© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDER AVASTHI CHEMISTRY (HINGLISH)

THERMODYNAMICS

Exercise

1. Out of molar entropy (I), specific volume (II), heat capacity (III), volume (IV), extensive properties are :
A. I, II
B. I, II, IV
C. II, III
D. III, IV
2. Out of internal energy (I), boiling point (II), pH (III) and E.M.F. of the cell (IV) intensive properties are :
A. I, II
B. II, III, IV
C. I, III, IV
D. All of these

Answer: B

- Watch Video Solution

3. Thermodynamic equilibrium involves
A. chemicla equilibrium
B. mechanical equilibrium
C. thermal equilibrium
D. all the above simultaneously

Answer: D

- Watch Video Solution

4. Which has maximum internal energy at $290 K$?
A. Neon gas
B. Nitrogen gas
C. Ozone gas
D. Equal for all

Answer: C

- Watch Video Solution

5. A $10 g$ piece of iron $\left(C=0.45 \mathrm{~J} / g^{\circ} C\right)$ at $100^{\circ} C$ is dropped into $25 g$ of water $\left(C=4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ at $27^{\circ} \mathrm{C}$. Find temperature of the rion and water system at thermal equilibrium .
A. $30^{\circ} \mathrm{C}$
B. $33^{\circ} \mathrm{C}$
C. $40^{\circ} \mathrm{C}$
D. None of these

Answer: A

- Watch Video Solution

6. When freezing of a liquid takes place in a system it:
A. may have $q>0$ or $q<0$ depending on the liquid
B. is represented by $q>0$
C. is represented by $q<0$
D. has $\mathrm{q}=0$

Answer: C

- Watch Video Solution

7. Mechanical work is specially important in systems that contain
A. gas-liquid
B. liquid-liquid
C. solid-solid
D. amalgam

Answer: A

- Watch Video Solution

8. Determine which of the following reactions taking place at constant pressure represents system that do work on the surrounding environment

$$
\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s) \quad(\mathrm{II}) \mathrm{NH}_{4} \mathrm{Cl}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g
$$

A. I
B. III
C. II and III
D. I and II

Answer: C

- Watch Video Solution

9. Determine which of the following reactions at constant pressure represent surrounding that do work on the system environment :
(P) $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(Q) $\mathrm{CO} . \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
(R) $\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(S) $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
A. III, IV
B. II and III
C. II, IV
D. I and II, IV

Answer: D

- Watch Video Solution

10. A sample of liquid in a thermally insulated constant (a calorimetre) is strirred for 2 hr . by a mechancal linkage to motor in the surrounding ,for this procees :

$$
\begin{aligned}
& \text { A. } w<0, q=0, \Delta U=0 \\
& \text { B. } w>0, q>0, \Delta U>0 \\
& \text { C. } w<0, q>0, \Delta U=0
\end{aligned}
$$

D. $w>0, q=0, \Delta U>0$

Answer: D

- Watch Video Solution

11. An ideal gas expand against a constant external pressure at 2.0 atmosphere from 20 litre to 40 litre and absorb 10 kJ of energy from surrounding. What is the change in internal energy of the system ?
A. 4052 J
B. 5948 J
C. 14052 J
D. 9940 J

Answer: B

- Watch Video Solution

12. 2 mole of zinc is dissolved in HCl at $25^{\circ} \mathrm{C}$. The work done in open vessel is :
A. $-2.477 k J$
B. -4.955 kJ
C. 0.0489 kJ
D. None

Answer: B

- Watch Video Solution

13. A sample of an ideal gas is expanded $1 m^{3}$ to $3 m^{3}$ in a reversible process for which $P=K V^{2}$, with $K=6 \mathrm{bar} / \mathrm{m}^{6}$. What is work done by the gas (in kJ) ?
A. 5200 J
B. 15600 kJ
C. 52 kJ
D. 5267.6 kJ

Answer: A

- Watch Video Solution

14. A given mass of gas expands from state A to state B by three paths 1,2 , and 3 as shown in the figure below. If w_{1}, w_{2} and w_{3}, respectively, be the work done by the gas along three paths, then

A. $w_{1}>w_{2}>w_{3}$
B. $w_{1}<w_{2}<w_{3}$
C. $w_{1}=w_{2}=w_{3}$
D. $w_{2}<w_{3}<w_{1}$

Answer: B

D Watch Video Solution

15. Heat energy abosrbed by a system in going through a cyclic process shown in figure is

$V($ litre $) \uparrow$ 30

A. $10^{7} \pi J$
B. $10^{6} \pi J$
C. $10^{2} \pi J$
D. $10^{4} \pi J$

Answer: C

- Watch Video Solution

16.

In the cyclic process shown in the $V-P$ diagram the magnitude of the work is done is
A. $\pi\left(\frac{P_{2}-P_{1}}{2}\right)^{2}$
B. $\pi\left(\frac{V_{2}-V_{1}}{2}\right)^{2}$
C. $\frac{\pi}{4}\left(P_{2}-P_{1}\right)\left(V_{2}-V_{1}\right)$
D. $\pi\left(V_{2}-V_{1}\right)^{2}$

Answer: C

- Watch Video Solution

17. An ideal gas is taken around the cycle $A B C A$ as shown in $P-V$ diagram.

The net work done by the gas during the cycle is equal to :

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $5 P_{1} V_{1}$
D. $P_{1} V_{1}$

Answer: C
18. An ideal gas is at pressure P and temerature T in a box, which is kept in vaccum with in a large container. The wall of the box is punctured. What happens as the gas occupies entire container?
A. It's temperature falls
B. Its temperature rises
C. Its temperature remains the same
D. Unpredicatable

Answer: C

- Watch Video Solution

19. In following figs. Variation of volume by change of pressure is shown in Fig. A gas is taken along the path $A B C D A$. The change in internal
energy of the tgas will be:

(1)

(3)
(2)

(4)
A. Positive in all the cases (1) to (4)
B. Positive in cases (1), (2), (3) but zero in case (4)
C. Negative in cases (1), (2), (3) but zero in case (4)
D. Zero in all the cases

Answer: D
20. If the door of a refrigerator is kept open, then which of the following is true
A. gets cooled
B. gets heated
C. neigther gets cooled nor gets heated
D. gets cooled or heated depending on the initial temperature of the room

Answer: B

- Watch Video Solution

21. The temperature of an ideal gas increases in an:
A. adiabatic expansion
B. isothermal expansion
C. adiabatic compression
D. isothermal compression

Answer: C

D Watch Video Solution

22. For two mole of an ideal gas :
A. $C_{v}-C_{p}=R$
B. $C_{p}-C_{v}=2 R$
C. $C_{p}-C_{v}=R$
D. $C_{v}-C_{p}=2 R$

Answer: B

23. Which of the following expressions is true for an ideal gas ?
A. $\left(\frac{\partial V}{\partial T}\right)_{P}=0$
B. $\left(\frac{\partial P}{\partial T}\right)_{V}=0$
c. $\left(\frac{\partial U}{\partial V}\right)_{T}=0$
D. $\left(\frac{\partial U}{\partial T}\right)_{V}=0$

Answer: C

- Watch Video Solution

24. If liquefied oxygen at 1 atmospheric pressure is heated from 50 K to 300k by supplying heat at constant rate. The graph of temperature vs time will be
A.

B.

C.
(c)

D.
(d)

Answer: C

- Watch Video Solution

25. For a closed container containing 100 mol of an ideal gas fitted with movable, frictionless, weightless piston operating such that pressure of gas remain constant at 8.21 atm , which graph repsents correct variation of $\log V v / s \log T$ where V is in litre and T is in Kelvin ? $\left(R=0.0821 \frac{\mathrm{atmL}}{\mathrm{molK}}\right)$
(a)

A.

B.

C.
D.
(d)

Answer: A

- Watch Video Solution

26. 10 mole of ideal gas expand isothermally and reversibly from a pressure of 10 atm to 1 atm at 300 K . What is the largest mass which can lifted through a height of 100 meter?
A. 31842 kg
B. 58.55 kg
C. 342.58 kg
D. None of these

Answer: B

- Watch Video Solution

27. A heat engine carries one mole of an ideal monoatomic gas around the cycle as shown in the figure, the amount of heat added in the process
$A B$ and heat removed in the process CA are :

A. $q_{A B}=450 R$ and $q_{C A}=-450 R$
B. $q_{A B}=450 R$ and $q_{C A}=-225 R$
C. $q_{A B}=450 R$ and $q_{C A}=-375 R$
D. $q_{A B}=375 R$ and $q_{C A}=-450 R$

Answer: C
28. What is the final temperature of 0.10 mole monoatomic ideal gas that performs 75 cal of work adiabatically.if the initial temperature is $227^{\circ} \mathrm{C}$ (use $R=2 \mathrm{cal} / \mathrm{K}-\mathrm{mol})$
A. 250 K
B. 300 K
C. 350 K
D. 750 K

Answer: A

- Watch Video Solution

29. The work done by 1 mole of ideal gas during an adiabatic process is (are) given by :
A. $\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1}$
B. $\frac{n R\left(T_{1}-T_{2}\right)}{\gamma-1}$
C. $\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma}$
D. None of these

Answer: A

- Watch Video Solution

30. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $\frac{3}{2}$
B. $\frac{5}{3}$
C. $\frac{7}{2}$
D. $\frac{4}{3}$

Answer: A
31. A gas expands adiabatically at constant pressure such that $T \propto V^{-1 / 2}$ The value of $\gamma\left(C_{p, m} / C_{v, m}\right)$ of the gas will be :
A. 1.3
B. 1.5
C. 1.7
D. 2

Answer: B

- Watch Video Solution

32. For a reversible adiabatic ideal gas expansion $\frac{d p}{p}$ is equal to
A. $\gamma \frac{d V}{V}$
B. $-\gamma \frac{d V}{V}$
C. $\left(\frac{\gamma}{\gamma-1}\right) \frac{d V}{V}$
D. $\frac{d V}{V}$

Answer: B

- Watch Video Solution

33. $P-V$ plot for two gases (assuming ideal) during adiabatic processes are given in the figure. Plot A and Plot B should correspond respectively to:

A. He and H_{2}
B. H_{2} and He
C. He and Ne
D. H_{2} and Cl_{2}

Answer: B

- Watch Video Solution

34. Calculate the final temperature of a monoatomic idal gas that is compressed reversible and adiabatically from $16 L$ to $2 L$ at $300 K$:
A. 600 K
B. 1044.6 K
C. 1200 K
D. 2400 K

Answer: C

35. 5 mole of an ideal gas expand isothermally and irreversibly from a pressure of 10 atm to 1 atm against a constant external pressure of 1 atm. $w_{i r r}$ at 300 K is :
A. -15.921 kJ
B. $-11.224 k J$
C. $-110.83 k J$
D. None of these

Answer: B

- Watch Video Solution

36. With what minimum pressure (in kPa), a given volume of an ideal gas ($C_{p, m}=7 / 2 R$) originally at 400 K and 100 kPa pressure can be compressed irreversibly adiabatically in order to raise its temperature to 600 K :
A. 362.5 kPa
B. 275 kPa
C. 437.5 kPa
D. 550 kPa

Answer: B

- Watch Video Solution

37. The work done in adiabatic compression of 2 mole of an ideal monoatomic gas by constant external pressure of $2 a t m$ starting from initial pressure of $1 a t m$ and initial temperature of $30 K(R=2 \mathrm{cal} /$ mol-degree $)$
A. 360 cal
B. 720 cal
C. 800 cal
D. 1000 cal

Answer: B

- Watch Video Solution

38. One mole of an ideal gas $\left(C_{v, m}=\frac{5}{2} R\right)$ at 300 K and 5 atm is expanded adiabatically to a final pressure of 2 atm against a constant pressure of 2 atm. Final temperature of the gas is :
A. 270 K
B. 273 K
C. 248.5 K
D. 200 K

Answer: C

- Watch Video Solution

39. 10 litre of a non linear polyatomic ideal gas at $127^{\circ} \mathrm{C}$ and 2 atm pressure is suddenly released to 1 atm pressure and the gas expanded adiabatically against constant external pressure. The final temperature and volume of the gas respectively are.
A. $\mathrm{T}=350 \mathrm{~K}, \mathrm{~V}=17.5 \mathrm{~L}$
B. $\mathrm{T}=300 \mathrm{~K}, \mathrm{~V}=15 \mathrm{~L}$
C. $\mathrm{T}=250 \mathrm{~K}, \mathrm{~V}=12.5 \mathrm{~L}$
D. None of these

Answer: A

- Watch Video Solution

40. Calculate average molar heat capacity at constant volume of gaseous mixture contained 2 mole of each of two ideal gases $A\left(C_{v, m}=\frac{3}{2} R\right)$ and $B\left(C_{v, m}=\frac{5}{2} R\right)$:
A. R
B. 2 R
C. 3R
D. 8 R

Answer: B

D Watch Video Solution

41. 0.5 mole each of two ideal $\operatorname{gases} A\left(C_{v, m}=\frac{5}{2} R\right)$ and $B\left(C_{v, m}=3 R\right)$ are taken in a container and expanded reversibly and adiabatically, during this process temperature of gaseous mixture decreased from 350 K to 250 K . Find ΔH (in cal/mol) for the process :
A. $-100 R$
B. $-137.5 R$
C. $-375 R$
D. None of these

- Watch Video Solution

42. A cyclic process $A B C D$ is shown in the $P-V$ diagram. Which of the following curves represents the same process?

(a) $v \underbrace{\text { C }}_{T}$
A.
(b)

B.
(c)

D.
(d)

Answer: A

Watch Video Solution

43. 36 mL of pure water takes 100 sec to evaporate from a vessel when a heater of 806 watt is used. The $\Delta H_{\text {vaporisation }}$ of $\mathrm{H}_{2} \mathrm{O}$ is (density of water $=1 g / c c)$
A. $40.3 \mathrm{~kJ} / \mathrm{mol}$
B. $43.2 \mathrm{~kJ} / \mathrm{mol}$
C. $4.03 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

44. For the reaction : $\mathrm{PCl}_{5}(g) \rightarrow P C l_{3}(g)+C l_{2}(g)$:
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta<\Delta U$
D. None of the above

Answer: B

45. Consider the reaction at 300 K
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}^{\circ}=-185 \mathrm{~kJ}$
If 2 mole of H_{2} compeletely react with 2 mole of Cl_{2} to form HCl . What is ΔU° for this reaction?
A. 0
B. $-185 k J$
C. 370 kJ
D. None of these

Answer: D

- Watch Video Solution

46. Which of the indicated relationship is correct for the following exothermic reaction carried out at constant pressure?
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. $\Delta U=\Delta H$
B. $\Delta U>\Delta H$
C. $w<0$
D. $q>0$

Answer: B

- Watch Video Solution

47. One mole of an ideal gas undergoes a change of state (2.0) atm, 3.0 L) to ($2.0 \mathrm{~atm}, 7.0 \mathrm{~L}$) with a change in internal energy $(\Delta U)=30 \mathrm{~L}$-atm. The change in enthalpy (ΔH) of the process in L-atm :
A. 22
B. 38
C. 25
D. None of these

Answer: B

- Watch Video Solution

48. What is the change internal energy when a gas contracts from 377 mL to 177 mL under a constant pressure of 1520 torr, while at the same time being cooled by removing 124 J heat ?
$[$ Take $:(1 \mathrm{Latm})=100 J)]$
A. 40.52 J
B. -83.48 J
C. $-248 J$
D. None of these

Answer: B

49. For the real gases reaction,
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-560 \mathrm{~kJ}$. In 10 litre rigid vessel at 500 K the initial pressure is 70 bar and after the reaction it becomes 40 bar. The change in internal energy is :
A. $-557 k J$
B. -530 kJ
C. $-563 k J$
D. None of these

Answer: B

- Watch Video Solution

50. One mole of non - ideal gas undergoes a change of state (1.0atm, $3.0 L, 200 \mathrm{~K})$ to $(4.0 \mathrm{~atm}, 5.0 L, 250 \mathrm{~K})$ with a change in internal energy $(\Delta U)=40 L-a t m$. The change in enthalpy of the process in $L-a t m$,
A. 43
B. 57
C. 42
D. None of these

Answer: B

- Watch Video Solution

51. Consider the reacting at 300 K
$C_{6} H_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(l) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-3271 \mathrm{~kJ}$
What is ΔU for the combustion of 1.5 mole of benzene at $27^{\circ} C$?
A. $-3267.25 k J$
B. -4900.88 kJ
C. $-4906.5 k J$
D. $-3274.75 k J$

Answer: B

D Watch Video Solution

52. For the reaction, $\mathrm{FeCO}_{3}(s) \rightarrow \mathrm{FeO}(s)+\mathrm{CO}_{2}(g), \Delta H=82.8 k J$ at $25^{\circ} C$, what is $(\Delta E$ or $\Delta U)$ at $25^{\circ} C$?
A. 82.8 kJ
B. 80.32 kJ
C. $-2394.77 k J$
D. -3274.75 kJ

Answer: B

- Watch Video Solution

53. At 5×10^{4} bar pressure density of diamond and graphite are $3 \mathrm{~g} / \mathrm{cc}$ and $2 g / c c$ respectively, at certain temperature ' T '. Find the value of
$\Delta U-\Delta H$ for the conversion of 1 mole of graphite to 1 mole of diamond at temperature ' T ':
A. $100 \mathrm{~kJ} / \mathrm{mol}$
B. $50 \mathrm{~kJ} / \mathrm{mol}$
C. $-100 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

54. Predict which of the following reaction (s) has a positive entropy change?
$I . \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
II $. \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
III. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}+3 \mathrm{H}_{2}(\mathrm{~g})$
A. I and II
B. III
C. II and III
D. II

Answer: c

- Watch Video Solution

55. Predict which of the following reaction(s) has a negative entropy change?
I. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
II. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
III. $2 \mathrm{KClO}_{4}(s) \rightarrow 2 \mathrm{KClO}_{3}(s)+\mathrm{O}_{2}(\mathrm{~g})$
A. III
B. II
C. I and II
D. I

- Watch Video Solution

56. Which of the following reactions is asssociated with the most negative change in entropy?
A. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
B. $C_{2} H_{4}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)$
C. $C(s$, graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$

Answer: D

- Watch Video Solution

57. When two moles of an ideal gas $\left(C_{p . m .}=\frac{5}{2} R\right)$ heated form 300K to 600 K at constant pressure, the change in entropy of gas (ΔS) is:
A. $\frac{3}{2} R \ln 2$
B. $-\frac{3}{2} R \ln 2$
C. $5 R \ln 2$
D. $\frac{5}{2} R \ln 2$

Answer: C

- Watch Video Solution

58. Which of the following expression for entropy change of an irreversible process?
A. $d S>\frac{d q}{T}$
B. $d S=\frac{d q}{T}$
C. $d S<\frac{d q}{T}$
D. $d S=\frac{d U}{T}$
59. Which of the following expression is known as Clausius inequality ?
A. $\oint \frac{d q}{T} \leq 0$
B. $\oint \frac{d s}{T}=0$
C. $\oint \frac{T}{d q} \leq 0$
D. $\oint \frac{d q}{T} \geq 0$

Answer: A

- Watch Video Solution

60. In a previous problem, calculate $\Delta S_{g a s}$ If process is carried out at constant volume:
A. $5 R \ln 2$
B. $\frac{3}{2} R \ln 2$
C. $3 R \ln 2$
D. $-3 R \ln 2$

Answer: C

- Watch Video Solution

61. If one mole of an ideal gas $\left(C_{p . m .}=\frac{5}{2} R\right)$ is expanded isothermally at 300 K until it's volume is tripled, then change in entropy of gas is:
A. zero
B. infinity
C. $\frac{5}{2} R \ln 3$
D. $R \ln 3$

Answer: D

62. If one mole of an ideal gas $C_{p}=\frac{5}{2} R$ is expanded isothermally at 300 k until it's volume is tripled., if expansion is carried out freely $\left(P_{\text {ext }}=0\right)$, then $\Delta S i s:$
A. zero
B. infinity
C. $R \ln 3$
D. None

Answer: C

- Watch Video Solution

63. When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas (DelataS) is:
A. $C_{p, m} \ln 2$
B. $C_{v, m} \ln 2$
C. $R \ln 2$
D. $\left(C_{v, m}-R\right) \ln 2$

Answer: D

- Watch Video Solution

64. What is the change in entropy when 2.5 mole of water is heated from $27^{\circ} \mathrm{C}$ to $87^{\circ} \mathrm{C}$?

Assume that the heat capacity is constant
$\left.\left(C_{p}\right)_{m}\left(H_{2} O\right)=4.2 J / g=k, \ln (1.2)=0.18\right)$
A. $16.6 \mathrm{~J} / \mathrm{K}$
B. $9 \mathrm{~J} / \mathrm{K}$
C. $34.02 \mathrm{~J} / \mathrm{K}$
D. $1.89 \mathrm{~J} / \mathrm{K}$

Answer: C

- Watch Video Solution

65. Calculate standard entropy change in the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$
Given : $S_{m_{0}}\left(F e_{2} O_{3} . S\right)=87.4, S_{m}^{\circ}(F e, S)=27.3$
$S_{m}^{\circ}\left(H_{2}, g\right)=130.7, S_{m}^{\circ}\left(H_{2} O, l\right)=69.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. $-212.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-215.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-120.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. None of these

Answer: B

D Watch Video Solution

66. Calculate the entropy change $(J / m o l K)$ of the given reaction. The molar entropies $(J / K-m o l)$ are given in brackets after each substance:
$2 \mathrm{PbS}(\mathrm{s})[19.2]+3 \mathrm{O}_{2}(\mathrm{~g})[205.1]$
$\rightarrow 2 \mathrm{PbO}(s)[66.5]+2 \mathrm{O}_{2}(\mathrm{~g})[248.2]$
A. -113.5
B. -168.3
C. +72.5
D. -149.2

Answer: B

- Watch Video Solution

67. Given $\Delta_{r} S^{\circ}=-266$ and the listed [S_{m}° value] Calculate S° for $\mathrm{Fe}_{3} \mathrm{O}_{4}(s)$
$4 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)[\ldots]+\mathrm{O}_{2}(\mathrm{~g})[205] \rightarrow 6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})[87]$
A. calculate

$$
4 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})[\ldots \ldots]+\mathrm{O}_{2}(\mathrm{~g})[205] \rightarrow 6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})[87]
$$

B. +111.1
C. +122.4
D. 145.75

Answer: C

- Watch Video Solution

68. The entropy change for a phase transformation is :
A. $\frac{\Delta U}{\gamma+d T}$
B. $\frac{\Delta T}{\Delta H}$
C. $\frac{\Delta H}{T}$
D. $\frac{\Delta H+\Delta G}{T}$

Answer: C

Watch Video Solution

69. What is the melting point of benzene if $\Delta H_{\text {fusion }}=9.95 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S_{\text {fusion }}=35.7 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
A. $278.7^{\circ} \mathrm{C}$
B. $278.7^{\circ} \mathrm{K}$
C. 300 K
D. 298 K

Answer: B

- Watch Video Solution

70. ΔS for freezing of 10 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ (enthalpy of fusion is $80 \mathrm{cal} / \mathrm{g}$) at $0^{\circ} \mathrm{C}$ and 1 atm is :
A. $12.25 \mathrm{~J} / \mathrm{K}$
B. $-0.244 J / K$
C. $-2.93 \mathrm{~J} / \mathrm{K}$
D. $-12.25 \mathrm{~J} / \mathrm{K}$

Answer: D

- Watch Video Solution

71. Chloroform has $\Delta H_{\text {vaporization }}=29.2 \mathrm{~kJ} / \mathrm{mol}$ and boils at $61.2^{\circ} \mathrm{C}$. What is the value of $\Delta H_{\text {vaporization }}=29.2 \mathrm{~kJ} / \mathrm{mol}$ for chloroform ?
A. $87.3 \mathrm{~J} / \mathrm{mol}-K$
B. $477.1 \mathrm{~J} / \mathrm{mol}-K$
C. $-87.3 \mathrm{~J} / \mathrm{mol}-K$
D. $-477.1 \mathrm{~J} / \mathrm{mol}-K$

Answer: A

72. The entropy if vaporisation of benzene is $85 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 117 g benzene vaporizes at its's normal boiling point, the entropy change in surrounding is:
A. $-85 \mathrm{JK}^{-1}$
B. $-85 \times 1.5 \mathrm{JK}^{-1}$
C. $85 \times 1.5 \mathrm{JK}^{-1}$
D. None of these

Answer: B

- Watch Video Solution

73. Identify the correct statement regarding entropy
A. At absolute zero temperature, the entropy of perfectly crystalline substances is $+v e$
B. At absolute zero temperature entropy of perfectly crystalline substance is taken to be zero
C. At $0^{\circ} C$ the entropy of a perfectly crystalline substance is taken to be zero
D. At absolute zero temperature, the entropy of all crystalline substance is taken to be zero

Answer: B

D Watch Video Solution

74. Calculate ΔS for following process :
$X(s) \rightarrow X(l)$
at100K at200K
Given :
Melting
point of
$X_{s}=100 K, \Delta H_{\text {Fusion }}=20 k J / \mathrm{mol}, C_{p . m}(X, l)=10 J / \mathrm{mol} . K$
A. $26.93 J / K$
B. $206.93 J / K$
C. $203 \mathrm{~J} / \mathrm{K}$
D. $206.93 \mathrm{~kJ} / \mathrm{K}$

Answer: B

- Watch Video Solution

75. For a perfectly crystalline solid $C_{p . m}=a T^{3}$, where ais constant. If $C_{p . m}$. is $0.42 . \mathrm{J} / / \mathrm{K}-\mathrm{mol}$ " at 10 K , molar entropy at 10 K is:
A. $0.42 \mathrm{~J} / \mathrm{k} \mathrm{mol}$
B. $0.14 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
C. $1.12 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
D. zero

Answer: C

76. Consider the following spontaneous reaction $3 X_{2}(g) \rightarrow 2 X_{3}(g)$. What are the sign of $\Delta H, \Delta S$ and ΔG for the reaction ?
A. $+v e,+v e,+v e$
B. $+v e,-v e,-v e$
C. $-v e,+v e,-v e$
D. $-v e,-v e,-v e$

Answer: D

- Watch Video Solution

77. For the reaction $2 H(g) \rightarrow H_{2}(g)$, the sign of ΔH and ΔS respectively are :
A.,$+ \quad-$
B.,++
C.,-+
D.,--

Answer: D

- Watch Video Solution

78. Consider the following reaction.
$C_{6} H_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$
signs of $\Delta H, \Delta S$ and ΔG for the above reaction will be
A.,,+-+
B.,,-+-
C.,,-+-
D.,,++-

Answer: B

- Watch Video Solution

79. Consider the following reaction at temperature T :
$\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{g})$
$\Delta_{r} H^{\circ}=-217.5 \mathrm{~kJ} / \mathrm{mol}, \Delta_{r} S^{\circ}=-233.9 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
Reaction is supported by :
A. entropy enthalpy
B. enthalpy
C. both (a) \& (b)
D. neither

Answer: B

- Watch Video Solution

80. For a process to be spontaneous, ΔG must be.
A. $(\Delta G)_{\text {system }}$ must be negative
B. $(\Delta G)_{\text {system }}$ must be positive
C. $(\Delta S)_{\text {system }}$ must be positive
D. $(\Delta S)_{\text {system }}$ must be negative

Answer: A

- Watch Video Solution

81. For a reaction to occur spontaneously
A. ΔS must be negative
B. ($-\Delta H+T \Delta S)$ must be positive
C. $\Delta H+T \Delta S$ must be negative
D. ΔH must be negative

Answer: B

- Watch Video Solution

82. Which of the following conditions reagarding a chemical process ensures its spontaneity at all temperature?
A. $\Delta H>0, \Delta S<0$
B. $\Delta H<0, \Delta S>0$
C. $\Delta H<0, \Delta S<0$
D. $\Delta H>0, \Delta S<0$

Answer: B

- Watch Video Solution

83. The free energy change $\Delta G=0$, when
A. the system is at equilibrium
B. catalyst is added
C. reactants are initially mixed thoroughly
D. the reactants are completely consumed

D Watch Video Solution

84. Which of the following conditions may lead to a non-spontaneous change?
A. ΔH and ΔS both $+v e$
B. ΔH is $-v e$ and ΔS is $+v e$
C. ΔH and ΔS both $-v e$
D. ΔH is $+v e$ and ΔS is $-v e$

Answer: D

D Watch Video Solution

85. Suppose that a reaction has $\Delta H=-40 \mathrm{~kJ}$ and $\Delta S=-50 \mathrm{~J} / \mathrm{K}$.

At what temperature range will it change from spontaneous to non-

spontaneous?

A. 0.8 K to 1 K
B. 799 K to 800 K
C. 800 K to 801 K
D. 799 K to 801 K

Answer: D

- Watch Video Solution

86. For isothermal expansion in case of an ideal gas :
A. $\Delta G=\Delta S$
B. $\Delta G=\Delta H$
C. $\Delta G=-T . \Delta S$
D. None of these

Answer: C

- Watch Video Solution

87. What is the normal boiling point of mercury?

Given : $\Delta H_{f}^{\circ}(H g, l)=0, S^{\circ}(H g, l)=77.4 J / K-\operatorname{mol}$
$\Delta H_{f}^{\circ}(H g, g)=60.8 k J / \mathrm{mol}, S^{\circ}(H g, g)=174.4 J / K-\mathrm{mol}$
A. 624.8 K
B. 626.8 K
C. 636.8 K
D. None of these

Answer: B

D Watch Video Solution

88. 19 gm of ice is converted into water at $0^{\circ} C$ and 1 atm. The entropies of $\mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are 38.2 and $60 \mathrm{~J} / \mathrm{mol} K$ respectively. The enthalpy change for this conversion is:
A. $5951.4 \mathrm{~J} / \mathrm{mol}$
B. $595.14 \mathrm{~J} / \mathrm{mol}$
C. $-5951.4 \mathrm{~J} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

89. Using the listed [ΔG_{f}° values] calculate ΔG° for the reaction :
$3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})[-33.6]+2 \mathrm{HNO}_{3}(\mathrm{l})[-80.6] \rightarrow 2 \mathrm{NO}(g)[+86.6]+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})[$
A. -513.2
B. -1037.0
C. +433.4
D. +225.0
90. From the following ΔH° and ΔS° values, predict which of reactions
I, II and III would be spontaneous at $25^{\circ} \mathrm{C}$.

	$\Delta H^{\circ}(k J)$	$\Delta S^{\circ}(J / K)$
I.	+10.5	+30
II.	+1.8	-113
III.	-126	+84

A. III
B. 1
C. II and III
D. I and II

Answer: A

- Watch Video Solution

91. Calculate ΔH_{f}° for $U b r_{4}$ from the ΔG° of reaction and the S° values at 298 K .
$U(s)+2 B r_{2}(l) \rightarrow U B r_{4}(s), \Delta G^{\circ}=-788.6 k J . \quad S^{\circ}(J / K-\mathrm{mol}) 50.3$,
A. $-822.1 \mathrm{~kJ} / \mathrm{mol}$
B. $-841.2 \mathrm{~kJ} / \mathrm{mol}$
C. $-775.6 \mathrm{~kJ} / \mathrm{mol}$
D. $-804.3 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

92. The entropies of $H_{2}(\mathrm{~g})$ and $\mathrm{H}(\mathrm{g})$ are 130.6 and $114.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
respectively at 298 K. Using the data given below calculate the bond energy of H_{2} (in kJ/mol) :
$H_{2}(g) \rightarrow 2 H(g), \Delta G^{\circ}=406.6 \mathrm{~kJ}$
A. 377.2
B. 436
C. 425.5
D. 430.5

Answer: B

- Watch Video Solution

93. Consider the ΔG_{f}° and $\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ for the following oxides. Which can be most easily decomposed to form the metal and oxygen gas?
A. $Z n O\left(\Delta G^{\circ}=-318.4, \Delta H^{\circ}=-348.3\right)$
B. $C u_{2} O\left(\Delta G^{\circ}=-146.0, \Delta H^{\circ}=-168.8\right)$
C. $H g O\left(\Delta G^{\circ}=-58.5, \Delta H^{\circ}=-90.8\right)$
D. $\operatorname{PbO}\left(\Delta G^{\circ}=-187.9, \Delta H^{\circ}=-217.3\right)$

Answer: C

- Watch Video Solution

94. Which of the following option is correct ?
A. $\left[\frac{\partial \ln K_{p}}{\partial T}\right]=\frac{\Delta H^{\circ}}{R T^{2}}$
B. $\frac{\partial \ln K}{\partial T}=\frac{E_{a}}{R T^{2}}$
C. $\left[\frac{\partial \ln K_{p}}{\partial T}\right]=\frac{\Delta U}{R T^{2}}$
D. All of these

Answer: D

- Watch Video Solution

95. Calculate $\Delta G^{\circ}(\mathrm{kJ} / \mathrm{mol})$ at $127^{\circ} C$ for a reaction with $K_{\text {equilibrium }}=10^{5}$:
A. -38.294
B. -16.628
C. -9.16
D. None of these

D Watch Video Solution

96. When reaction is at standard state at equilibrium, then
A. $\Delta H^{\circ}=0$
B. $\Delta S^{\circ}=0$
C. equilibrium constant $\mathrm{K}=0$
D. equilibrium constant $K=1$

Answer: D

- Watch Video Solution

97. For the auto-ionization of water at $25^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow H^{+}(\mathrm{aq})+\mathrm{OH}^{-}$(aq) equilibrium constant is 10^{-14}.

What is ΔG° for the process?
A. $\cong 8 \times 10^{4} J$
B. $\cong 3.5 \times 10^{4} J$
C. $\cong 10^{4} \mathrm{~J}$
D. None of these

Answer: A

- Watch Video Solution

98. Hess's law states that
A. the standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions.
B. enthalpy of formation of a comound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign.
C. at constant temperature the pressure of a gas is inversely proportional to its volume
D. the mass of a gas dissolved per litre of a solvent is proportional to the pressure of the gas in equilibrium with the solution

Answer: A

D Watch Video Solution

99. An imaginary reaction $X \rightarrow Y$ takes place in three steps
$X \rightarrow A, \Delta H=-q_{1}, \quad B \rightarrow A, \Delta H=-q_{2}, \quad B \rightarrow Y, \Delta H=-q_{3}$
If Hess's law is applicable, then the heat of the reaction $(X \rightarrow Y)$ is :
A. $q_{1}-q_{2}+q_{3}$
B. $q_{2}-q_{3}-q_{1}$
C. $q_{1}-q_{2}-q_{3}$
D. $q_{3}-q_{2}-q_{1}$

Answer: B

- Watch Video Solution

100. The enthalpy change for a reaction does not depend upon:
A. the physical states of reactants and products
B. use of different reactants for the same product
C. the number of intermediate reaction steps
D. the differences in initial or final temperature of involved substances

Answer: C

- Watch Video Solution

101. The standard enthalpy of formation of gaseous $\mathrm{H}_{2} \mathrm{O}$ at 298 K is $-241.82 \mathrm{~kJ} / \mathrm{mol}$. Calculate ΔH° at 373 K given the following values of the molar heat capacities at constant pressure :
$H_{2} O(g)=33.58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \quad H_{2}(g)=29.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \quad O_{2}(g$
Assume that the heat capacities are independent of temperature :
A. $-242.6 \mathrm{~kJ} / \mathrm{mol}$
B. $-485.2 \mathrm{~kJ} / \mathrm{mol}$
C. $-121.3 \mathrm{~kJ} / \mathrm{mol}$
D. $-286.4 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

102. Which of the following value of ΔH_{f}° represent that the product is least stable?
A. $-94.0 \mathrm{kcalmol}^{-1}$
B. $-231.6 \mathrm{kcalmol}^{-1}$
C. $+21.4 \mathrm{kcalmol}^{-1}$
D. $+64.8 \mathrm{kcalmol}^{-1}$

Answer: D

- Watch Video Solution

103. For which of the following substances is the heat of formation in the standard state zero ?
A. Sucrose
B. Ethanol
C. Aluminium
D. Calcium chloride

Answer: C

104. Calculate the standard enthalpy of reaction for the following reaction using the listed enthalpies of reaction:
$3 \mathrm{Co}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Co}_{3} \mathrm{O}_{4}(\mathrm{~s})$
$2 \mathrm{Co}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CoO}(s), \quad \Delta H_{1}^{\circ}=-475.8 \mathrm{~kJ}$
$6 \mathrm{CoO}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Co}_{3} \mathrm{O}_{4}(\mathrm{~s}), \Delta \mathrm{H}_{2}^{\circ}=-355.0 \mathrm{~kJ}$
A. $-891.2 k J$
B. -120.8 kJ
C. $+891.2 k J$
D. $-830.8 k J$

Answer: A

- Watch Video Solution

105. Given the following equations and ΔH° values, determine the enthalpy of reaction at 298 K for the reaction :

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+6 \mathrm{~F}_{2}(g) \rightarrow 2 H F_{4}(g)+4 H F(g)
$$

$H_{2}(g)+F_{2}(g) \rightarrow 2 H F(g)+2 H F(g), \quad \Delta H_{1}^{\circ}=-537 \mathrm{~kJ}$
$C(s)+2 F_{2}(g) \rightarrow C F_{4}(g), \quad \Delta H_{2}^{\circ}=-680 \mathrm{~kJ}$
$2 C(s)+2 H_{2}(g) \rightarrow C_{2} H_{4}(g), \quad \Delta H_{3}^{\circ}=52 \mathrm{~kJ}$
A. -1165
B. -2486
C. +1165
D. +2486

Answer: B

(D) Watch Video Solution

106. Given :
$C($ diamond $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-395 \mathrm{~kJ}$
C (graphite) $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-393 k J$
The enthalpy of formation of diamond from graphite is

$$
\text { A. }+2.0 \mathrm{~kJ}
$$

B. -1.5 kJ
C. -788 kJ
D. 788 kJ

Answer: A

- Watch Video Solution

107. Which of the following equations represents a reaction that provides the enthalpy of formation of $\mathrm{CH}_{3} \mathrm{Cl}$?
A. $\mathrm{C}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
B. $\mathrm{C}(\mathrm{s})+3 \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
C. $\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
D. $\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$

Answer: C

108. Use the given standard enthalpies of formation (in $\mathrm{kJ} / \mathrm{mol}$) to determine the enthalpy of reaction of the following reaction :
$\mathrm{NH}_{3}(g)+3 \mathrm{~F}_{2}(g) \rightarrow \mathrm{NF}_{3}+3 \mathrm{HF}(g)$
$\Delta H_{f}^{\circ}\left(N H_{3}, g\right)=-46.2, \quad \Delta H_{f}^{\circ}\left(N F_{3}, g\right)=-113.0, \quad \Delta H_{f}^{\circ}(H F, g)$
A. $-335.8 \mathrm{~kJ} / \mathrm{mol}$
B. $-873.8 \mathrm{~kJ} / \mathrm{mol}$
C. $-697.2 \mathrm{~kJ} / \mathrm{mol}$
D. $-890.4 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

109. The standard enthalpy of formation of octane $\left(C_{8} H_{18}\right)$ is $-250 \mathrm{~kJ} / \mathrm{mol}$. Calculate the enthalpy of combustion of $\mathrm{C}_{8} \mathrm{H}_{18}$. The
enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-394 \mathrm{~kJ} / \mathrm{mol}$ and $-286 k J / m o l$ respectively.
A. $-5200 \mathrm{~kJ} / \mathrm{mol}$
B. $-5726 \mathrm{~kJ} / \mathrm{mol}$
C. $-5476 \mathrm{~kJ} / \mathrm{mol}$
D. $-5310 \mathrm{~kJ} / \mathrm{mol}$

Answer: C

(Watch Video Solution

110. Determine the enthalpy of formation of $B_{2} H_{6}(\mathrm{~g})$ in $\mathrm{kJ} / \mathrm{mol}$ of the following reaction :
$\mathrm{B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$,

Given
$\Delta_{r} H^{\circ}=-1941 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta H_{f}^{\circ}\left(B_{2} O_{3}, s\right)=-1273 \mathrm{~kJ} / \mathrm{mol}$,
$\Delta H_{f}^{\circ}\left(H_{2} O, g\right)=-241.8 \mathrm{~kJ} / \mathrm{mol}$
A. -75.6
B. +75.6
C. -57.4
D. -28.4

Answer: C

- Watch Video Solution

111. Consider the following reactions:
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+x \mathrm{~kJ}$
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+y \mathrm{~kJ}$
The heat formation of $\mathrm{CO}(\mathrm{g})$ is :
A. $-(x+y) \mathrm{kJ} / \mathrm{mol}$
B. $(x-y) \mathrm{kJ} / \mathrm{mol}$
C. $(y-x) \mathrm{kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

112. If $\Delta_{f} H^{\circ}\left(C_{2} H_{4}\right)$ and $\Delta_{f} H^{\circ}\left(C_{2} H_{6}\right)$ are x_{1} and $x_{2} \mathrm{kcal} \mathrm{mol}^{-1}$, then heat of hydrogenation of $\mathrm{C}_{2} \mathrm{H}_{4}$ is:
A. $x_{1}+x_{2}$
B. $x_{1}-x_{2}$
C. $x_{2}-x_{1}$
D. $x_{1}+2 x_{2}$

Answer: C

- Watch Video Solution

113. Calculate the heat of formation of n butane from the following data:
a. $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-5757.2 \mathrm{~kJ}$
b. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-405.4 k J$
c. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-572.4 \mathrm{~kJ}$
A. 575.6
B. 287.8
C. 182
D. 57.56

Answer: B

- Watch Video Solution

114. The enthalpy of the reaction forming PbO according to the following equation is 438 kJ . What heat energy (kJ) is releated in formation of 22.3 g $\mathrm{PbO}(\mathrm{s})$?
(Atomic masses : $\mathrm{Pb}=207, \mathrm{O}=16.0$)
$2 \mathrm{~Pb}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{PbO}(s)$
B. 28.7
C. 14.6
D. 34.2

Answer: A

- Watch Video Solution

115. The fat, $C_{57} H_{104} O_{6}(s)$, is metabolized via the following reaction.

Given the enthalpies of formation, calculate the energy (kj) liberated when 1.0 g of this fat reacts.
$\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{O}_{6}(\mathrm{~s})+80 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 57 \mathrm{CO}_{2}(\mathrm{~g})=-52 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} H^{\circ}\left(C_{57} H_{104} O_{6}, s\right)=-70870 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} H^{\circ}\left(H_{2} O, l\right)=-285.8$
$\Delta_{f} H^{\circ}\left(C O_{2}, g\right)=-393.5 \mathrm{~kJ} / \mathrm{mol}$
A. 37.98
B. 40.4
C. 33.4
D. 30.2

Answer: A

- Watch Video Solution

116. The heat of formation of $N H_{3}(g)$ is $-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The ΔH (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ is
A. 46
B. -46
C. 92
D. -92

Answer: C

117. Consider the following reaction:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}_{1}=44 \mathrm{~kJ}$
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}=-1453 \mathrm{~kJ}$
What is the value of ΔH for second reaction if water vapour instead of liquid water is formed as product?
A. -1409 kJ
B. -1629 kJ
C. $1277 k J$
D. None of these

Answer: C

- Watch Video Solution

118. The standard enthalpy change for the following reaction is 436.4 kJ :
$H_{2}(g) \rightarrow H(g)+H(g)$
What is the $\Delta_{f} H^{\circ}$ of atomic hydrogen (H)?
A. $872.8 \mathrm{~kJ} / \mathrm{mol}$
B. $218.2 \mathrm{~kJ} / \mathrm{mol}$
C. $-218.2 \mathrm{~kJ} / \mathrm{mol}$
D. $-436.9 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

119. Determine enthalpy of formation for $\mathrm{H}_{2} \mathrm{O}_{2}(l)$, using the listed enthalpies of reaction :

$$
\mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l),
$$

$$
\Delta_{r} H_{1}^{\circ}=-818 \mathrm{~kJ} / \mathrm{mol}
$$

$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta_{r} H_{2}^{\circ}=-622 \mathrm{~kJ} / \mathrm{mol}
$$

$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta_{r} H_{3}^{\circ}=-285 \mathrm{~kJ} / \mathrm{mol}$
A. $-383 \mathrm{~kJ} / \mathrm{mol}$
B. $-187 \mathrm{~kJ} / \mathrm{mol}$
C. $-498 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

120. Heat of combustion of ethanol at constant pressure and at temperature $T K$ is found to be $-q J \mathrm{~mol}^{-1}$. Hence, heat of combustion (in J mol^{-1}) of ethanol at the same temperature and at constant volume will be :
A. RT - q
B. $-(q+R T)$
C. q-RT
D. $q+R T$

D Watch Video Solution

121. Stearic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}_{2} \mathrm{H}\right]$ is a fatty acid the part of fat that stores most of the energy 1.0 g of Stearic acid was burnt in a bomb calorimeter. The bomb had capacity of $652 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. If the temperature of 500 g water rose from 25.0 to $39.3^{\circ} \mathrm{C}$ how much heat is released when the stearic acid was burned?
$\left[\right.$ Given $\left.C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{~J} / g^{\circ} \mathrm{c}\right]$
A. 39.21 kJ
B. 29.91 kJ
C. 108 kJ
D. 9.32 kJ

Answer: A

122. A 0.05 L sample of 0.2 M aqueous hydrochloric acid is added to 0.05 L of 0.2 M aqueous ammonia in a calorimeter. Heat capacity of entire calorimeter system is $480 \mathrm{~J} / \mathrm{K}$. The temperature increase is 1.09 K . Calculate $\Delta_{r} H^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$ for the following reaction :
$\mathrm{HCl}($ aq. $)+\mathrm{NH}_{3}($ aq. $) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}($ aq. $)$
A. -52.32
B. -61.1
C. -55.8
D. -58.2

Answer: A

(Watch Video Solution

123. a Coffee cup calorimeter initially contains 125 g of water, at a temperature of $24.2^{\circ} \mathrm{C}$,8 of ammonium nitrate $\left(\mathrm{NH}_{4} N O_{3}\right)$ also at
$24.2^{\circ} \mathrm{C}$ is added to the Water and the final temperature is $18.2^{\circ} \mathrm{c}$ What is the heat of solution of ammonium nitrate in $\mathrm{KJ} / \mathrm{mol}$? (The specific heat capacity of the solution is $4.2 \mathrm{~J} /{ }^{\circ} \mathrm{c}$.)
A. $33.51 \mathrm{~kJ} / \mathrm{mol}$
B. $39.5 \mathrm{~kJ} / \mathrm{mol}$
C. $32.2 \mathrm{~kJ} / \mathrm{mol}$
D. $37.3 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

124. Read following statement(s) carefully and select the right option :
(I) The enthalpy of solution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a large volume of water is endothermic to the extent of $3.5 \mathrm{kcal} / \mathrm{mol}$. If $\Delta H=-23.2 \mathrm{kcal}$ for the reaction,
$\mathrm{CaCl}_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(s)$
then heat of solution of CaCl_{2} (anhydrous) in a large volume of water is -
$19.7 \mathrm{kcal} / \mathrm{mol}$
(II) For the reaction $2 C l(g) \rightarrow C l_{2}(g)$, the sign of ΔH and ΔS are negative.
A. Statement I and II both are wrong
B. both are correct
C. only I is correct
D. only II is correct

Answer: B

- Watch Video Solution

125. If the enthalpy of formation and enthalpy of solution of $\mathrm{HCl}(\mathrm{g})$ are$92.3 \mathrm{kj} / \mathrm{mol}$ and $-75.14 \mathrm{~kJ} / \mathrm{mol}$ respectively then find the enthalpy of Cl^{-} (aq):
A. $-17.16 \mathrm{~kJ} / \mathrm{mol}$
B. $-167.44 \mathrm{~kJ} / \mathrm{mol}$
C. $17.16 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

126. At $25^{\circ} \mathrm{C}$, when 1 mole of MgSO_{4} was dissolved in water, the heat evolved was found to be 91.2 kJ . One mole of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ on dissolution gives a solution of the same composition accompanied by an absorption of 13.8 kJ . The enthalpy of hydration, i.e., ΔH_{h} for the reaction $\mathrm{MgSO}_{4}(s)+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}):$
A. $-105 \mathrm{~kJ} / \mathrm{mol}$
B. $-77.4 \mathrm{~kJ} / \mathrm{mol}$
C. $105 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Watch Video Solution

127. The enthalpy of neutraliztion of weak base AOH and a strong base BOH by HCl are $-12250 \mathrm{cal} / \mathrm{mol}$ and $-13000 \mathrm{cal} / \mathrm{mol}$ respectively. When one mole of HCl is added to a solution containting 1 mole of A OH and 1 mole of BOH , the enthalpy change was $-12500 \mathrm{cal} / \mathrm{mol}$. In what ratio is the acid distribution between A OH and BOH ?
A. 2:1
B. 2:3
C. 1:2
D. None of these

Answer: A

- Watch Video Solution

128. The absolute enthalpy of neutralization of the reaction, $\mathrm{MgO}(s)+2 \mathrm{HCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(l)$ will be
A. less that $57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. greater than $57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $57 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

129. Enthalpy of neutralization of HCl by NaOH is $-55.84 \mathrm{~kJ} / \mathrm{mol}$ and by $\mathrm{NH}_{4} \mathrm{OH}$ is $51.34 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of ionization of $\mathrm{NH}_{4} \mathrm{OH}$ is :
A. $107.18 \mathrm{~kJ} / \mathrm{mol}$
B. $4.5 \mathrm{~kJ} / \mathrm{mol}$
C. $-4.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

130. Which of the following reaction is endothermic?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{Fe} S$
C. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

131. Which of the following is not correct ?
A. Dissolution of a salt in excess of water may be endothermic process
B. Neutralisation is always exothermic
C. The absolute value of enthalpy (H) can be determined by calorimeter
D. The heat of reaction at constant volume is denoted by δU

Answer: C

- Watch Video Solution

132. Substance $A_{2} B(g)$ can undergoes decomposition to form two set of products:

If the molar ratio of $A_{2}(g)$ to $\mathrm{A}(\mathrm{g})$ is $5: 3$ in a set of product gases, then the energy involved in the decomposition of 1 mole of $A_{2} B(g)$ is :
A. $48.75 \mathrm{~kJ} / \mathrm{mol}$
B. $43.73 \mathrm{~kJ} / \mathrm{mol}$
C. $46.25 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

133. Boron can undergo the following reactions with the given enthalpy changes:
$2 B(s)+\frac{3}{2} O_{2}(g) \rightarrow B_{2} O_{3}(s), \quad \Delta H=-1260 \mathrm{~kJ}$
$2 B(s)+3 H_{2}(g) \rightarrow B_{2} H_{6}(g), \quad \Delta H=30 \mathrm{~kJ}$
Assume no other reactions are occuring.
If in a container (operating at constant pressure) which is isolated from the surrounding, mixture of H_{2} (gas) and O_{2} (gas) are passed over excess of $\mathrm{B}(\mathrm{s})$, then calculate the molar ratio $\left(\mathrm{O}_{2}: \mathrm{H}_{2}\right)$ so that temperature of the container do not change :
A. 15: 3
B. $42: 1$
C. 1: 42
D. $1: 84$

Answer: D

(D) Watch Video Solution

134. The enthalpy change for the following reaction is 368 kJ . Calculate the average O-F bond energy.
$O F_{2}(g) \rightarrow O(g)+2 F(g)$
A. $184 \mathrm{~kJ} / \mathrm{mol}$
B. $368 \mathrm{~kJ} / \mathrm{mol}$
C. $536 \mathrm{~kJ} / \mathrm{mol}$
D. $736 \mathrm{~kJ} / \mathrm{mol}$
135. The enthalpy change for the reaction, $\mathrm{C}_{2} \mathrm{H}_{6}(g) \rightarrow 2 \mathrm{C}(\mathrm{g})+6 \mathrm{H}(\mathrm{g})$ is XkJ . The bond energy of $\mathrm{C}-\mathrm{H}$ bond is :
A. $\frac{X}{2}$
B. $\frac{X}{3}$
C. $\frac{X}{6}$
D. data insufficient

Answer: D

- Watch Video Solution

136. The table given below lists the bond dissociation energy ($E_{\text {diss }}$) for single covalent bonds formed between C and atoms A, B, D, E.

Bond
$E_{\text {diss }}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$C-A$ 240
$C-B$ 382
$C-D$ 276
$C-E$ 486

Which of the atoms has smallest size ?
A. D
B. E
C. A
D. D

Answer: B

- Watch Video Solution

137. Calculate $P-C l$ bond enthalpy
$P(s)+\frac{3}{2} C l_{2}(g) \rightarrow P C l_{3}(g)$ Given $: \Delta_{f} H\left(P C l_{3}, g\right)=306 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {atomization }}(P, s)=314 \mathrm{~kJ} / \mathrm{mol}$,
$\Delta_{r} H(C l, g)=1231 \mathrm{~kJ} / \mathrm{mol}$
A. $123.66 \mathrm{~kJ} / \mathrm{mol}$
B. $371 \mathrm{~kJ} / \mathrm{mol}$
C. $19 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

138. Calculate the enthalpy for the following reaction using the given bond energies ($\mathrm{kJ} / \mathrm{mol}$) :
$(C-H=414, H-O=463, H-C l=431, C-C l=326, C-O=33!$
$\mathrm{CH}_{3}-\mathrm{OH}(\mathrm{g})+\mathrm{HCl} \rightarrow \mathrm{CH}_{3}-\mathrm{Cl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. $-23 \mathrm{~kJ} / \mathrm{mol}$
B. $-42 \mathrm{~kJ} / \mathrm{mol}$
C. $-59 \mathrm{~kJ} / \mathrm{mol}$
D. $-511 \mathrm{~kJ} / \mathrm{mol}$

D Watch Video Solution

139. Based on the values of B.E. given, $\Delta_{f} H^{\circ}$ of $N_{2} H_{4}(\mathrm{~g})$ is :

Given : $N-N=159 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad H-H=436 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$N \equiv N=941 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad N-H=398 \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. $711 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
B. $62 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-98 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-711 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

140. A heating coil is immersed in a 100 g sample of $\mathrm{H}_{2} \mathrm{O}$ (I) at a 1 atm and $100^{\circ} \mathrm{C}$ in a closed vessel. In this heating process, 60% of the liquid is converted to the gaseous form at constant pressure of 1 atm. The densities of liquid and gas under these conditions are $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $0.60 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. Magnitude of the work done forthe process is: (Take : 1L-atm=100J)
A. 4997J
B. 4970 J
C. 9994 J
D. None of these

Answer: C

- Watch Video Solution

141. A rigid and insulated tank of $3 m^{3}$ volume is divided into two compartments. One compartment of volume of $2 \mathrm{~m}^{3}$ contains an ideal gas
at 0.8314 Mpa and 400 K while the second compartment of volume of $1 m^{3}$ contains the same gas at 8.314 Mpa and 500 K . If the partition between the two compartments is rptured, the final temperature of the gas is :
A. 420 K
B. 450 K
C. 480 K
D. None of these

Answer: C

- Watch Video Solution

142. What is the value of change in internal energy at 1 atm in the process?
$\mathrm{H}_{2} \mathrm{O}(l, 323 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(g, 423 K)$

Given
$C_{v, m}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=75.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}: \quad C_{p, m}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)=33.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-}$
$\Delta H_{\text {vap }}$ ar $373 \mathrm{~K}=40.7 \mathrm{KJ} / \mathrm{mol}$
A. $42.91 \mathrm{~kJ} / \mathrm{mol}$
B. $43086 \mathrm{~kJ} / \mathrm{mol}$
C. $42.6 \mathrm{~kJ} / \mathrm{mol}$
D. $49.6 \mathrm{~kJ} / \mathrm{mol}$

Answer: C

- Watch Video Solution

143. For an ideal gas $\frac{C_{p, m}}{C_{v, m}}=\gamma$. The molecular mass of the gas is M , its specific heat capacity at constant volume is :
A. $\frac{R}{M(\gamma-1)}$
B. $\frac{M}{R(\gamma-1)}$
C. $\frac{\gamma R M}{\gamma-1}$
D. $\frac{\gamma R}{M(\gamma-1)}$

Answer: A

- Watch Video Solution

144. 1 mole of an ideal gas $A\left(C_{v . m}=3 R\right)$ and 2 mole of an ideal gas B are $\left(\left(C_{v, m}=\frac{3}{2} R\right)\right.$ taken in a container and expanded reversible and adiabatically from 1 litre of 4 letre starting from initial temperature of $320 \mathrm{~K} . \Delta E$ or ΔU for the process is :
A. 240 R
B. 240 R
C. 480 R
D. -960 R

Answer: D

145. Calculate the work done by the system in an irreversible (single step) adiabatic expansion of 2 mole of a polyatomic gas $(\gamma=4 / 3)$ from 300 K and pressure 10 atm to 1 atm :
A. -227
B. $-205 R$
C. $-405 R$
D. None of these

Answer: C

- Watch Video Solution

146. One mole of an ideal gas is carried through the reversible cyclic process as shown in figure. The max. temperature attained by the gas
duing the cycle

A. $\frac{7}{6 R}$
B. $\frac{12}{49 R}$
C. $\frac{49}{12 R}$
D. None of these

Answer: C

147. A gas $\left(C_{v . m}=\frac{5}{2} R\right)$ behaving ideally is allowed to expand reversibly and adiabatically from 1 litre to 32 litre. Its initial temperature is $327^{\circ} \mathrm{C}$. The molar enthalpy change (in $\mathrm{J} / \mathrm{mol}$) for the process is :
A. $-1125 R$
B. -675
C. $-1575 R$
D. None of these

Answer: C

- Watch Video Solution

148. Two mole of an ideal gas is heated at constant pressure of one atmosphere from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. If $C_{v, m}=20+10^{-2} \mathrm{~T} \mathrm{JK}^{-1} . \mathrm{mol}^{-1}$, then q and ΔU for the process are respectively:
B. $3037.2 J, 4700 \mathrm{~J}$
C. $7062.8 J, 5400 J$
D. None of these

Answer: A

- Watch Video Solution

149. 10 mole of an ideal gas is heated at constant pressure of one atmosphere from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. If $C_{v, m}=21.686+10^{-3} T\left(J^{-1} \cdot \mathrm{~mol}^{-1}\right)$, then ΔH for the process is :
A. 3000 J
B. 3350 J
C. 3700 J
D. $3181.4 J, 2350 J$

Answer: D

150. For polytropic process $P V^{n}=$ constant, molar heat capacity $\left(C_{m}\right)$ of an ideal gas is given by:
A. $C_{v, m}+\frac{R}{(n-1)}$
B. $C_{v, m}+\frac{R}{(1-n)}$
C. $C_{v, m}+R$
D. $C_{p, m}+\frac{R}{(n-1)}$

Answer: B

- Watch Video Solution

151. 2 mole of an ideal monoatomic gas undergoes a reversible process for which $P V^{2}=C$. The gas is expanded from initial volume of 1 L to final volume of 3 L starting from initial temperature of 300 K . Find ΔH for the process :
A. -600 R
B. -1000 R
C. -3000 R
D. None of these

Answer: B

- Watch Video Solution

152. Calculate ΔS for 3 mole of a diatomic ideal gas which is heated and compressed from 298 K and 1 bar to 596 K and 4 bar: [Given: $\left.C_{v, m}(\mathrm{gas})=\frac{5}{2} R, \ln (2)=0.70, R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}\right]$
A. $-14.7 \mathrm{cal} \mathrm{K}^{-1}$
B. $+14.7 \mathrm{calK}^{-1}$
C. $-4.9 \mathrm{calK}{ }^{-1}$
D. $6.3 \mathrm{cal}^{-1}$

Answer: D

- Watch Video Solution

153. One mole of an ideal monoatomic gas at $27^{\circ} \mathrm{C}$ is subjected to a reversible isoentropic compression until the temperature reached to $327^{\circ} \mathrm{C}$. If the initial pressure was 1.0 atm , then find the value of in P_{2} (Given $: \ln 2=0.7$)
A. 1.75 atm
B. 0.176 atm
C. 1.0395 atm
D. 2.0 atm

Answer: A

154. Two moles of an ideal gas is expanded irreversibly and isothermally at $37^{\circ} \mathrm{C}$ until its volume is doubled and 3.41 KJ heat is absorbed from surrounding. $\Delta S_{\text {total }}$ (system + surrounding) is:
A. $-0.52 J / K$
B. $0.52 J / K$
C. $22.52 \mathrm{~J} / \mathrm{K}$
D. 0

Answer: B

- Watch Video Solution

155. For a perfectly crystalline solid $C_{p, m}=a T^{3}+b T$, where a and b are constant. If $C_{p, m}$ is $0.40 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ at 10 K and $0.92 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ at 20 K , then molar entropy at 20 K is :
A. $0.92 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
B. $8.66 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
C. $0.813 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

156. Which of the following statement (s) is correct?

Statement-I: The entropy of isolated system with P-V work only, is always maximized at equillibrium.

Statement-2: It is possible for the entropy of closed system to decrease substantialy in an irreversible process.

Statemet-3: Entropy can be crearted but not destroyed.
Statement-4 $\Delta S_{\text {system }}$ is zero for reversible process in an isolated system.
A. Statement i, ii, iii
B. Statement ii, iv
C. Statement I, ii, iii
D. None of these

Answer: D

- Watch Video Solution

157. Combustion of sucrose is used by aerobic organisms for providing energy for the life sustaining process. If all the capturing of energy from the reaction is done through electrical process (non P-V work), then calculate, maximum available energy which can be captured by combustion of 34.2 g of sucrose :
(Given : $\Delta H_{\text {combustion }}($ sucrose $)=-6000 \mathrm{kJmol}^{-1}$
$\Delta S_{\text {combustion }}=180 j / K-m o l$ and bodyntemperature is 300 K)
A. 600 kJ
B. 594.6 kJ
C. 5.4 kJ
```
D. 605.4 kJ
```

Answer: D

- Watch Video Solution

158. For the hypothetical reaction
$A_{2}(g)+B_{2}(g) \rightarrow 2 A B_{g}$
ΔG_{r}° and ΔS_{r}° are $20 \mathrm{KJ} / \mathrm{mol}$ and $-20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively at
$\Delta_{r} C_{p}$ is $20 \mathrm{JK}^{-1}$ then ΔH_{r}° at 400 Kis
A. $20 \mathrm{~kJ} / \mathrm{mol}$
B. $7.98 \mathrm{~kJ} / \mathrm{mos}$
C. $28 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

159. Calculate $\Delta_{r} G^{\circ}$ for $\left(N H_{4} C l, s\right)$ at 310K.

Given : $\Delta_{r} H^{\circ}\left(N H_{4} C l, s\right)=-314 \mathrm{kj} / \mathrm{mol}, \Delta_{r} C_{p}=0$
$S_{N_{2}(g)}^{\circ}=192 \mathrm{JK}^{-1 \mathrm{~mol}^{-1}}, S_{H_{2}(g)}^{\circ}=130.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S_{C l_{2}(g)}^{\circ}=233 \mathrm{JKmol}^{-1}, S_{\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})}^{\circ}=99.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
All given data at 300 K
A. $-198.56 \mathrm{~kJ} / \mathrm{mol}$
B. $-426.7 \mathrm{~kJ} / \mathrm{mol}$
C. $-202.3 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

160. Using listed informations, calculate $\Delta_{r} G^{\circ}$ (in kJ/mol) at $27^{\circ} C$
$\mathrm{Co}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Co}(\mathrm{s})+4 \mathrm{CO}_{2}(\mathrm{~g})$

Given : At $300 \mathrm{~K} \Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})-891,-110.5,0.0,-393.5$ $S^{\circ}(J / K-m o l) 102.5,197.7,30.0,213.7$
A. -214.8
B. -195.0
C. -200.3
D. -256.45

Answer: D

- Watch Video Solution

161. Fixed mass of an ideal gas collected in a 24.64 litre sealed rigid vessel at 10 atm is heated from $-73^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$ calculate change in gibbs free energy if entropy of gas is a function of temperature as $S=2+10^{-2} T(J / K)(1 l a t m=0.1 \mathrm{~kJ})$
C. 781.5 J
D. 0

Answer: C

- Watch Video Solution

162. The molar heat capacities at constant pressure (assumed constant with respect to temperature) of A, B and C are in ratio $3: 1.5: 2.0$. the enthyalpy change for the exothermic reaction $A+2 B \rightarrow 3 c$ at 300k and 310 K is ΔH_{300} and ΔH_{310} respectively then:
A. $\Delta H_{300}>\Delta H_{310}$
B. $\Delta H_{300}<\Delta H_{310}$
C. $\Delta H_{300}=\Delta H_{310}$
D. if
$T_{2}>T_{1}$ then $\Delta H_{310}>\Delta H_{300}$ and if $T_{2}<T_{1}$ then $\Delta H_{310}<\Delta$

- Watch Video Solution

163. Determine ΔU° at 300 K for the following reaction using the listed enthalpies of reaction :
$4 \mathrm{CO}(g)+8 \mathrm{H}_{2}(g) \rightarrow 3 \mathrm{CH}_{4}(g)+\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
$C($ graphite $)+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H_{1}^{\circ}=-110.5 K J$
$\mathrm{CO}(g) \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H_{2}^{\circ}=-282.9 K J$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H_{3}^{\circ}=-285.8 K J$
$C($ graphite $)+2 H_{2}(g) \rightarrow C H_{4}(g), \Delta H_{4}^{\circ}=-74.8 K J$
A. -653.5 kJ
B. -686.2 kKJ
C. -747.4 kJ
D. None of these

Answer: D

164. Calculate $\Delta_{f} H^{\circ}$ (in kJ/mol) for $\mathrm{Cr}_{2} \mathrm{O}_{3}$ from the $\Delta_{r} G^{\circ}$ and the S° values provided at 27°
$\begin{array}{ll}4 C r(s)+3 O_{2}(g) \rightarrow 2 C r_{2} O_{3}(s), & \Delta_{r} G^{\circ}=-2093.4 k J / m o l \\ S^{\circ}(\mathrm{J} / / \mathrm{K} \mathrm{mol}): S^{\circ}(C r, s)=24, & S^{\circ}\left(O_{2}, g\right)=205, \quad S^{\circ}\left(C r_{2} O_{3}, s\right)=\end{array}$
A. $-2258.1 \mathrm{~kJ} / \mathrm{mol}$
B. $-1129.05 \mathrm{~kJ} / \mathrm{mol}$
C. $-964.35 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

165. Calculate the heat produced (in kJ) when 224 gm of CaO is completely converted to CaCO_{3} by reaction with CO_{2} at 27° in a container of fixed
volume.

Given

$\Delta H_{f}^{\circ}\left(\mathrm{CaCO}_{3}, s\right)=-1207 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta H_{f}^{\circ}(\mathrm{CaO}, \mathrm{s})=-635 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)=-394 \mathrm{~kJ} / \mathrm{mol},\left[\mathrm{Use} \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
A. 702.04 kJ
B. 721.96 kJ
C. 712 kJ
D. 721 kJ

Answer: A

- Watch Video Solution

166. When 1.0 g of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is burnt in a bomb calorimeter whose capacity is $8.75 \mathrm{KJ} / \mathrm{K}$, the enthalpy of combustion of oxalic acid at $27^{\circ} C$ is :
A. $-245.7 \mathrm{~kJ} / \mathrm{mol}$
B. $-244.452 \mathrm{~kJ} / \mathrm{mol}$
C. $-241.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: D

(D) Watch Video Solution

167. Enthalpy
of
neutralization
of
$\mathrm{H}_{3} \mathrm{PO}_{3}$ with NaOH is $-106.68 \mathrm{~kJ} / \mathrm{mol}$. If enthalpy of neutralization of HCL with NaOH is $-55.84 \mathrm{~kJ} /$ mole, then calculate enthalpy of ionization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ in to its ions in kJ.
A. $50.84 \mathrm{~kJ} / \mathrm{mol}$
B. $5 \mathrm{~kJ} / \mathrm{mol}$
C. $2.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

168. The enthalpy of neutralization of a Weak monoprotic acid (HA) in 1 M solution with a strong base is $-55.95 \mathrm{KJ} / \mathrm{mol}$. If the unionized acid required $1.4 \mathrm{KJ} / \mathrm{mol}$ heat for it's comptate ionzatation and enthalpy of netralization of the strong monobasic acid with a strong monoacidic base is $-57.3 \mathrm{KJ} / \mathrm{mol}$. What is the \% ionzation of the weak acid in molar solution?
A. 1%
B. 3.57%
C. 35.7%
D. 0.1

Answer: B

169. Determine C-C and C-H bond enthalpy (in $\mathrm{kJ} / \mathrm{mol}$)

Given
$\Delta_{f} H^{\circ}\left(C_{2} H_{6}, g\right)=-85 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}\left(C_{3} H_{8}, g\right)=-104 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\text {sub }} H^{\circ}(C, s)=718 \mathrm{~kJ} / \mathrm{mol}, \quad$ B. $E .(H-H)=436 \mathrm{~kJ} / \mathrm{mol}$
A. 414345
B. 345414
C. 287404.5
D. None of these

Answer: B

- Watch Video Solution

170. Consider the following data
$\Delta_{f} H^{\circ}\left(N_{2} H_{4}, l\right)=50 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} H^{\circ}\left(\mathrm{NH}_{3}, g\right)=-46 \mathrm{~kJ} / \mathrm{mol}$
B. $E(N-H)=393 \mathrm{~kJ} / / \mathrm{mol}$ and B.E. $(H-H)=436 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\text {vap }} H\left(N_{2} H_{4}, l\right)=18 \mathrm{~kJ} / \mathrm{mol}$
The N-N bond energy in $\mathrm{N}_{2} \mathrm{H}_{4}$ is :
A. $226 \mathrm{~kJ} / \mathrm{mol}$
B. $154 \mathrm{~kJ} / \mathrm{mol}$
C. $190 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

171. What is the bond enthalpy of $X e-F$ bond ?
$X e F_{4}(g) \rightarrow X e^{+}(g)+F^{-}(g)+F_{2}(g)+F(g), \quad \Delta_{r} H=292 \mathrm{kcal} / \mathrm{mol}$
Given : Ionization energy of $X e=279 \mathrm{kcal} / \mathrm{mol}$
B. $E .(F-F)=30 \mathrm{kcal} / \mathrm{mol}$, Electron affinity of $\mathrm{F}=85 \mathrm{kcal} / \mathrm{mol}$
A. $24 \mathrm{kcal} / \mathrm{mol}$
B. $34 \mathrm{kcal} / \mathrm{mol}$
C. $8.5 \mathrm{kcal} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

172. If enthaopy of hydrogenation of $C_{6} H_{6}(l)$ into $C_{6} H_{12}(l)$ is $-205 \mathrm{~kJ} / \mathrm{mol}$ and resonance energy of $C_{6} H_{6}(l)$ is $-152 k J / \mathrm{mol}$ then enthaopy of hydrogenation of

Assume $\Delta H_{\text {vap }}$ of $C_{6} H_{6}(l), C_{6} H_{8}(l)$ all equal :
A. $-535.5 \mathrm{~kJ} / \mathrm{mol}$
B. $-238 \mathrm{~kJ} / \mathrm{mol}$
C. $-357 \mathrm{~kJ} / \mathrm{mol}$
D. $-119 \mathrm{~kJ} / \mathrm{mol}$

Answer: D
173. The enthalpy of combustion of propance $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ gas in temes of given of geven data is , Bond energy ($\mathrm{k} / / \mathrm{mol}$)
$.^{\varepsilon}{ }_{+x_{1}}^{C-H} H \cdot{ }^{\varepsilon} \underset{+x_{2}}{O-O} .^{\varepsilon}{ }_{+x_{3}}^{C-O} \cdot .^{\varepsilon} O-H \cdot{ }_{+x_{4}}{ }_{+x_{5}}^{C-C}$
[Resonance energy of CO_{2} is $-\mathrm{z} \mathrm{KJ} / \mathrm{mol}$ and
$\Delta H_{\text {vaporization }}\left[H_{2} O(l)\right.$ is y $\left.K J / m o l\right]$
A. $8 x_{1}+2 x_{5}+5 x_{2}-6 x_{3}-8 x_{4}-4 y-3 z$
B. $6 x_{1}+x_{5}+5 x_{2}-3 x_{3}-4 x_{4}-4 y-3 z$
C. $8 x_{1}+2 x_{5}+5 x_{2}-6 x_{3}-8 x_{4}-y-z$
D. $8 x_{1}+x_{5}+5 x_{2}-6 x_{3}-8 x_{4}-4 y+3 z$

Answer: A

- Watch Video Solution

174. The efficiency of an ideal gas with adiabatic exponent ' γ ' for the shown cyclic process would be

A. $\frac{(\gamma-1)(2 \ln 2-1)}{1+(\gamma-1) 2 \ln 2}$
B. $\frac{(\gamma-1)(1-2 \ln 2)}{(\gamma-1) 2 \ln 2-1}$
C. $\frac{(2 \ln 2+1)(\gamma-1)}{(\gamma-1) 2 \ln 2+1}$
D. $\frac{(2 \ln 2-1)}{\gamma /(\gamma-1)}$

Answer: A

- Watch Video Solution

175. Initially one mole of ideal gas $\left(C_{v}=\frac{5}{2} R\right)$ at 0.1 atm and 300 K is put through the following cycle:

Step-I: Heating to twice its initial pressure at constant volume.
Step-II : Adiabatic expansion to its initial temperature.
Step-III : Isothermal compression back to 1.00 atm.
what is the volume at state X ?
A. 40.4 L
B. 65.0 L
C. 139 L
D. 4.35 L

(D) Watch Video Solution

176. What is the enthalpy of neutralization of HF against a strong base?

Given : $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta_{r} \mathrm{H}^{\circ}=-56 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{s} H^{\circ}(H F, a q)=-329 \mathrm{~kJ} / \mathrm{mol}, \Delta_{s} H^{\circ}\left(H_{2} O, l\right)=-285 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{s} H^{\circ}\left(F^{-}, a q\right)=-320 \mathrm{~kJ} / \mathrm{mol}$
A. $-17 \mathrm{~kJ} / \mathrm{mol}$
B. $-38 \mathrm{~kJ} / \mathrm{mol}$
C. $-47 \mathrm{~kJ} / \mathrm{mol}$
D. $-43 \mathrm{~kJ} / \mathrm{mol}$

Answer: C

- Watch Video Solution

177. The molar heat capacities of lodine vapour and solid are 7.8 and 14 $\mathrm{cal} / \mathrm{mol}$ respectively. If enthalpy of iodine is $6096 \mathrm{cal} / \mathrm{mol}$ at $200^{\circ} \mathrm{C}$, then
what is ΔU (internal energy change) at $250^{\circ} \mathrm{C}$ in cal $/ \mathrm{mol}$
A. 5360
B. 4740
C. 6406
D. None of these

Answer: B

- Watch Video Solution

178. For the reaction taking place at certain temperature $\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ if equilibrium pressure is 3 X bar then $\Delta_{r} G^{\circ}$ would be
A. $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
B. $\mathrm{RT} \ln 4-3 R T \ln \mathrm{X}$
C. $-3 R T \ln \mathrm{X}$
D. None of these

Answer: D

- Watch Video Solution

179. The first law of thermodynamics for a closed system is $d U=d q+d w$, where $\mathrm{dw}=d w_{p v}+d w_{\text {non-pv }}$. The most common type of $w_{\text {non-pv }}$ is electrical work. As per IUPAC convention work done on the system is positive.

A system generates 50 J electrical energy, has 150 J of pressure-volume work done on it by the surroundings while releasing 300 J of heat energy. What is the change in the internal energy of the sytem?
A. -500
B. -100
C. -300
D. -200

Answer: D

- Watch Video Solution

180. The first law of thermodynamics for a closed system is $d U=d q+d w$, where $\mathrm{dw}=d w_{p v}+d w_{\mathrm{non-p}}$. The most common type of $w_{\mathrm{non}-\mathrm{pv}}$ is electrical work. As per IUPAC convention work done on the system is positive.

A system generates 50 J of electrical energy and delivers 150 J of pressurevolume work against the surroundings while releasing 300 J of heat energy. What is the change in the internal energy of the system?
A. -100
B. -400
C. -300
D. -500

Answer: D

181. If the boundary of system moves by an infinitesimal amount, the work involved is given by $d w=-P_{\text {ext }} d V$
for irreversible process $w=-P_{\text {ext }} \Delta V \quad$ (where $\Delta V=V_{f}-V_{i}$)
for reversible process $P_{\text {ext }}=P_{\text {int }} \pm d P \cong P_{\text {int }}$
so for reversible isothermal process $w=-n R T \ln$. $\frac{V_{f}}{V_{i}}$
2 mole of an ideal gas undergoes isothermal compression along three different plaths:
(i) reversible compression from $P_{i}=2$ bar and $V_{i}=8 L$ to $P_{f}=20 \mathrm{bar}$
(ii) a single stage compression against a constant external pressure of 20 bar, and
(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\text {gas }}=P_{\text {ext }}$, followed by compression against a constant pressure of 20 bar until $P_{\text {gas }}=P_{\text {ext }}$

Work done (in bar-L) on the gas in reversible isothermal compression is:
A. 9.212
B. 36.848
C. 18.424
D. None of these

Answer: B

- Watch Video Solution

182. If the boundary of system moves by an infinitesimal amount, the work involved is given by $d w=-P_{\text {ext }} d V$ for irreversible process $w=-P_{\text {ext }} \Delta V \quad\left(\right.$ where $\left.\Delta V=V_{f}-V_{i}\right)$ for reversible process $P_{\text {ext }}=P_{\text {int }} \pm d P \cong P_{\text {int }}$
so for reversible isothermal process $w=-n R T \ln . \frac{V_{f}}{V_{i}}$
2mole of an ideal gas undergoes isothermal compression along three different plaths :
(i) reversible compression from $P_{i}=2$ bar and $V_{i}=8 L$ to $P_{f}=20$ bar
(ii) a single stage compression against a constant external pressure of 20 bar, and
(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\text {gas }}=P_{\text {ext }}$, followed by
compression against a constant pressure of 20 bar until $P_{\text {gas }}=P_{\text {ext }}$
Work done on the gas in single stage compression is :
A. 36
B. 72
C. 144
D. None of these

Answer: C

- Watch Video Solution

183. If the boundary of system moves by an infinitesimal amount, the work involved is given by $d w=-P_{\text {ext }} d V$
for irreversible process $w=-P_{\text {ext }} \Delta V \quad\left(\right.$ where $\left.\Delta V=V_{f}-V_{i}\right)$ for reversible process $P_{\mathrm{ext}}=P_{\mathrm{int}} \pm d P \cong P_{\mathrm{int}}$
so for reversible isothermal process $w=-n R T \ln . \frac{V_{f}}{V_{i}}$
2mole of an ideal gas undergoes isothermal compression along three different plaths:
(i) reversible compression from $P_{i}=2$ bar and $V_{i}=8 L$ to $P_{f}=20$ bar
(ii) a single stage compression against a constant external pressure of 20 bar, and
(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\text {gas }}=P_{\text {ext }}$, followed by compression against a constant pressure of 20 bar until $P_{\text {gas }}=P_{\text {ext }}$ Total work done on the gas in two stage compression is :
A. 40
B. 80
C. 160
D. None of these

Answer: B

- Watch Video Solution

184. If the boundary of system moves by an infinitesimal amount, the work involved is given by $d w=-P_{\text {ext }} d V$
for irreversible process $w=-P_{\text {ext }} \Delta V \quad$ (where $\Delta V=V_{f}-V_{i}$)
for reversible process $P_{\text {ext }}=P_{\text {int }} \pm d P \cong P_{\text {int }}$
so for reversible isothermal process $w=-n R T \ln$. $\frac{V_{f}}{V_{i}}$
2 mole of an ideal gas undergoes isothermal compression along three different plaths :
(i) reversible compression from $P_{i}=2$ bar and $V_{i}=8 L$ to $P_{f}=20$ bar (ii) a single stage compression against a constant external pressure of 20 bar, and
(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\text {gas }}=P_{\text {ext }}$, followed by compression against a constant pressure of 20 bar until $P_{\text {gas }}=P_{\text {ext }}$ Order of magnitude of work is :
A. $w_{1}>w_{2}>w_{3}$
B. $w_{3}>w_{2}>w_{1}$
C. $w_{2}>w_{3}>w_{1}$
D. $w_{1}=w_{2}=w_{3}$

Answer: C

- Watch Video Solution

185. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :
$\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)$
$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and by $\Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q}$.
Consider the following reaction : $\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
Given
$\Delta_{f} H^{\circ}\left(C H_{3} O H, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(C O, g)=-114 \mathrm{~kJ} / \mathrm{n}$ $S^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, \quad S^{\circ}\left(H_{2}, g\right)=29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p, m}^{\circ}(\mathrm{CO})=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} S^{\circ}$ at 300 K for the reaction is:
A. $152.6 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
B. $181.6 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
C. $-16 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

186. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :
$\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)$
$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and

$$
\text { by } \Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q} .
$$

Consider the following reaction : $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Given
$\Delta_{f} H^{\circ}\left(C H_{3} O H, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(C O, g)=-114 \mathrm{~kJ} / \mathrm{n}$ $S^{\circ}\left(\mathrm{CH}_{3} O H, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, \quad S^{\circ}\left(H_{2}, g\right)=29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p, m}^{\circ}(\mathrm{CO})=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\quad \ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} H^{\circ}$ at 300 K for the reaction is :
A. $-87 \mathrm{~kJ} / \mathrm{mol}$
B. $87 \mathrm{~kJ} / \mathrm{mol}$
C. $-315 \mathrm{~kJ} / \mathrm{mol}$
D. $-288 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

187. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the
value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :
$\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)$
$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and

$$
\text { by } \Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q} .
$$

Consider the following reaction : $\mathrm{CO}(g)+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Given

$\Delta_{f} H^{\circ}\left(C H_{3} O H, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(C O, g)=-114 \mathrm{~kJ} / \mathrm{n}$ $S^{\circ}\left(\mathrm{CH}_{3} O H, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, \quad S^{\circ}\left(H_{2}, g\right)=29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p, m}^{\circ}(\mathrm{CO})=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\quad \ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} S^{\circ}$ at 320 K is :
A. $155.18 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B. $150.02 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C. $172 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
D. None of these

D Watch Video Solution

188. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :

$$
\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)
$$

$$
\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)
$$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and

$$
\text { by } \Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q}
$$

Consider the following reaction : $\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
Given
$\Delta_{f} H^{\circ}\left(\mathrm{CH}_{3} O H, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(C O, g)=-114 \mathrm{~kJ} / \mathrm{n}$ $S^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, \quad S^{\circ}\left(H_{2}, g\right)=29 \quad \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ $C_{p, m}^{\circ}(C O)=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(C H_{3} O H\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\quad \ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} H^{\circ}$ at 320 K is :
A. $-288.86 \mathrm{~kJ} / \mathrm{mol}$
B. $-289.1 \mathrm{~kJ} / \mathrm{mol}$
C. $-87.86 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

189. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :

$$
\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)
$$

$$
\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)
$$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and \quad by $\Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q}$.
Consider the following reaction : $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Given
$\Delta_{f} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(C O, g)=-114 \mathrm{~kJ} / \mathrm{n}$
$S^{\circ}\left(\mathrm{CH}_{3} O H, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, \quad S^{\circ}\left(H_{2}, g\right)=29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p, m}^{\circ}(C O)=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \quad C_{p, m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\quad \ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} G^{\circ}$ at 320 K is :
A. $-48295.2 \mathrm{~kJ} / \mathrm{mol}$
B. $240.85 \mathrm{~kJ} / \mathrm{mol}$
C. $240.85 \mathrm{~kJ} / \mathrm{mol}$
D. $-81.91 \mathrm{~kJ} / \mathrm{mol}$

Answer: D

190. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid $\stackrel{I}{ }$ base is completely neutralized by base /acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta_{r} H^{\circ}=-55.84 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero .
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base ,for weak acid /base

$$
\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+O H^{-} \rightarrow H_{2} O\right)
$$

If enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ by NaOH is $-49.86 \mathrm{KJ} / \mathrm{mol}$ then enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ is:
A. $5.98 \mathrm{~kJ} / \mathrm{mol}$
B. $-5.98 \mathrm{~kJ} / \mathrm{mol}$
C. $105.7 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

191. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid /base is completely neutralized by base / acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$H^{+}(a q)+O H^{-}(a q) \rightarrow H_{2} O(l)$
$\Delta_{r} H^{\circ}=-55.84 K J / m o l$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero .
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base,for weak acid /base
$\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+O H^{-} \rightarrow H_{2} O\right)$

What is ΔH° for complate neutralization of strong diacidic base $\mathrm{A}(\mathrm{OH})_{2} b y \mathrm{HNO}_{3}$?
A. $-55.84 \mathrm{~kJ} / \mathrm{mol}$
B. $111.68 \mathrm{~kJ} / \mathrm{mol}$
C. $55.84 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

192. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid / base is completely neutralized by base /acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta_{r} H^{\circ}=-55.84 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero .
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base ,for weak acid /base
$\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$ under same conditions ,how many mL of 0.1 m NaOH and $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ (strong diprotic acid) solution should be mixed for a total volume of 100 mL to producce the hight rise in temperature ?
A. 25: 75
B. $50: 50$
C. 75: 25
D. 66.66:33.33

Answer: B

- Watch Video Solution

193. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy change of the process at constant pressure and temperature as
$\Delta G=\Delta H-T \Delta S \quad($ at constant $\mathrm{P}, \mathrm{T})$
In General the magnitude of ΔH does not change much with the change in temperature but the terms $T \Delta S$ changes appreciably. Hence in some process spontaneity is very much dependent on temperature and such processes are generally known as entropy driven process.

Fro the reaction at $298 \mathrm{~K}, A_{2} B_{4} \rightarrow 2 A B_{2}$
$\Delta H=2 \mathrm{~kJ}$ and $\Delta S=20 \mathrm{~J} / \mathrm{K}$ at constant P and T , the reaction will be
A. spontaneous and entropy driven
B. spontaneous and enthalpy driven
C. non-spontaneous
D. at equilibrium

Answer: A

- Watch Video Solution

194. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy change of the process at constant pressure and temperature as
$\Delta G=\Delta H-T \Delta S \quad($ at constant $\mathrm{P}, \mathrm{T})$
In General the magnitude of ΔH does not change much with the change in temperature but the terms $T \Delta S$ changes appreciably. Hence in some process spontaneity is very much dependent on temperature and such processes are generally known as entropy driven process.

When CaCO_{3} is heated to a high temperature it decomposes into CaO and CO_{2}, however it is quite stable at room temperature. It can be explained by the fact that
A. $\Delta_{r} H$ dominates the term $T \Delta S$ at high temperature
B. the term $T \Delta S$ dominates the $\Delta_{r} H$ at high temperature
C. at high temperature both $\Delta_{r} S$ and $\Delta_{r} H$ becomes negative
D. thermodynamics can not say anything about spontaneity

Answer: B

195. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy change of the process at constant pressure and temperature as
$\Delta G=\Delta H-T \Delta S \quad$ (at constant $\mathrm{P}, \mathrm{T})$
In General the magnitude of ΔH does not change much with the change in temperature but the terms $T \Delta S$ changes appreciably. Hence in some process spontaneity is very much dependent on temperature and such processes are generally known as entropy driven process.

The Dissolution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a large volume of water is endothermic to the extent of $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and ΔH for the reaction is $-23.2 \mathrm{kcal} \mathrm{mol}^{-1}$.

$$
\mathrm{CaCl}_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(s)
$$

Select the correct statement :
A. $\Delta H_{\text {solution }}$ for anhydrous CaCl_{2} is $-19.7 \mathrm{kcal} / \mathrm{mol}$ and the process is
enthalpy driven
B. $\Delta H_{\text {solution }}$ for anhydrous CaCl_{2} is $-19.7 \mathrm{kcal} / \mathrm{mol}$ and the process is entropy driven
C. Dissolution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water is enthalpy driven process
D. The $\Delta_{r} S$ the reaction $\mathrm{CaCl}_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(s)$ is negative

Answer: A

- Watch Video Solution

196. Identify the intensive quantities from the following :
A. Enthalpy
B. Temperature
C. Pressure
D. Mass

Answer: B::C

197. Identify the extensive quantities from the following :
A. Gibb's energy
B. Entropy
C. Refractive index
D. Specific heat

Answer: A: B

- Watch Video Solution

198. Identify the state functions from the following :
A. Heat
B. Work
C. Enthalpy
D. Enthalpy change

Answer: C

- Watch Video Solution

199. Which of the following statementl is/are correct as per IUPAC sign convention?
A. The work done by the system on the surrounding is negative
B. The work done by the surrounding on the system is positive
C. The heat absorbed by the system from the surrounding is positive
D. The heat absorbed by the surrounding from the system is positive

Answer: A::B::C

D Watch Video Solution

200. In an isothermal irreversible expansion of an ideal gas as per IUPAC
sign convention :
A. $\Delta U=0$
B. $\Delta H=0$
C. $w=-n R T \ln . \frac{P_{1}}{P_{2}}$
D. $w=-q$

Answer: A::B::D

- Watch Video Solution

201. In reversible isothermal expansion of an ideal gas :
A. $w=0$
B. $U_{1}=U_{2}$
C. $H_{1}=H_{2}$
D. $q=n R T \ln \cdot \frac{V_{2}}{V_{1}}$

Answer: B::C::D

202. An adiabatic process is that process in which :
A. energy is transferred as heat
B. no energy is transferred as heat
C. $\Delta U=w$
D. the temp. of gas increases in a reversible compression

Answer: B::C::D

- Watch Video Solution

203. In adiabatic process, the work involved during expansion or compression of an ideal gas is given by :
A. $n C_{v} \Delta T$
B. $\frac{n R}{\gamma-1}\left(T_{2}-T_{1}\right)$
C. $-n R P_{\text {ext }}\left[\frac{T_{2} P_{1}-T_{1} P_{2}}{P_{1} P_{2}}\right]$
D. $-2.303 \mathrm{RT} \log \frac{V_{2}}{V_{1}}$

Answer: A::B::C

- Watch Video Solution

204.

One mole of an ideal gas is subjected to a two step reversible process (A-
B and $B-C)$. The pressure at A and C is same. Mark the correct statement(s)
A. Work involved in the path $A B$ is zero
B. In the path $A B$ work will be done on the gas by the surrounding
C. Volume of gas at $C=3 \times$ volume of gas at A
D. Volume of gas at B is 16.42 litres

Answer: C::D

- Watch Video Solution

205. Which of the following is/are correct?
A. $\Delta H=\Delta U+\Delta(P V)$ when P and V both changes
B. $\Delta H=\Delta U+P \Delta V$ when pressure is constant
C. $\Delta H=\Delta U+V \Delta P$ when volume is constant
D. $\Delta H=\Delta U+P \Delta V+V \Delta P$ when P and V both changes

Answer: A::B::C

206. $\Delta H<\Delta U$ for the reaction(s) :
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $A g_{2} O(s) \rightarrow 2 \mathrm{Ag}(s)+\frac{1}{2} \mathrm{O}_{2}(g)$
C. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: A: C

- Watch Video Solution

207. Which of the following conditions may lead to a non-spontaneous change?
A. ΔH and ΔS both $+v e$
B. $\Delta H=-v e, \Delta S=+v e$
C. $\Delta H=+v e, \Delta S=-v e$
D. $\Delta H=-v e, \Delta S=-v e$

Answer: A::C::D

- Watch Video Solution

208. For a process to be spontaneous :
A. $\left(\Delta G_{\text {system }}\right)_{T, P}=0$
B. $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$
C. $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}<0$
D. $\left(\Delta G_{\text {system }}\right)_{T, P}<0$

Answer: B::D

- Watch Video Solution

209. The normal boiling point of a liquid X is 400 K . Which of the following statement is true about the process $X(l) \rightarrow X(g)$?
A. at 400 K and 1 atm pressure $\Delta G=0$
B. at 400 K and 2 atm pressure $\Delta G=+v e$
C. at 400 K and 0.1 atm pressure $\Delta G=-v e$
D. at 410 K and 1 atm pressure $\Delta G=+v e$

Answer: A::B::C

- Watch Video Solution

210. When ice melts at $1^{\circ} C$:
A. an increase in entropy
B. a decrease in enthalpy
C. a decrease in free energy
D. process is spontaneous

- Watch Video Solution

211. The value of $\Delta H_{\text {transition }}$ of C (graphite) $\rightarrow \mathrm{C}$ (diamond) is $1.9 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. Entropy of graphite is higher than entropy of diamond. This implies that:
A. C (diamond) is more thermodynamically stable than C (graphite) at $25^{\circ} \mathrm{C}$
B. C (graphite) is more thermodynamically stable than C (diamond) at $25^{\circ} \mathrm{C}$
C. diamond will provide more heat on complete combustion at $25^{\circ} \mathrm{C}$
D. $\Delta G_{\text {transition }}$ of C (diamond) $\rightarrow \mathrm{C}$ (graphite) is - ve

Answer: B::C::D

212. Which of the following statement(s) is/are false?
A. All adiabatic process are isoentropic (or isentropic) processes
B. When $\left(\Delta G_{\text {system }}\right)_{T, P}<0$, the reaction must be exothermic
C. $\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$ is applicable for closed system, both PV and non-PV work
D. The heat of vaporisation of water at $100^{\circ} \mathrm{C}$ is $40.6 \mathrm{~kJ} / \mathrm{mol}$. When 9
gm of water vapour condenses to liquid at $100^{\circ} C$ and 1 atm, then
$\Delta S_{\text {system }}=54.42 \mathrm{~J} / \mathrm{K}$

Answer: A::B::C::D

(Watch Video Solution

213. Which of the following statement(s) is/are true?
A. $\Delta U=0$ for combustion of $C_{2} H_{6}(\mathrm{~g})$ in a sealed rigid adiabatic container
B. $\Delta_{f} H^{\circ}(\mathrm{S}$, monoclinic) $\neq 0$
C. If dissociation energy of $C H_{4}(g)$ is $1656 \mathrm{~kJ} / \mathrm{mol}$ and $C_{2} H_{6}(\mathrm{~g})$ is $2812 \mathrm{~kJ} / \mathrm{mol}$, then value of C-C bond energy will be $328 \mathrm{~kJ} / \mathrm{mol}$
D. If

$$
\Delta H_{f}\left(H_{2} O, g\right)=-242 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{\text {vap }}\left(H_{2} O, l\right)=44 \mathrm{~kJ} / \mathrm{mol}
$$ then, $\Delta_{f} H^{\circ}\left(O H^{-}, a q.\right)$ will be $-142 \mathrm{~kJ} / \mathrm{mol}$

Answer: A:C

- Watch Video Solution

214. From the following date, mark the opation(s) where ΔH is correctly written for the given reaction.

Given: $\mathrm{H}+(a q)+\mathrm{OH}-(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H=-57.3 k J$
$\Delta H_{\text {solution }} H A(g)=-70.7 \mathrm{kJmole}$
$\Delta H_{\text {solution }} B O H(g)=-20 k J$ mole
$\Delta H_{\text {ionzatoin }}$ of $H A=15 k J /$ mole and BOH is a strong base.

	Reaction	$\Delta \mathbf{H}_{r}(\mathbf{k J} / \mathbf{m o l})$
(a)	$\mathrm{HA}(a q)+\mathrm{BOH}(a q) \longrightarrow B A(a q)+\mathrm{H}_{2} \mathrm{O}$	-42.3
$(\mathrm{~b})$	$\mathrm{HA}(\mathrm{g})+\mathrm{BOH}(\mathrm{g}) \longrightarrow \mathrm{BA}(a q)+\mathrm{H}_{2} \mathrm{O}$	-93
(c)	$\mathrm{HA}(\mathrm{g}) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$	-55.7
$($ (d)	$\mathrm{B}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow B \mathrm{OH}(a q)$	-20

A. Reaction $\Delta_{r} H(\mathrm{~kJ} / \mathrm{mol})$
$\mathrm{HA}(a q)+\mathrm{BOH}(a q) \rightarrow \mathrm{BA}(a q)+\mathrm{H}_{2} \mathrm{O}$$-42.3$B. Reaction $\quad \Delta_{r} H(\mathrm{~kJ} / \mathrm{mol})$
$\mathrm{HA}(g)+\mathrm{BOH}(a q) \rightarrow \mathrm{BA}(a q)+\mathrm{H}_{2} \mathrm{O}$ -93
C. Reaction $\quad \Delta_{r} H(\mathrm{~kJ} / \mathrm{mol})$
$H A(g) \rightarrow H^{+}(a q)+A^{-}(a q)$ -55.7
D. Reaction $\quad \Delta_{r} H(\mathrm{~kJ} / \mathrm{mol})$

$$
B^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow B O H(a q)
$$

- Watch Video Solution

215. Select correct statement(s)
A. An adiabatic system can exchange energy with its surroundings.
B. A thermodynamic property which is intensive is additive.
C. Work done may be zero in a cyclic process.
D. For a simple compressible substance, the relation dq-P. Dv=0 is true for any cycle involving mechanical work only.

Answer: A::C::D

- Watch Video Solution

216. For an isolated system, the entropy :
A. either increases or remains constant
B. either decreases or remains constant
C. can never decrease
D. can never increase

Answer: A::C

- Watch Video Solution

217. The normal boiling point of a liquid X is $400 \mathrm{~K} . \Delta H_{\text {vap }}$ at normal boiling point is $40 \mathrm{~kJ} / \mathrm{mol}$. Select correct statement(s) :
A. $\Delta S_{\text {vaporisation }}<100 \mathrm{~J} / \mathrm{mol}$.K at 400 K and 2 atm
B. $\Delta S_{\text {vaporisation }}<10 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ at 400 K and 1 atm
C. $\Delta G_{\text {vaporisation }}<0$ at 410 K and 1 atm
D. $\Delta U=43.32 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}$ at 400 K and 1 atm

Answer: A::C

218. Select incorrect statement(s)
A. A closed system with all adiabatic boundaries must be an isolated system
B. Total heat exchange in a cyclic process may be zero
C. Entropy of a closed system is maximum at equilibrium
D. Molar Gibb's Energy is an extensive property

Answer: A::C::D

- Watch Video Solution

219. Select correct statement(s) for the reaction
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ substance
$\mathrm{CO}(\mathrm{g}) \quad \mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{H}_{2}(\mathrm{~g})$
$\begin{array}{lllll}\Delta_{f} H_{400}^{\circ}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right) & -25 & -95 & -55 & 0 \\ S_{400}^{\circ}\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right) & 45 & 50 & 40 & 30\end{array}$
A. Reaction is enthalpy driven
B. Reaction is entropy driven
C. Reaction is spontaneous at 400 K
D. Reaction is non-spontaneous at 400 K

Answer: A::C

- Watch Video Solution

220.

Match
the
following
columns

Columm-I

(A) Reversible cooling of an ideal gas a constant volume
(B) Reversible isothermal expansion of an ideal gas
(C) Adiabatic expansion of non-ideal gas into vacuum
(D) Reversible melting of sulphur at normal melting point
(P) $w=0 ; q<0 ; \Delta U<0$ Column-II
(P) $w=0 ; q<0 ; \Delta U<0$
(Q) $w<0 ; q>0 ; \Delta U>0$
(R) $w=0 ; q=0 ; \Delta U=0$
(S) $w\langle 0 ; q\rangle 0 ; \Delta U=0$

Column-I
(A) Adiabatic process
(B) Isothermal process
(C) Isoenthalpic process
(D) Isoentropic process

Column-II
(P) $q=0$
(Q) $\Delta H=0$
(R) $\Delta T=0$
(S) $\Delta S=0$

- Watch Video Solution

222. Match the
following

Columin-I
(A) Reversible isothermal expansion of an ideal gas
(B) Reversible adiabatic compression of an ideal gas
(C) Irreversible adiabatic expansion of an ideal gas
(D) Irreversible isothermal compression of an ideal gas

```
Column-II
(P) w}=-2.303nRT\operatorname{log}(\frac{\mp@subsup{V}{2}{}}{\mp@subsup{V}{1}{}}
(Q) PV }\mp@subsup{}{}{\gamma}=\mathrm{ constant
(R) w}=\frac{nR}{(\gamma-1)}(\mp@subsup{T}{2}{}-\mp@subsup{T}{1}{}
(S) }\DeltaH=
```

Watch Video Solution

Column- 1
(A) $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$ in a closed system
(B) $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ in a closed system
(C) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$ in a closed system
(D) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)$ in an isolated system
(P) $\Delta H<\Delta U$
(Q) $\Delta H=\Delta U \neq 0$
(R) $\Delta H>\Delta U$
(S) $\Delta U=0$

- Watch Video Solution

224.

Match
the
following
columns
Column-I (Process)
(A) Reversible isothermal compression of
an ideal gas
(B) Isothermal free expansion ($P_{\text {ext }}=0$) of
an ideal gas
(C) Reversible adiabatic expansion of an
ideal gas
(D) Reversible ideal gas expansion

Columm-I (Process)

(A) Reversible isothermal ideal gas expan-
sion
(B) Reversible adiabatic ideal gas compression
(C) Adiabatic free expansion $\left(P_{\text {ext }}=0\right)$ of an ideal gas
(D) Irreversible isothermal ideal gas compression

Column-II

(Entropy change)

(P) $\Delta S_{\text {surrounding }}=0$
(Q) $\Delta S_{\text {surrounding }}<0$
(R) $\Delta S_{\text {surrounding }}>0$
(S) $\Delta S_{\text {system }}=0$

D Watch Video Solution

226. Match the
following
columns

Column-I
(A) $\left(\Delta G_{\text {system }}\right)_{T, P}=0$
(B) $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$
(C) $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}<0$
(D) $\left(\Delta G_{\text {system }}\right)_{T, P}>0$

Column-II
(P) Process is in equilibrium
(Q) Process is nonspontaneous
(R) Process is spontaneous
(S) System is unable to do useful work

- Watch Video Solution

228. Match
the
following
Columin-
(A) Heating of an ideal gas at constant pressure
(B) Compression of liquid at constant temperature
(C) Reversible process for an ideal gas at constant temperature
(D) Adiabatic free expansion of an ideal gas
(P) $\Delta H=n C_{p, m} \Delta T \neq 0$
(Q) $\Delta U=0$
(R) $\Delta G=V \Delta P$
(S) $\Delta G=n R T \ln \left(\frac{P_{2}}{P_{1}}\right)$

0
 Watch Video Solution

Column-I

(Sign of ΔH and ΔS respectively)
(A) $-\&-$
(B) $-8+$
(C) $+8+$
(D) $+\&$

Column-II

(Nature of reaction)
(P) Spontaneous only at low temperature
(Q) Spontaneous only at high temperature
(R) Spontaneous at all temperature
(S) Non-spontaneous at all temperature

- Watch Video Solution

230.

Match
the
following
columns

Column-II
(P) $\Delta S_{\text {system }}>0$
(Q) $\Delta S_{\text {system }}<0$
(R) $\Delta S_{\text {surrounding }}<0$
(S) $\Delta S_{\text {surrounding }}=0$

- Watch Video Solution

231.

Match
the
following
columns
(A) $\mathrm{H}^{+}(a q)$
(P) $\quad \Delta_{f} H^{\circ}=0$
(B) $\mathrm{H}(\mathrm{g})$
(Q) $\Delta_{f} H^{\circ} \neq 0$
(C) $\mathrm{H}_{2}(g)$
(R)
$\Delta_{f} G^{\circ}=0$
(D) C $(s$, diamond)
(S) $\Delta_{f} S^{\circ}<0$

- Watch Video Solution

232.

Match

the
following
columns

- Watch Video Solution

233. Heat and work are "definite quantities".

Heat and work are not properties of a system. Their values depend on the path of the process and vary accordingly.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

234. There is no change in internal energy for an ideal gas at constant temperature.

Internal energy of an ideal gas is a function of temperature only.
A. If both the statements are TRUE and STATEMENT-2 is the correct
explanation of STATEMENT-2
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-2
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

235. Assertion: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.
A. If both the statements are TRUE and STATEMENT-2 is the correct
explanation of STATEMENT-3
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-3
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

236. ΔH and ΔU are the same of the reaction,
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$,
All reactants and products are gases where all gases are ideal.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

237. Staetement -1 : The magniyude of the work involed in an isothermal expansion is greater than that involved in an adiabatic expansion.

Statement -2: P-v cure (pon y-axas and V on X-axas) decrease more repidly for reversible asiabatic expansion compared to reversible isothermal expansion starting from same initial state.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-5
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-5
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

238. Statement -1: Entropy change in reversible adiabatic expansion of an ideal gas is zero.

Statement-2: The increase in entropy due to volume increase just compensates the decrease in entropy due to fall in temperature.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-6
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-6
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

239. There cannot be chemical equilibrium in an open system.

There is no fixed mass in an open system.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-7
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-7
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

240. Statement -1 : The Standard free energy changes of all spontaneously occurring reactions are negative .

Statement-2: The standard free energies of the elements in their standard states at 1 bar and 2985 K aare taken aszero.
A. If both the statements are TRUE and STATEMENT-2 is the correct
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-8
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

241. Statement -1: Enthalpy and entropy of any elements substance in the standard states are taken as zero .

Statement-2: At absolute zero , partiles of the perfectly crystalline substance become completely motioness.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-9
B. If both the statements are TRUE but STATEMENT-2 is NOT the
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

242. Statement-1: A reaction which is spontaneous and accompained by decrease of randomness must be exothermic.

Statement -2: All exothermic reaction that are accomained by decrease of randomness.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-10
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-10
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

243. Assertion (A): May endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.

Reason (R) : Entropy of the system increases with increase in temperature.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-11
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-11
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

244. Statement-1: Decrease of free energy during the process under constant temperature and pressure provides a measure of its spontaneity.

Statement -2: A spontaneous change must have +ve sign of $\Delta S_{\text {system }}$.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-12
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-12
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

245. $\left|\Delta_{f} H\right|$ of $\left(H_{2} \mathrm{O}, l\right)>\left|\Delta_{f} H\right|$ of $\left(\mathrm{H}_{2} \mathrm{O}, g\right)$
$\Delta H_{\text {condensation }}$ is negative.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-13
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-13
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

246. All combustion reactions are exothermic.

Enthalpies of products are greater than enthalpies of reactants $\left(\Sigma v_{p} \Delta_{f} H(P)>\Sigma v_{R} \Delta_{f} H(R)\right)$
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-14
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-14
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

247. Enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ by NaOH is less than that of HCl by NaOH .

Enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ is less because of the absorption of heat in the ionization process.
A. If both the statements are TRUE and STATEMENT-2 is the correct
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-15
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

248. Assertion: - Internal energy of a real gas may change during expansion at const. temperature.

Reason: - Internal energy of a real gas ia function of $T \& P$.
A. If both the statements are TRUE and STATEMENT-2 is the correct
explanation of STATEMENT-16
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-16
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

249. Work is a state function which is expressed in joule.
work appears only at the boundary of the system.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

250. The expansion of a gas into an evacuated space takes place nonspontaneously.

A process in which all steps cannot be retraced by themselves is called a spontaneous process.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-18
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-18
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

251. A perfect gas undergoes a reversible adiabatic expansion from (300 $\mathrm{K}, 200 \mathrm{~atm})$ to ($90 \mathrm{~K}, 10 \mathrm{~atm}$). Find the atomicity of gas.

Watch Video Solution

252. 5 mole of an ideal gas at temp. T are compressed isothermally from

12	atm.	To	24
Work done along reversible process	atm.	Where,	
$r=$	(Given : $\ln 2=0$.		

(Watch Video Solution

253. A diatomic ideal gas is expanded according to $P V^{3}=$ constant, under very high temperature (Assume vibration mode active). Calculate the molar heat capacity of gas (in cal / mol K) in this process.

- Watch Video Solution

254. A heat engine is operating between 500 K to 300 K and it absorbs 10 kcal of heat from 500 K reservoir reversibly per cycle. Calculate the work done (in kcal) per cycle.

- Watch Video Solution

255. In a carnot cycle involving ideal non-linear triatomic gas, if during adiabatic expansion volume increases from 2 L to 16 L and heat absorbed during isothermal expansion is 8 kcal , then calculate magnitude of work done by carnot engine (in kcal).

- Watch Video Solution

256. Molar heat capacities at constant pressure for A, B and C are $3,1.5$ and $2 \mathrm{~J} / \mathrm{K} \mathrm{mol}$. The enthalpy of reaction and entropy of reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ $3 C$ are $20 \mathrm{~kJ} / \mathrm{mol}$ and $20 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ at 300 K . Calculate ΔG (in kJ / mol) for the reaction, $\frac{1}{2} A+B \rightarrow \frac{3}{2} C$

- Watch Video Solution

257. Standard molar enthalpy of combustion of glucose is -2880 kJ . If only 25% of energy is available for muscular work and 1.0 km walk consumes 90 kJ of energy, what maximum distance (in km) a person can walk after eating 90 g of glucose.

- Watch Video Solution

258. Given $C_{2} H_{2}(g)+H_{2}(g) \rightarrow C_{2} H_{4}(g): \Delta H^{\circ}=-175 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{f\left(C_{2} H_{4}, g\right)}^{\circ}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{f\left(H_{2} O, l\right)}^{\circ}=-280 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{f\left(C O_{2}\right.}^{\circ}$ If ΔH° is enthalpy of combustion (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) of $C_{2} H_{2}(\mathrm{~g})$, then calculate the value of $\left|\frac{\Delta H^{\circ}}{257}\right|$

- Watch Video Solution

259. The integral enthalpies of solution of anhydrous CuSO_{4} (s) and hydrated $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ are -70 kJ per mol and 10 kJ per mol respectively. Determine the magnitude of enthalpy of hydration of 0.1 mole anhydrous CuSO_{4} (s) as

$$
\mathrm{CuSO}(s)+5 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s)
$$

- Watch Video Solution

260. Enthalpy of neutralization of HCl by NaOH is $-57.1 \mathrm{~J} / \mathrm{mol}$ and by $\mathrm{NH}_{4} \mathrm{OH}$ is $-51.1 \mathrm{KJ} / \mathrm{mol}$. Calculate the enthalpy of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$.

- Watch Video Solution

261. Lattice energy of $\mathrm{NaCl}(\mathrm{s})$ is $-790 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of hydration is $-785 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate enthalpy of solution of $\mathrm{NaCl}(\mathrm{s})$.

- Watch Video Solution

262. x g sample of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is decomposed in a Bomb calorimeter. The temperature of calorimeter increase by $4^{\circ} \mathrm{C}$. The heat capacity of the system is $1.25 \mathrm{~kJ} / .^{\circ} \mathrm{C}$. Calculate the value of x . Given molar heat of decomposition of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ at constant volume is $400 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$.

- Watch Video Solution

263. A heat engine operating between $227^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{C}$ absorbs 10 kcal of heat from the $227^{\circ} \mathrm{C}$ reservoir reversibly per cycle. Calculate total work done (in kcal) in two cycles.

- Watch Video Solution

264. Calculate work done in chemical reaction (in kcal)
$A(s)+3 B(g) \rightarrow C(l)$ at $227^{\circ} C$ at 1 atm in closed vessel.

- Watch Video Solution

265. One mole ideal monoatomic gas is heated according to path $A B$ and AC.

If temperature of state B and state C are equal.
Calculate $\frac{q_{A C}}{q_{A B}} \times 10$.

- Watch Video Solution

Level 1 (Q.1 To Q.30)

1. A system undergoes a process in which $\Delta U=+300 J$ while absorbing 400 J of heat energy and undergoing an expansion against 0.5 bar. What is the change in the volume (in L)?
A. 4
B. 5
C. 2
D. 3

Answer: C

- View Text Solution

2. One mole of an ideal gas at $25^{\circ} \mathrm{C}$ expands in volume from 1.0 L to 4.0 L at constant temperature. What work (in J) is done if the gas expands against vacuum $\left(P_{\text {external }}=0\right)$?
A. -4.0×10^{2}
B. -3.0×10^{2}
C. -1.0×10^{2}
D. Zero

Answer: D

- View Text Solution

3. At $25^{\circ} \mathrm{C}$, a 0.01 mole sample of a gas is compressed from 4.0 L to 1.0 L at constant temperature. What is the work done for this process if the external pressure is 4.0 bar?
A. $1.6 \times 10^{3} J$
B. $8.0 \times 10^{2} J$
C. $4.0 \times 10^{2} J$
D. $1.2 \times 10^{3} \mathrm{~J}$

Answer: D

4. Calculate the work done (in J) when 4.5 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacts against a pressure of 1.0 atm at $25^{\circ} \mathrm{C} 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. -1.63×10^{2}
B. 4.5×10^{2}
C. 3.2×10^{2}
D. -6.1×10^{2}

Answer: A

- View Text Solution

5. Temperature of 1 mole of a gas is increased by $2^{\circ} \mathrm{C}$ at constant pressure. Work done is :
A. R
B. 2 R
C. $R / 2$

D. 3R

Answer: B

- View Text Solution

6. If w_{1}, w_{2}, w_{3} and w_{4} for an ideal gas are magnitude of work done in isothermal, adiabatic, isobaric and isochoric reversible expansion processes, the correct order will be :
A. $w_{1}>w_{2}>w_{3}>w_{4}$
B. $w_{3}>w_{2}>w_{1}>w_{4}$
C. $w_{3}>w_{2}>w_{4}>w_{1}$
D. $w_{3}>w_{1}>w_{2}>w_{4}$

Answer: D

1. A gas expands against a variable pressure given by $P=\frac{20}{V}$ (where P in atm and V in L). During expansion from volume of 1 litre to 10 litre, the gas undergoes a change in internal energy of 400 J . How much heat is absorbed by the gas during expansion?
A. 46 J
B. 4660 J
C. 5065.8 J
D. 4260 J

Answer: C

- View Text Solution

2. 2 mole of an ideal gas at $27^{\circ} \mathrm{C}$ expands isothermally and reversibly from a volume of 4 litre to 40 litre. The work done (in kJ) by the gas is :
A. $w=-28.72 k J$
B. $w=-11.488 k J$
C. $w=-5.736 k J$
D. $w=-4.988 k J$

Answer: B

- View Text Solution

Level 1 (Q.91 To Q.120)

1. At $25^{\circ} \mathrm{C}, \Delta G^{\circ}$ for the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is 8.6 kJ . The vapour pressure of water at this temerapture, is nearly :
A. 24 torr
B. 285 torr
C. 32.17 torr
D. 100 torr

Answer: A

- View Text Solution

2. The molar entropies of $\mathrm{HI}(\mathrm{g}), \mathrm{H}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ at 298 K are 206.5, 114.6, and 180.7 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ respectively. Using the ΔG° given below, calculate the bond energy of HI.
$H I(g) \rightarrow H(g)+I(g), \quad \Delta G^{\circ}=271.8 k J$
A. $282.4 k \mathrm{Jmol}^{-1}$
B. $298.3 k \mathrm{Jmol}^{-1}$
C. $290.1 k \mathrm{Jmol}^{-1}$
D. $315.4 k \mathrm{Jmol}^{-1}$

Answer: B

- View Text Solution

1. Gasoline has an enthalpy of combustion $24000 \mathrm{~kJ} / \mathrm{mol}$ gallon. When gasoline burns in an automobile engine, approximately 30% of the energy released is used to produce mechanical work. The remainder is lost as heat transfer to the engine's cooling system. As a start on estimating how much heat transfer is required, calculate what mass of water could be heated from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ by the combustion of 1.0 gallon of gasoline in an automobile? (Given : $C\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
A. 34.45 kg
B. 80.383 kg
C. 22 kg
D. 224 kg

Answer: B

- View Text Solution

1. Two moles of a triatomic linear gas (neglect vibration degree of freedom) are taken through a reversible process ideal starting from A as shown in figure.

The volume ratio $\frac{V_{B}}{V_{A}}=4$. If the temperature at A is $-73^{\circ} \mathrm{C}$, then :

Work done by the gas in AB process is :
6.16 kJ
308.3 kJ
9.97 kJ

0 J
(ii) Total enthalpy change in both steps is:
A. 3000 R
B. 4200 R
C. 2100 R
D. 0

Answer: B::C

D View Text Solution

Level 3 - One Or More Answers Are Correct

1. Assume ideal gas behaviour for all the gases considered and neglect vibrational degrees of freedom. Separate equimolar sample. Separate equimolar samples of $\mathrm{Ne}, \mathrm{O}_{2}, \mathrm{CO}_{2}$ and SO_{2} were subjected to a two process as mentioned. Initially all are at same state of temperature and pressue.

Step I \rightarrow All undergo reversible adiabatic expansion to attain same final volume, which is double the original volume thereby causing the decreases in their temperature.

Step \rightarrow After step I all are given appropriate amount of heat isochorically to restore the original temperature.

Mark the correct option(s) :
A. Due to step I only, the decrease in temperature will be maximum for

Ne
B. During step II, heat given will be minimum for SO_{2}
C. There will be no change in internal energy for any of the gas after both the steps of process are competed
D. The P-V graph of O_{2} and CO_{2} will be same

Answer: A::C::D

- View Text Solution

View Text Solution
2.

Column-I

(A) $\mathrm{O}_{2}(\mathrm{~g})$
(B) $\mathrm{O}_{3}(g)$
(C) $\mathrm{Br}_{2}(g)$
(D) $\mathrm{H}_{2} \mathrm{O}(l)$

Column-II

(P) $\Delta_{f} H^{\circ}=+$ ve; $\Delta_{f} S^{\circ}=+$ ve
(Q) $\Delta_{f} H^{\circ}=-\mathrm{ve} ; \Delta_{f} S^{\circ}=-\mathrm{ve}$
(R) $\Delta_{f} H^{\circ}=+\mathrm{ve} ; \Delta_{f} S^{\circ}=-\mathrm{ve}$
(S) $\Delta_{f} H^{\circ}=0$;
$\Delta_{f} S^{\circ}=0$

View Text Solution

