

CHEMISTRY

NCERT - NCERT CHEMISTRY (GUJRATI)

THERMODYNAMICS - I

Example

1. From the following data at constant volume for combustion of benzene, calculate the heat of this reaction at constant pressure condition.

```
C_{6}H_{6\,(1)} + 71/2O_{2\,(g)} \rightarrow 6CO_{2\,(g)} + 13H_{2}O_{\,(l)}
```

View Text Solution

2. Calculate the enthalpy of combustion of ethylene at 300K at constant pressure if its enthalpy of combustion at constant volume is $-1406 \text{ kJ mol}^{-1}$.

3. (a) The measured heats of neutralization of acetic acid, formic acid, hydrocyanic acid, and hydrogen sulphide are 13.20, 13.40, 2.90 and 3.80 KCal per g.equiv. respectively. Arrange these acids in a decreasing order of strength.

(b) Heat of neutralization of formic acid by NH_4OH is 11.9 KCal per g.equiv. What is the heat of ionization of NH_4OH ?

View Text Solution

Questions A Choose The Correct Answer

1. Which of the following is not a state functions?

A. q

B.q+w

 $\mathrm{C.}\,\Delta H$

 $\mathsf{D.}\,V+PV$

Answer:

Watch Video Solution

2. Which of the following is an extensive property?

A. volume

B. density

C. refractive index

D. molar volume

Answer:

Watch Video Solution

3. Which of the following is an exothermic reaction?

A. melting of ice

B. combustion reactions

C. hydrolysis

D. boiling of water

Answer:

Watch Video Solution

4. Which of the following is reversible process?

A. Diffusion

B. melting

C. neutralization

D. combustion

Answer:

5. In which process, work is maximum?

A. reversible

B. irreversible

C. exothermic

D. cyclic

Answer:

Watch Video Solution

Questions B Fill In The Blanks

1. Translational energy of molecules is a part ofenergy of the
system.
Watch Video Solution
2. Specific heat of a liquid system isproperty.
Watch Video Solution
3. Work done in the reversible expansion is
O Watch Video Solution
4. Combustion is an process.
'
Watch Video Solution

7. Energy can be created and be destroyed. State whether this is true or

false.

Watch Video Solution

8. Define zeroth law of thermodynamics.

Watch Video Solution

Questions Miscellaneous

1. Calculate the enthalpy of combustion of acetic (1) when burnt in excess of O_2 in a bomb calorimeter. Given that $\Delta H_f^{\circ}, H_2O_{(l)} = -285.84$ KJ mol⁻¹ and $\Delta_f H^{\circ}, CO_{2(g)} = -393.52$ H

Watch Video Solution

2. Heat of neutralisation of a weak acid HA by NaOH is -12.13 kJ mol⁻¹. Calculate the enthalpy of ionization of HA. The Heat of neutralisation of

a strong acid with strong base is $-54.9 \mathrm{\,kJ} \mathrm{\,mol}^{\,-1}$

3. ΔH for the reaction at 298 K $CO(g)+1/2O_2(g)$ is $282.85 K Jmol^{-1}.$

Calculate ΔU of the reaction.

Watch Video Solution