

CHEMISTRY

BOOKS - NARENDER AVASTHI CHEMISTRY (HINGLISH)

IONIC EEQUILIBRIUM

Exercise

1. Morphine $(C_{17}H_{19}NO_3)$, Which is used medically to relieve to pain is a

base. What is its conjugate acid?

A. $C_{17}H_{18}NO_3^{\,+}$

B. $C_{17}H_{18}NO_3$

C. $C_{17}H_{20}NO_3^{-}$

D. $C_{17}H_{20}NO_3^+$

Answer:

- **2.** The conjugate base of $H_2PO_4^-$ is :
 - A. H_3PO_4
 - B. $H_2PO_4^-$
 - $\mathsf{C}.\,HPO_4^{2\,-}$
 - D. $PO_4^{3\,-}$

Answer:

Watch Video Solution

3. The strongest Bronsted base in the following anion is:

- A. $CN^{\,-}$
- $\mathsf{B}.\,Cl^{\,-}$
- C. I^{-}

D. $Br^{\,-}$

Answer:

4. What salt can furnish H^+ in its aqueous solution?

A. NaH_2PO_2

B. Na_2HPO_3

 $\mathsf{C.}\,Na_{2}HPO_{4}$

D. All of these

Answer:

Watch Video Solution

5. Which is the set of amphiprotic species?

A. $H_3O^+, HPO_4^{2-}, HCO_3^-$

B. $H_2O, HPO_3^{2-}, H_2PO_2^{-}$

C.
$$H_2PO_4^-, H_2PO_3^-, H_2O$$

D. All of these

Answer:

Watch Video Solution

6. The K_a values for HPO_4^{2-} and HSO_3^- are 4.8×10^{-13} and 6.3×10^8 repectively. Therefore, it follows the HPO_4^{2-} is ... acid than HSO_3^- and PO_4^{3-} is a base than SO_3^{2-}

A. weaker, stronger

B. stronger, weaker

C. weaker, weaker

D. stronger, stronger

Answer:

7. Given the following K_a values, determine which species is the strongest

base ?

 $HSO_4^- = 1.2 imes 10^{-2}, H_2PO_4^- = 6.3 imes 10^{-8}, HCO_3^- = 4.7 imes 10^{-11}$

A. $CO_3^{2\,-}$

 $\mathsf{B.}\,H_2SO_4$

 $\mathsf{C.}\,SO_4^{2\,-}$

D. HPO_4^{2-}

Answer:

8. Given that K_w for water is $10^{-13}~M^2$ at 62° C, compute the sum of pOH

and pH for a neutral aqueous solution at $62\,^\circ$ C:

A. 7.0

 $B.\,13.30$

C. 14.0

D. 13.0

Answer:

Watch Video Solution

9. The value of the ion product constant for water, (K_w) at 60° C is $9.6 \times 10^{-14} M^2$ what is the $[H_3O^+]$ of a neutral aqueous solution at 60° C and an aqueous solution with a pH=7.0 at 60° C are respectively?

A. $3.1 imes 10^{-8}$ acidic

B. $3.1 imes 10^{-7}$, neutral

C. $3.1 imes 10^{-8}$, basic

D. $3.1 imes 10^{-7}$, basic

Answer:

Watch Video Solution

10. For pure water:

A. pH increases while pOH decreases with rise in temperature

B. pH decreases while pOH increases with rise in temperature

C. both pH and pOH decreases with rise in temperature

D. both pH and pOH increases with rise in temperature

Answer:

11. A beer has a pH of 4.30. What is the $[H_3O^+]$?

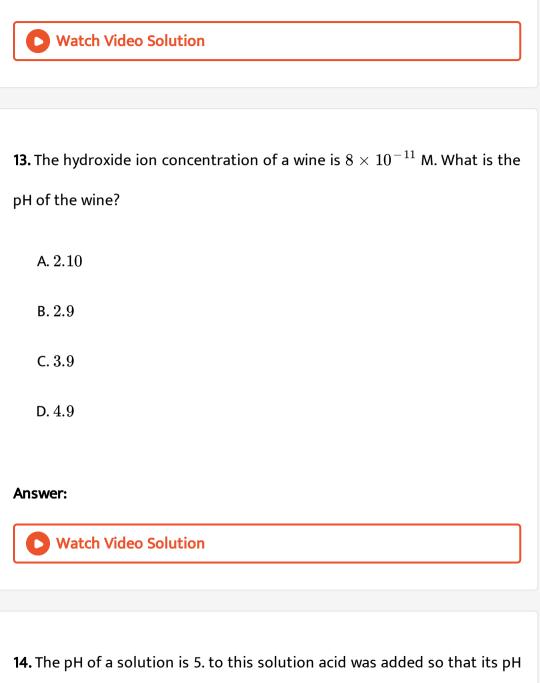
A. $3.0 imes 10^{-4}$ B. $2.0 imes 10^{-4}$ C. $2.0 imes 10^{5}$ D. $5.0 imes 10^{-5}$

Answer:

Watch Video Solution

12. The hydrogen ion concentration of the oceans is about $2 imes 10^{-9}$ M.

What is the pH?


A. 8.85

 $\mathsf{B}.\,9.3$

C. 7.85

D. 8.7

Answer:

value bcomes 2.0. The increase in $H^{\,+}\,$ concentration is :

A. 100 times

B. 5 times

C. 2.5 times

D. 1000 times

Answer:

Watch Video Solution

15. A solution has a pH=9. It is 1000 times more basic than the original solution. What was the pH of the original solution?

A. 12

B. 6

C. 9

D. 10

Answer:

16. Equal volumes of two HCl solutions of pH = 3 and pH = 5 were mixed. What is the pH of the resulting solution ?

 $\mathsf{A.}\ 3.5$

 $\mathsf{B.}\,4.0$

C. 4.5

 $D.\,3.3$

Answer:

Watch Video Solution

17. pOH of $0.002MHNO_3$ is :

A. $11 + \log 2$

 $\text{B.}\,11-\log 2$

 $\mathsf{C}.-3+\log 2$

D. None of these

Answer:

Watch Video Solution

18. Number of equivalents of HCl present in 100 mL of its solution whose

pH is 4:

A. 10⁻⁴ B. 10⁻³ C. 10⁻²

D. 10^{-5}

Answer:

19. To a 10mL of $10^{-3}NH_2SO_4$ solution water has been to make the total volume of one litre. Its pOH would be :

A. 3 B. 12 C. 9 D. 5

Answer:

Watch Video Solution

20. The pH of a solution of H_2SO_4 is 1. Assuming complete ionisation, find the molarity of H_2SO_4 solution :

A.0.1

 $\mathsf{B.}\,0.2$

 $\mathsf{C}.\,0.05$

 $\mathsf{D}.\,2.0$

Answer:

21. pH of a strong diprotic acid (H_2A) at concentrations:

(i) 10^{-4} M, (ii) 10^{-4} N

are respectively:

A. $3.7 \ \mathrm{and} \ 4.0$

 ${\rm B.}\,4\,{\rm and}\,\,3.7$

 $\mathsf{C.}\,4\,\mathsf{and}\,4$

 $\mathsf{D}.\,3.7 \text{ and } 3.7$

Answer:

22. Calcium hydroxide is a strong base. Compute $[Ca^{2+}]$ and $[OH^{-}]$ "for" a solution that is prepared by dissolving 0.60g of $Ca(OH)_2$ in enough water to make a 1500 mL of solution.

[Atomic mass : Ca = 40, O = 16, H = 1]

A.
$$5.4 \times 10^{-3}$$
, 9.1×10^{-13}
B. 5.4×10^{-3} , 1.08×10^{-2}
C. 5.4×10^{-3} , 5.4×10^{-3}
D. 8.1×10^{-3} , 8.1×10^{-3}

Answer:

Watch Video Solution

23. pH of 10^{-6} M HCl (aq.) is :

A. just less then 6

B. exactly equal to 6

C. just greater than 6

D. just less than 7

Answer:

Watch Video Solution

24. $10^{-5}MHCI$ solution at $25^{\circ}C$ is dilluted 1000 times. The pH of the

diluted solution will

A. be equal to 8

B. lie between 7 and 8

C. lie between 6 and 7

D. remain unchanged

Answer:

25. 4.0 g of NaOH and 4.9 g of H_2SO_4 are dissolved in water and volume

is made upto 250 mL.

The pH of this solution is:

A. 7.0

 $\mathsf{B}.\,1.0$

C.2.0

D. 12.0

Answer:

Watch Video Solution

26. A 25.0 mL sample of 010 M HCl is titrated with 0.10 M NaOH. What is the pH of the solution at the points where 24.9 and 25.1 mL of NaOH have been added?

A. 3.70, 10.70

B. 3.30, 10.30

C. 3.70, 10.30

D. 3.0, 11.0

Answer:

Watch Video Solution

27. What is the pH of solution in which 25.0 mL of 0.1 M NaOH is added to

25 mL of 0.08M HCl and final solution is diluted to 500 mL?

A. 3

B. 11

C. 12

D. 13

Answer:

28. What is the pH of a solution in which 10.0 mL of 0.010 M Sr(OH)_(2) is added to 10.0 mL of 0.010 M HCl?

A. 2.30

 $B.\,1.50$

C. 11.70

 $D.\,7.00$

Answer:

Watch Video Solution

29. At 90° C, pure water has $[H^+] = 10^{-6}$ M.If 100 mL of 0.2 M HCl is added to 200 mL of 0.1 M KOH at 90° C then pH of the resulting solution will be :

B. 6

C. 7

D. None of these

Answer:

Watch Video Solution

30. What change will occur for the following reaction if the hypochlorous acid solution is diluted from 0.1 to 0.01 M?

 $HOCl(aq.\)+H_2O(l)\Leftrightarrow OCl^-(aq.\)+H_3O+(aq.\)$

A. a decrease in the fraction of acid ionized

B. an increase in the fraction of acid ionized

C. no change in the fraction of acid ionized

D. we can not predict

Answer:

31. Given K_a values of 5.76×10^{-10} and 4.8×10^{-10} for NH_4^+ and HCN respectively. What is the equilibrium constant for the following reaction? $NH_4^+(aq.) + CN^-(aq.) \Leftrightarrow NH_3(aq.) + HCN(aq.)$

A.0.83

 $\mathsf{B}.\,1.2$

 $\mathrm{C.8.0} imes 10^{-11}$

D. $27.6 imes10^{-10}$

Answer:

Watch Video Solution

32. Which is the strongest acid (pK_a value is given)?

A. HCOOH[3.77]

B. $C_6H_5COOH[4.22]$

 $C. CH_3COOH[4.7]$

 $\mathsf{D.}\,CH_3CH_2COOH[4.88]$

Answer:

Watch Video Solution

33. Given : Enthalpy of ioinization of two acids :

 $riangle \, H^{\,\circ}(HCN) = 45.2 K Jmol^{\,-}$

 $\triangle H^{\circ}(CH_{3}COOH) = 2.1KJmol^{-}$

which relationshop for the two acids is true ?

$$egin{aligned} &\mathsf{A}.\,pK_a(HCN) = pK_a(CH_3COOH) \ &\mathsf{B}.\,pK_a(HCN) > pK_a(CH_3COOH) \ &\mathsf{C}.\,pK_a(HCN) < pK_a(CH_3COOH) \ &\mathsf{D}.\,pK_a(HCN) = rac{45.2}{2.1} pK_a(CH_3COOH) \end{aligned}$$

Answer:

34. What is the hydronium ion concentration of a 0.25 M HA solution?

- $\left(K_a=4 imes 10^{-8}
 ight)$
 - A. 10^{-4}
 - $B.\,10^{-5}$
 - $C. 10^{-7}$
 - D. 10^{-10}

Answer:

35. What is the precent dissociation (α) of a 0.01 M HA solution?

$$\left(K_a=10^{-4}
ight)$$

A. 9.5~%

 $\mathsf{B.1}\,\%$

C. 10.5~%

D. 17~%

Answer:

Watch Video Solution

36. Given the two concentration of HCN $(K_a = 10^{-9})$ are 0.1 M and 0.001 M respectively. What will be the ratio of degree of dissociation?

A. 1

 $\mathsf{B.}\,0.1$

C.0.003

D. 0.01

Answer:

37. A 0.10 M solution of HF is 8.0% dissocaited What is the K_a ?

A. $6.4 imes 10^{-10}$

 $B.8.8 imes10^{-4}$

C. $6.95 imes10^{-4}$

D. 7.6 imes 10 $^{-4}$

Answer:

Watch Video Solution

38. A weak base MOH of 0.1N concentration shows a pH value of 9 .

What is the percentage degree of ionization of the base ?

A. 0.01~%

 $\mathrm{B.}\,0.001\,\%$

 $\mathsf{C}.\,0.1\,\%$

D. 0.02~%

Answer:

Watch Video Solution

39. 0.01 M HA (aq.) is 2~%~ dissociated, $\left[OH^{\,-}
ight]$ of solution is :

A. $2 imes 10^{-4}$

 $B.\,10^{-8}$

 $\text{C.}\,5\times10^{-11}$

D. $5 imes 10^{-12}$

Answer:

40. If degree of dissociation is 0.01 of decimolar solution of weak acid HA

then pK_a of acid is :

A. 2 B. 3 C. 5 D. 7

Answer:

Watch Video Solution

41. What concentration of $HCOO^-$ is present in a solution of weak of 0.01 M HCOOH ($K_a = 1.8 imes 10^{-4}$ and 0.01 M HCl?

A. $1.8 imes 10^{-3}$

B. 10^{-2}

 $\mathsf{C}.\,1.8 imes10^{-4}$

D. 10^{-4}

Answer:

42. Chose the correct code

 $\operatorname{Column} - I$

$$p(P) \quad pK_b \mathrm{of} X^{-} \left(K_a \mathrm{of} H X = 10^{-6}
ight)$$

- $(Q) \quad pHof10^{-8}MHCl$
- $(R) \quad pHof 10^{-2} {
 m M} ext{ acetic and acid solution} ig(Take K_a of a cetic acid = 1.6 imes 1.6$
- (S) pOH of a solution obtained by mixing equal volumes of solution with

A.	P	Q	R	S
	1	2	4	3
Β.	P	Q	R	S
	4	3	2	1
C.	P	Q	R	S
	2	1	4	3
D.	P	Q	R	S
	1	2	3	4

Answer:

43. How much water must be added to 300mL of a 0.2M solution of CH_3COOH for the degree of dissociation of the acid to double ? (Assume K_a of acetic is of order of $10^{-5}M$)

A. 600 mL

B. 900 mL

C. 1200 mL

D. 1500 mL

Answer:

Watch Video Solution

44. What is $\left[NH_4^+
ight]$ in a solution that contain 0.02 M $NH_3ig(K_b=1.8 imes10^{-5}ig)$ and 0.01 M KOH?

A. $9 imes 10^{-6}$

B. 1.8×10^{-5}

C. $3.6 imes10^{-5}$

D. None of these

Answer:

Watch Video Solution

45. A hand book states that the solubility of RNH_2 (g) in water at 1 atm and 0°C is 22.41 volumes of RNH_2 (g) per volume of water. $(pK_b of RNH_2 = 4)$ Find the max. pOH that can be attained by dissolving RNH_2 in water:

A. 1

B. 2

C. 4

D. 6

Answer:

46. The $[H^+]$ of a resulting solution that is 0.01 M acetic acid $(K_a = 1.8 \times 10^{-5})$ and 0.01 M in benzoic acid $(K_a = 6.3 \times 10^{-5})$: A. 9×10^{-4} B. 81×10^{-4} C. 9×10^{-5} D. 2.8×10^{-3}

Answer:

47. 6.0 g weak acid HA (mol.mass=60 g/mol.) is dissolved in water and formed 10 m^3 solution. If $K_a(HA) = 10^{-9}$, then pOH of solution is :

[Given: log 4=0.6]

A. 7

B. greater than 6.7 and less than 7.0

C. greater than 7.0 and less than 7.3

D. greater than 7.3

Answer:

Watch Video Solution

48. Carbonic acid (H_2CO_3) , a diprotic acid has $K_{a1} = 4.0 \times 10^{-7}$ and $K_{a2} = 7.0 \times 10^{-11}$. What is the $[HCO_3^-]$ of a 0.025 M solution of carbonic acid?

A. 7.8×10^{-3} B. 6.6×10^{-4} C. 10^{-10} D. $1.0 imes10^{-4}$

Answer:

Watch Video Solution

49. Carbonic acid (H_2CO_3) , a diprotic acid has $K_{a1} = 4.0 \times 10^{-7}$ and $K_{a2} = 5.0 \times 10^{-11}$. What is the $[CO_3^{2-}]$ of a 0.025 M solution of carbonic acid?

A. 5.5×10^{-9} B. 5.5×10^{-8} C. 7.0×10^{-9} D. 7.0×10^{-11}

Answer:

50. Selenious acid (H_2SeO_3) , a diprotic acid has $K_{a1} = 3.0 \times 10^{-3}$ and $K_{a2} = 5.0 \times 10^{-8}$. What is the $[OH^-]$ of a 0.30 M solution of selenious acid?

A. 2.85×10^{-3} B. 5.0×10^{-6} C. 3.5×10^{-12} D. 3.5×10^{-13}

Answer:

Watch Video Solution

51. Which of the hydrated species may exist?

 $\mathsf{I}: H_5O_2^+$, $\mathsf{II}: H_3O^+$, $\mathsf{III}: H_3O_2^-$, $\mathsf{IV}: H_7O_3^+$

A. II only

B. I and II

C. I, II and IV

D. I, II, III and IV

Answer:

Watch Video Solution

52. Consider the following salts. Which one(s) when dissolved in water will

produce an acidic solution?

1. NH_4Cl , 2. $KHSO_4$, 3. NaCN , 4. KNO_3

A. 2 and 3

B.1 and 2

C. only 3

D. 2 and 4

Answer:

53. Consider the following salts. Which one(s) when dissolved in water will

produce a basic solution?

1. $RbClO_4$, 2. $NaNO_2$, 3. NH_4Cl , 4. NaCl

A. 1 and 3

B. only 2

C. 1 and 2

D. 3 and 4

Answer:

Watch Video Solution

54. At 25° C dissociation constants of acid HA and base BOH in aqueous solution are same. The pH of 0.01 M solution of HA is 5. The pOH of 10^{-4} M solution of BOH at the same temperature is :

B.4

C. 6

D. None of these

Answer:

Watch Video Solution

55. Which of the following solutions has the highest pH?

A. $0.2MHClO_4$

 $\mathsf{B.}\, 0.20 MCH_3 COOH$

 $\mathsf{C.}\, 0.020 MHCl$

 $\mathsf{D.}\, 0.2 MNaCl$

Answer:

Watch Video Solution

56. pH of solutions of four sodium salts NaW, NaX, NaX, NaY and NaZ were found to be 7.0, 9.0, 10.0 and 11.0 respectively. If each solution has concentration 0.1 M, the weakest acid is :

A. HW

B. HX

C. HY

D. HZ

Answer:

Watch Video Solution

57. The pH values 0.1 M solution of HCOONa (I), HCOOH (II), CH_3COONH_4

(III), NaOH (IV) HCl (V), will be in the order :

A. IVgtIIIgtIgtIlgtV

B. IVgtlgtlllgtllgtV

C. IIgtIIIgtIgtIVgtV

D. VgtllgtlllgtlgtlV

Answer:

Watch Video Solution

58. pH of an aqueous NaCl solution at 50° C should be :

A. 7

B.gt7

C. lt7

D. 0

Answer:

Watch Video Solution

59. Upon hyderolysis of sodium carbonate, the reaction takes place between:

- A. Na^+ and water
- B. Na^+ and OH^-
- C. CO_3^{2-} and water
- D. $CO_3^{2\,-}$ and $H^{\,+}$

Answer:

Watch Video Solution

60. The solution of blue vitrol in water is acidic because:

A. $CuSO_4$ reacts with water

B. Cu^+ reacts with water

C. SO_4^{2-} reacts with water

D. $CuSO_4$ renives OH^- ions from water

Watch Video Solution

61. 1 mL of 0.1 N HCl is added to 999 mL solution of NaCl. The pH of the resulting solution will be :

A. 7 B. 4 C. 2 D. 1

Answer:

62. If a salt of strong acid and weak base hydrolyses appreciably (lpha=0.1), which of the following formula is to be used to calculate

degree of hydrolsis 'alpha'?

A.
$$lpha=rac{\sqrt{K_w}}{K_a.\ a}$$

B. $lpha=rac{\sqrt{K_w}}{K_b.\ a}$
C. $lpha=rac{\sqrt{K_w}}{K_a.\ K_b}$

D. None of these

Answer: b

Watch Video Solution

63. The correct formula to calculate the hydroxyl ion concentration of an

a qeous solution of NH_4NO_3 is:

A.
$$\sqrt{rac{C imes K_w}{K_b}}$$

B. $\sqrt{rac{K_w imes K_b}{C}}$
C. $\sqrt{rac{C imes K_w}{K_a}}$
D. $\sqrt{rac{K_a imes K_w}{C}}$

Answer: B

64.
$$\left[H^+\right]$$
 = $\sqrt{\frac{K_w K_a}{C}}$ is suitable for

A. $NaCl, NH_4Cl$

 $B. CH_3 COONa, NaCN$

 $\mathsf{C.}\,CH_3COONa,\,(NH_4)_2SO_4$

D. CH_3COONH_4 , $(NH_4)_2CO_3$

Answer: b

65. What is the hydrolysis constant of the OCl^- ion? The ionization constant of HOCl is 3.0×10^{-8} .

A. $3.33 imes 10^{-8}$

B. $3.33 imes 10^{-7}$

 $\text{C.}~3.0\times10^{-7}$

D. $3.33 imes 10^{-6}$

Answer:

Watch Video Solution

66. What is the pH of a 0.10 M $C_6H_5O^-$ solution? The K_a of C_6H_5OH is

 $1.0 imes10^{-10}$

A. 10.51

 $B.\,11.04$

 $C.\,11.50$

 $\mathsf{D}.\,12$

67. Calculate the $\left[OH^{-}\right]$ in 0.01M aqueous solution of $NaOCN(K_b$ for $OCN^{-} = 10^{-10}$):

A. $10^{\,-\,6}$ M

 $\mathrm{B.}\,10^{-7}~\mathrm{M}$

 $\mathrm{C.}\,10^{-8}~\mathrm{M}$

D. None of these

Answer:

Watch Video Solution

68. What is the ionization constant of an acid if the hydronium ion concentration of a 0.40 M solution is 1.40×10^{-4} M?

A. $1.96 imes 10^{-8}$

B. $1.22 imes 10^{-9}$

 $\text{C.}~4.90\times10^{-8}$

D. $1.40 imes 10^{-6}$

Answer:

Watch Video Solution

69. The degree of hydrolysis of 0.1 M RNH_3Cl solution is 1.0%. If the concentration of RNH_3Cl is made 0.4 M, what is the new degree of hydrolysis (in percentage)?

A. 0.01

B.0.001

 $\mathsf{C}.\,0.2$

 $\mathsf{D}.\,0.5$

70. % hydrolysis of 0.1M $CH_3COONH_4,$ when $K_a(CH_3COOH) = K_b(NH_4OH) = 1.8 imes 10^{-5}$ is:

A.0.55

 $B.\,7.63$

 ${
m C}.\,0.55 imes10^{-2}$

D. $7.63 imes10^{-3}$

Answer:

Watch Video Solution

71. The enthalpy of neutralisation of four acids HA,HB,HC and HD witgh NaOH are 13,-12,-11,-10 Kcal//mol. Which salt has maximum degree of hydrolysis?

A.1 M NaA

B.1 M NaB

C.1 M NaC

D.1 M NaD

Answer:

Watch Video Solution

72. Calculate $[H^+]$ at equivalent point between titration of 0.1 M, 25 mL of weak acid HA $(K_{a(HA)}) = 10^{-5}$ with 0.05 M NaOH solution:

A. $3 imes 10^{-9}$

B. $1.732 imes 10^{-9}$

C. 8

D. 10

73. When a salt of weak acid and weak base is dissolved in water, the pH of the resulting solution will be :

A. be 7

B. be greater than 7

C. be less than 7

D. depend upon K_a and K_b values

Answer:

Watch Video Solution

74. What will be the pH of an aqueous solution of 1.0 M ammonium

formate?

Given $:pK_a = 3.8$ and $pK_b = 4.8$

A.7.5

 $\mathsf{B.}\,3.4$

 $\mathsf{C.}\,6.5$

 $\mathsf{D}.\,10.2$

Answer:

Watch Video Solution

75. What will be the pH and $\% \alpha$ (degree of hydrolysis) respectively for the salt BA of 0.1M concentration ? Given $:K_a$ for $HA=10^{-6}$ and K_b for $BOH=10^{-6}$

A. 5, 1%

B. 7, 10%

C.9, 0.01%

D. 7, 0.01 %

Watch Video Solution

76. The percentage degree of hydrolysis of a salt of weak acid (HA) and weak base (BOH) in its 0.1 M solution is found to be 10%. If the molarity of the solution is 0.05 M, the percentage hydrolysis of the salt should be :

A. 5~%

 $\mathbf{B}.\,10~\%$

 $\mathsf{C.}\,20~\%$

D. None of these

Answer:

Watch Video Solution

77. What is the hydronium ion concentration of a 0.02 M solution of Cu^{2+} solution of copper(II) perchlorate? The acidity constant of the following reaction is 5×10^{-9} .

 $Cu^{2+}(\mathit{aq.})+2H_2O(l) \Leftrightarrow Cu(OH)^+(\mathit{aq.})+H_3O^+(\mathit{aq.})$

A. 1×10^{-5} B. 7×10^{-4} C. 5×10^{-4}

D. $1 imes 10^{-4}$

Answer:

Watch Video Solution

78. What is the acidity constant for the following reaction given that the hydronium ion concentration of a 0.04 M solution of Ni^{2+} solution of nickel(II) perchlorate is 4.5×10^{-6} ?

$$Ni^{2\,+}(aq.\,)+2H_2O(l) \Leftrightarrow Ni(OH)^+(aq.\,)+H_3O^+(aq.\,)$$

A. 2×10^{-12} B. 4×10^{-6} C. 5×10^{-12} D. 5×10^{-10}

Answer:

Watch Video Solution

79. Calculate the pH at 25° C of a solution that is 0.10 M in $Fe(NO_3)_3$. The acid dissocation constant for the reaction given below is 1.0×10^{-3} .

$$\left[Fe(H_2O)_6\right]^{3+} + H_2O(l) \Leftrightarrow H_3O^+(aq.) + \left[Fe(H_2O)_5(OH)\right]^{2+}$$

A. 2.00

 $\mathsf{B}.\,2.02$

C. 2.30

D. 2.50

80. Approximate pH of 0.01 M NaHA is calculated by :

 $ig(K_{a1}=10^{-6}$ and $K_{a2}=10^{-8}$ are ionization constants of $H_2A)$

A.
$$pH = 7 + rac{pK_{a1}}{2} + rac{\log C}{2}$$

B. $pH = 7 - rac{pK_{a1}}{2} - rac{\log C}{2}$
C. $pH = rac{pK_{a1} + pK_{a2}}{2}$

D. None of these

Answer:

81. H_3PO_4 is a weak triprotic acid, approximate pH 0.1 M $NaHPO_4$ (aq.) is

calculated by:

A.
$$rac{1}{2}[pK_{a1}+pK_{a2}]$$

B. $rac{1}{2}[pK_{a2}+pK_{a3}]$
C. $rac{1}{2}[pK_{a1}+pK_{a3}]$

D.
$$pK_{a1} + pK_2$$

82. Which of the following is a buffer solution?

A. 500 mL of 0.1 N $CH_3COOH+500$ mL of 0.1 N NaOH

B. 500 mL of 0.1 N $CH_{3}COOH+500$ mL of 0.1 N HCl

C. 500 mL of 0.1 N $CH_{3}COOH+500$ mL of 0.2 N NaOH

D. 500mLof0.1NCH_(3)COOH+500mLof0.1NNaOH

83. If 20 mL of 0.1 M NaOH is added to 30 mL of 0.2 M CH_3COOH (pK (a)=4.74), the pH of the resulting solution is :

A. 4.44

 $B.\,9.56$

C. 8.96

 $D.\,9.26$

Answer:

Watch Video Solution

84. $H_2CO_3 + NaHCO_3$ found in blood helps in maintaining pH of the blood close to 7.4. An excess of acid entering the blood stream is removed by:

A. HCO_3^-

B. H_2CO_3

 $\operatorname{C}.H^+ \operatorname{ion}$

D. CO_3^{2-} ion

Answer:

Watch Video Solution

85. 100mL of 0.02M benzoic acid $(pK_a = 4.2)$ is titrated using 0.02MNaOH. pH values after 50mL and 100mL of NaOH have been added are

A. 3.50, 7

B. 4.2, 7

C. 4.2, 8.1

D. 4.2, 8.25

86. What is the pH of a solution of 0.28 M acid and 0.84 M of its conjugate base if the ionization constant of acid is 4×10^{-4} ?

A. 3.88

 $\mathsf{B}.\,3.34$

C. 7

 $D.\,10.12$

Answer:

Watch Video Solution

87. The toxic compound 2,4-dinitrophenol has $K_a = 10^{-4}$. In an experiment, a buffer solution of 2,4-dinitrophenol was prepared with the pH adjusted to 5. Calculate the ratio of the concentrations of the dissociated ion to the undissociated acid:

A. 0.01

 $\mathsf{B.}\,0.1$

C. 10

D. 100

Answer:

Watch Video Solution

88. Equilibrium constant for the following reaction is $1 imes 10^{-9}$:

 $C_{5}H_{5}N(aq.\)+H_{2}O(l)\Leftrightarrow C_{5}H_{5}NH^{+}(aq.\)+OH^{-}(aq.\)$

Determine the moles of pyridinium chloride (C_5H_5N) to obtain a buffer solution of pH=5 :

A. 0.1 mole

 $B.\,0.2\,mole$

 $C.\,0.3$ mole

D.0.4 mole

Watch Video Solution

89. Which one of the following mixture does not act as a buffer solution?

- A. Boric acid and borax
- B. Sodium phosphate & disodium hydrogen phosphate
- C. Sodium propionate and propionic acid
- D. Sod. Acetate and sodium propionate

Answer: d

90. The acid dissociation constant of uric acid is $K_a = 4.0 \times 10^{-6}$ M. The pH of a sample of urine is 6.0. What is the ratio of concentration of urate ion to uric acid in the urine?

A. 2.0

 $\mathsf{B.}\,4.0$

C.6.0

 $\mathsf{D}.\,0.25$

Answer:

Watch Video Solution

91. CH_3NH_2 (0.12 mole, pK_b =3.3) is added to 0.08 moles of HCl and the solution is diluted to on litre, resulting pH of solution is :

A. 10.7

 $\mathsf{B.}\,3.6$

 $C.\,10.4$

D. 11.3

92. An aqueous solution at room temperature contains 0.1 M NH_4Cl and 0.01M $NH_4OH(pK_b=5)$, the pH of the solution is :

A. 7.5

 $\mathsf{B.}\,6.8$

C.6.5

D.8.0

Answer:

Watch Video Solution

93. A 1L solution contains 0.2M NH_4OH and 0.2M NH_4Cl . If 1.0 mL of 0.001 M HCl is added to it what will be the $[OH^-]$ of the resulting solution $(K_b=2 imes10^{-5})$

A. $2 imes 10^{-5}$

 $\text{B.5}\times10^{-10}$

 ${\rm C.}\,2\times10^{-3}$

D. None of these

Answer:

Watch Video Solution

94. 0.1 M formic acid solution is titrated against 0.1 M NaOH solution. What would be the difference in pH between 1/5 and 4/5 stages of neutralization of acid?

A. 2 log 3/4

B. 2 log 1/5

C. log 1/3

D. 2 log 4

95. The total number of different kind of buffers obtained during the titration of H_3PO_4 with NaOH are:

A. 3 B. 1 C. 2 D. 4

Answer:

96. A buffer solution is made up of acetic acid $[pK_a = 5]$ having conc.=1.5M and sodium acetate having conc.=0.15 M. What is the number

 OH^{-} ions present in 1 litre solution?

A. $10^{-10}N_A$ B. $10^{-4}N_A$ C. $10^{-3}N_A$ D. $10^{-6}N_A$

Answer:

Watch Video Solution

97. The pH of a solution of 0.10 M CH_3COOH increases when which of

the following substances is added?

A. $NaHSO_4$

- B. $HClO_4$
- $C. KNO_3$

D. K_2CO_3

98. $H^{\,+}\,$ ion concentration of water does not change by adding:

A. CH_3COONa

B. $NaNO_3$

 $\mathsf{C}.\, NaCN$

D. Na_2CO_3

Answer:

Watch Video Solution

99. pK_a of NH_4^+ is 9.26. Hence, effective range for $NH_4OH - NH_4Cl$ buffer is about pH:

A. 8.26 to 10.26

B. 4.74 to 5.74

C. 3.74 to 5.74

D. 8.26 to 9.26

Answer:

Watch Video Solution

100. 1.0 L solution is prepared by mixing 61 g benzoic acid ($pK_a = 4.2$) with 72 g of sodium benzoate and then 300 mL 1.0 M HBr solution was added. The pH of final solution is :

A. 3.6

 $\mathsf{B.}\,3.8$

C. 4.2

D. 4.8

101. The pH of a solution containing 0.4 M $HCO_3^{\,-}$ and 0.2 M $CO_3^{2\,-}$ is :

$$ig[K_{a1}(H_2CO_3)=4 imes10^{-7}$$
 , $K_{a2}ig(HCO_3^{-}ig)=4 imes10^{-11}ig]$

A. 10.4

 $B.\,10.1$

C. 6.1

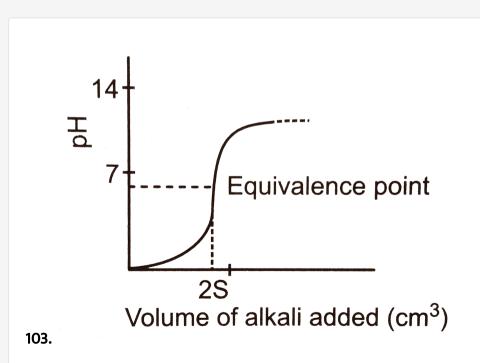
 $D.\,10.7$

Answer:

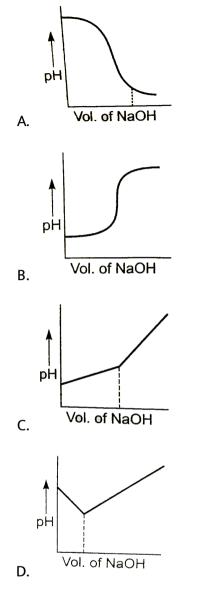
102. The pH of the resultant solution of 20 mL of 0.1 M H_3PO_4 and 20 mL

of 0.1 M Na_3PO_4 is :

A. $pK_{a1} + \log 2$

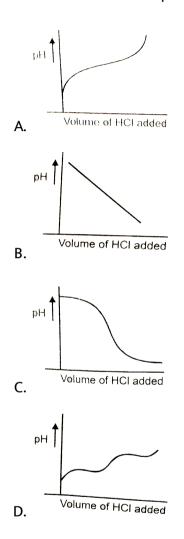

 $\mathsf{B.}\, pK_{a1}$

 $\mathsf{C}.\, pK_{a2}$


D.
$$rac{pK_{a1}+pK_{a2}}{2}$$

Answer:

Watch Video Solution



The graph represents the titration curve for :

104. When 100 mL of 0.1 M NaCN solution is titrated with 0.1 M HCl solution the variation of pH of solution with volume of HCl added will be :

105. The best indicator for the detection of the end point in the titration

of a weak acid and a strong base is

A. Methyl orange (3.1 to 4.4)

B. Methyl red (4.2 to 6.3)

C. Bromothymol blue (6 to 7.6)

D. Phenolphthalein (8.2 to 10)

Answer:

Watch Video Solution

106. Select the best indicator from the given table for titration of 20 mL of 0.02 M $CH_3COOHwith0.02MNaOH.~GivenpK_(a)$ (CH_(3)COOH)=4.74{:(,"Indicator","pH range"),((I),"Bromothymol blue",6.0-7.6),((II),"Thymolphthalein",9.3-10.5),((III),"Malachite green",11.4-13),((IV),"M-Cresol purple",7.4-90):}

A. I

B. II

C. III

D. IV

Answer:

Watch Video Solution

107. Bromothymol blue is an indicator with a K_a value of $6 imes 10^{-5}$. What

 $\%\,$ of this indicator is in its basic form at a pH of 5 ?

A. 40

B.85.7

C. 14.3

D. 60

Answer:

108. An acid-base indicator has a K_a of 3.0×10^{-5} . The acid form of the indicator is red and the basic form is blue. (a) By how much must the pH change in order to change the indicator from 75 % red to 75 % blue?

A. $8 imes 10^{-5}$ M

 ${
m B.9 imes10^{-5}M}$

 ${\rm C.1\times10^{-5}M}$

 ${\sf D}.\,3 imes10^{-4}{\sf M}$

Answer:

109. An acid-base indicator which is a weak acid has a pK_{In} value =5.45. At what concentration ratio of sodium acetate to acctic acid would the indicator show a colour half-way between those of its acid and conjugate

base forms ?

 $[pK_a \text{ of acetic acid =4.75, log 2=0.3}]$

A. 4:1

B.6:1

C.5:1

D. 3:1

Answer:

Watch Video Solution

110. A 20.0 mL sample of a 0.20 M solution of the weak diprotic acid H_2A is titrated with 0.250 M NaOH. The concentration of solution at the second equivalent point is:

A. 0.10 M NaHA

 $\mathsf{B.}\, 0.153 MNa_2A$

 ${\rm C.}\, 0.10 MNa_2A$

 $\mathsf{D.}\, 0.0769 MNa_2 A$

Answer:

Watch Video Solution

111. During the titration of a weak diprotic acid (H_2A) against a strong base (NaOH), the pH of the solution half-way to the first equivalent point and that at the first equivalent point are given respectively by:

A.
$$pK_{a1}$$
 and $pK_{a1} + pK_{a2}$
B. $\sqrt{K_{a1}C}$ and $\frac{pK_{a1} + pK_{a2}}{2}$
C. pK_{a1} and $\frac{pK_{a1} + pK_{a2}}{2}$

$$\mathsf{D}. pK_{a1}$$
 and pK_{a2}

Answer:

112. In which of the following cases is the solution of AgCl unsaturated?

A.
$$\left[Ag^{\,+}
ight] \left[Cl^{\,-}
ight] < K_{sp}$$

$$\mathsf{B}.\left[Ag^{\,+}\right]\!\left[Cl^{\,-}\right]>K_{sp}$$

C.
$$\left[Ag^{\,+}
ight]\left[Cl^{\,-}
ight]=K_{sp}$$

D.
$$\left[Ag^{+}
ight]\left[Cl^{-}
ight]\leq K_{sp}$$

Answer:

Watch Video Solution

113. When equal volumes of following solution are mixed, precipitation of

AgCl?

 $\left(K_{sp}=1.8 imes10^{-10}
ight)$ will occur only with

A.
$$10^{-4}M(Ag^+)$$
 and $10^{-4}M(Cl^-)$

B.
$$10^{-5}M(Ag^+)$$
 and $10^{-5}M(Cl^-)$

C.
$$10^{-5}M(Ag^+)$$
 and $10^{-6}M(Cl^-)$

D.
$$10^{-10}M(Ag^+)$$
 and $10^{-10}M(Cl^-)$

Answer:

114. Choose the correct set of True/Fasle for following statements:

(i) Silver chloride is more soluble in very concentrated sodium chloride solution than in pure water.

(ii) The pH of a buffer solution does not change on addition of small amount of an acid or a base.

(iii) Addition of NH_4Cl does not affect the pH of a solution of NH_4OH

(iv) Degree of hydrolysis of ammonium acetate does not depend upon the concentration of ammonium acetate solution.

(v) A mixture of acetic acid and sodium acetate can act as buffer solution.

A. TTFTT

B. FTTTF

C. TFTFT

Answer:

Watch Video Solution

115. A 1 litre solution containing NH_4Cl and NH_4OH has hydroxide ion ion concentration of 10^{-6}) mol//litre. Which of the following hydroxides could be precipitated when the solution is added to 1 litre solution of 0.1 M metal ions?

(I)
$$Ba(OH)_2 (K_{sp} = 5 \times 10^{-3})$$
, (II) $Ni(OH)_2 (K_{sp} = 1.6 \times 10^{-16})$
(III) $Mn(OH)_2 (K_{sp} = 2 \times 10^{-13})$, (IV) $Fe(OH)_2 (K_{sp} = 8 \times 10^{-16})$

A. I,II,IV

B. IV

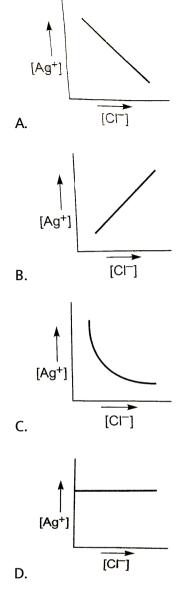
C. II and IV

D. II,III,IV

Answer:

116. 150 mL of 0.0008 M ammonium sulphate is mixed with 50 mL of 0.04 M calcium nitrate. The ionic product of $CaSO_4$ will be : $\left(K_{sp}=2.4 imes10^{-5}f~{
m or}~CaSO_4
ight)$

A. $< K_{sp}$


- B. $> K_{sp}$
- C. $\approx K_{sp}$

D. None of these

Answer:

> Watch Video Solution

117. In a saturated solution of AgCl, NaCl is added gradually. The concentration of Ag^+ is plotted against the concentration of Cl^- . The graph appears as :

Answer:

118. K_{sp} of AgCl is $1 imes 10^{-10}$. Its solubility in 0.1 M KNO_3 will be :

- A. 10^{-5} moles/litre
- B. $> 10^{-5}$ moles/litre
- C. $< 10^{-5}$ moles/litre
- D. None of these

Answer:

Watch Video Solution

119. 50mL of a solution containing 10^{-3} mole of Ag^+ is mixed with 50mL of a 0.1MHCl solution. How much Ag^+ remains in solution ? $(K_{sp} \text{ of } AgCl = 1.0 \times 10^{-10})$

A. $2.5 imes 10^{-9}$ B. $2.5 imes 10^{-7}$ C. $2.5 imes 10^{-8}$ D. $2.5 imes10^{-10}$

Answer:

120. At a certain temperature, the solubility of the salt $A_x B_y$ is S moles per litre. The general expression for the solubility product will be

A. S^2 B. $x^y y^x$. $S^x + y$ C. $x^x y^y$. $S^x + y$ D. $S^x + y$

Answer:

121. What is the molarity of a saturated solution of $CaCO_3$? $(K_{sp} = 2.8 \times 10^{-9})$ A. 2.6×10^{-5} B. 2.8×10^{-9} C. 5.2×10^{-5} D. 5.6×10^{-9}

Answer:

Watch Video Solution

122. K_{sp} of $Zr_3(PO_4)_4$ in terms of solubility (S) is :

A. $108S^{7}$

 $\mathsf{B.}\,4S^3$

 $\mathsf{C}.\,6912S^7$

D. None of these

Answer:

123. The solubility of electrolytes MX_1 , MX_2 and $MX_3is1 \times 10^{-3}$ moles per litre. Hence their respective solubility products are :

A. $10 imes^{-6}$, $4 imes10^{-9}$, $27 imes10^{-12}$

B. $10^{-9}, 4 \times 10^{-9}, 32 \times 10^{-12}$

C.
$$10^{-9}, 8 imes 10^{-8}, 32 imes 10^{-12}$$

D. None of these

Answer:

124. A saturated solution of $Ca_3(PO_4)_2$ has $\left[Ca^{2+}
ight]=2 imes 10^{-8}$ M and

$$\left[PO_4^{3\,-}
ight]=1.6 imes10^{-5}$$
 M K_{sp} of $Ca_3(PO_4)_2$ is :

A. $3.2 imes 10^{-13}$

B. $3.2 imes10^{-34}$

C. $2.048 imes 10^{-33}$

D. None of these

Answer:

Watch Video Solution

125. Which of the following is most soluble in water?

A.
$$Ba(PO_4)_2ig(K_{sp}=6 imes 10^{-39}ig)$$

B. $ZnSig(K_{sp}=7 imes10^{-16}ig)$

C.
$$Fe(OH)_3 (K_{sp} = 6 imes 10^{-38})$$

D.
$$Ag_{3}(PO_{4})ig(K_{sp}=1.8 imes10^{-18}ig)$$

Answer:

126. Silver ions are added to a solution with $[Br^{-}] = [Cl^{-}] = [CO_3^{2-}] = [AsO_4^{3-}]$ =0.1M. Which compound will precipitate with lowest $[Ag^{+}]$?

A.
$$AgBrig(K_{sp}=5 imes10^{-13}ig)$$

B. $AgClig(K_{sp}=1.8 imes10^{-10}ig)$
C. $Ag2CO_3ig(K_{sp}=8.1 imes10^{-12}ig)$
D. $Ag_3AsO_4ig(K_{sp}=1 imes10^{-22}ig)$

Answer:

Watch Video Solution

127. The solubility of different springly soluble salts are given as under :

S. No	Formula Type	Solubility product
(1)	AB	4.0×10^{-20}
(2)	A_2B	3.2×10^{-11}
(3)	AB_3	2.7×10^{-31}

The correct increasing order of solubility is :

A. 1,2,3

B. 2,1,3

C. 1,2,3

D. 3,1,2

Answer:

Watch Video Solution

128. If K_{sp} for $HgSO_4$ is $6.4 imes 10^{-5}$, then solubility of this substance in mole per m^3 is

A. $8 imes 10^{-3}$

 $\text{B.}\,6.4\times10^{-5}$

 $\text{C.}\,8\times10^{-6}$

D. None of these

Answer:

129. The solubility of $Ba_3(AsO_4)_2$ (formula mass=690) is 6.9×10^{-2} g//100 mL. What is the K_{sp} ?

A. $1.08 imes 10^{-11}$

B. $1.08 imes 10^{-13}$

 $\text{C.}\,1.0\times10^{-15}$

D. $6.0 imes10^{-13}$

Answer:

Watch Video Solution

130. The solubility of $AgBrO_3$ (formula mass=236) is 0.0072 g in 1000 mL.

What is the K_{sp} ?

A. 2.2×10^{-8} B. 3.0×10^{-10} C. 3.0×10^{-5} D. 9.3×10^{-10}

Answer:

Watch Video Solution

131. The solubility of PbF_2 (formula mass =245) is 0.46 g/L. What is the solubility product?

A. $1.1 imes 10^{-10}$

B. $2.6 imes 10^{-8}$

 $\text{C.}\,1.1\times10^{-7}$

D. $6.8 imes10^9$

Answer:

132. How many grams of MgC_2O_4 (formula mass =122) will dissolve in 1.5

L of water?

 $\left(K_{sp}=8.1 imes10^{-5}
ight)$

A. 1.0

 $B.\,1.29$

 $C.\,1.512$

 $D.\,4.65$

Answer:

Watch Video Solution

133. What is the molarity of F^- ions in a saturated solution of BaF_2 ?

$$\left(K_{sp}=1.0 imes10^{-6}
ight)$$

A. 1.0×10^{-2} B. 1.0×10^{-3} C. 1.26×10^{-2} D. 6.3×10^{-3}

Answer:

Watch Video Solution

134. What is the molarity of F^- in a saturated solution of In F_3 ? $ig(K_{sp}=7.9 imes10^{-10}$

A. $2.3 imes 10^{-3}$

 $\text{B.}\,8.3\times10^{-3}$

C. $1.0 imes 10^{-3}$

D. $7.0 imes 10^{-3}$

Answer:

135. What is the pH of a saturated solution of $Cu(OH)_2$? $ig(K_{sp}=2.6 imes10^{-19}$

- $\mathsf{A.}\,6.1$
- $\mathsf{B}.\,7.30$
- C. 8.42
- D. 7.90

Answer:

Watch Video Solution

136. The solubility product of AgCl is $10^{-10}M^2$. The minimum volume (in

 m^3) of water required to dissolve 14.35mg of AgCl is approximately :

A. 0.01

 $\mathsf{B.}\,0.1$

C. 100

D. 10

Answer:

Watch Video Solution

137. What is the molar solubility of $Fe(O)_2$ (K_(sp)=8.0xx10^(-16))atpH

13.0`?

A. 8.0 \times 10^{-18}

B. $8.0 imes 10^{-15}$

C. `8.0xx10^(-17)

 $ext{D.}8.0 imes10^{-14}$

Answer:

138. What is the minimum pH necessary to cause a precipitate of $Pb(OH)_2 \left(K_{sp}=1.2 imes 10^{-5}
ight)$ to form in a 0.12 M $PbCl_2$ solution?

A. 12.4

 $B.\,10.8$

C. 12.0

D. 11.1

Answer:

Watch Video Solution

139. Which of the following would increase the solubility of $Pb(OH)_2$?

A. Add hydrochloric acid

B. Add a solution of $Pb(NO_3)_2$

C. Add a solution of NaOH

D. None of the above-the solubility a compound is constant a constant

temperature

Answer:

Watch Video Solution

140. What is the molar solubility of $Ag_2CO_3ig(K_{sp}=4 imes10^{-13}ig)$ in $0.1MNa_2CO_3$ solution ?

A. 10^{-6}

B. 10^{-7}

 ${\sf C.2 imes10^{-6}}$

D. $2 imes 10^{-7}$

Answer:

141. What is the concentration of Pb^{2+} when $PbSO_4$ $ig(K_{sp}=1.8 imes10^{-8}ig)beg\in s o \prec i\pi tateomasolutiont \hat{i}s 0.0045M\in$ SO_(4)^(2-)`?

A. $4.0 \times 10^{-8}~\text{M}$

 $\mathrm{B.}\,1.0\times10^{-6}~\mathrm{M}$

 $\mathrm{C.}\,2.0\times10^{-8}~\mathrm{M}$

D. 4.0×10^{-6} M

Answer:

Watch Video Solution

142. What is the concentration of Ba^{2+} when BaF_2 $(K_{sp} = 1.0 imes 10^{-6})$

begins to precipitate from a solution that is 0.30 M F^- ?

A. $9.0 imes10^{-7}$

 $\text{B.}~3.3\times10^{-5}$

 $\mathsf{C}.\,1.1 imes10^{-5}$

D. $3.0 imes10^{-5}$

Answer:

Watch Video Solution

143. Solubility of AgCl in 0.2 M NaCl is x and that in 0.1 M $AgNO_3$ is y.

Then which of the following is correct?

A. x = y

 $\mathsf{B.}\, x > y$

C. xlty`

D. We cannot predict

Answer:

144. What is the molarity of $Fe(CN)_6^{4-}$ in a saturated solution of $Ag_4[Fe(CN)_6]$? $(K_{sp} = 1.6 \times 10^{-41})$ A. 1.6×10^{-8} B. 5.2×10^{-8} C. 2.0×10^{-8} D. 2.3×10^{-9}

Answer:

Watch Video Solution

145. At 25° C, K_{sp} for $PbBr_2$ is equal to 8×10^{-5} . If the salt is 80 % dissociated, What is the solubility of $PbBr_2$ in mol//litre?

A.
$$\left[\frac{10^{-4}}{1.6 \times 1.6}\right]^{1/2}$$

B. $\left[\frac{10^{-5}}{1.6 \times 1.6}\right]^{1/3}$

C.
$$\left[\frac{10^{-4}}{0.8 \times 0.8}\right]^{1/3}$$

D. $\left[\frac{10^{-5}}{1.6 \times 1.6}\right]^{1/2}$

Answer:

Watch Video Solution

146. What is the molar solubility of $Mn(OH)_2(K_{sp} = 4.5 \times 10^{-14})$ in a buffer solution containing equal amounts of NH_4^+ and NH_3 $(K_b = 1.8 \times 10^{-5})$? A. 3.0×10^{-4} B. 1.38×10^{-4} C. 1.38×10^{-3} D. 7.3×10^{-4}

Answer:

147. Find moles of NH_4Cl required to prevent $Mg(OH)_2$ from precipitating in a litre of solution which contains 0.02 mole NH_3 and 0.001 mole Mg^{2+} ions.

Given : $K_b(NH_3) = 10^{-5}, \ K_{sp} \big[Mg(OH)_2 \big] = 10^{-11}.$

A. 10^{-4}

B. $2 imes 10^{-3}$

 $C.\,0.02$

 $\mathsf{D}.\,0.1$

Answer:

Watch Video Solution

148. What mass of Agl will dissolve in 1.0 L of 1.0 M NH_3 ? Neglect change

in conc. Of NH_3 .

[Given: $K_{sp}(AgI) = 1.5 \times 10^{-16}$), $K_f \Big[Ag(NH_3)_2^+ \Big] = 1.6 \times 10^7 \Big]$, (At. Mass Ag=108,1=127) A. 4.9×10^{-5} g

 $\mathsf{B}.\,0.0056~\mathsf{g}$

 $\mathsf{C}.\,0.035~\mathsf{g}$

D. 0.011 g

Answer:

Watch Video Solution

149. Consider the following statement and select correct option:

(I) K_{sp} of $Fe(OH)_3$ in aqueous solution is 3.8×10^{-38} at 298 K. The concentration of Fe^+ will increase when $[H^+]$ ion concentration decreases.

(II) In a mixture of NH_4Cl and NH_4OH in water, a further amount of NH_4Cl is added. The pH of the mixture will decreases. (III) An aqueous solution of each of the following salt $(NH_4I, HCOOK)$ will be basic, acidic respectively.

A. only I is correct

B. only II is correct

C. only III is correct

D. II and III are correct

Answer:

Watch Video Solution

150. Equilibrium constants of $T_2O\left(T \text{ or } {}^3_1Hisaniso \top e \text{ of } {}^1_1H\right)$ and H_2O are different at 298 K. Let at 298 K pure T_2O has pT (like pH) is 7.62. The pT of a solution prepared by adding 10 mL. of 0.2 M TCl to 15 mL of 0.25 M NaOT is:

A. $2 - \log 7$

 $\mathsf{B}.\,14+\log7$

 $\mathsf{C.}\,13.24-\log7$

D. $13.24 + \log 7$

Answer:

Watch Video Solution

151. Liquid NH_3 dissociation to a slight extent, At a certain temp. its self dissociation constant $K_{SDC(NH_3) = 10^{-30}}$. The number of NH_4^+ ions are present per 100 cm⁽³⁾ of pure liquid are :

A. 10^{-15}

 $\texttt{B.}\,6.022\times10^8$

 $\mathsf{C.}~6.022 imes10^7$

D. $6.022 imes10^6$

Answer:

152. To what volume of 10 litre of 0.5 M $CH_3COOH~ig(K_a=1.8 imes10^{-5}ig)$

be diluted in order to double the hydroxide ion concentration :

A. 20 L

B. 30 L

C. 40 L

D. None of these

Answer:

Watch Video Solution

153. 20 mL of 0.1 M weak acid $HA(K_a = 10^{-5})$ is mixed with solution of 10 mL of 0.3 M HCl and 10 mL. of 0.1 M NaOH. Find the value of $[A^-]$ //([HA]+[A^(-)])` in the resulting solution :

A. $2 imes 10^{-4}$

B. $2 imes 10^{-5}$

 ${\rm C.}\,2\times10^{-3}$

 $\mathsf{D}.\,0.05$

Answer:

Watch Video Solution

154. What concentration of $FCH_2COOH(K_a = 2.6 \times 10^{-3})$ is needed so that $[H^+]=2xx10^{(-3)}$? A. 2×10^{-3} M B. 2.6×10^{-3} M C. 5.2×10^{-3} M D. 3.53×10^{-3} M

Answer:

155. Calculate the ratio of $\left[HXOO^{-}
ight]$ and $\left[F^{-}
ight]$ in a mixture of 0.2 M HCOOH $\left(K_{a}=2 imes10^{-4}
ight)$ and 0.1 M HF $\left(K_{a}=6.6 imes10^{-4}
ight)$:

A. 1:6.6

B. 1: 3.3

C. 2:3.3

D. 3.3:2

Answer:

Watch Video Solution

156. If first dissociation of $X(OH)_3$ is 100% where as second dissociation is 50% and third dissociation is negligible then the pH $4 \times 10^{-3}MX(OH)_3$ is :

A. 11.78

B. 10.78

 $\mathsf{C.}\,2.5$

 $\mathsf{D}.\,2.22$

Answer:

Watch Video Solution

157.
$$H_3A$$
 is a weak triprotic acid $(K_{a1}=10^{-5},K_{a2}=10^{-9},K_{a3}=10^{-13}$

What is the value of pX of 0.1 M H_3A (aq.) solution ? Where pX=-log X and

$$\mathsf{X} = \frac{\left[A^{3-}\right]}{\left[HA^{2-}\right]}$$

A. 7

B. 8

C. 9

D. 10

Watch Video Solution

158. Calcium lactate is a salt of weak organic acid and strong base represented as $Ca(LaC)_2$. A saturated solution of $Ca(LaC)_2$ contains 0.6 mole in 2 litre solution. pOH of solution is 5.60. If 90 % dissociation of the salt takes place then what is pK_a of lactic acid?

A. $2.8 - \log(0.54)$

 $B.2.8 + \log(0.54)$

 $C.2.8 + \log(0.27)$

D. None the these

Answer:

159. What is the concentration of $CH_3COOH(aq.)$ in a solution prepared by dissolving 0.01 mole of $NH_4^+CH_3COO^-$ in 1 L H_2O ? $[K_{a(CH_3COOH)} = 1.8 \times 10^{-5}), K_{b(NH_4OH)=1.8 \times 10^{-5}}]$

A. $5.55 imes 10^{-5}$

B.0.10

 $\text{C.}\,6.4\times10^{-4}$

D. $5.55 imes10^{-3}$

Answer:

Watch Video Solution

160. K_a for the reaction,

 $Fe^{3+}(aq) + H_2O(l) \Leftrightarrow Fe(OH)^{2+}(aq) + H_3O^{\oplus}(aq)$ is 6.5×10^{-3} , what is the maximum pH value which could be used so that at least 80 % of the total iron (*III*) in a dilute solution exsists as Fe^{3+} ? A. 2

 $\mathsf{B.}\,2.41$

C. 2.79

D.

Answer:

Watch Video Solution

161. $Fe(OH)_2$ is diacidic base has $K_{b1} = 10^{-4}$ and $K_{b2} = 2.5 \times 10^{-6}$ What is the concentration of $Fe(OH)_2$ in 0.1 M $Fe(NO_3)_2$ solution?

A. $4 imes 10^{-9}$

B. $2.5 imes 10^{-6}$

C. 10^{-10}

D. $10^{\,-\,14}$

Answer:

162. How many gm of solid KOH must be added to 100 mL of a buffer solution to make the pH of solution 6.0, if it is 0.1 M each w.r.t. acid HA and salt K A.

 $[Given: pK_a(HA) = 5]$

A. 0.458

B.0.327

C. 5.19

D. None of these

Answer:

163. Fixed volume of 0.1 M benzoic acid $(pK_a=4.2)$ solution is added

into 0.2 M sodium benzoate solution and formed a 300 mL, resultant

acidic buffer solution. If pH of this buffer solution is 4.5 then find added volume of benzoic acid :

A. 100 mL

B. 150 mL

C. 200 mL

D. None of these

Answer:

Watch Video Solution

164. A 1.025 g sample containing a weak acid HX (mol. Mass=82) is dissolved in 60 mL water and titrated with 0.25 M NaOH. When half of the acid was neutralised the pH was found to be 5.0 and at the equivalence point the pH is 9.0. Calculate mass precentage of HX in sample :

A. 50~%

 $\mathbf{B.~75~\%}$

 $\mathsf{C}.\,80~\%$

D. None of these

Answer:

Watch Video Solution

165. Which of the following expression for % dissociation of a monoacidic base (BOH) in aqueous solution at appreciable concentration is not correct?

A.
$$100 imes \sqrt{rac{K_b}{c}}$$

B. $rac{1}{1+10^{(pK_b-pOH)}}$
C. $rac{K_w[H^+]}{K_b+K_w}$
D. $rac{K_b}{K_b+[OH^-]}$

Answer:

166. A solution of weak acid HA was titrated with base NaOH. The equivalent point was reached when 40 mL. Of 0.1 M NaOH has been added. Now 20 mL of 0.1 M HCl were added to titrated solution, the pH was found to be 5.0 What will be the pH of the solution obtained by mixing 20 mL of 0.2 M NaOH and 20 mL of 0.2 M HA?

A. 7

B. 9

C. 11

D. None of these

Answer:

Watch Video Solution

167. A buffer solution 0.04 M in Na_2HPO_4 and 0.02 in Na_3PO_4 is prepared. The electrolytic oxidation of 1.0 milli-mole of the organic

compound RNHOH is carried out in 100 mL of the buffer. The reaction is $RNHOH + H_2O \rightarrow RNO_2 + 4H^+ + 4e^-$ The approximate pH of solution after the oxidation is complete is :

 $[Given: f \, \, {
m or} \, \, H_3PO_4, pK_{a1}=2.2, pK_{a2}=7.20, pK_{a3}=12]$

A. 6.90

B. 7.20

C. 7.5

D. None of these

Answer:

Watch Video Solution

168. When a 20 mL of 0.08 M weak base BOH is titrated with 0.08 M HCl, the pH of the solution at the end point is 5. What will be the pOH if 10 mL of 0.04 M NaOH is added to the resulting solution? $[Given: \log 2 = 0.30 \text{ and } \log 3 = 0.48]$ A. 5.40

 $B.\, 5.88$

C. 4.92

D. None of these

Answer:

Watch Video Solution

169. Calculate approximate pH of the resultant solution formed by titration of 25 mL of 0.04 M Na_2CO_3 with 50 mL of 0.025 M HCl. [*Given*: $pK_{a1} = 6.4$ and $pK_{a2} = 10.3f$ or H_2CO_3]

A.5.92

B. 6.88

 $\mathsf{C.}\,6.4$

 $D.\, 5.88$

Watch Video Solution

170. In the titration of solution of a weak acid HA and NaOH, the pH is 5.0 after 10 mL of NaOH solution has been added and 5.60 after 20 mL NaOH has been added.

What is the value of pK_a for HA?

A. 5.15

 $\mathsf{B}.\,5.3$

C. 5.6

D. None of these

Answer:

171. A_3B_2 is a sparingly soluble salt with molar mass $M(gmol_-)$ and solubility x gm $litre_{-1}$, the ratio of the molar concentration of B^{3-} to the solubility product of the salt is : -

A.
$$108 \frac{x^5}{m^5}$$

B. $\frac{1}{108} \frac{M^4}{x^4}$
C. $\frac{1}{54} \frac{M^4}{x^4}$

D. None of these

Answer:

Watch Video Solution

172. A solution is 0.10 M $Ba(NO_3)_2$ and 0.10 M $Sr(NO_3)_2$. If solid Na_2CrO_4 is added to the solution, what is $[Ba^{2+}]$ when $SrCrO_4$ begins to precipitate?

$$ig[K_{sp}(BaCrO_4) = 1.2 imes 10^{-10}, K_{sp}(SrCrO_4) = 3.5 imes 10^{-5}ig]$$

A. 7.4×10^{-7} B. 2.0×10^{-7} C. 6.1×10^{-7} D. 3.4×10^{-7}

Answer:

Watch Video Solution

173. A solution is 0.01 M Kl and 0.1 M KCl. If solid $AgNO_3$ is added to the solution, what is the $\left[l^{-}\right]$ when AgCl begins to precipitate?

$$ig[K_{SP}(Agl) = 1.5 imes 10^{-16}, K_{SP}(AgCl) = 1.8 imes 10^{-10}ig]$$

A. 3.5×10^{-7} B. 6.1×10^{-8} C. 2.2×10^{-7} D. 8.3×10^{-8}

174. Which of the following are conjugate acid-base pairs ?

A. $HCO_3^- CO_3^{2-}$ B. $C_6H_5\overset{+}{N}H_3, C_6H_5NH_2$ C. $H_2PO_2^-, H_2PO_3^-, HC_2O_4^-$ D. OH^-, H^+

Answer: A,B

Watch Video Solution

175. If K_{a_1}, K_{a_2} and K_{a-3}) be the first, second and third dissociation constant of H_3PO_4 and $K_{a_1}>>K_{2_a}>>K_{a_3}$ whis is/are correct :

A.
$$[H^+] \approx \sqrt{K_{a_1}[H_3PO_4]}$$

B. $[H^+] \approx [HPO_4^{2-}]$
C. $K_{a_2} \approx [HPO_4^{2-}]$
D. $[HPO_4^{-2}] = [PO_4^{3-}]$

176. H_2 A is a weak diprotic acid. If the pH of 0.1 M H_2A solution is 3 and concentration of A^{2-} is 10^{-12} at $25^{\circ}C$.

Select correct statement (s)

A. $\left[H^{\,+}
ight]_{
m total}pprox\left[H^{\,+}
ight]$ from first step of ionization of acid H_2A

B. Concentration of $OH^{\,-}$ in solution is $10^{\,-3}$ M

C. The value of K_{a_1} is nearly 10^{-5}

D.
$$pK_{a_2}-pK_{a_1}=9$$

Watch Video Solution

177. Statement-1: pH value of acidic buffer solution changes , If buffer solution is diluted upto very large extent.

Statement-2: $[H^+]$ decreases due to change in concentration as well as α increases and decreases in concentration is more as compared to increases in α .

- A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
- B. If both the statements are TRUE AND STATEMENT-2 is NOT the

correct explanation of STATEMENT-1

C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE

D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

178. Assertion : In a titration of weak monoprotic acid with strong base, the pH at the half equivalent point is pK_a .

Reason : At half equivalence point, it will form acidic buffer at its maximum capacity where [acid] = [salt].

- A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
- B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
- C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
- D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

179. Assertion: In the titration of Na_2CO_3 with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

Reason: Two moles of HCl are required for the complete neutralisation of one mole of Na_2CO_3 .

A. If both the statements are TRUE and STATEMENT-2 is the correct

explation of STATEMENT-1

B. If both the statements are TRUE AND STATEMENT-2 is NOT the

correct explanation of STATEMENT-1

C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE

D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

180. Assertion : Solubility of AgCl in $NH_3(aq)$ is greater than in pure water.

Reason : When AgCl dissolve in $NH_3(aq)$, complex ion $[Ag(NH_3)_2^+]$ formation takes place and solubility equilibrium of $AgCl_3$ shifted in forward direction.

A. If both the statements are TRUE and STATEMENT-2 is the correct

explation of STATEMENT-1

B. If both the statements are TRUE AND STATEMENT-2 is NOT the

correct explanation of STATEMENT-1

C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE

D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

181. Assertion (A): Solubility of AgCN in acidic solutions is greater than in pure water.

Reason (R) : Solubility equilibrium of AgCN is shifted in formwed direction due to the formation of HCN.

A. If both the statements are TRUE and STATEMENT-2 is the correct

explation of STATEMENT-1

B. If both the statements are TRUE AND STATEMENT-2 is NOT the

correct explanation of STATEMENT-1

C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE

D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

182. Calculate pOH of 0.1 M aq. Solution of weak base BOH $\left(K_b=10^{-7}
ight)$

at $25\,^\circ C.$

Watch Video Solution

183. pH of 0.01 M aq. Solution of HA is 4. Find the value of pK_a of HA at $25^{\circ}C$.

Watch Video Solution

184. Calculate approximate pH of 10^{-10} M NaOH at $25^{\circ}C$.

Watch Video Solution

185. Calclate pH of a resultant solution of 25 mL of 0.1 M HCl, 50 mL of 0.02

M HNO_3 and 25 mL of 0.1M NaOH

186. Calculate pH of a resultant solution of 0.1 M HA $\left(K_a=10^{-6}
ight)$ and 0.5 M HB $\left(K_a=2 imes10^{-6}
ight)$ at $25^\circ C.$

187. 0.16g of N_2H_4 are dissolved in water and the total volume made upto 500 mL. Calculate the percentage of N_2H_4 that has reacted with water in this solution. $(K_bf$ or $N_2H_4 = 4.0 \times 10^{-6} <)$

188. Calculate pH of a buffer solution that contains 0.1M $NH_4OHig(K_b=10^{-5}ig)$ and 0.1 M $NH_4Cl.$

189. Calculate the ratio of sodium formate and cormic acid $\left(K_a=2 imes10^{-4}
ight)$ in a buffer solution of pH=4.3.

190. What is the pOH of 0.1 M KB (salt of weak acid and strong base) at

 $25^{\,\circ}\,C$? (Given : $pK_b ofB^{\,-}$ =7)

Watch Video Solution

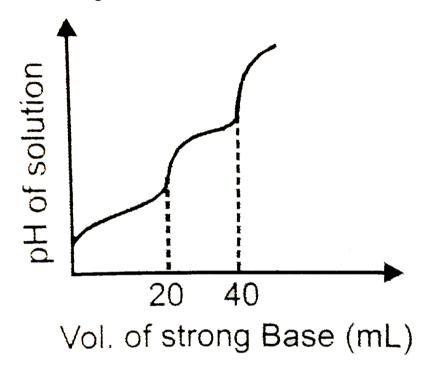
191. A certain weak acid has $K_a = 10^{-5}$. If the equiolibrium constant for it reaction wita a strong base is represented as 1×10^y then find the

value of y.

192. If solubility of AgCl in 0.2 M solution of $AgNO_3$ is represented as

 $y imes 10^{-10}$ then find the value of y.

 $\left(\mathrm{Given} \colon K_{sp\,(AgCl\,)} \, = \, 10^{-\,10}
ight)$


193. When one litre of a saturated solution of $PbCl_2$ (mol. Mass=278) is evaported, the residue is found to weight 2.78g. If K_{sp} of $PbCl_2$ is represented as $y \times 10^{-6}$ then find the value of y.

194. A solution is saturated in $SrCO_3$ and SrF_2 The CO_3^{2-} was found to be 10^{-3} mol/L. If the concentratuon of F^- in solution is represented as $y \times 10^{-2}$ M then what is the value of y?

$$ig[ext{Given:} K_{sp}(SrCO_3) = 2.5 imes 10^{-10}, K_{sp}(SrF_2) = 10^{-10}ig]$$

195. 10 mL of H_2A (weak diprtic acid) solutio is titrated against 0.1M NaOH. pH of the solution is plotted against volume of strong base added and following obserbation is made

Ip pH of the solution at first equivalence point is pH_1 and at secnd equibalence point is pH_2 ·*Calcatethevalueof*(pH_(2)-pH_(1))*at*25^(@)C *Givenf* or H_(2)A,pK_(a_1) = 4.6 and pK_(a_2)`=8, log 25=1.4

196. Amongst the following, the total number of compounds whose

equesous solution turns red litmus paper blue is:

 $H_2 CO_3 \quad 10^{-2} \quad 10^{-5} \quad -$