?
A. 2
B. 1
C. 3
D. 4

Answer: B

- Watch Video Solution

3. A, B, C, and D four compounds.

$$
\begin{aligned}
& ' A^{\prime}-H_{2} O \rightarrow{ }^{\prime} B^{\prime} \quad 2 \times^{\prime} A^{\prime}-H_{2} O \rightarrow C^{\prime} \\
& C+O^{\prime} \rightarrow D^{\prime} A-^{\prime} O^{\prime} \rightarrow H_{3} P O_{3}
\end{aligned}
$$

' O ' is oxygen.

How many P - $O-P$ linkage are present in hexameric form of compound
A. 5
B. 0
C. 6
D. 7

Answer: C

- Watch Video Solution

4. (a) Extent of overlapping \propto strength of chemical bond.
(b) Extent of overlapping depends on two factors:
(i) Nature of orbitals - p, d and f are directional orbitals \rightarrow more overlapping s-orbitals \rightarrow non directional - less overlapping
(ii) Nature of overlapping -Co-axial overlapping - extent of overlapping more

Colateral overlapping - extent of overlapping less order of strength of Co-axial overlapping : $p-p>s-p>s-s$

The correct order of bond strength of σ bond is :
It two atoms approach each other along x-axis then σ-bond is not formed by :
A. s and p_{x}
B. p_{x} and p_{x}
C. p_{y} and p_{y}
D. s and s

Answer: C

- View Text Solution

5. Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation, q and the bond length d for the bond. Unit of dipole moment is Debye. One Debye is equal to 10^{-18} esu-cm.

Dipole moment is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative
orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be used to disinguisd between cis- and trans- isomers, ortho-, meta - and para - forms of a substance, etc.

Which of the following pair of species have same diple moment value?
A.
B.
.
c.
D. Both (a) and (c)

Answer: D

- View Text Solution

6. Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation, q and the bond length d for the bond. Unit of dipole moment is Debye. One Debye is equal to 10^{-18}

esu-cm.

Dipole moment is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be used to disinguisd between cis- and trans- isomers, ortho-, meta - and para - forms of a substance, etc.

The dipole moment value of $H-X$ molecule is 1.2 Debye. If the internuclear distance between $H-X$ is $0.8 \AA$ then the \% ionic character in $H-X$ molecules is :
A. 31.25%
B. 50 \%
C. 14%
D. 25 \%

Answer: A

7. Consider the following oxoacids of phosphorus : $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$. All ' P ' atoms in the oxoaxids and oxoanions are 4 corrdinate and contain at least one $P=O$ unit. All ' P ' atoms in oxoacids have at least one $P-\mathrm{OH}$ group which ionises to give H^{+}ion. The oxidation state of ' P ' is +5 only when it is directly attached to 4 oxygen atoms. For every two units decrease in oxidation state of Phosphorus, there is one $P-H$ bond.

The number of acidic hydrogens present in one formula unit of each of $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{NaH}_{2} \mathrm{PO}_{3}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ are respectively:
A. 0,1 and 2
B. 1, 0 and 2
C. 2, 1 and 0
D. 2, 0 and 1

Answer: C

8. Compound 'X'is 'ic' acid of sulphur (S) :

Note : 'S' stands for Sulphur and 'O' stands for oxygen.

How many S-O-S linkages are present in the strucutre of compound 'I'?
A. 1
B. 2
C. 0
D. 4

Answer: C

- View Text Solution

9. Compound 'X'is 'ic' acid of sulphur (S) :

Note : 'S' stands for Sulphur and 'O' stands for oxygen.

Which of the following option is correct? [T for True and F for False]
(P) In the trimer form of 'H' six $p \pi-d \pi$ bonds are preset.
(Q) X and trimer form of 'H' have same type of hybridisation with respect to central atom.
(R) In the trimer form of ' H ' six S - S linkages are present.
(S) X and H are planar compound.
A. TTTF
B. TTFF
C. TFTF
D. FTFT

Answer: B

- View Text Solution

10. Acids containing oxygen are called oxyacids. Prefix 'Pyro's is used when two units of a parent acid condense together with removal of one water molecule. When one of a parent acid on an average loses a water
molecule producing an acid having at least one acidic hydrogen, the resulting acids is called meta -acid
$2 \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{X}$
A. X has one S - O - S linkage
B. X has two $p \pi-d \pi$ bonds
C. Both (a) and (b) are correct
D. X is meta acid

Answer: C

- Watch Video Solution

11. Acids containing oxygen are called oxyacids. Prefix 'Pyro's is used when two units of a parent acid condense together with removal of one water molecule. When one of a parent acid on an average loses a water molecule producing an acid having at least one acidic hydrogen, the resulting acids is called meta -acid
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$ has
A. One $P-O-P$ linkage
B. P-P linkage
C. $P-O-O-P$ linkage
D. $P-H$ bond

Answer: C

- Watch Video Solution

12. An element has 6 electrons in its valence shell and the principal quantum number of last electron is 3 . Its trioxide when combines with water gives acid (A). Answer the following questions :

A - 'Oxygen' $\rightarrow Y$
$2 \mathrm{Y}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Z}$
How many S-O-S bonds are present in Z ?
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

13. An element has 6 electrons in its valence shell and the principal quantum number of last electron is 3 . Its trioxide when combines with water gives acid (A). Answer the following questions :

A + 'Oxygen' \rightarrow B
What is the sum of oxidation state of central atom and number of π bonds present in B ?
A. 7
B. 8
C. 6
D. 10

Answer: B

- Watch Video Solution

14. Spin pairing and overlapping theory cannot explain the equal bond length as well as equal bond angles in CH_{4} molecule. To explain the above facts we are in need of hybridization theory. Hybridization is the mixing of atomic orbitals of comparable energy and the numbe of atomic orbitals involved is equal to the number of hybrid orbitals formed of equal energy.

The number of axial and equatorial positions in trigonal bipyramidal geometry having $s p^{3} d$ hybridizaton are respectively :
A. 2,4
B. 4,2
C. 3,3
D. 2, 3

Answer: D

- Watch Video Solution

15. Spin pairing and overlapping theory cannot explain the equal bond length as well as equal bond angles in CH_{4} molecule. To explain the above facts we are in need of hybridization theory. Hybridization is the mixing of atomic orbitals of comparable energy and the numbe of atomic orbitals involved is equal to the number of hybrid orbitals formed of equal energy.

Increasing order of the energy of hybrid orbitals is :
A. $s p^{3}<s p^{2}<s p$
B. $s p^{2}<s p^{3}<s p$
C. $s p<s p^{3}<s p^{2}$
D. $s p<s p^{2}<s p^{3}$

Answer: D

16. The trigonal bipyramidal is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in ClF_{3} molecule. Lone pairs occupy two of the corners, and F atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure below.
(a) The most stable structure will be the one of lowest energy, that is the one with the minimum repulsions between the five orbitals. The greatest repulsions occurs between two lone pairs. Lone pair-bond pair repulsions are next strongest, and bond pair-bond pair repulsions the weakest.

A rule of thumb can be theorised, that the position having minimum repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.
(b) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position.
(c) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry.
(d) In case of $s p^{3} d^{2}$ hybridization lone pairs should be placed opposite to each other because all the corners are identical.

The shape of $S F_{5}^{-}$can be :
A. I only
B. I and II pnly
C. IV only
D. I, II and III

Answer: D

- View Text Solution

17. The trigonal bipyramidal is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in ClF_{3} molecule. Lone pairs occupy two of the corners, and F
atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure below.
(a) The most stable structure will be the one of lowest energy, that is the one with the minimum repulsions between the five orbitals. The greatest repulsions occurs between two lone pairs. Lone pair-bond pair repulsions are next strongest, and bond pair-bond pair repulsions the weakest.

A rule of thumb can be theorised, that the position having minimum repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.
(b) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position.
(c) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry.
(d) In case of $s p^{3} d^{2}$ hybridization lone pairs should be placed opposite to each other because all the corners are identical.

Actual shape of the molecule BrF_{5} is similar to the molecule:
A. PCl_{5}
B. XeF_{4}
C. PCl_{4}^{+}
D. none of these

Answer: D

- View Text Solution

18. Chemical bonding between two atoms is necessarily associated with an electrical moment arising out of the difference in electroegativity of two atoms. This means that every bond carries with it an electrical moment called the "bond moment". The dipole moment of a molecule is really the vectorial sum of the individual bond moment present in it. To compute the dipole moment it is necessary to find out the values of various bond moment. In the following table, dipole moment of different bonds are as given.

Bond

$$
H-C \quad C-C l \quad C=0
$$

Bond moments $0.4 D \quad 1.5 D \quad 2.5 D$
The group moments of few groups as given

Group	NO_{2}	OH	CN	CH_{3}

Direction of dipole Towards N Towards O Towards N Away from CH_{3}
$\begin{array}{lllll}\text { Dipole moment } & 4 D & 1.6 D & 3.8 D & 0.4 D\end{array}$
In $\mathrm{CH}_{3} \mathrm{CCl}_{3}(\mathrm{I}), \mathrm{CHCl}_{3}(\mathrm{II})$ and $\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{III})$ the normal tetragedral bond angle is maintained. Also given $\cos 70.5^{\circ}=\frac{1}{3}$. Therefore dipole moments of the given compounds are : (given due to $-I$ effect of Cl . The bond moment of $\mathrm{H}-\mathrm{C}$ bond directed towards the H in CHCl_{3})
A. I $=1.9 \mathrm{D}, \mathrm{II}=1.9 \mathrm{D}, \mathrm{III}=1.7 \mathrm{D}$
B. I $=1.9 \mathrm{D}, \mathrm{II}=1.7 \mathrm{D}, \mathrm{III}=1.9 \mathrm{D}$
C. I = $1.9 \mathrm{D}, \mathrm{II}=1.7 \mathrm{D}, \mathrm{III}=1.7 \mathrm{D}$
D. I = $1.9 \mathrm{D}, \mathrm{II}=1.1 \mathrm{D}, \mathrm{III}=1.9 \mathrm{D}$

Answer: D

- View Text Solution

19. Chemical bonding between two atoms is necessarily associated with an electrical moment arising out of the difference in electroegativity of two atoms. This means that every bond carries with it an electrical moment called the "bond moment". The dipole moment of a molecule is really the vectorial sum of the individual bond moment present in it. To compute the dipole moment it is necessary to find out the values of various bond moment. In the following table, dipole moment of different bonds are as given.

Bond	$H-C$	$C-C l$	$C=0$
Bond moments	$0.4 D$	$1.5 D$	$2.5 D$

The group moments of few groups as given

Group	NO_{2}	OH	CN	CH_{3}

Direction of dipole Towards N Towards O Towards N Away from CH_{3} $\begin{array}{lllll}\text { Dipole moment } & 4 D & 1.6 D & 3.8 D & 0.4 D\end{array}$ In the acetone molecule considering the normal planar structure, the observed dipole moment of acetone molecule is :
A. 2.9 D
B. 2.75 D
C. 3 D

D. none of these

Answer: A

- Watch Video Solution

20. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of a "charge cloud" that repel one another nad stay as far apart as possible, thus causing molecules to assume specific shapes.

The repulsive interactions of electron pairs decrease in the order:
`Lone pair - Lone pair gt Lone pair - Bond pair gt Bond pair - Bond pair These repulsive effects result in deviations from idealised shapes and alteration in bond angles in molecules.

Which of the following statement is correct with respect ot bond angles?
A. The $F-S-F$ angle in $S F_{2}$ is more than $109^{\circ} 28^{\prime}$
B. The $\mathrm{H}-\mathrm{N}-\mathrm{N}$ angle in $\mathrm{N}_{2} \mathrm{H}_{2}$ is approximately 180°
C. The $\mathrm{F}-\mathrm{Kr}-\mathrm{F}$ angle in KrF_{4} is 90°
D. The $\mathrm{Cl}-\mathrm{N}-\mathrm{O}$ angle in NOCl is more than 120°

Answer: C

- Watch Video Solution

21. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of a "charge cloud" that repel one another nad stay as far apart as possible, thus causing molecules to assume specific shapes.

The repulsive interactions of electron pairs decrease in the order:
Lone pair - Lone pair gt Lone pair - Bond pair gt Bond pair - Bond pair
These repulsive effects result in deviations from idealised shapes and alteration in bond angles in molecules.

Molecular shape of $\mathrm{XeF}_{3}^{+}, \mathrm{SF}_{3}^{+}$and $C F_{3}^{+}$are :
A. The same with 2,1 and 0 lone pair of electrons respectively
B. Different with 2, 1 and 0 lone pair of electrons respectively
C. Different with 0, 1 and 2 lone pair of electrons respectively
D. The same with 2,0 and 1 lone pair of leectrons respectively

Answer: B

- Watch Video Solution

22. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of a "charge cloud" that repel one another nad stay as far apart as possible, thus causing molecules to assume specific shapes.

The repulsive interactions of electron pairs decrease in the order: Lone pair - Lone pair gt Lone pair - Bond pair gt Bond pair - Bond pair These repulsive effects result in deviations from idealised shapes and alteration in bond angles in molecules.

Which of the following statements is incorrect?
A. In ClF_{3}, the axial $\mathrm{Cl}-\mathrm{F}$ bond length is longer than equatorial $\mathrm{Cl}-\mathrm{F}$ bond length
B. $\ln S F_{4}, F-S-F$ equatorial bond angle is not 120° but 104° due to lp-bp repulsions.
C. $\ln \left[\mathrm{ICl}_{4}\right]^{-} \mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ bond angle is 90°
D. In OBr_{2}, the bond angle is less than that in OCl_{2}.

Answer: D

- Watch Video Solution

23. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of a "charge cloud" that repel one another nad stay as far apart as possible, thus causing molecules to assume specific shapes.

The repulsive interactions of electron pairs decrease in the order:
Lone pair - Lone pair gt Lone pair - Bond pair gt Bond pair - Bond pair

These repulsive effects result in deviations from idealised shapes and alteration in bond angles in molecules.

Which among the following molecules have $s p^{3} d$ hybridization with one lone pair of electron on the central atom?
(P) $S F_{4}$
(Q) $\left[\mathrm{PCl}_{4}\right]^{+}$
(R) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(S) ClOF_{3}
A. P, Q and R only
B. P, R and S only
C. P and Q only
D. Q and R only

Answer: B

24. Hybridization is a concept of mixing or merging of orbitals of same atom with slight differences in energies to redistribute their energies and give new orbitals of equivalent energy called 'Hybrid Orbitals'. Hybridisation is a hypothetical concept and never actually exists.

One should not be confused by a common misconception that hybridization is responsible for particular geometry. Geometry of a molecule is decided by energy factor not by hybridization. It is the orbital (which may be half filled, completely filled or empty) that undergoes hybridization and not the electron. The bond angles in hybridised orbitals are influenced by presence of lone pair, presence of multiple bonds, presence of one electron and electronegativity of atom.

An increase in s-character of hybridised orbitals results in decrease in size of orbitals. This results in decrease in bond length and increase in energy. Among the following which have the same molecular geometry?
(P) I_{3}^{-}
(Q) XeF_{4}
(R) BrF_{4}^{-}
(S) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
A. P, Q and S only
B. P, Q, R and S
C. P, Q and R only
D. Q, R and S only

Answer: C

- Watch Video Solution

25. Hybridization is a concept of mixing or merging of orbitals of same atom with slight differences in energies to redistribute their energies and give new orbitals of equivalent energy called 'Hybrid Orbitals'. Hybridisation is a hypothetical concept and never actually exists. One should not be confused by a common misconception that hybridization is responsible for particular geometry. Geometry of a molecule is decided by energy factor not by hybridization. It is the orbital (which may be half filled, completely filled or empty) that undergoes hybridization and not the electron. The bond angles in hybridised orbitals
are influenced by presence of lone pair, presence of multiple bonds, presence of one electron and electronegativity of atom.

An increase in s-character of hybridised orbitals results in decrease in size of orbitals. This results in decrease in bond length and increase in energy. Which of the following statement is not true?
A. $O-F$ bond length in $O F_{2}$ is less than $O-F$ bond length in $O_{2} F_{2}$
B. In HCO_{3}^{-}, all C - O bond lengths are not identical
C. In diborane, two different $B-H$ bond lengths are observed although the hybridization of both boron atoms are same.
D. In hydrazine, the $N-N$ bond length is larger than normal $N-N$ bond length.

Answer: D

- View Text Solution

26. Oxyacids are the compounds in which they have at least one $X-\mathrm{OH}$ bond where X is generally a non-metal. Consider the acids having general formula $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{y}$ where y lies between 3 to 7 having even values only. Total number of $S-O H$ bonds in the compounds is :
A. $y-1$
B. $y+1$
C. 2
D. none of these

Answer: C

- Watch Video Solution

27. Oxyacids are acids that generally contain at least one $X-O H$ bond (where X is generally a non-metal).
(P) one removal of one mole of water produces (Q)
(P) An oxyacid $\quad-\mathrm{H}_{2} \mathrm{O} \rightarrow \quad(Q)$ An oxyacid
Which of the following will not follow the above process?
A. $\mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}$
D. Both (b) and (c)

Answer: D

- Watch Video Solution

28. Oxyacids are acids that generally contain at least one $X-O H$ bond (where X is generally a non-metal).

Oxyacid which has same number of $X-H$ and $X-O H$ bonds is (where X is central atom) :
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
B. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
C. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: B

- Watch Video Solution

29. Oxiacid are compounds in which $X-O H$ bond is present where X is a non-metal generally.

For which of the following oxyacids all hydrogen atoms are not replaceable in nature?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: C

30. The formal charge of an atom in a polyatomic molecule or ion may be defined as the difference between the number of valence electrons of that atom in an isolated or free state and the number of electrons assigned to that atom in the Lewis structure. It is expressed as :
$\left[\begin{array}{l}\text { Formal charge [F.C] } \\ \text { on an atom in a Lewis } \\ \text { structure }\end{array}\right]=\left[\begin{array}{l}\text { Total number of valence } \\ \text { electrons in the free } \\ \text { atom }\end{array}\right]$
$-\left[\begin{array}{l}\text { Total number of non- } \\ \text { bonding (lone pair) } \\ \text { electrons }\end{array}\right]-\left(\frac{1}{2}\right)\left[\begin{array}{l}\text { Total number of } \\ \text { bonding shared } \\ \text { electrons }\end{array}\right]$
Select correct feature about CO_{3}^{2-} carbonate ion in one of the Lewis structure based on the presence of two single bonds and one double bond between carbon and oxygen atoms.
A. Total number of lone pairs = 8
B. Formal charge on two oxygen $=-1$ and one oxygen = zero
C. Oxidation number of $C=+4$ and formal charge on $C=$ zero
D. All are correct

Answer: D

- Watch Video Solution

31.

What is the difference between the oxidation state of phosphorous atom in (A) and (C) ?
A. 0
B. 1
C. 2
D. Can't be predicted

Answer: A

32. The hydrogen atoms connected in the form of - OH bonds with central atom in an oxyacid is called acidic hydrogen, Oxyacid contains at least one acidic hydrogen.

Number of moles of NaOH required for the complete neutralisation of one mole of acid is maximum for :
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
B. $\mathrm{H}_{3} \mathrm{PO}_{2}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $H_{4} P_{2} \mathrm{O}_{5}$

Answer: C

- Watch Video Solution

33. Oxyacids are the compounds of hydrogen, oxygen and generally a non-metal in which $X-O-H$ linkage is present.

In which at the following pair(s) $X-O-X$ linkage is present in both species?
A. $\left(\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}, \mathrm{P}_{2} \mathrm{O}_{7}^{4-}\right)$
B. $\left(\mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{Cl}_{2} \mathrm{O}_{7}\right)$
C. $\left(\mathrm{S}_{2} \mathrm{O}_{5}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right)$
D. $\left(P_{4} O_{10}, S_{3} O_{9}\right)$

Answer: A:D

- Watch Video Solution

34. Hydrogen bond is weak type of electrostatic force, in which hydrogen is connected between two more electronegative elements.

Hydrogen bonding is not responsible for formation of which of the following compound in given form?
A. $\mathrm{CH}_{4}(\mathrm{~s})$
B. Ice
C. $\mathrm{HCl}(\mathrm{s})$
D. Both (a) and (c)

Answer: D

- Watch Video Solution

35. An allene compound $C_{n} H_{y}$, has three nodal planes of π-bond in the molecular plane.

The value of $(n+y)$ is:
A. 8
B. 10
C. 12
D. 9

Answer: B

36. The degree of polarity of a covalent bond is given by the dipole moment (μ).

Identify the incorrect order of dipole moment in the following.
A. $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
B. $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}$
C. $\mathrm{HF}>\mathrm{HCl}$
D.

Answer: D

- View Text Solution

37. Different types of bond are formed in the chemical compound. These bond have different strength and bond energies associated with them.

These bond are formed with atoms in different enviroments.
Which of the following overlaping is involved in formation of only σ bond
A. s-p overlapping
B. p-d overlapping
C. d-d overlapping
D. p-p overlapping

Answer: A

- Watch Video Solution

38. Different types of bond are formed in the chemical compound. These bond have different strength and bond energies associated with them.

These bond are formed with atoms in different enviroments.
Which of the following hydrides is thermally least stale ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{Te}$
C. $\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{H}_{2} \mathrm{Se}$

Answer: B

- Watch Video Solution

39. The molecule in which central atom is associated with more than 8 electrons is known as hypervalent molecule and less than 8 electrons is known as hypovalent molecule.

Which of the following molecule is not having $d \pi-p \pi$ bonding?
A. SO_{2}
B. $P_{4} O_{10}$
C. PO_{4}^{-3}
D. $B_{3} N_{3} H_{6}$

Answer: D

40. The molecule in which central atom is associated with more than 8 electrons is known as hypervalent molecule and less than 8 electrons is known as hypovalent molecule.

Which of the following compound does not follow the octet rule?
A. $\mathrm{N}_{2} \mathrm{O}_{5}$
B. CH_{4}
C. $B e F_{4}^{2-}$
D. PCl_{5}

Answer: D

- Watch Video Solution

41. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$A \quad 1 s^{2} \quad 2 s^{2} \quad 2 p^{6}$
B $1 s^{2} \quad 2 s^{2} \quad 2 p^{6} \quad 3 s^{2} \quad 3 p^{3}$
C $1 s^{2} \quad 2 s^{2} \quad 2 p^{6} \quad 3 s^{2} \quad 3 p^{5}$
Stable form of C may be represented by the formula
A. C
B. C_{2}
C. C_{3}
D. C_{4}

Answer: B

D Watch Video Solution

42. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{lll}A & 1 s^{2} & 2 s^{2}\end{array} p^{6}$
B $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
C $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
The molecular formula of the compound formed from B and C will be
A. BC
B. $B_{2} C$
C. $B C_{2}$
D. $B C_{3}$

Answer: D

- Watch Video Solution

43. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.

A $\begin{array}{llll}1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
B $1 s^{2} \quad 2 s^{2} 2 p^{6} \quad 3 s^{2} 3 p^{3-}$
C $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
The bond between B and C will be
A. ionic
B. covalent
C. hydrogen
D. co-ordinate

Answer: B

- Watch Video Solution

44. Read the following short write-up and answer the questions at the end of it.

In certain polar solvents PCl_{5} undergoes an ionisation reaction in which
Cl^{-}ion leaves one PCl_{5} molecule and attach itself to another.
$2 \mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{4}^{+}+\mathrm{PCl}_{6}^{-}$
Number of lone pairs around phosphorus in $\mathrm{PCl}_{5}, \mathrm{PCl}_{4}^{+}$and PCl_{6}^{-}are respectively:
A. $0,1,2$
B. $0,0,0$
C. $1,2,3$
D. $0,2,1$

Answer: B

- Watch Video Solution

45. Hybridisation is the mixing of atomic orbital of comparable energy and the number of hybrid orbitals formed is equal to the number of pure atomic orbitals mixed up and hybrid orbitals are occupied by σ-bond pair and lone pair.
"The hybrid orbitals are at at angle of X° to one another". This statement is not valid for which of the following hybridisation?
A. $s p^{3}$
B. $s p^{2}$
C. $s p^{3} d^{2}$
D. $s p$

Answer: C

Watch Video Solution

Comperhension Type-2

1. A, B, C, and D four compounds.

$$
\begin{aligned}
& A^{\prime}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{'B}^{\prime} \quad 2 \times{ }^{\prime} \mathrm{A}^{\prime}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{'}^{\prime} \\
& C+\mathrm{O}^{\prime} \rightarrow \mathrm{D}^{\prime} \quad \mathrm{A}-\mathrm{O}^{\prime} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}
\end{aligned}
$$

' O ' is oxygen.
Oxidation state of central atom in compound ' C '?
A. +5
B. +4
C. +3
D. 0

Answer: A

1. (a) Extent of overlapping \propto strength of chemical bond.
(b) Extent of overlapping depends on two factors:
(i) Nature of orbitals - p, d and f are directional orbitals \rightarrow more overlapping s-orbitals \rightarrow non directional - less overlapping
(ii) Nature of overlapping -Co-axial overlapping - extent of overlapping more

Colateral overlapping - extent of overlapping less order of strength of Co-axial overlapping :p-p>s-p>s-s

The correct order of bond strength of σ bond is :
The correct order of bond strength of σ bond is :
A. $1 s-1 s>1 s-2 p_{x}>2 p_{x}-2 p_{x}$
B. $2 p-2 p>1 s-2 p>1 s-1 s$
C. $2 p-2 p=1 s-2 p=1 s-1 s$
D. Cant's be predicted

Answer: A

- View Text Solution

Comperhension Type-4

1. Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation, q and the bond length d for the bond. Unit of dipole moment is Debye. One Debye is equal to 10^{-18} esu-cm.

Dipole moment is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be used to disinguisd between cis- and trans- isomers, ortho-, meta - and para - forms of a substance, etc.

Among the following, which is a type of non-planar as well as non-polar compound?
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
B. ClF_{3}
C. XeF_{4}
D. $\mathrm{PF}_{3} \mathrm{Cl}_{2}$

Answer: A

- Watch Video Solution

Comperhension Type-5

1. The number of $\mathrm{P}-\mathrm{H}$ bonds (s) in $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$, respectively, is
A. 0, 1 and 2
B. 1, 0 and 2
C. 2, 1 and 0
D. 0,2 and 1

Answer: A

- Watch Video Solution

Comperhension Type-6

1. Compound 'X'is 'ic' acid of sulphur (S) :

Note : 'S' stands for Sulphur and 'O' stands for oxygen.
Which of the following pair of oxyacid have same basicity ?
A. X and B
B. B and I
C. X and E
D. All of these

Answer: D

D View Text Solution

Comperhension Type-7

1. Acids containing oxygen are called oxyacids. Prefix 'Pyro's is used when two units of a parent acid condense together with removal of one water molecule. When one of a parent acid on an average loses a water molecule producing an acid having at least one acidic hydrogen, the resulting acids is called meta -acid Which of the following is correct for $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$?
A. Three $P-O-P$ bonds are present in it.
B. Oxidation state of P is +5 .
C. Three $p \pi-d \pi$ bonds are present in it.
D. All of the above

Answer: D

D Watch Video Solution

Comperhension Type-8

1. An element has 6 electrons in its valence shell and the principal quantum number of last electron is 3 . Its trioxide when combines with water gives acid (A). Answer the following questions :
$2 \times \mathrm{A}-\mathrm{H}_{2} \mathrm{O}+$ "Oxygen" $\rightarrow{ }^{\prime} \mathrm{X}^{\prime}$
How may σ bonds are present in ' X '?
A. 11
B. 13
C. 7
D. 5

Answer: A

Comperhension Type-9

1. Spin pairing and overlapping theory cannot explain the equal bond length as well as equal bond angles in CH_{4} molecule. To explain the above facts we are in need of hybridization theory. Hybridization is the mixing of atomic orbitals of comparable energy and the numbe of atomic orbitals involved is equal to the number of hybrid orbitals formed of equal energy.

According to hybridization theory, the $\% s$ character in $s p^{3}$ hybrid orbitals is :
A. 25%
B. 33.33 \%
C. 20 \%
D. 16.66 \%

Answer: A

- Watch Video Solution

Comperhension Type-10

1. The trigonal bipyramidal is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in ClF_{3} molecule. Lone pairs occupy two of the corners, and F atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure below.
(a) The most stable structure will be the one of lowest energy, that is the one with the minimum repulsions between the five orbitals. The greatest repulsions occurs between two lone pairs. Lone pair- bond pair repulsions are next strongest, and bond pair-bond pair repulsions the weakest.

A rule of thumb can be theorised, that the position having minimum
repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.
(b) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position.
(c) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry.
(d) In case of $s p^{3} d^{2}$ hybridization lone pairs should be placed opposite to each other because all the corners are identical.

Geometry (i.e., arrangement of electron pairs around central atom) of ClOF_{3} is similar to the :
A. XeF_{4}
B. SOCl_{2}
C. I_{3}^{-}
D. ClO_{4}^{-}

Answer: C

D View Text Solution

1. Chemical bonding between two atoms is necessarily associated with an electrical moment arising out of the difference in electroegativity of two atoms. This means that every bond carries with it an electrical moment called the "bond moment". The dipole moment of a molecule is really the vectorial sum of the individual bond moment present in it. To compute the dipole moment it is necessary to find out the values of various bond moment. In the following table, dipole moment of different bonds are as given.

Bond $\quad \mathrm{H}-\mathrm{C} \quad \mathrm{C}-\mathrm{Cl} \quad \mathrm{C}=0$
Bond moments $0.4 D \quad 1.5 D \quad 2.5 D$
The group moments of few groups as given

Group	NO_{2}	OH	CN	CH_{3}

Direction of dipole Towards N Towards O Towards N Away from CH_{3}
$\begin{array}{lllll}\text { Dipole moment } & 4 D & 1.6 D & 3.8 D & 0.4 D\end{array}$
The bond angle in $H_{2} S$ is 97° and its dipole moment is 1.5 D . The $S-H$ bond distance is 0.15 nm . Therefore, approximate percentrage ionic cjaracter pf S - H bond is (neglect the effect of dipole moment of lone
pair on sulphur atom in $\mathrm{H}_{2} \mathrm{~S}$).
(Given : $\left[\cos 97^{\circ}=-0.121\right.$ and $\left.\sqrt{0.88}=0.94\right]$)
A. 32%
B. 16%
C. 84 \%
D. 10%

Answer: B

- Watch Video Solution

Comperhension Type-12

1. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of a "charge cloud" that repel one another nad stay as far apart as possible, thus causing
molecules to assume specific shapes.
The repulsive interactions of electron pairs decrease in the order:
Lone pair - Lone pair gt Lone pair - Bond pair gt Bond pair - Bond pair These repulsive effects result in deviations from idealised shapes and alteration in bond angles in molecules.

Among the following molecules.
(P) $\mathrm{XeO}_{3}(\mathrm{Q}) \mathrm{XeOF}_{4}$
(R) $\mathrm{XeO}_{2} \mathrm{~F}_{2}(\mathrm{~S}) \mathrm{XeF}_{5}$

Those having different molecular geometry but same number of lone pairs on Xe are :
A. P, Q and R only
B. P, Q and S only
C. Q. R and S only
D. P, Q, R and S

Answer: D

1. Hybridization is a concept of mixing or merging of orbitals of same atom with slight differences in energies to redistribute their energies and give new orbitals of equivalent energy called 'Hybrid Orbitals'. Hybridisation is a hypothetical concept and never actually exists.

One should not be confused by a common misconception that hybridization is responsible for particular geometry. Geometry of a molecule is decided by energy factor not by hybridization. It is the orbital (which may be half filled, completely filled or empty) that undergoes hybridization and not the electron. The bond angles in hybridised orbitals are influenced by presence of lone pair, presence of multiple bonds, presence of one electron and electronegativity of atom.

An increase in s-character of hybridised orbitals results in decrease in size of orbitals. This results in decrease in bond length and increase in energy. Which of the following statements is true?
A. The state of hybridization of boron and oxygen atoms in boric acid are $s p^{3}$ and $s p^{2}$ respectively.
B. NH_{3} and $\left[\mathrm{BF}_{4}^{-}\right]$have same bond angles of $109^{\circ} 28^{\prime}$
C. $S F_{6}$ and $P F_{6}^{-}$both have undistorted octahedral structures.
D. The hybridization of P in P_{4} molecules is the same as in S in SO_{3} molecule.

Answer: C

- Watch Video Solution

Comperhension Type-14

1. Oxyacids are the compounds in which they have at least one $X-\mathrm{OH}$ bond where X is generally a non-metal. Consider the acids having general formula $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{y}$ where y lies between 3 to 7 having even values only. Total number of oxygen atoms connected directly with sulphur atoms only is :
A. $y+2$
B. $y-2$
C. y
D. $\frac{y-2}{2}$

Answer: C

- Watch Video Solution

Comperhension Type-15

1. Compound which is not an oxyacid is :
A. $\mathrm{B}(\mathrm{OH})_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}$
D. HClO_{2}

Answer: C

Comperhension Type-16

1. Oxiacid are compounds in which $X-O H$ bond is present where X is a non-metal generally.

Which of the following oxy-salt does not exist?
A. Sodium hydrogen phosphate
B. Sodium hydrogen hypophosphite
C. Potassium hydrogen sulphite
D. Sodium metaborate

Answer: B

- View Text Solution

1. The formal charge of an atom in a polyatomic molecule or ion may be defined as the difference between the number of valence electrons of that atom in an isolated or free state and the number of electrons assigned to that atom in the Lewis structure. It is expressed as :
$\left[\begin{array}{l}\text { Formal charge [F.C] } \\ \text { on an atom in a Lewis } \\ \text { structure }\end{array}\right]=\left[\begin{array}{l}\text { Total number of valence } \\ \text { electrons in the free } \\ \text { atom }\end{array}\right]$
$-\left[\begin{array}{l}\text { Total number of non- } \\ \text { bonding (lone pair) } \\ \text { electrons }\end{array}\right]-\left(\frac{1}{2}\right)\left[\begin{array}{l}\text { Total number of } \\ \text { bonding shared } \\ \text { electrons }\end{array}\right]$
Find the formula charge on " O " atom in given structure (I) and (II) respectively:
(I) : O. $-C \equiv N$:
(II) $: O . .=C=N$:
A. $-1,-1$
B. $-2,0$
C. $-1,0$
D. $0,-1$

Answer: C

- Watch Video Solution

Comperhension Type-18
1.

Metaphosphoric acid exists in polymeric form as $\left(\mathrm{HPO}_{3}\right)_{n}$, then predict the number of $P-O-P$ linkage in metaphosphoric acid if $(n>2)$.
A. n
B. $(n-1)$
C. $(n+1)$
D. Can't be predicted

Answer: A

1. The hydrogen atoms connected in the form of -OH bonds with central atom in an oxyacid is called acidic hydrogen, Oxyacid contains at least one acidic hydrogen.

Select the oxyacid in which number of atoms having maximum oxidation state are highest among the given molecules.
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
B. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$
C. $H_{6} P_{6} O_{18}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

Answer: C

- Watch Video Solution

1. Oxyacids are the compounds of hydrogen, oxygen and generally a nonmetal in which $X-O-H$ linkage is present.

In which of the following oxyacid(s) X-O-H linkage is not present?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. $\mathrm{H}_{3} \mathrm{PO}_{5}$
C. HClO_{4}
D. HNO_{4}

Answer: D

- Watch Video Solution

Comperhension Type-21

1. Hydrogen bond is weak type of electrostatic force, in which hydrogen is connected between two more electronegative elements.

Select the correct representation of H -bonding :
A. $\mathrm{H}-\mathrm{O}-\mathrm{H}-\mathrm{H}-\mathrm{N} \mid \mathrm{H}$

$\mathrm{CH}_{2}-\mathrm{OH}$

|
B. $\mathrm{HC}-\mathrm{O}-\mathrm{H}-\mathrm{CH}_{3}-\mathrm{O}-\mathrm{H}$
|
$\mathrm{H}_{2} \mathrm{C}-\mathrm{OH}$
C.
D. $\mathrm{H}-\stackrel{\text { | }}{\text { | }} \stackrel{\text { | }}{\mathrm{O}}-\mathrm{H}-\mathrm{N} \mid \mathrm{H}$

Answer: D

- View Text Solution

Comperhension Type-22

1. An allene compound $C_{n} H_{y}$, has three nodal planes of π - bond in the molecular plane.

Which statement is correct about the given allene?
A. Nodal planes of two π - bonds will be present in a plane that do not contain σ-bond's electron density.
B. Allene is non-planar.
C. First and last carbon are in different plane.
D. Total five π-bonds are present in the molecule.

Answer: D

(Watch Video Solution

Comperhension Type-23

1. The degree of polarity of a covalent bond is given by the dipole moment (μ).

Which of the following chemical species is non-polar?
A. $P F_{2} C l_{3}$
B. NH_{3}
C. SeCl_{4}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Answer: A

- Watch Video Solution

Comperhension Type-24

1. Different types of bond are formed in the chemical compound. These bond have different strength and bond energies associated with them.

These bond are formed with atoms in different enviroments.
Which of the following bond has highest bond energy ?
A. σ-bond
B. π-bond
C. Hydrogen bond
D. none of these

- Watch Video Solution

Comperhension Type-25

1. The molecule in which central atom is associated with more than 8 electrons is known as hypervalent molecule and less than 8 electrons is known as hypovalent molecule.

Which of the following ion has complete octet as well as inert gas configuration?
A. B^{+3}
B. Al^{+3}
C. Ga^{+3}
D. $G e^{+4}$

Answer: B

Comperhension Type-26

1. The electronic configuration ofhte elements. A, B and C are given below.

Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
B $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
C $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
Stable form of A may be represented by the formula.
A. A
B. A_{2}
C. A_{3}
D. A_{4}

Answer: A

1. Read the following short write-up and answer the questions at the end of it.

In certain polar solvents PCl_{5} undergoes an ionisation reaction in which
Cl^{-}ion leaves one PCl_{5} molecule and attach itself to another.

$$
2 \mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{4}^{+}+\mathrm{PCl}_{6}^{-}
$$

Select incorrect statement(s).
A. $P C l_{5}$ has $s p^{3} d^{2}$ hybridisation
B. Hybridisation changes from $s p^{3} d$ to $s p^{3} d^{2}$ in $\left(\mathrm{PCl}_{6}^{-}\right)$and to $s p^{3}$ in $\left(\mathrm{PCl}_{4}^{+}\right)$
C. Structure changes from trigonal bipyramidal to tetrahedral in $\left(\mathrm{PCl}_{4}^{+}\right)$and octahedral in $\left(\mathrm{PCl}_{6}^{-}\right)$
D. $\mathrm{CIPCI}\left(\right.$ in PCl_{4}^{+}) < CIPCl (largest angle in PCl_{6}^{-})

Answer: A

Comperhension Type-28

1. Hybridisation is the mixing of atomic orbital of comparable energy and the number of hybrid orbitals formed is equal to the number of pure atomic orbitals mixed up and hybrid are occupied by σ-bond pair and lone pair.

Which of the following geometry is most likely to not form from $s p^{3} d$ hybridisation of the central atom.
A. Linear
B. Tetrahedral
C. T-Shaped
D. See-Saw

Answer: B

Match the Column Type

1. Match the following columns :

- View Text Solution

2. Match the following columns :

- View Text Solution

3. Match the following columns :

- View Text Solution

4. Match the following columns :
5. Match the following columns :

- View Text Solution

6. Match the following columns :

- View Text Solution

7. Match the following lists :

- View Text Solution

8. Match the following lists :

- View Text Solution

9. Match the following columns :

- View Text Solution

Subjective Type

1. The gaseous potassium chloride molecule has a measured dipole moment of $10.0 D$, which indicates that it is a very polar molecule. The
separation between the nuclei in this molecule is $2.67 \times 10^{-8} \mathrm{~cm}$. Calculate the percentage ionic character in KCl molecule.

- Watch Video Solution

2. Find out the ratio of sigma and π - bond in $C_{2}(C N)_{4}$.

- Watch Video Solution

3. Number of lone pairs of electrons in P_{4} molecule $=$ \qquad

- Watch Video Solution

4. How many of the following molecules do not contain peroxide linkage?
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{H}_{3} \mathrm{PO}_{5}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

- Watch Video Solution

5. How many $109^{\circ} 28^{\prime}$ bond angles in CH_{4} molecules?

- Watch Video Solution

6. Find the number of $p \pi-d \pi$ bonds in $N_{2} O$.

- Watch Video Solution

7. Find the total number of polar molecules
$S F_{4}, \mathrm{PCl}_{5}, \mathrm{PCl}_{3} \mathrm{~F}_{2}, \mathrm{SF}_{6}, \mathrm{XeF}_{2}, \mathrm{NO}_{2}^{+}, \mathrm{BF}_{2} \mathrm{Cl}, \mathrm{BF}_{3}, \mathrm{PF}_{3} \mathrm{Cl}_{2}$

- Watch Video Solution

8. Find the number of molecules having two lone pair of electrons on central atom.
$I_{3}^{+}, \mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2}^{-}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NF}_{3}$
9. Find the number of species having more than 4 bond angles.
$\mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{XeF}_{6}, \mathrm{XeF}_{4}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{SOCl}_{2}, \mathrm{POCl}_{3}$

- Watch Video Solution

10. Find the sum of number of excited state in each molecule during the formation of the following.
$\mathrm{SO}_{3}, \mathrm{CH}_{4}, \mathrm{OF}_{2}, \mathrm{SF}_{2}, \mathrm{XeF}_{4}, \mathrm{POCl}_{3}$

- Watch Video Solution

11. Find the number of $s p^{3} d$ hybridised species.
$\left[\mathrm{XeF}_{4}\right]^{2+}\left[\mathrm{ClF}_{4}\right]^{+}$
$\left[\mathrm{SF}_{5}\right]^{+} \quad\left[\mathrm{IF}_{2}\right]^{-}$
$\left[\mathrm{SiF}_{5}\right]-\quad\left[\mathrm{XeF}_{2}\right]$
$\left[\mathrm{SF}_{2}\right]^{2-} \quad\left[\mathrm{PF}_{2}\right]^{3-}$
12. Find the number of acids which have tetrahedral shape w.r.t. central atom.
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{HClO}_{4}, \mathrm{HClO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}$

- Watch Video Solution

13. Find the number of compounds having zero dipole moment :
$\mathrm{BF}_{3}, \mathrm{CCl}_{4}, \mathrm{XeF}_{6}, \mathrm{SF}_{6}, \mathrm{PCl}_{2} \mathrm{~F}_{3}, \mathrm{PClF}_{4}, \mathrm{CHCl}_{3}, \mathrm{HF}, \mathrm{SO}_{3}, \mathrm{SO}_{2}$

- Watch Video Solution

14. Calculate $p \pi-d \pi$ bonds present in $\mathrm{SO}_{4}^{2-}, \mathrm{NO}_{3}^{-}$and trimer of SO_{3}.

- Watch Video Solution

15. 2 moles of sulphuric acid $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}{ }^{\prime} X^{\prime} \xrightarrow{[\mathrm{O}]} Y^{\prime}$.

Calculate the difference between oxidation state of sulphur in between compounds 'X' and 'Y'.

- Watch Video Solution

16. How many molecules have two lone pairs on the central atom ?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{SF}_{4}, \mathrm{I}_{3}^{-}, \mathrm{XeF}_{5}^{-}, \mathrm{XeOF}_{4}, \mathrm{PCl}_{3}, \mathrm{NCl}_{3}, \mathrm{ClF}_{3}, \mathrm{XeF}_{2}, \mathrm{NO}_{2}^{-}, \mathrm{CO}_{3}^{2-}$

- Watch Video Solution

17. Find the number of planar molecules.
(a) $B F_{3}$
(b) BCl_{3}
(c) CO_{3}^{2-}
(d) SO_{3}
(e) $\mathrm{NH}_{3} \quad(f) \quad \mathrm{NCl}_{3}$
(g) PCl_{3} (h) PF_{3}

D Watch Video Solution

18. Find the number of compounds having $s p^{3}$ hybridised central atom among the following species:
$\left[\mathrm{PCl}_{4}\right]^{-},\left[\mathrm{XeF}_{5}\right]^{-}, \mathrm{SF}_{4}, \mathrm{PCl}_{5}, \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{SOCl}_{2}$

- Watch Video Solution

19. Find the number of species having bond angle less than $109^{\circ} 28^{\prime}$
$\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{SiH}_{4}, \mathrm{NH}_{4}^{+}, \mathrm{PF}_{3}, \mathrm{NH}_{2}^{-}, \mathrm{SO}_{3}, \mathrm{NO}_{2}^{+}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{4}^{2-}$

- Watch Video Solution

20. How many of the elements given below use their atomic orbitals in their excited state for hybridisation forming their stable compounds with hydrogen. Coordination number of central atom is less than or equal to
21.

C, Si, N, O, P, Be

- Watch Video Solution

21. Find the number of $p \pi-d \pi$ bonds in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

22. Find the number of molecules having peroxy linkage.
(a) Marshall's shell
(b) Caro's acid
(c) Perchloric acid
(d) Chloric acid
(e) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(f) $\mathrm{H}_{3} \mathrm{PO}_{5}$
(g) $\mathrm{K}_{3} \mathrm{CrO}_{8}$
(h) CrO_{5}

- Watch Video Solution

23. How may of the following molecules have a definite geometry?
$\mathrm{CCl}_{4}, \mathrm{NH}_{3}, \mathrm{CHCl}_{3}, \mathrm{BF}_{2} \mathrm{Cl}, \mathrm{SO}_{3}, \mathrm{SF}_{6}, \mathrm{OSF}_{4}, \mathrm{PCl}_{5}, \mathrm{ClF}_{3}$

- View Text Solution

24. Select number of molecules/ions in which central atom uses its $d_{z^{2}}$ orbital in hybridisation.
$\mathrm{XeF}_{6}, \mathrm{SOF}_{4}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{BrF}_{3}, \mathrm{IF}_{4}^{-}, \mathrm{COCl}_{2}, \mathrm{PCl}_{6}^{-}$

- Watch Video Solution

25. Find the value $: \frac{\text { total number of } \sigma \text { bond }}{\text { total number of } \pi \text { bond }}$ for $P_{4} O_{10}$.

- Watch Video Solution

26. Find the number of σ bond and lone pair respectively in hydrated borax.

- Watch Video Solution

27. Find the total number of non-polar compounds among the following.
$\mathrm{BCl}_{2} \mathrm{~F}^{2} \mathrm{BF}_{3}, \mathrm{SF}_{6}, \mathrm{SOCl}_{2}, \mathrm{COCl}_{2}, \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}, \mathrm{PCl}_{3} \mathrm{~F}_{2}, \mathrm{PF}_{3} \mathrm{Cl}_{2}$

- Watch Video Solution

28. Find the total number of species which are planar.
$I_{3}^{+}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{C}_{2} \mathrm{~F}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{BrF}_{4}^{-}, \mathrm{SO}_{3}, \mathrm{NOCl}, \mathrm{ClF}_{3}, \mathrm{~F}_{2} \mathrm{CO}, \mathrm{XeF}_{5}^{-}$

- Watch Video Solution

29. Find the number of acid(s) from the following in which $X-H$ bond is/are present? [$\mathrm{X}=$ central atom]
$\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{10}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

30. Find the number of species having two $p \pi-d \pi$ bonds.
$\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{XeOF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{POCl}_{3}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$

- Watch Video Solution

31. Find the number of compounds containing $X-X$ linkage, where ' X ' is the central atom.
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{3}$ (unsymmetrical),
$\mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{P}_{4} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$

- Watch Video Solution

32. Find the maximum number of identical bond angles in $\mathrm{CH}_{2} \mathrm{~F}_{2}, \mathrm{CCl}_{4}, \mathrm{XeF}_{4}$ and ClF_{3} respectively.

- Watch Video Solution

33. If the oxoacid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ contains P - $\mathrm{O}-\mathrm{P}$ linkage, find the difference in oxidation state of two phosphorus atoms.

- Watch Video Solution

34. $2 \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{2} \mathrm{O} \rightarrow X \rightarrow Y$

How many π bonds are present in Y ?

Watch Video Solution

35. Which of the following contains peroxy linkage?
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{H}_{3} \mathrm{PO}_{5}, \mathrm{HNO}_{4}, \mathrm{HClO}_{4}, \mathrm{HIO}_{4}, \mathrm{HClO}_{3}$

- Watch Video Solution

36. Total number of 60° bond angles present in P_{4} are :

- Watch Video Solution

37. How many molecules or ions have minimum two lone pairs on the central atom?

$$
\begin{array}{lllll}
\mathrm{H}_{2} \mathrm{O} & \mathrm{SF}_{4} & \mathrm{I}_{3}^{-} & \mathrm{XeF}_{5}^{-} \\
\mathrm{XeF}_{4} & \mathrm{XeO}_{2} \mathrm{~F}_{2} & \mathrm{ClF}_{3} & \mathrm{NO}_{3}^{-}
\end{array}
$$

- Watch Video Solution

38. How many molecules or ions are linear in shape?
$\mathrm{BeCl}_{2} \quad \mathrm{XeF}_{2} \quad \mathrm{ClF}_{2}^{-} \quad \mathrm{I}_{3}^{-}$
$\begin{array}{lll}I_{3}^{+} & \mathrm{BF}_{3} & \mathrm{SnCl}_{2}\end{array}$

- Watch Video Solution

39. Find the number of species where $d_{x^{2}-y^{2}}$ orbital participate in hybridisation.
$\begin{array}{lllll}\mathrm{XeF}_{6} & \mathrm{SF}_{6} & \mathrm{IF}_{7} & \mathrm{XeO}_{3}\end{array}$
$\begin{array}{ll}P C l_{5} & P F_{5}\end{array}$

- Watch Video Solution

40. find the total numbers of compounds which contain S-S linkage.
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

Watch Video Solution

41. Find the total number of σ bonds in CCl_{4} (Carbon tetra chloride).

- Watch Video Solution

42. Find the total number of compounds or ions having different bond lengths between identical atoms.

$$
P F_{2} C l_{3}, P F_{3} C l_{2}, S F_{4}, B r F_{5}, S b F_{5}^{2-}, S F_{6}, I F_{7}
$$

- Watch Video Solution

43. Find the total number of species having linear shape.
$\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{SnCl}_{2}, \mathrm{HgCl}_{2}, \mathrm{HCN}, \mathrm{O}_{3}, \mathrm{OF}_{2}, \mathrm{XeF}_{2}$
44. find the total number of compounds having non-zero dipole moment.

1,4-cyanobenzene,1,2-dihydroxy bezene, 1,4-dichlorobenzene, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~F}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{2}, \mathrm{PF}_{2} \mathrm{Cl}_{3}, \mathrm{PF}_{3} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{SF}_{6}, \mathrm{XeF}_{4}, \mathrm{NO}_{2}, \mathrm{SO}_{2}$

- Watch Video Solution

45. find the total number of compounds containing $\mathrm{X}-\mathrm{O}-\mathrm{X}$ linkage. (where

| X | is the central | atom) |
| :--- | :---: | :---: | :---: |
| $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{C}_{3} \mathrm{O}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{Cl}_{2} \mathrm{O}_{7},\left(\mathrm{HPO}_{3}\right)_{3},\left(\mathrm{SO}_{3}\right)$ | | |

- Watch Video Solution

46. Find the number of molecules which are planar
(a) ClF_{3}
(b) $S F_{4}$
(c) XeF_{6}
(d) XeF_{2}
(e) XeF_{4}
(f) $\mathrm{H}_{2} \mathrm{O}$
(g) $\mathrm{H}_{2} \mathrm{~S}$
(h) NH_{3}
(i) PH_{3}
(j) PCl_{5}
(k) PCl_{3} (l) OCl_{2}

- Watch Video Solution

47. Amongst the following oxygen containing species, mark those which have $X-O-X$ linkage.

$$
\left(\mathrm{BO}_{2}^{-}\right)_{3}, \mathrm{Cl}_{2} \mathrm{O}_{7}, P_{4} \mathrm{O}_{6}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{~S}_{3}, \mathrm{O}_{9}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}
$$

The number of such species are :

- Watch Video Solution

48. Find the sum of triangular BO_{3} unit and BO_{4} tetrahedral unit in borax.
[If your answer is $6 \mathrm{BO}_{3}$ unit and $3 \mathrm{BO}_{4}$ unit then write 6+3=9]

- Watch Video Solution

49. Total number of $C N^{-}$ion that are present in ICN(liq.) \{Hint : ICN(I) is the empirical formula.]

- Watch Video Solution

50. The dipole moment of HBr is $2.6 \times 10^{-30} \mathrm{Cm}$ and interatomic spacing is 1.41 A What is the percent ionic character of HBr
(b) A diatomic molecule has $\mu=1.2 D$ Its bond distance is 1.0 A What fraction of electronic charge exists on each atom?
(c) In water, ($\mathrm{H}-\mathrm{O}-\mathrm{H}$) bond angle is 105° The distance between $(\mathrm{O}-\mathrm{H})$ is 0.94 A . μ of $\mathrm{H}_{2} \mathrm{O}=1.85 \mathrm{D}$ Determine the magnitude of the charge on the oxygen atom in water molecule and hydrogen atom
(d) $B I_{3}$ is a symmetrical planar molecule, all the $(B-1)$ bonds lie at 120° of each other. The distance between the I atoms is 3.54 A the radius of covalently bonded I atom is 1.33 A Estimate the covalent radius of boron
(e) Calculate the dipole moment of the following compounds

$\mathrm{O}_{2} \mathrm{~N}$

- Watch Video Solution

51. Find out the total number of species containing, $E-E\left(N-\frac{N}{P}-P\right)$ linkage.
$\left(\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{sym}),\right),\left(\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5},\right),\left(\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5},\right),\left(\mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{P}_{4} \mathrm{O}_{10}\right.$

- Watch Video Solution

52. The number of water molecule(s) directly bonded to the metal centre in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is-
53. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5}, is

- Watch Video Solution

54. Number of peroxy linkage in a $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (Marshall acid) molecule is :

- Watch Video Solution

55. Answer the following questons about the strucute of the dimer of phosphorous pentaoxide
(a) The number of P - O linkage which have bond length equal to $1.43 \AA$.
(b) The number of covalent bonds which have bond length equal to $1.60 \AA$
(c) The number of $P-O-P$ linkage.
(d) The number of lone pair(s) of electrons on each phosphorous atom.
56. Give the number of characteristic bond(s) found in the various oxyacids of phosporous as given below.
(a) Number of $P-O-P$ bond(s) in tricyclometaphosphoric acid.
(b) Number of P - P bond(s) in hypophosphoric acid
(c) Number of $P-O H$ bond(s) in pyrophosphoric acid.
(d) Number of $P-H$ bond(s) in hypophosphorous acid.

- Watch Video Solution

57. For a given molecule :
$C F_{2}=C=C=C=C H-H_{3}$ Itbrrgt find the maximum number of atoms which may lie in the same plane.

- Watch Video Solution

58. How many cidic hydrogen is/are present in $\mathrm{CsH}_{2} \mathrm{PO}_{2}$?
59.

Monomeric meta phosphoric acid $+\mathrm{H}_{2} \mathrm{O} \downarrow(X) \xrightarrow{+[\mathrm{OD}}\left(\mathrm{Z}^{\prime}\right) 2(X) \xrightarrow{-\mathrm{H}_{2} \mathrm{O}}(\mathrm{Y}) \xrightarrow{+[\mathrm{O}]}(\mathrm{Z})$ How many ' π ' bonds are present in $(Z$ ') and (Z) ?

- Watch Video Solution

60. Two molecules of oil of vitriol (ic-acid of sulphur) $-\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \rightarrow(X)$. How many $s p^{3}$ hybridised atoms are present in compound (X)?

- Watch Video Solution

61. Find the number of σ bond and π bonds present in Marshall's acid?

- Watch Video Solution

62. The number of species which consists of $s p^{3} d$ hybridised central atom for the underlined atoms in the following species/molecules is/are :
$\underline{X}^{\mathrm{X}} \mathrm{F}_{4}, \underline{\mathrm{I}} \mathrm{CI}_{2}^{\Theta}, \underline{\mathrm{X}} e O_{3}, F_{2}, \underline{\mathrm{P}} \mathrm{Cl}_{4}^{\oplus}, \underline{\mathrm{P}} \underline{C l}_{6}^{\Theta} \underline{S F}_{4}, \underline{\mathrm{SO}} \mathrm{F}_{4}, \underline{\mathrm{X}} e O F_{4}$

- Watch Video Solution

63. The number of molecules is/are pyramidal in shape :
$\mathrm{XeO}_{3}, \mathrm{NCl}_{3}, \mathrm{ClF}_{3}, \mathrm{P}\left(\mathrm{SiH}_{3}\right)_{3}, \mathrm{~N}\left(\mathrm{SiH}_{3}\right)_{3}$

- Watch Video Solution

64. Find the difference of the oxidation state of S -atoms in sodium pyrosulphite.

- Watch Video Solution

65. Among the following, find the number of acid(s) which are having hypo prefix in it's name from the following. $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{HClO}_{3}, \mathrm{HClO},(\mathrm{HNO})_{2}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$

- Watch Video Solution

$\begin{array}{lll}2 \mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{O} & 2 \mathrm{H}_{2} \mathrm{O}\end{array} \mathrm{H}_{2} \mathrm{O}$
66. $\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow \mathrm{H}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \rightarrow \mathrm{H}_{6} \mathrm{P}_{4} \mathrm{O}_{13} \rightarrow-2 \mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$

From the above process, find the total number of $P-O-P$ linkage in $H_{6} \mathrm{P}_{4} \mathrm{O}_{13}$.

- Watch Video Solution

67. Find the number of dibasic oxyacids in the following:
$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{BO}_{3}$
Dibasic oxo-acids are $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$.

- Watch Video Solution

68. Total number of per or peroxy acids containing $X-O-O-X$ linkage (where X is central atom)
$\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

- Watch Video Solution

69. Number of orbitals of $3^{\text {rd }}$ shell that are used by central atom in hybridisation in the formation of $S F_{6}$

- Watch Video Solution

70. Total number of $s p^{3}$ hybridised atom(s) in given hydrocarbon.
$\left(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{CH}(\mid),\left(\mathrm{CH}_{3}\right):\right\}$

- Watch Video Solution

71. Identify the species having ionic bond as well as $p \pi-d \pi$ type of bonds $\mathrm{CsClO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{RbNO}_{3}$, $\mathrm{SO}_{3}, \quad \mathrm{KHCO}_{3}, \quad \mathrm{CaCO}_{3}$, AlCl_{3}

- Watch Video Solution

72. Find number of planar species out of $\mathrm{SF}_{2}, \mathrm{SF}_{4}, \mathrm{SF}_{6}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$.

- Watch Video Solution

73. Find the number of species in which $d \pi-p \pi$ bonds are present?
$\mathrm{ClO}_{3}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$

- Watch Video Solution

74. The species $\left[M L_{x}\right]^{-}$is planar with 7 pairs of electrons around ' M ' in the valence shell. The value of ' x ' is :
75. Find the number of species which have net zero dipole moment $\mathrm{PCl}_{5}, \mathrm{SF}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SnCl}_{2}, \mathrm{Cl}_{2}$

- Watch Video Solution

76. Find the maximum number of plane having maximum number of atoms in CH_{4}.

- View Text Solution

77. How many of the following tetraatomic molecule or ions are planar or non-planar as well as polar?
$\mathrm{HClO}_{3}, \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}, \mathrm{SF}_{6}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{SO}_{3}, \mathrm{SnCl}_{3}^{-}$

- Watch Video Solution

78. Find the maximum number of planes having maximum number of all same atoms in $S F_{6}$.

- View Text Solution

79. The maximum number of planes having maximum number of identical atoms in PCl_{5} will be.

- View Text Solution

80. Find the number of $S-S$ linkage in polythionic acid and having formula of $\mathrm{H}_{2} \mathrm{~S}_{9} \mathrm{O}_{6}$.

- Watch Video Solution

81. How may type of following bonds are present in solid NaHSO_{4} ?
(a) Hydrogen bond
(b) Ionic bond
(c) $d \pi-p \pi$ bond
(d) $p \pi-d \pi$ bond
(e) σ-bond ($s p^{3}-s$ type of overlap)
(f) σ-bond ($s p^{3}-s p^{2}$ type of overlap)

- Watch Video Solution

82. Find the minimum number of identical angles in $I F_{7}$.

Watch Video Solution

83. The maximum number of $d \pi-p \pi$ can be formed by Xe in its compound is :

- Watch Video Solution

84. Find the number of oxide(s) which are more acidic than SO_{3}.
$\mathrm{SO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}$
85. Find the number of non-planar and polar chemical species(s) in the following :
$\mathrm{SF}_{6}, \mathrm{BrF}_{3}, \mathrm{TeF}_{6}, \mathrm{PCl}_{6}^{-}, \mathrm{XeO}_{6}^{4-}$

- Watch Video Solution

86. $F N_{3}$ is one of the most explosive and thermally unstable covalent azide known.

$$
\mathrm{HN}_{3}+\mathrm{F}_{2} \xrightarrow{\text { low pressure }} \mathrm{FN}_{3}
$$

Find the maximum number of atoms in one plane of FN_{3}.

- Watch Video Solution

87. Find the total number of atoms present in a compound of xenon where oxygen and fluorines are present in 1:2 ratio and compound is non-polar.

- Watch Video Solution

88. Find the total number of statements which are incorrect?
(a) Due to hydrogen bonding HI have higher boiling point than HCl .
(b) If a molecule is planar than it will be non-polar always.
(c) Among $\mathrm{O}, \mathrm{Si}, \mathrm{Cl}$ and F , fluorine has highest $\mathrm{I} . E_{1}$.
(d) In diamond, fullerene and graphite each carbon has equal covalency.
(e) Orbitals which are non-directional can only form pie bond.

- Watch Video Solution

89. How many pairs out of following have equal number of lone pairs on central atom?
$\mathrm{XeF}_{5}^{+}, \quad \mathrm{SO}_{2} \mathrm{Cl}_{2}, \quad \mathrm{NH}_{2}^{-}, \quad \mathrm{XeF}_{4}$

- Watch Video Solution

90. If in $\mathrm{XeO}_{2} \mathrm{~F}_{2}$, two oxygen atoms are replaced with fluorine atoms, then, number of properties which will be changed out of following : (covalency of xenon remaining same)
(a) Geomery of molecule
(b) Bond angles
(c) Hybridisation of molecule
(d) Number of lone pairs on xenon
(e) Total number of σ bonds

- Watch Video Solution

91. If x is the number of $C-C$ sigma bonds in C_{60} (fullerene) and y is number of pentagonal rings in C_{60} then final out the value of $(x+y)$.

- Watch Video Solution

92. Find the total number of compounds/species which have all the atoms in one plane.
$\mathrm{SOF}_{4}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{CH}_{3}^{\oplus}$

- Watch Video Solution

93. Find the number of properties which are changed for the $\mathrm{CH}_{3}^{\oplus} \rightarrow \mathrm{CH}_{3}^{\Theta}$
(a) Hybridisation
(b) Bond angle
(c) Shape of ions
(d) Total number of electrons
(e) Total number of atoms present in an ion

- Watch Video Solution

94. Total number of oxyacids in which, the central atom is in it's maximum oxidation state?

Phosphoric acid, sulphuric acid, Caro's acid, dithionic acid, Marshall's acid.
95. Find the number of chemical species which are planar and ' d ' orbital of underlined atom participate in hybridisation as well.

$$
\underline{S n C l}_{2}, \underline{I}_{3}^{-}, \underline{I}_{3}^{+}, X_{e} F_{4} X \underline{e} F_{5}^{+}, \underline{I}(C N)_{2}^{\Theta}
$$

- Watch Video Solution

96. Number of water molecule in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ which do not form coordinate bond.

- Watch Video Solution

97. Find the total number of species where octet rule is not applicable.
$B r F_{5}, S F_{6}, I F_{7}, C O, \mathrm{BeCl}_{2}, B F_{3}, \mathrm{~N}_{2} \mathrm{O}$

- Watch Video Solution

98. Count the total number of unshared electrons on $I_{3}^{-}=3$

Count the total number of $p \pi-d \pi$ bonds in $\mathrm{PO}_{4}^{3-}=y$
Count the total number of lone pairs in $\mathrm{XeF}_{4}=z$
Hence, find the value of $x-z-y$

- Watch Video Solution

99. Find the number of planar chemical species in which $d_{z^{2}}$ orbital of the underlined atom participate in bonding
$\underline{O}_{3}, \underline{S F}_{4} \underline{S N F}_{4}, \underline{S O F}_{4}, \underline{I}_{3}^{-}, \underline{I C l}_{3}, \mathrm{Cl}_{3}$

- Watch Video Solution

100. Total number of planes in CCl_{4} which contain 3 atoms in a plane where one atom is carbon.

- Watch Video Solution

101. IF molecular axis is X then which of the following overlapping will form π bond?
$p_{z}+p_{z}, p_{x}+p_{x}, p_{x}, p_{y}, s+p_{z}, p_{y}+p_{y}$

- Watch Video Solution

102. The number of $d \pi-p \pi$ bonds in Lewis structure of HPO_{3}^{2-} is ..

- Watch Video Solution

103. Out of given six species find number of species which Intramolecular Hydrogen-bonding
(a)

$\mathrm{CH}(\mathrm{COOH})$

(b) cis :
$\mathrm{CH}\left(\mathrm{COO}^{-}\right)$
(c) $H_{3} B O_{3}(s)$
(d) o-nitrophenol
(e) p-hydroxybenzaldehyde
(f) Tetramethyl ammonium hydroxide

- View Text Solution

104. Evaluate the type of hybridisaton of carbon atoms marked with star.
$\stackrel{*}{\text { (a) }} \stackrel{*}{\mathrm{C}} \mathrm{H}_{2}=\stackrel{\mathrm{CH}}{\mathrm{CH}}-\mathrm{C}-\mathrm{O}-\mathrm{H}$
$*$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(c) $\stackrel{\stackrel{O}{\mathrm{O}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{H}}{ }$

*

(d) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(e) $\mathrm{CH}_{3}-\stackrel{*}{\mathrm{C}} \equiv \mathrm{CH}$

Number of carbon atoms of hybridisation :
Type-I = x

Type-II = y
Type-III = z
If x gt y gt z, then find $x y-z$
105. $\mathrm{XO}_{n}(\mathrm{OH})_{m}$ is a formula of oxyacid then find the value of $(\mathrm{n}+\mathrm{m})$ if oxyacid has basicity 5 and central atom has covalency seven.

- Watch Video Solution

106. Find the ratio of $s p^{3}$ and $s p^{2}$ hybridised atoms which are present in ring in following molecule.

- View Text Solution

107. $\mathrm{Xe}+2 \mathrm{O}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{X}+2 \mathrm{O}_{2}$

If X is planar compound of $X e$ then find the number of lone pairs on central atom of X .

- Watch Video Solution

108. Hypothetical scheme is given below for one molecule of acids.
$\stackrel{\mathrm{SO}_{3}}{\mathrm{SO}_{3}} \quad \mathrm{SO}_{2} \mathrm{SO}_{3}$
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{5} \rightarrow(\mathrm{X}) \downarrow$ Peroxomonosulphuric acid $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow(\mathrm{Y}) \downarrow$ Thiosulphuric ac:
Find the sum of peroxylinkage in X, Y and Z.

- Watch Video Solution

109. Find the number of ions/molecules which are isoelectronic with O_{3}^{2+}.

$$
\Theta
$$

$\mathrm{N}_{2}^{2-}, \mathrm{F}_{2}^{2+}, \mathrm{NO}^{+}, \mathrm{CN}, \mathrm{CO}$

- Watch Video Solution

110. No. of $P-O-P$ bonds present in pentamer of cyclometaphosphoric acid are :

- Watch Video Solution

111. Find the number of chemical species having P - H linkage as well as -OH linkage.
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{H}_{3} \mathrm{PO}_{5}$

- Watch Video Solution

112. Find the number of compounds of Xe which is/are associated with 180° bond angles.
$\mathrm{XeF}_{2}, \mathrm{ICI}_{2}^{-}, \mathrm{I}_{3}^{-}, \mathrm{XeF}_{4}, \mathrm{XeO}_{6}^{4-}, \mathrm{XeO}_{4}, \mathrm{XeCl}_{4}, \mathrm{TeCl}_{4}$

- Watch Video Solution

113. Total number of species in which each atom is connected with ≥ 2 atoms

Diamond, Fullerene, Carborundum, Graphite

- Watch Video Solution

114. Find the number of $P-O-P$ linkages in $P_{4} O_{10}, B-O-B$ linkages in $\mathrm{Na}_{2} \mathrm{~B}_{2} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{Si}-\mathrm{O}$ - Si linkages in $\mathrm{H}_{6} \mathrm{Si}_{3} \mathrm{O}_{9}$ and $\mathrm{S}-\mathrm{O}-\mathrm{S}$ linkages in $\mathrm{S}_{3} \mathrm{O}_{9}$ respectively.

- Watch Video Solution

115. How many of the following having regular tetrahedral geometry?
$\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{SO}_{3}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SiO}_{4}^{4-}$

- Watch Video Solution

116. Find the total number of correct statements out of following.
(a) Orbitals having large energy difference of an element can participate in hybridisation
(b) In $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ all bond lengths are not identical
(c) Dipole moment of CCl_{4} is more than NF_{3}
(d) All allotropes of carbon have same hybridisation of each carbon atom
117. Find the number of chemical species which are planar and $d_{x y}$ orbital of central atom participates in hybridisation :
$\mathrm{XeF}_{5}^{-}, \mathrm{XeF}_{5}^{+}, \mathrm{XeF}_{6}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{Icl}_{4}^{-}$

- Watch Video Solution

118. Which of the following has $X-O-X$ linkage?
(a) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(b) $\mathrm{H}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$
(c) $\mathrm{P}_{4} \mathrm{O}_{10}$
(d) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{Na}\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]$
(f) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(g) $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(h) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(i) $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$
(h) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(i) $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$
(j) $\mathrm{Na}_{2} \mathrm{~B}_{2} \mathrm{O}(\mathrm{OH})_{6}$
(k) Hypophosphoric acid (tribasic)

- Watch Video Solution

119. The covalency of sulphur in second excited state will be :
120. Following statements are given about fullerenes.

Find the number of correct statements :
(a) Fullerenes are made by the heating of graphite in an electric arc in the presence of inert gases such as helium or argon.
(b) fullerenes are the purest form of cabon because they have smooth structure, having dangling bonds.
(c) C_{80} fullerenes have 12 , five membered rings and 30 -six membered rings.
(d) Fullerenes have aromatic character.
(e) In C_{60} fullerences six membered ring is fused with six of five but a five membered ring can only use fuse with six membered rings.

- Watch Video Solution

