

BIOLOGY

BOOKS - TRUEMAN BOOK COMPANY BIOLOGY (HINGLISH)

RESPIRATION IN PLANTS

Multiple Choice Questions

- 1. Respiration is
 - A. anabolic and exothermic
 - B. anabolic and endothermic
 - C. catabolic and endothermic
 - D. catabolic exothermic

Answer: D

washiyada a cabatan

watch video Solution

2. in the process of repiration in plants 180 gms of sugar plus 192 gms of oxygen produce

A.
$$132gCO_2 + 54gH_2O + 337k$$
 cal

$${\rm B.}\ 264 gCO_2 + 108 gH_2O + 686k\ {\rm cal}$$

C. 528 g
$$CO_2$$
 + 216 g water+ 686 kcal

D. Large amount of CO_2 and energy

Answer: B

Watch Video Solution

3. When respiratory substrate is fat, respiration Is called

A. protoplasmic respiration

B. floating respiration

D. dark respiration
Answer: B
Watch Video Solution
4. The efficiency of respiration is approximately
A. 0.5
B. gt50%
C. It50%
D. 1
Answer: C
Watch Video Solution

C. cellular respiration

5. Glyceraldehyde phosphate is oxidised in glycolysis. What is the fate of hydrogen atom and electron liberated. They cause

A. They reduce $NAD^{\,+}$

B. They oxidise NAD^+

C. They are transferred to Pyruvic acid

D. They are removed by FAD

Answer: A

6. In the formation of Acetyl Co-A from pyruvic acid in mitochondria, pyruvic acid gets

A. oxidised

B. decarboxylated

C. both (1) and (2)

D. reduced and isomerised
Answer: C
Watch Video Solution
7. When a yeast produces wine, which is not formed?
A. Acetaldehyde
B. Ethyl Alcohol
$C.CO_2$

D. Acetyl coenzymeA

View Text Solution

Answer: D

8. The net gain of glycolysis of one molecule of glucose is the formation of

A. 2NADH + $H^{\,+}\,$ + 4ATP+ 1 Pyruvic acid

B. 2NADH + $H^{\,+}$ + 2ATP+2 Pyruvic acid

C. SATP +2NADH + $H^{\,+}\,$ +2 Pyruvic acid

D. SATP+2NADH+ $H^{\,+}$ + 2 Pyruvic acid + CO_2

Answer: B

- **9.** During photosynthesis oxygen in glucose comes from
- A. $C_6H_{12}O_6$
 - B. O_2
 - $\mathsf{C}.\,CO_2$

D. both (1) and (2)

Answer: B

Watch Video Solution

10. How many oxygen n:iolecules are used in glycolysis of one molecule of glucose ?

- A. 1/2
- B. 1
- C. 0
- D. 2

Answer: C

Watch Video Solution

11. Link between glycolysis, Krebs cycle and β -oxidation of fatty acid or carbohydrate and fat metabolism is

A. OAA

B. Cytochrome

C. Acetyl Co-A

D. Pyruvic acid

Answer: C

Watch Video Solution

A.
$$C_2H_5OH+CO_2$$
 + Energy

12. When yeast ferments glucose, the products are:

C.
$$CO_2 + H_2O$$
 + Energy

B. C_2H_5OH + Energy

D.
$$CH_3OH + H_2O$$
 + Energy

Answer: A

13. Energy required to form glucose from pyruvate is equivalent to
A. 32 ATP
B. 16 ATP
C. 8 ATP
D. 4 ATP
Answer: C
Watch Video Solution
14. Which is formed through phosphorylation in glycolysis?
A. Fructose 1-6 Biphosphate
B. DHA-3- phosphate

C. Both are correct

D. Glyceraldehyde-3-phosphate

Answer: A

Watch Video Solution

15. Which step of glycolysis requires pyruvic kinase,

 Mg^{++}, K^{+} and ADP?

- A. Conversion of PEP into pyruvic acid
- B. Conversion of 3PGA into 2PGA
- C. Cleavage of Fructose 1-6 Biphosphate
- D. All of the above

Answer: A

16. One molecule of glucose requires 2 ATP to get phosphorylated to form
Fructose 1–6 Biphosphate in glycolysis. How many ATP are used in the
same process if the substrate is fructose ?
Λ 1

- A. 1
- B. 2
- C. 0
- D. 4

Answer: B

- 17. Amphibolic cycle that occurs only in aerobic condition is
- A. EMP pathway
 - B. Glycolysis
 - C. Krebs' cycle

	FTC.	
1)	FI (
┍.		

Answer: C

Watch Video Solution

- 18. During respiration, pyruvic acid is
 - A. broken to form a 2-carbon compound and ${\cal C}{\cal O}_2$
 - B. produced in Krebs' cycle
 - C. formed only if fat is used
 - D. produced only in aerobic condition

Answer: A

19. Krebs' cycle starts with the formation of a six carbon compound by reaction between A. OAA and puruvic acid B. OAA and Acetyl Co- A C. Pyruvic acid and Acetyl Co-A D. OAA and citrate synthetase **Answer: B Watch Video Solution 20.** Aerobic glycolysis is times efficient than anaerobic glycolysis A. 2 times B. 4 time C. 10 times D. 18 times

Answer: D

Watch Video Solution

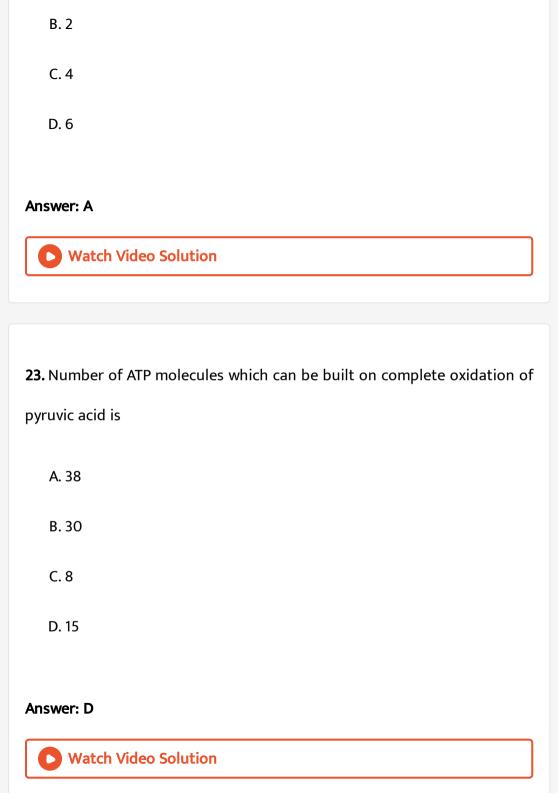
21. Ratio of CO_2 produced in aerobic and anaerobic respiration is

A. 3:1

B. 2:1

C. 4:1

D. 1:1


Answer: A

Watch Video Solution

22. Each molecule of pyruvic acid entering the Kreb's cycle produces

A. 3

24. Most of the energy in the cell is liberated by oxidaiton of carbohydrate when

A. pyruvic acid is changed into $CO_2\&H_2O$

B. pyruvic acid is converted into Acetyl CoA

C. sugar is converted into Pyruvic acid

D. glucose is converted into Alcohol & CO_2

Answer: A

Watch Video Solution

25. How much energy is conserved as ATP per mole of ${\cal O}_2$ reduced into

 H_2O ?

A. 36

B. 38

C. 6
D. 36 in eukaryotes and 38 in prokaryotes.
Answer: C
View Text Solution
26. Amount of energy available per mole of oxygen used in biological
oxidation is
A. 150
B. 3600
C. 686
D. 110
Answer: D
Watch Video Solution

27. Flow of electons in ETS is

A.
$$Fe+++ \rightarrow Cu^+ > Fe++$$

B.
$$Fe++ \rightarrow Fe+++$$

C.
$$Fe^{2+}
ightarrow Fe^{3+}
ightarrow Fe^{2+}$$

D. 110

Answer: C

Watch Video Solution

28. Kreb's cycle was discovered by Krebs in pigeon muscles in 1940. Which step is called gateway step. Link reaction/transition reaction in respiration.

- A. Glycolysis
- B. Formation of acetyl Co-A
- C. Citric acid formation

D. ETS Terminal oxidation

Answer: B

Watch Video Solution

- 29. In Kreb's cycle
 - A. Acetyl coenzyme A undergoes 4 oxidations and 2 decarboxylations
 - B. Pyruvic acid undergoes 4 oxidations and 2 decarboxylations
 - C. TCA undergoes 4 oxidations and 4 decarboxylations
 - D. OAA undergoes 4 oxidations and 2 decarboxylations

Answer: A

View Text Solution

 $NADH + H^+ ig(NADPH + H^+ig)
ightarrow FMNFeS \;\; ext{protein} \;\; CoQ
ightarrow cytb
ightarrow$.At three steps ATP is formed (oxidative phosphorylation). Where does II

electrons

in

ETS

is

A. Between $NADH_2$ and FMN

Flow

of

 $C. Cyta \text{ and } Cyta_3$

B. Cytb and $Cytc_1$

D. FMN o FeS protein

Answer: B

30.

ATP is formed?

View Text Solution

31. For formation of ethanol, pyruvic acid is first changed to acetaldehyde by enzyme

A. carboxylase

- B. dehydrogenase
- C. decarboxylase . and dehydrogenase
- D. oxidase and decarboxylase

Answer: C

Watch Video Solution

- **32.** Oxidation of one molecule of glucose yields 38 mols of ATP in the proportion of
 - A. all the 38 mols in mitochondrio
 - B. 8 outside mitochondria and 30 inside mitochondrion
 - C. two glycolysis and 36 inside the- $\mbox{\sc Kreb}$, cycle
 - D. two outside and 36 inside the mitochondria.

Answer: B

A. AT Pase, succinic dehydrogenase cytochrome oxidase .
B. Malate dehydrogenase, citrate synthetase
C. Diphosphokinase and cyclase
D. citrate synthetase
Answer: A
Watch Video Solution
34. In electron transport system (ETS) which of the following cytochromes reacts with oxygen
A. cyt b
B. $cytc_1$
C. cyt a

33. Inner mitochondrial membrane possesses enzymes

D. cyt	a_3
--------	-------

Answer: D

Watch Video Solution

35. The molecule that regularly enters through the inner membrane of mitochondrion is

- A. ATP
- B. pyruvic acid
- C. glucose
- D. citric acid

Answer: B

36. Cyt a_3 possesses

- A. Fe and Cu
- B. Fe
- C. Mn
- D. Fe, Mn + Cl

Answer: A

Watch Video Solution

37. Which of the following connects glycolysis to Krebs cycle?

- A. Substrate level phosphorylation
- $B.\ Photophosphory lation$
- C. $FADH_2$ formation
- D. Both occur in matrix of mitochondria

Watch Video Solution 38. ETS in bacteria is found A. cell membrane B. cell wall C. cytoplasm D. mitochondrion Answer: A Watch Video Solution 39. In cell respiration, which does not involove EMP pathway? A. Pyruvic acid into CO_2 and H_2O

Answer: A

- B. Glucose into lactic acid
- C. Glucose into CO_2 and H_2O
- D. Glucose into alcohol

Answer: A

Watch Video Solution

- **40.** Zymosis is also called
 - A. fermentation
 - B. action of zymogens
 - $\hbox{C. pasteurization}\\$
 - D. synapsis of chromosomes

Answer: A

41. Correct sequence of events in Krebs' cycle is

A. Acetyl CoA $\,
ightarrow\,$ citrate $\,
ightarrow\,$ pyruvate a-ketoglutarate $\,
ightarrow\,$ succinate

ightarrow malate ightarrow fumarate ightarrow OAA

B. Acetyl CoA $\,
ightarrow\,$ citric acid $\,
ightarrow\,$ a-keto-glutaric acid $\,
ightarrow\,$ succinic acid

ightarrow fumaric acid ightarrow malic acid ightarrow OAA

C. Acetyl CoA ightarrow citric acid ightarrow malic acid ightarrow lpha-ketoglutaric acid

 $\,
ightarrow\,$ succinic acid $\,
ightarrow\,$ OAA

D. Pyruvic acid $\, o \,$ Acetyl CoA $\, o \,$ citrate $\, o \,$ malate $\, o \,$ fumarate

Answer: B

Watch Video Solution

42. RQ is

A. $\frac{\text{vol of } CO_2\text{released in respiration}}{\text{vol of } O_2\text{consumed in respiration}}$

- B. $\frac{\text{vol of } CO_2 \text{consumed in photosynthes is}}{\text{vol of } O_2 \text{consumed in respiration}}$ C. $\frac{\text{vol of } CO_2 \text{taken in photosynthesis}}{\text{vol of } CO_2 \text{released in respiration}}$
- D. $\frac{\text{vol of } CO_2 \text{taken in photosynthesis}}{\text{vol of } CO_2 \text{released in photosynthesis}}$

Answer: A

- 43. During starvation, RO value will be
 - A. O
 - B. less than unity
 - C. more than unity
 - D. unity

Answer: B

44. When respiratory substrate is cereal/ starchsprouting potato tuber,
then RO value is
A. 0
B. unity
C. gt1
D. lt1
Answer: B
Watch Video Solution
Watch Video Solution
Watch Video Solution 45. In anaerobic condition, value of RQ will be
45. In anaerobic condition, value of RQ will be
45. In anaerobic condition, value of RQ will be A. 1

Answer: C

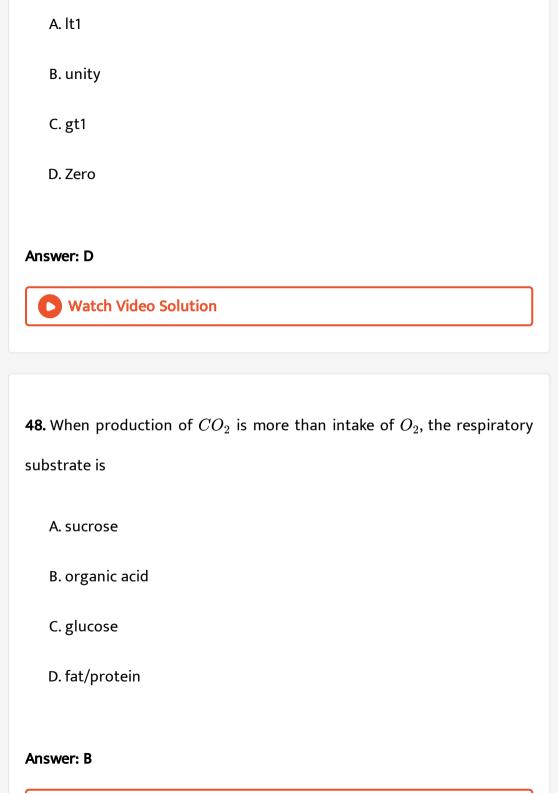
Watch Video Solution

46. If a substance is rich in oxygen, then value of RO (Respiratory Quotient) will be

A. unity

B. ess than 1

C. greater than 1


D. 0

Answer: C

Watch Video Solution

47. RO value in succulents/CAM plants in night is

49. Enzyme ATPase is found in of oxysome.

A. Head (F_1)

B. Base (F_0)

C. Stalk

D. F_0-F_1

Answer: A

Watch Video Solution

50. Which of the following observations most strongly support the view that mitochondria contain transport enzymes aggregated into compact association?

A. Mitochondria have a highly folded inner membrane

B. Disruption of mitochondria yield membrane fragments which are able to synthesize ATP

C. A contractile protein able to utilize ATP is found in mitochondria

D. None of the above.

Answer: B

Watch Video Solution

51. The Nobel Prize for the discovery of TCA cycle and ATP biosynthesis was awarded to

A. Hans Krebs

B. Lipman

C. Krebs and Lipman jointly

D. Vishniac and Ochoa

Answer: C

52. In anaerobic respiration, pyruvic acid in muscles forms

A. ATP

B. Lactic acid

C. Acetyl Co- A

D. NAD

Answer: B

53. Terminal oxidation in ETS is

A. stoppage of oxidation

B. final release of protons

C. only step where actual oxidation using \mathcal{O}_2 occurs

D. ETS initiation

Answer: C

View Text Solution

54. Krebs' cycle also called TCA (Tricarboxylic acid cycle) or citric acid cycle (organic acid cycle). It is also called metabolic sink as it is

A. common pathway for carbohydrates . fats and proteins (amino acids)

- B. common pathway for carbohydrates and fats only
- C. common pathway for carbohydrates and organic acids only
- D. none of the above

Answer: A

55. One turn of Krebs' cycle for the oxidation of 1 mol of sucrose produce
how many ATP molecules ?
A. 12
B. 24
C. 22
D. 11
Answer: A
Watch Video Solution
56. Acetaldehyde is intermediate product in
56. Acetaldehyde is intermediate product in A. lactic acid fermentation
A. lactic acid fermentation

Answer: B

Watch Video Solution

57. One molecule of sucrose yields ATP in anaerobic respiration

A. 2

B. 4

C. 38

D. 36

Answer: B

Watch Video Solution

58. One molecule of $NADH+H^+/NADPH+H^+$ has sufficient energy to generate 3 ATP through ETS. This energy is approximately

C. 18 k cal D. 36 k cal **Answer: B** Watch Video Solution 59. Proteins enter into Krebs' cycle through A. ∝ -Ketoglutarate B. OAA C. both (1) and (2) D. None of these **Answer: C** Watch Video Solution

A. 52.6 k cal

B. 21.9 k cal

60. If fructose 1-6 Bisphosphate is oxidised in aerobic respiration, the ATP production will be

A. 36

B. 38

C. 32

D. 40

Answer: D

Watch Video Solution

61. Respiration of starved leaves (consuming proteins) is called

A. protoplasmic respiration

B. floating respiration

C. photorespiration

D. oxidative phosphorylation	
nswer: A	

62. To start respiration, a living cell requires

Watch Video Solution

- A. only glucose
- B. glucose + ${\cal O}_2$
- C. glucose, ATP and enzymes
- D. glucose + enzymes

Answer: C

63. The rate of oxidative phosphorylation and ATP synthesis is related with

A. quantasomes

B. ribosomes

C. elementary particles

D. lysosomes

Answer: C

Watch Video Solution

64. Enzymes involved in oxidative decarboxylation of pyruvic acid are found in

A. cytoplasm

B. matrix of Mitochondrion

C. F_0-F_1 particles

D. oxysomes
Answer: B
Watch Video Solution
65. As compared to anaerobic respiration, the energy gained during
aerobic respiration is
A. 8 times
B. 19 times
C. 12 times

D. 36 times

Watch Video Solution

Answer: B

66. Cytochromes are found in	1
-------------------------------------	---

A. entire inner mitochondrial membrane

B. cristae only

C. matrix of mitochondria

D. oxysomes

Answer: A

Watch Video Solution

67. Cytochrome oxidase is related with

A. Cyt b

B. Cyt a_3

C. Cyt c_1

D. Cyt. c

Answer: B

View Text Solution

68. Cytochromes are

- A. ${\cal O}_2$ acceptor
- B. H_2 acceptor
- C. Electron acceptor
- D. All of these

Answer: C

Watch Video Solution

69. Rate of respiration shall

A. where no light is present

- B. in winterC. in high temperature
- D. in rainy season

Answer: C

Watch Video Solution

- **70.** All enzymes of TCA cycle except succinic dehyd rogenase and cytochrome oxidase are found in
 - A. cytosole and oxysomes
 - B. matrix of mitochondrion
 - C. inner membrane of mitochondrion
 - D. outer membrane of mitochondrion

Answer: B

View Text Solution

71. In the electron transport system, the reduced coenzymes are regenerated by

A. gain of protons

B. loss of electrons

C. addition of hydrogen

D. gain of electrons.

Answer: B

Watch Video Solution

72. Poisons like cyanide inhibit Na^+ influx during cellular transport. This inhibitory effect is reversed by an injection of ATP. This demonstrates that

A. $Na^{\,+}\,-K^{\,+}$ pump operates in all cells

B. ATP is carrier protein

C. Energy for $Na^{\,+}\,-\,K^{\,+}$ pump come from ATP

D. ATP is hydrolysed by ATPase to release energy

Answer: C

Watch Video Solution

73. Proton channel occurs in

A. F_0

B. F_1

C. F_4

D. F_5

Answer: A

74. The first 5C dicarboxylic acid in Krebs' cycle whic is used in nitrogen metabolism is

A. OAA

B. Citric acid

C. α -ketoglutaric acid

D. Acetyl Co-A

Answer: C

Watch Video Solution

75. Hydrogen atoms released at succinate level in Krebs cycle are accepted by

A. FAD

B. NAD

C. ADP

	Г	٨л	NI
D. I	П	IVI	IV

Answer: A

Watch Video Solution

76. Fructose-6-phosphate is changed to Fructose 1-6 biphosphate with the help of enzyme

A. phosphoglycerate

B. enolase

C. phosphofructokinase

D. phosphatase

Answer: C

77. In ETC, ATP is not formed in which of the following steps

- A. FMN- UQ
- B. Cyt c-cyt a
- C. Cyt b cyt c
- D. Cyt a- cyt a_3

Answer: B

View Text Solution

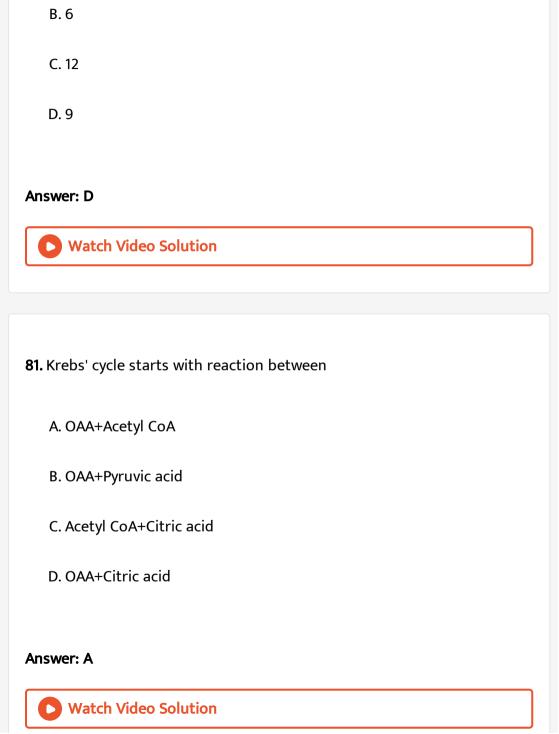
78. Krebs' cycle is completed with the formation of

- A. citric acid
- B. OAA
- C. succinic acid
- D. malic acid

Answer: B

Watch Video Solution

79. The end product of oxidative phosphorylation is


- A. ATP
- $B.O_2$
- $\mathsf{C}.\,NADH_2$
- D. $ATP\&H_2O$

Answer: D

Watch Video Solution

80. How many ATP are formed in ETS from reduced NAO generated in one turn cycle of Krebs' cycle ?

A. 3

- A. Lock and Key Theory of Fisher
- B. Chemiosmotic Theory of Mitchell
- C. Lipmann and Lohmann Theory
- D. Chemical coupling theory

Answer: B

- 83. What is the main feature of -P bond in ATP
 - A. 2 bonds having high energy
 - B. 2 Molecules of phosphrous in ATP
 - C. 3 atoms of high energy phosphate

D. None of these
Answer: A
Watch Video Solution
84. Which would be the last substrate to be used in respiration ?
A. Fat
B. Protein
C. Organic acid
D. starch
Answer: B
Watch Video Solution

85. A mass of living cells are kept in a culture medium under anaerobic conditions. The cells were supplied with labelled c^{14} glucose. Pick up the true statement

- A. CO_2 will contain C^{14}
- B. cell would burst
- C. water will have radioactivity
- D. ATP will have radioactivity

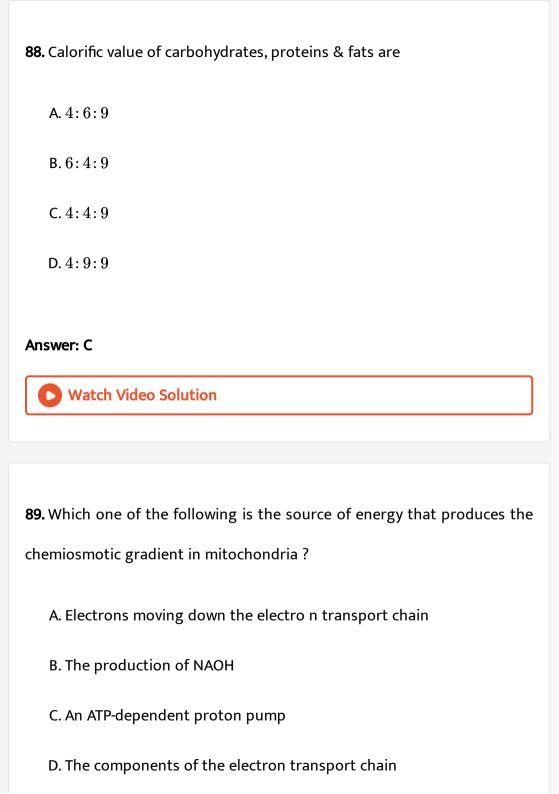
Answer: A

- **86.** Differences between photophosphorylation (PP) and oxidative phosphorylation (OP) is
 - A. In PP it is synthesis of ATP while in OP it is of ADP
 - B. In PP, ${\cal O}_2$ is evolved while in OP ${\cal O}_2$ is used up

C. Both can not take place in light .

D. pp occurs in green leaves while OP cannot occur in green leaves

Answer: B



87. Which one is absent in erythrocytes?

- A. Krebs' cycle
- B. Enzymes
- C. EMP pathway
- D. Hyaloplasm

Answer: A

Answer: A

Watch Video Solution

90. When ${\cal O}_2$ is not available to a muscle, NAOH formed in glycolysis does not pass electrons to the ETC. Instead it passes them to

- A. Acetyl Co A
- B. pyruvic acid
- C. fructose
- D. ADP

Answer: B

Watch Video Solution

91. Number of Oxygen atoms required for complete oxidation of pyruvic acid is

A. 6 B. 12 C. 3 D. 8 Answer: A **Watch Video Solution** 92. Cyanide kills the organisms/stop cell activity by A. reducing water potential B. decreasing diffusion of oxygen C. interfering in respiratory mechanism by preventing transfer of electron from copper of cyt a_3 to oxygen D. coagulating proteins of carriers in ETC **Answer: C**

93. During oxidative phosphorylation, protons return to

A. matrix from outside

B. outside from matrix

C. in both directions

D. mitochondria to cytoplasm

Answer: A

Watch Video Solution

94. The energy from electron transport is utilized in transporting proton

 $\left(H^{\,+}
ight)$ from

A. matrix to outside

B. outside to matrix

C. in both directions
D. none of these
Answer: A
Watch Video Solution
95. Enzyme helping in oxidatvie decarboxylation of pyruvic acid is
A. pyruvic kinase
B. pyruvic dehydrogenase

C. succinic dehydrogenase

Watch Video Solution

D. pyruvic oxidase

Answer: B

96. Glyceraldehyde phosphate is oxidised in glycolysis. What is the fate of hydrogen atom and electron liberated. They cause

- A. They reduce NAD^+
- B. They oxidise NAD^+
- C. They are transferred to pyruvic acid
- D. They are eliminated

Answer: A

- **97.** In Which step, CO_2 is not released?
 - A. Glycolysis
 - B. Lactic acid fermentation
 - C. Oxidation of malic acid into OAA
 - D. All of the above

Answer: D

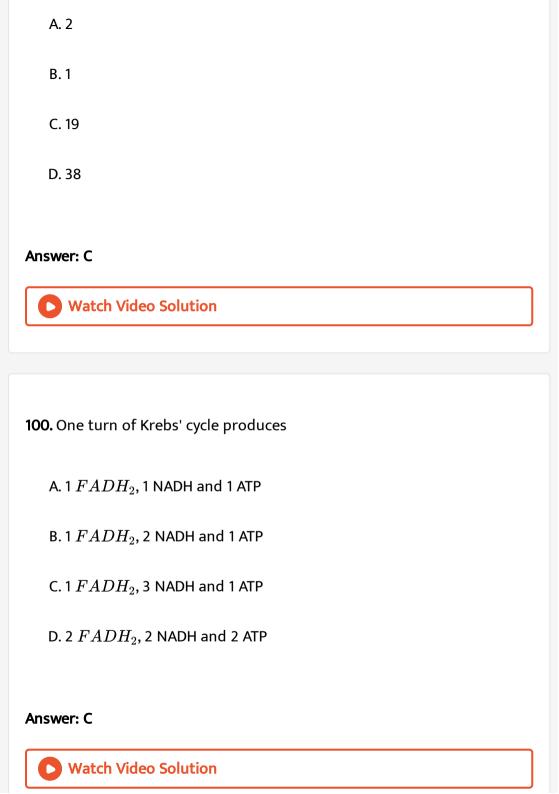
Watch Video Solution

98. General equation for aerobic respiration is

A.
$$6CO_2+6H_2O
ightarrow C_6H_{12}O_6+6O_2$$

B.
$$C_6 H_{12} O_6 + 6 O_2 o 6 C O_2 + 6 H_2 O + 686$$
 Kcal

C.
$$C_6H_{12}O_6
ightarrow 2C_2H_5OH+2CO_2+2ATP$$


D.
$$C_{22}H_{22}O_{116}O_2 o 6CO_2 + 6H_2O + 686 ext{cal}$$

Answer: B

Watch Video Solution

99. the number of glucose molecules required to produces 38 ATP molecules under anaerobic conditions by a yeast cells is

101. Excess of ATP inhibits respiration by inhibiting one of the following enzymes

A. phosphofructokinase

B. pyruvic dehydrogenase

C. isomerase

D. acomitase

Answer: A

Watch Video Solution

102. Anaerobic respiration of animals/humans produces

A. CO_2 and H_2O

 $B. C_2H_5OH$ and CO_2

C. Lactic acid and ${\cal H}_2{\cal O}$

D. Glucose and O_2

Answer: C

Watch Video Solution

103. Choose the correct statement

A. respiration is carried out by only leaf cells

B. end product of anaerobic respiration is ${\cal CO}_2$ + Pyruvic acid

C. substrate level phosphorylation occurs when lpha-ketoglutaric acid

changes to succinic acid

D. dark respiration in plants occurs only in night

Answer: C

104. In alcoholic fermentation by yeasts, the $NADH_2$ produced during glycolysis is used to reduce

A. Acetaldehyde to ethanol

B. NADP to $NADPH_2$

C. Pyruvic acid to lactic acid

D. Lactic acid to pyrvic acid

Answer: A

105. Maximum energy is obtained by the oxidation of

A. glucose

B. palmitic acid

C. malic acid

D. amino acid

Answer: B

Watch Video Solution

106. Fat has two components, glycerol and fatty acids. They enter common pathway of respiration as

- A. DHAP and ketoglutarate
- B. Glyceraldehyde-3-phosphate and acetyl CoA
- C. Glycolic acid and acetyl CoA
- D. OAA and Glyceric acid

Answer: B

Watch Video Solution

107. If it is calculated that less than 5% of the energy of glucose is recovered as ATP in glycolysis, the remaining energy is left in

A. CO_2 and NADPH B. Pyruvate and $FADH_2$ C. Pyruvate and NADH $D. CO_2$ and $NADH_2$ **Answer: C**

108. Why the usual RO for humans lies between 0.7 and 1.0 because

- A. they respire fat and protein
- B. they utilize and respire carbohydrate and fat
- C. they are pire carbohydrate and proteins
- D. they respire proteins and carbohydrate

Answer: B

109. How many molecules of 1NADH+H^+ are left at the end of anaerobic respiration

A. 2

B. 4

C. 6

D. 0

Answer: D

View Text Solution

110. In Beta oxidation, ATPs are produced

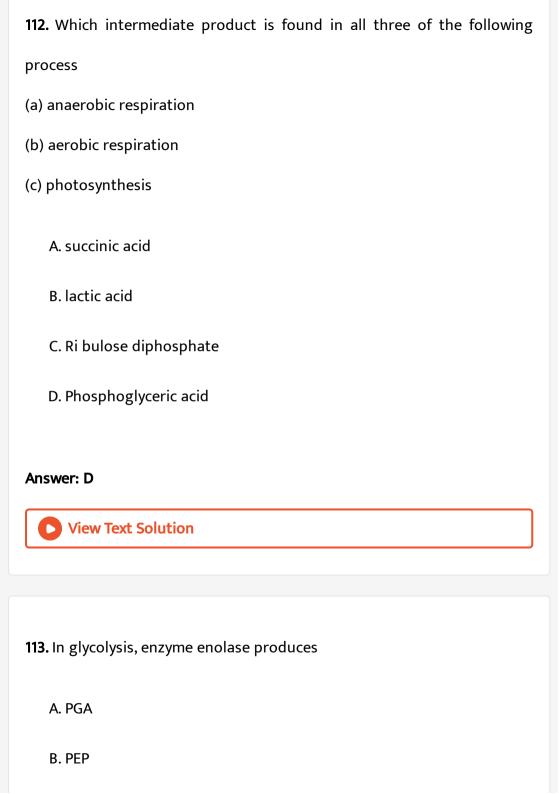
A. Flavin & Acetyl CoA

B. Fatty acid

C. NADH

D. NAD^+

Answer: B


Watch Video Solution

111. A business man of 70 kg weight requires 2800 kcal energy daily. How many glucose molecules and ATP molecules does he require to produce this much energy?

- A. 20 molecules of glucose and 384 molecules of ATP
- B. 11 molecules of glucose and 380 molecules of ATP
- C. 1 Molecule of glucose and 38 molecules of ATP
- D. 6 molecules of glucose and 584 molecules of ATP

Answer: B

D. Pyruvate Answer: B Watch Video Solution 114. Number of carbon atoms available in acetyl CoA is A. 6 B. 4 C. 3
114. Number of carbon atoms available in acetyl CoA is A. 6 B. 4
114. Number of carbon atoms available in acetyl CoA is A. 6 B. 4
A. 6 B. 4
A. 6 B. 4
B. 4
C. 3
D. 2
Answer: D
Watch Video Solution

115. Which can readily respire without oxygen? A. Anabaena B. Saccharomyces C. Mushroom D. Fish **Answer: B Watch Video Solution** 116. Cytochrome is a component of ETC in mitochendria/chloroplast, acting as electron acceptor. It is a A. glycoprotein B. lipid C. $Ca2^+$ containing metallo flavoprotein D. Fe^{+++} containing prophyrin pigment protein

Answer: D

View Text Solution

117. First oxidative decarboxylation during aerobic respiration occur in

- A. cytoplasm
- B. mitochondrial inner spac
- C. mitochondrial outer space
- D. mitochondrial matrix.

Answer: D

View Text Solution

118. One mole of glucose on complete oxidation in aerobic respiration yields ?

A. 2870 KJ B. 5000 KJ C. 686 KJ D. 1870 KJ **Answer: A View Text Solution** $(asNADH,FADH_2)$ taking par in oxidative 119. **Protons** phosphorylation enter mitochondira as A. OAA B. Acetyl-CoA C. Pyruvic acid D. Acetaldehyd **Answer: C**

120. Number of multiprotein complexes in ETS in mitochondria is

A. 2

B. 3

C. 4

D. 5

Answer: D

Watch Video Solution

121. Complex V in ETS consists of

A. F_0-F_1

B. ATP synthase

C. Both correct

D. Cytochrome C oxidase

Answer: C

Watch Video Solution

122. In which one of the following do the two names refer to one and the same thing

- A. Citric acid cycle and Calvin cycle
- B. Krebs' cycle and Calvin cycle
- C. TCA cycle and urea cycle
- D. Tricarboxylic acid cycle and citric acid cycle

Answer: D

123. ETC is also called

A. photooxidation

B. oxidative phosphorylation

C. cyclic phosphorylation

D. noncyclic phosphorylation

Answer: B

124. Which one of the following enzymes is absent in electron transport system?

A. NADH dehydrogenase

B. Cytochrome C-oxidas

C. Succinate Q-reductase

D. G_e phosphate dehydrogenase

Answer: D

Watch Video Solution

125. Which one of the following enzymes of respiratory pathway has the coenzyme FAD hnked with it?

- A. Citric acid synthetase
- B. Fumerase
- C. Succinic acid dehydrogenase

D.

Answer: C

Watch Video Solution

126. During the reaction $C_6H_{12}O_6+6O_2 o 6CO_2+6H_2O$ which compound is reduced ?

A. Oxygen B. Carbon dioxide C. Glucose D. Water Answer: A **View Text Solution** 127. Glyceraldehyde-3-phosphate is A. produced from glucose during glycolysis B. part of PS-I C. produced from pyruvate before entering the mitochondria D. an amino acid used for making protein Answer: A

128. Dough kept overnight in warm weather becomes soft and spongy due to

A. absorption of carbon dioxide from atmosphere

B. fermentation

C. cohesion

D. osmosis

Answer: B

Watch Video Solution

129. Fatty acids enter cellular respiration as

A. one carbon fragment

B. two carbon fragments

C. three carbon fragments

D. long chain of 16 to 20 carbon atoms
Answer: B
Watch Video Solution
30. In glycolysis, during oxidation electrons are removed by
A. ATP
B. GAP
C. NAD^+
D. molecular oxygen
Answer: C

131. The production of ATP by oxidative phosphorylation is driven by energy from

A. coenzyme A

B. cytochromes

C. formation of NADH

D. diffusion of protons from inter membrane space to the matrix of mitochondrion

Answer: D

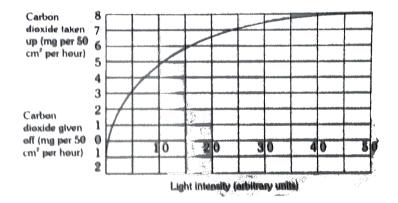
View Text Solution

132. Both mitochondria and chloroplasts

A. use a hydrogen ion (proton) gradient to produce ATP

B. obtain electron from water

C. reduce NAD^{+} , forming NADP


D. release oxygen as a by product

Answer: A

View Text Solution

133. The graph shows the relation between light intensity and the giving off and taking up of carbon dioxide by the leaves of a plant. Why is most carbon dioxide given off when the light intensity is zero units.

- A. because it is just the start of the experiment
- B. only respiration is taking place at this intensity of light

- C. the rate of photosynthesis is equivalent to the rate of respiration
- D. the rate of photosynthesis is more than the rate of respiration

Answer: B

Watch Video Solution

134. Chemiosmosis is

A. synthesis of ATP using the driving force of proton gradient across mitochondrial inner membrane

B. synthesis of ATP by the discharge of chemical potential created by

- mitochonariai imer membrane
- protons and hydroxyl ions on different sides of a membrane
- C. chemical synthesis of ATP by taking energy rich bond from a respiratory substrate
- D. both (1) and (2)

Answer: D

135. Which of the following process makes direct use of oxygen?

A. Glycolysis

B. Fermentation

C. Electron transport

D. Krebs citric acid cycle

Answer: C

A. evolution of O_2 in photosynthesis

136. Ganong's respiroscope is used to demonstrate......

B. evolution of ${\cal C}{\cal O}_2$ in photosynthesis

C. evolution of CO_2 in aerobic respiration

D. evolution of heat in aerobic respiration

Answer: C

Watch Video Solution

137. During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP

Or

Largest amount of phosphate bond energy is produced in the process of respiration during

- A. Electron transport chain
- B. Glycolysis
- C. Kerbs' cycle
- D. Oxidation of pyruvic acid

Answer: A

138. In glycolysis ultimately (or end product of glycolysis is)

- A. Acetyl CoA
- B. pyruvate
- C. ethanol
- D. $CO-2+H_2O$

Answer: B

Watch Video Solution

139. Which is not true for glycolysis

- A. End product is CO_2 and H_2O
- B. Substrate level phosphorylation
- C. Production of ATP

D. Expenditure of ATP

Answer: A

Watch Video Solution

140. How many ATP molecules could maximally be generated from one molecule of glucose, if the complete oxidation of one mole of glucose to CO_2 and H_2O yields 686 kcal and the useful chemical energy available in the high energy phosphate bond of one mole of ATP is 12 kcal

- A. Fifty-seven
- B. One
- C. Two
- D. Thirty

Answer: A

141. All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is

A. malate dehydrogenase

B. succinate dehydrogenase

C. lactate dehydrogenase

D. isocitrate dehydrogenase

Answer: B

Watch Video Solution

142. Which one of the following mammalian cells is not capable of metabolising glucose to carbon-dioxide aerobically?

A. Liver cells

B. Red blood cells

D. Unstriated muscle cells
Answer: B
Watch Video Solution
143. The overall goal of glycolysis, Krebs cycle and the electron transport
system is the formation of
A. sugars
B. nucleic acids
C. ATP in small stepwise units
D. ATP in one large oxidation reaction
Answer: C
Watch Video Solution

C. White blood cells

A. Malonate
B. Succinate
C. Citrate
D. Fumarate
Answer: A
Watch Video Solution
145. In Krebs cycle, the following reactions are involved in the production
of 15 ATP molecules by oxidation of food stuffs
1. Oxidation of pyruvic acid to acetyl Co-A
2. Oxidation of alpha-ketoglutaric acid
3. Oxidation of isocitrate
4. Oxidation of malate
5. Oxidation of succinate

144. A competitive inhibitor of succinic dehydrogenase is

6. Conversion of succinyl Coenzyme-A to succinic acid.

The correct sequence of these reactions is:

- A. 1, 2, 4, 3, 5, 6
- B. 1, 3, 2, 6, 5, 4
- C. 1, 4, 3, 2, 5, 6
- D. 1, 2, 4, 5, 3, 6

Answer: B

- 146. Carbon monoxide inhibits mitochondrial electron transport by
 - A. Inhibiting the electron transfer of complex
 - B. Blocking electron transport at the level of the cytochrome-b
 - cytochrome Co-complex
 - C. Binding to the oxygen binding site of cytochrome oxidase

D. Binding to haemoglobin in the erythrocytes and therefore blocking the transport of oxygen to tissues

Answer: C

147. Out of the following, which is the rate limiting enzyme in glycolysis?

- A. Pyruvate kinase
- B. Phosphofructo kinase
- C. Phosphoglucoisomerase
- D. Gluco kinase

Answer: B

148. Match List-I (Compound oxidized during Kreb's cycle) with List-II (Compound formed on oxidation) and select the correct answer using the codes given below the lists:

List- I (Compound oxidized during Kreb's cycle)		List-II (Compound formed on oxidation)	
A	Pyruvic acid	1.	Acetyl Co-A
B.	Isocitric acid	2.	Succinyl Co-A
C.	α-Ketoglutaric acid	3.	Oxaloacetic acid
D.	Succinic acid	4.	α–ketoglutaric acid
		5.	Fumaric acid

Answer: D

149. If glucose-fed yeast cells are transferred from aerobic environment to anaerobic one, the rate of glucose consumption will

- A. Decrease
- B. Increase
- C. Alter, depending on concentration of other nutrients
- D. Will not change

Answer: B

View Text Solution

150. Which of the following is not a substrate for decarboxylation?

- A. Pyruvate
- B. Citrate

D. Will not change Answer: B **Watch Video Solution** 151. All of the following are four carbon compounds except A. Malic acid B. Succinic acid C. Pyruvic acid D. Oxaloacetic acid **Answer: C Watch Video Solution**

C. Alpha-keto-glutarate

152. The citric acid cycle

- A. Is the major anabolic pathway for glucose synthesis
- B. Is an anaerobic process
- C. Generates fewer molecules of ATP than glycolysis
- D. Contains intermediates for amino acid synthesis

Answer: D

- **153.** During aerobic respiration, all the ATPs are synthesized as a result of
 - A. Oxidative phosphorylation
 - B. Oxidative and substrate level phosphorylation
 - C. Substrate level phosphorylation
 - D. Oxidative and photophosphorylation

Answer: B

Watch Video Solution

154. Kreb's cycle

- A. Liberates a minor part of energy during respiration
- B. Is operative in photorespiration
- C. Reactions are independent of oxygen supply
- D. Is a link between carbohydrate and nitrogen metabolism

Answer: D

View Text Solution

- **155.** Consider the following
- 1. Succinic dehydrogenase
- 2. Aconitase

- 3. lpha-ketoglutarate dehydrogenase
- 4. Isocitric dehydrogenase

What is the correct order in which the above enzymes catalyze the reaction in Kreb's cycle?

- A. 1-2-3-4
- B. 2 4 1 3
- C. 3 2 4 1
- D. 2-4-3-1

Answer: D

Watch Video Solution

156. Which one of the following is the correct sequence of electron transport in Mitochondria?

Α.

 $NADH
ightarrow UQ
ightarrow Cytb
ightarrow cytc_1
ightarrow Cyt
ightarrow Cyta
ightarrow Cyta_3
ightarrow O_2$

В.

 $NADH
ightarrow Cyta
ightarrow Cyta_3
ightarrow UQ
ightarrow Cytb
ightarrow Cytc_1
ightarrow Cytc
ightarrow O_2$

C.

 $NADH
ightarrow UQ
ightarrow Cytb
ightarrow Cyta
ightarrow Cyta_3
ightarrow Cytc
ightarrow Cytc_1
ightarrow O_2$

D.

 $NADH
ightarrow Cytb
ightarrow Cytc_1
ightarrow Cytc
ightarrow UQ
ightarrow Cyta
ightarrow Cyta_3
ightarrow O_2$

Answer: A

- 157. Consider the following enzymes of glycolytic pathway
- 1. Glyceraldehyde-3 phosphate dehydrogenase
- 2. Enolase
- 3. Pyruvate kinase
- 4. Phosphoglycerate kinase

The correct order in which they appear in the pathway is

- A. 2,1,4,3
- B. 3, 2, 1, 4
- C. 4, 3, 2, 1
- D. 1,4,2, 3

Answer: D

Watch Video Solution

- 158. Consider the following intermediates formed during Krebs cycle
- 1. α -ketoglutarate 2. Isocitrate
- 3. Succinate 4. Malate
- 5. Fumerates

The correct sequences in which the above intermediates are formed is -

- A. 1, 2, 4, 3, 5
 - B. 2, 1, 5, 4, 3
 - C. 3, 1, 2, 5, 4

D. 2,1,3, 5,4

Answer: D

Watch Video Solution

- 159. Consider the following statements in Citric Acid Cycle
- 1. The generation of ATP is done at two steps
- 2. NAO is reduced to NADH at two steps
- 3. FAD is reduced to $FADH_2$, at one step

Which of the statements given above is/are correct?

- A. 1 and 2 only
- B. 3 only
- C. 1 and 3 only
- D. 1, 2 and 3

Answer: B

160. Consider the following

- 1. Two lactate molecules
- 2. Two Pyruvate molecules
- 3. Two ATP molecules
- 4. Two $NADH+2H^{\,+}$

Which of the above are the end products of aerobic glycolysis?

- A. 1 and 4
- B. 1 and 3
- C. 1, 3 and 4
- D. 2, 3 and 4

Answer: D

161. Consider the following:

1. Succinate 2. Succinyl CoA

3. $NADH + H^{+}$ 4. CO_{2}

When α -ketoglutarate dehydrogenase enzyme acts on α -ketoglutarate, which of the above are produced?

A. 1 and 2 only

B. 1 and 3 only

C. 1, 3 and 4

D. 2, 3 and 4

Answer: D

Watch Video Solution

162. Which of the following serves as the breakdown site for betaoxidation?

B. Extramembrane space of mitochondria C. Matrix of mitochondria D. Smooth endoplasmic reticulum **Answer: C Watch Video Solution** 163. The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl CoA. Which of the following changes will increase the metabolic consumption of pyruvate? A. High levels of ATP B. High levels of NADH C. Low levels of glucose D. Low levels of Acetyl CoA

A. Cytosol

Answer: D

Watch Video Solution

164. What is the total number of $FADH_2$ molecules produced by glycolysis and the citric acid cycle (two turns of the cycle)?

- A. 1 mole at Succinate to Fumarate conversion
- B. 2 moles at Succinate to Fumarate conversion
- C. 3 moles at Malate to Oxaloacetate conversion
- D. 4 moles at Mal ate to Oxaloacetate conversion

Answer: B

Watch Video Solution

165. During carbohydrate metabolism, NADH is produced in which of the following location(s)?

I. Cytosol
II. Mitochondrial matrix
Ill. Nucleus
A. I only
B. II only
C. I and II only
D. I, II, and III
Answer: C
Watch Video Solution
166. When examining the TCA cycle, alpha ketoglutarate dehydrogenase
complex requires the set of cofactors as which of the following?
A. Citrate synthase
A. Citrate synthase B. Cis-aconitate

D. Fumarate

Answer: C

View Text Solution

167. For each acetyl Co-A oxidized by the citric acid cycle, what is the energy gain?

- A. Two molecules of NADH, one $FADH_2$ and one nucleoside triphosphate
- B. Three molecules of NADH, one $FADH_2$ and one nucleoside triphosphate
- C. Two molecules of NADH, one $FADH_2$ and two nucleoside triphosphate
- D. Three molecules of NADH, one $FADH_2$ and two nucleoside triphosphate

Answer: B

Watch Video Solution

168. True about citric acid cycle

- A. 8 ATP molecules are produced
- B. Fat soluble vitamins are required
- C. Involved in fatty acid synthesis
- D . O_2 is consumed

Answer: C

Watch Video Solution

169. A person with a coenzyme Q deficiency will have a defect in oxidative phosphorylation. Which of the following would be expected in this person?

- A. accumulation of glucose
- B. accumulation of lactate
- C. high levels of ATP
- D. fructose deficiency

Answer: B

View Text Solution

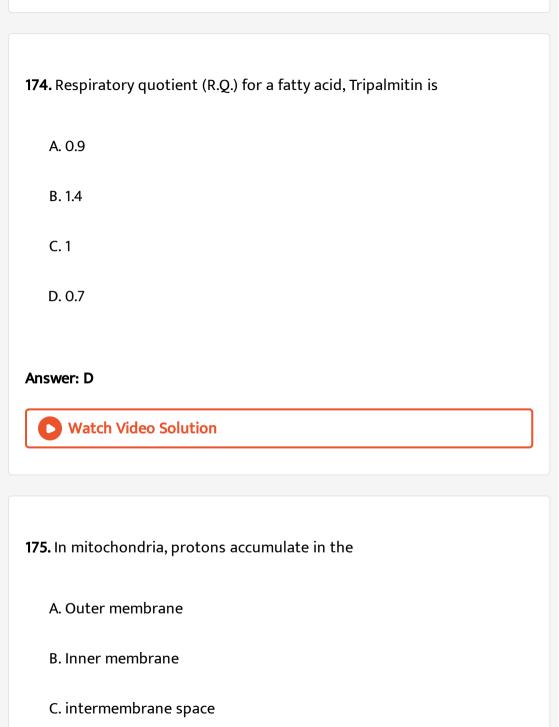
170. Fluoroacetate, a potent toxin extracted from plants, is converted to fluorocitrate, which is a strong inhibitor of the TCA cycle. Which of the following would be expected in a person exposed to fluoroacetate?

- A. an increase in intracellular levels of ATP
- B. an increase in intracellular levels of glucose
- C. a decrease in levels of ethanol
- D. a decrease in the function of the electron transport chain

Answer: D

171. Aerobic respiratory pathway is appropriately termed

- A. Amphibolic
- B. Anabolic
- C. Catabolic
- D. Parabolic


Answer: A

Watch Video Solution

172. Which of the following membrane bound complex in mitochondria is not a proton pump?

A. NADH dehydrogenase
B. Succinate dehydrogenase
C. Cytochrome bc_1
D. Cytochrome c oxidase
Answer: B
Watch Video Solution
173. Citric acid cycle isstep in carbohydrate metavbolism
A. First
B. Second
C. Third
D. Fourth
Answer: C
Watch Video Solution

D. Matrix
Answer: C
Watch Video Solution
76. Total number of ATP molecules produced per glucose molecule in

1 eucaryotic cell is

- A. 4
- B. 36
- C. 2
- D. 38

Answer: C

177. Two pairs of electrons passing from NADH molecules to oxygen generate

A. 3ATP

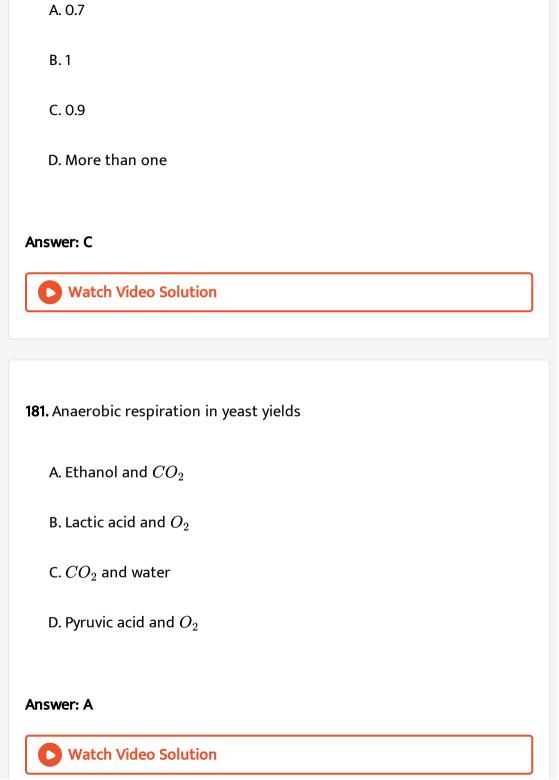
B. 4ATP

C. 6ATP

D. 2ATP

Answer: C

178. Which of these steps in Kreb's cycle indicates substate level phosphorylation


A. Conversion of succinic acid to a-ketoglutaric acid

B. Conversion of succinic acid to malic acid

C. Conversion of succinyl CoA to succinic acid

D. Conversion of citric acid to a-ketoglutaric acid
Answer: C
Watch Video Solution
179. EMP pathway occurs in the
A. Cytoplasm
B. Mitochondrion
C. Chloroplast
D. Lysosome
Answer: A
Watch Video Solution

180. When proteins are respiratory substrate, RQ will be

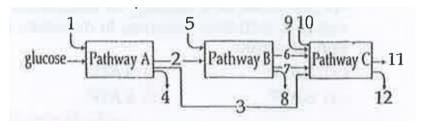
182. Arrange the following compounds of Krebs cycle in an ascending order with respect to the number of carbon atoms they possess

- (A) Succinic acid (B) Acetyl Co -A
- (C) a Ketoglutaric acid
- (D) Citric acid
 - A. A-D-C-B
 - B. C A D B
 - C. B-A-C-D
 - D. D -C- B -A

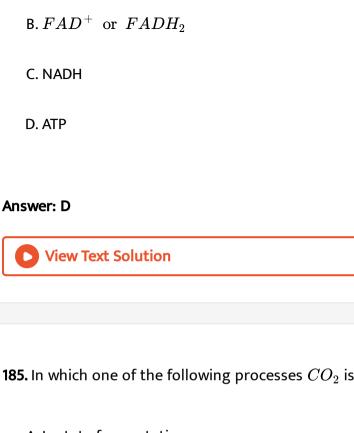
Answer: C

Watch Video Solution

183. Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins


- A. Pyruvic acid
- B. Acetyl CoA
- C. Glucose 6 -phosphate
- D. Fructose 1, 6 bisphosphate

Answer: B


Watch Video Solution

184. The three boxes in this diagram represent the three major biosynthetic pathways in aerobic respiration. Arrows represent net reactants or products.

Arrows numbered 4, 8 and 12 can all be

A. H_2O

185. In which one of the following processes CO_2 is not released

- A. Lactate fermentation
- B. Aerobic respiration in plants
- C. Aerobic respiration in animals
- D. Alcoholic fermentation

Answer: A

186. Last e^- acceptor during ETS is A. O_2 B. Water C. Cytockrome C D. Cytochrome a_3 Answer: A **Watch Video Solution** 187. Which of the following biomolecules is common to respirationmediated breakdown of fats, carbohydrates and proteins A. Glucose-6-phosphate B. Fructose 1, 6-bisphosphate C. Pyruvic acid D. Acetyl CoA

Answer: D

Watch Video Solution

188. Oxidative phosphorylation is

- A. Formation of ATP by transfer of phosphate group from a substrate to ADP
- B. Oxidation of phosphate group in ATP
- C. Addition of phosphate group to ATP
- D. Formation of ATP by energy released from electrons removed during substrate oxidation

Answer: D

Watch Video Solution

189. Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?

- A. Lysosome
- B. Ribosome
- C. Chloroplast
- D. Mitochondrion

Answer: D

Watch Video Solution

190. Which statement is wrong for Krebs' cycle?

A. There are three points in the cycle where $NAD^{\,+}\,$ is reduced to

 $NADH + H^+$

B. There is one point in the cycle where $FAD^{+}\,$ is reduced to $FADH_{2}\,$

C. During conversion of succinyl CoA to succinic acid, a molecule of

GTP is synthes ised

D. The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid to yield citric acid

Answer: D

Watch Video Solution

191. Which of these statements is incorrect.

A. Oxidative phosphorylation takes place in outer mitochondrial membrane

B. Glycolysis operates as long as it is supplied with NAO that can pick up hydrogen atoms.

C. Glycolysis occurs in cytosol.

D. Enzymes of TCA cycle are present in mitochondrial matrix.

Answer: A

Watch Video Solution