© 'doubtnut

CHEMISTRY

NCERT - NCERT CHEMISTRY (GUJRATI)

COLLIGATIVE PROPERTIES

Problems

1. The vapour pressure of $C C l_{4}$ at $30^{\circ} \mathrm{C}$ is 143 mm of Hg .0 .5 gm of a nonvolatile non electrolyte substance with molar mass 65 is dissolved in 100 ml of CCl_{4}. What will be the vapour pressure of the solution. Density of $C C l_{4}$ at $30^{\circ} C=1.58 \mathrm{gm}$ per cc.
2. Dry air was passed successively through a solution of 5 gm of solute dissolved in 80.0 gm of water and through pure water. The loss in weight of the solution was 2.5 gm and that of the pure solvent was 0.04 gm . What is the molecular weight of the solute?

- Watch Video Solution

3. Calculate the vapour pressure of the solution. The molefraction of the solute is 0.25 . The vapour pressure of the pure solvent is 0.8 atm .

- Watch Video Solution

4. 1.00 g of a non-electrolyte dissolved in 50.5 g of benzene lowered its freezing point by 0.40K. The freezing point depression constant of benzene is $5.12 \mathrm{~K} \cdot \mathrm{~kg} \mathrm{~mol}^{-1}$. Find the molecular mass of the solute.

- Watch Video Solution

5. What is the freezing point of solution containing 3 g of a non-volatile solute in 20 g of water. Freezing point of pure water is $273 \mathrm{~K}, K_{f}$ of water $=1.86 \mathrm{Kkg} / \mathrm{mol}$. Molar mass of solute is $300 \mathrm{~g} / \mathrm{mol}$.
$T^{\circ}-T=K_{f} m$

- Watch Video Solution

6. A solution containing 2.5 g of a non-volatile solute in 100 gm of benzene boiled at a temperature 0.42 K higher than at the pure solvent boiled. What is the molecular weight of the solute? The molal elevation constant of benzene is $2.67 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

- Watch Video Solution

7. 0.900 g of a solute was dissolved in 100 ml of benzene at $25^{\circ} \mathrm{C}$ when its density is $0.879 \mathrm{~g} / \mathrm{ml}$. This solution boiled $0.250^{\circ} \mathrm{C}$ higher than the boiling point of benzene. Molal elevation constant for benzene is $2.52 \mathrm{~K} . \mathrm{Kg} \cdot \mathrm{mol}^{-1}$. Calculate the molecular weight of the solute.

- View Text Solution

8. 10 g of an organic substance when dissolved in two litres of water gave an osmotic pressure of 0.59 atm , at $7^{\circ} \mathrm{C}$. Calculate the molecular weight of the substance.

- View Text Solution

9. A 0.5 percent aqueous solution of KCl was found to freeze at 272.76 K .

Calculate the Van't Hoff factor and degree of dissociation of the solute at this concentration $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{k} . \mathrm{kg} \cdot \mathrm{mol}^{-1}\right)$. Normal molar mass of $K C l=74.5$.

- View Text Solution

10. The depression in the freezing point of a benzene solution containing 0.784 g of Acetic acid dissolved in 100 ml of benzene is 0.35 k .

Calculate the van't Hoff factor and the degree of association of the solute at this concentration
$\left(k_{f}\right.$ for benzene $=5.10 \mathrm{k} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1}, \quad$ molar mass of acetic acid is 60.01$)$.

- View Text Solution

Questions Problems

1. The vapour pressure of pure benzene at a certain temperature is 640 mm of Hg . A non-volatile non-electrolyte solid weighing 2.175 g is added to 39 g of benzene. The vapour pressure of the solution is 600 mm of Hg .

What is molecular weight of solid substance?

- View Text Solution

2. Calculate the freezing point of an aqueous solution of a nonelectrolyte having an osmotic pressure 2.0 atm at $300 \mathrm{~K} . \mathrm{Kf}=1.86 \mathrm{k} . \mathrm{kg} \cdot \mathrm{mol}^{-1} . \quad \mathrm{R}=0.0821$ lit.atm $\cdot \mathrm{k}^{-1} \mathrm{~mol}^{-1}$

- View Text Solution

3. What weight of non-volatile solute (urea) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$ needs to be dissolved in 100 g of water in order to decrease the vapour pressure of water by 25%. What will be the molality of solution?

- View Text Solution

4.20 g of sucrose solution in one litre is isotonic with a solution of boric acid containing 1.63 g of boric acid in 450 ml . Find the molecular weight of boric acid.

- View Text Solution

5. A solution containing 6 gm of a solute dissolved in 250 ml of water gave an osmotic pressure of 4.5 atmosphere at $27^{\circ} \mathrm{C}$. Calculate the
boiling point of the solution. The molal elevation constant for water is 0.52

- View Text Solution

