

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY (GUJRATI)

CHEMICAL EQUILIBRIUM - I

1. In the equilibrium reaction

 $CO_{2(g)} + C_{(s)} \Leftrightarrow 2CO_{(g)}$ the partial pressure of CO2 and CO are 0.78 atm and 1.22

atm respectively at equilibrium. Calculate the

equilibrium constant

Questions A Choose The Correct Answer

1. In which equilibrium pressure has no effect

A.
$$PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$$

$$\mathsf{B}.\, H_{2\,(\,g\,)}\, + I_{2\,(\,g\,)}\, \Leftrightarrow 2HI(g)$$

 $\mathsf{C.}\,2SO_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,\Leftrightarrow 2SO_{3\,(\,g\,)}$

$$\mathsf{D}.\, NH_4Cl_{\,(\,g\,)} \, \Leftrightarrow \, NH_{3\,(\,g\,)} \, + \, HCl_{\,(\,g\,)}$$

Answer:

Watch Video Solution

2. For the equilibrium $N_2O_{4(g)} \Leftrightarrow 2NO_{2(g)}$, the K_p and K_c values are related as

A. $K_p = K_c(RT)$

 $\mathsf{B}.\,K_p=K_c(RT)^2$

 $\mathsf{C}.\,K_p = K_c(RT)^{-1}$

D.
$$K_p = K_c(RT)^{-2}$$

Answer:

Watch Video Solution

3. For endothermic equilibrium, increase in temperature changes the K_{eq} value as

A. No change

B. Increases

C. Decreases

D. None of these

Answer:

Watch Video Solution

4. In the heterogenous equilirbium

 $CaCO_{3\,(\,s\,)} \, \Leftrightarrow CaO_{\,(\,s\,)} \, + CO_{2\,(\,g\,)}$ the K_{eq}

value is given by

A. partial pressure of CO_2

B. activity CaO

 $\mathsf{B.}\,K_p>K_c$

C.
$$K_p < K_c$$

D.
$$K_p = 1/K_c$$

Answer:

Questions B Fill In The Blanks

1. In endothermic equilibrium reaction the

increase in temperature _____

Watch Video Solution

3. When reactants and products are in gaseous state, the equilibrium constant can be expressed in terms of

4. Value of the equilibrium constant is ____

of the initial concentration of reactants.

- 5. According to law of mass action, the rate of
- a chemical reaction is proportional to ____

of reactants.

2. Relate
$$K_p$$
 and K_c when

$$\Delta n=0, \Delta n=1, \Delta n=2.0$$

Watch Video Solution

1. Two moles of H_2 and three moles of I_2 are taken in $2dm^3$ vessel and heated. If the equilibrium mixture contains 0.8 moles of HI, calculate K_p and K_c for the reaction $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$

Watch Video Solution

2. At $25^{\circ}C, K_c$ for the reaction $3C_2H_{2(g)} \Leftrightarrow C_6H_{6(g)}$ is 4.0. If the

equilibrium concentration of C_2H_2 is 0.5 mol.

 lit^{-1} . What is the concentration of C_6H_6 ?

