©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY (GUJRATI)

GASEOUS STATE

Problem

1. Calculate the partial pressures N_{2} and H_{2} in
a mixture of two moles of N_{2} and two moles
of H_{2} at STP.
2. If a gas diffuses at the rate of one-half as fast as O_{2}, find the molecular mass of the gas.

- Watch Video Solution

3.50 ml of gas A effuse through a pin -hole in

146 second. The same volume of CO_{2} under identical condition effuse in 115 seconds.

Calculate the molecular mass of A.
4. One mole of carbon-dioxide was found to occupy a volume of 1.32 litre at $48^{\circ} \mathrm{C}$ and at a pressure of 16.4 atm . Calculate the pressure of the gas that would have been expected to behave ideally and non-ideally.

- View Text Solution

5. Vanderwaal's constants for hydrogen chloride gas are $\mathrm{a}=3.67 \mathrm{~atm} \mathrm{lit}^{-2}$ and $\mathrm{b}=$
$40.8 \mathrm{ml} \mathrm{mol}^{-1}$. Find the critical temperature and critical pressure of the gas.

D Watch Video Solution

6. The critical temperature of hydrogen gas is $33.2^{\circ} \mathrm{C}$ and its critical pressure is 12.4 atm.

Find out the values of a^{\prime} and b^{\prime} for the gas.

D Watch Video Solution

Self Test

1. Calculate the partial pressures of O_{2} and H_{2} in a mixture of 3 moles of O_{2} and 1 mole of H_{2} at S.T.P.

D Watch Video Solution

2. If a gas diffuses at the rate of one quarter as
fast as N_{2}. Find the molecular mass.
3. 75 ml of gas A effuses through a pin hole in

73 seconds. The same volume of SO_{2} under identical conditions effuses in 75 seconds.

Calculate the molecular mass of A .

- Watch Video Solution

Questions Choose The Correct Answer

1. A curve drawn at constant temperature is
called an isotherm. This shows relationship
between
A. P and $\frac{1}{V}$
B. PV and V
C. P and V
D. V and $\frac{1}{P}$

Answer:

D Watch Video Solution
2. The critical temperature of a gas is that temperature
A. Above which it can no longer remain in
the gaseous state
B. Above which it can not be liquified by pressure
C. At which it solidifies
D. At which volume of gas becomes zero.

Answer:

3. If a gas expands at constant temperature.
A. Number of molecules of the gas
decreases
B. The kinetic energy of the molecules
decreases
C. The kinetic energy of the molecules
remain same
D. The kinetic energy of the molecules increases

Answer:

D Watch Video Solution

4. The molecules of a gas A travel four times
faster than the molecules of gas B at the same
temperature. The ratio of molecular weight
$\left(M_{A} / M_{B}\right)$ will be
A. $\frac{1}{16}$
B. 4
C. $\frac{1}{4}$
D. 16

Answer:

- Watch Video Solution

Questions B Fill In The Blanks

1. The correction term for pressure deviation is

......in the Vanderwaal equation of state.

D Watch Video Solution

2. The relation between inversion temperature and Vanderwaal's constants a^{\prime} and b^{\prime} is
3. The rate of diffusion of gas is ____to square root of both _____ and molecular mass.

D Watch Video Solution

Questions D Write In One Or Two Sentence

1. Write the mathematical expression for Boyle's law.
2. Compare the partial pressures of gases A and B when 3 moles of A and 5 moles of B mixed in constant volume, and $25^{\circ} \mathrm{C}$ and 1 atm pressure.

- Watch Video Solution

3. A sample of an ideal gas escapes into an evacuated container, there is no change in the kinetic energy of the gas. Why?
4. What is the change in temperature when a compressed real gas is allowed to expand adiabatically through a porous plug

D Watch Video Solution

5. Define Boyle's law and Charle's law.

D Watch Video Solution

6. What is the molar volume of nitrogen at 500 K and 600 atm according to ideal gas law?

D Watch Video Solution

7. Give the values of R-gas constant in calories

 and Joules.8. What are the units of Vanderwaals constants a^{\prime} and b^{\prime} ?

D Watch Video Solution

Questions E Explain Briefly On The Following

1. At $27^{\circ} \mathrm{C}, \mathrm{H}_{2}$ is leaked through a tiny hole into a vessel for 20 minutes Another unknown gas at the same T and P as that of H_{2} is leaked through the same hole for 20 minutes. After
effusion of the gas, the mixture exerts a pressure of 6 atm. The H_{2} content of the mixture is 0.7 moles. If volume of the container is 3 litres what is the molecular weight of unknown gas?

D Watch Video Solution

2. Calculate the pressure exerted by 5 moles of
CO_{2} in one litre vessel at $47^{\circ} \mathrm{C}$ using

Vanderwal's equation. Also report the pressure of gas if it behaves ideally in nature.

Given that $\mathrm{a}=3.592 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2} . \mathrm{b}=0.0427$
lit mol^{-1}

D Watch Video Solution

3. Calculate the total pressure in a 10 L cylinder which contains 0.4 g of helium, 1.6 g of oxygen and 1.4 g of nitrogen at $27^{\circ} \mathrm{C}$. Also calculate the partial pressures of He gas in the cylinder. Assume Ideal behaviour for gases.
$\mathrm{R}=0.082 \mathrm{~L}$ atm $k^{-1} \mathrm{~mol}^{-1}$
4. The critical constants for water are $374^{\circ} \mathrm{C}$, 218 atm and 0.0566 litre mol^{-1}. Calculate a^{\prime} and b^{\prime} of water

- Watch Video Solution

5. Vanderwaal's constant in litre atmosphere per mole for carbon dioxide are $\mathrm{a}=3.6$ and $\mathrm{b}=$
4.28×10^{-2}.
Calculate
the
critical
temperature and critical volume of the gas. $\mathrm{R}=$
0.0820 lit atm $K^{-1} . \mathrm{Mol}^{-1}$

Watch Video Solution

