©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS

 (GUJRATI)

 (GUJRATI)}

CONIC SECTIONS

Example

1. Find the equation of the circle with centre at
$(0,0)$ and radius r.
2. Find the equation of the circle with centre $(-3,2)$ and radius 4.

- Watch Video Solution

3. Find the centre and the radius of the circle $x^{2}+y^{2}+8 x+10 y-8=0$.

- Watch Video Solution

4. Find the equation of the circle which passes through the point $(2,-2)$, and $(3,4)$ and whose centre lies on the line $x+y=2$.

- Watch Video Solution

5. Find the coordinates of the focus, axis, the question of the directrix and latus rectum of
the parabola $y^{2}=8 x$.

- Watch Video Solution

6. Find the equation of the parabola with focus $(2,0)$ and directrix $x=-2$.

- Watch Video Solution

7. Find the equation of the parabola with vertex at $(0,0)$ and focus at $(0,2)$.

- Watch Video Solution

8. Find the equation of the parabola which is
symmetric about y-axis, and passes through
the point $(2,-3)$.

- Watch Video Solution

9. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

- Watch Video Solution

10. Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$

D Watch Video Solution

11. Find the equation of the ellipse whose vertices are $(\pm 13,0)$ and foci are $(\pm 5,0)$
12. Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0, \pm 5)$

D Watch Video Solution

13. Find the equation of the ellipse, with major axis along the x-axis and passing through the points $(4,3)$ and ($-1,4$)
14. Find the corrdinates of the foci and the vertices, the eccentricity, the length of the latus rectum of the hyperbolas:
(i) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ (ii) $y^{2}-16 x^{2}=16$

D Watch Video Solution

15. Find the equation of the hyperbola with
foci $(0, \pm 3)$ and vertices $\left(0, \pm \frac{\sqrt{11}}{2}\right)$

D Watch Video Solution

16. Find the equation of the hyperbola where foci are $(0, \pm 12)$ and the length of the latus rectum is 36 .

- Watch Video Solution

17. The focus of a parabolic mirror as shown in

Fig 11.33 is at a distance of 5 cm from its vertex. If the mirror is 45 cm deep, find the
distance AB (Fig11.33).

D Watch Video Solution
18. A beam is supported at its ends by supports which are 12 metres apart. Since tha
load is concentrated at its centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola.

How far from the centre is the deflection 1 cm
?

- Watch Video Solution

19. A rod $A B$ of length 15 cm rests in between two coordinate axes is such a way that the end point A lies on x -axis and end Point B lies on y axis. A point $P(x, y)$ is taken on the rod in such
a way that $A P=6 \mathrm{~cm}$. Show that the locus of P is an ellipse.

- Watch Video Solution

Exercise 111

1. In each of the following find the equation of
the circle with
centre $(0,2)$ and radius 2

D Watch Video Solution

2. In each of the following find the equation of
the circle with
centre ($-2,3$) and radius 4

D Watch Video Solution

3. In each of the following find the equation of

 the circle withcentre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$

- Watch Video Solution

4. In each of the following find the equation of the circle with centre $(1,1)$ and radius $\sqrt{2}$
5. In each of the following find the equation of the circle with
centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$

D Watch Video Solution

6. In each the following find the centre and radius of circles.
$(x+5)^{2}+(y-3)^{2}=36$.

- Watch Video Solution

7. In each the following find the centre and radius of circles.
$x^{2}+y^{2}-4 x-8 y-45=0$.

- Watch Video Solution

8. In each the following find the centre and radius of circles.
$x^{2}+y^{2}-8 x+10 y-12=0$.
9. In each the following find the centre and radius of circles.
$2 x^{2}+2 y^{2}-x=0$.

- Watch Video Solution

10. Find the equation of the circle passing
through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.
11. Find the equation of the circle passing through the points $(2,3)$ and $(-1,-1)$ and whose centre is on the line $x-3 y-11=0$.

D View Text Solution

12. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

D Watch Video Solution

13. Find equation of the circle passing through
$(0,0)$ and making intercepts a and b on the coordinate axes.

D Watch Video Solution

14. Find the equation of a circle with centre
$(2,2)$ and passes through the point $(4,5)$.

- Watch Video Solution

15. Does the point $(-2.5,3.5)$ lie inside , outside or on the circle $x^{2}+y^{2}=25 ?$

D Watch Video Solution

Exercise 112

1. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the
latus rectum.

$$
y^{2}=12 x
$$

D Watch Video Solution

2. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the
latus rectum.
$x^{2}=6 y$
3. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.
$y^{2}=-8 x$

- Watch Video Solution

4. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the
latus rectum.
$x^{2}=-16 y$

- Watch Video Solution

5. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the
latus rectum.

$$
y^{2}=10 x
$$

6. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.
$x^{2}=-9 y$

- Watch Video Solution

7. In each of the find the equation of the parabola that satisfies the given conditions:

Focus $(6,0)$, directrix $x=-6$
8. In each of the find the equation of the parabola that satisfies the given conditions :

Focus $(0,-3)$, directrix $y=3$

D Watch Video Solution

9. In each of the find the equation of the parabola that satisfies the given conditions :
$\operatorname{Vertex}(0,0)$, focus $(3,0)$
10. In each of the find the equation of the parabola that satisfies the given conditions :

Vertex $(0,0)$, focus $(-2,0)$

D Watch Video Solution

11. In each of the find the equation of the parabola that satisfies the given conditions :

Vertex $(0,0)$ passing through $(2,3)$ and axis is along x-axis.
12. In each of the find the equation of the parabola that satisfies the given conditions :

Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis.

- Watch Video Solution

Exercise 113

1. In each of the Find the coordinates of the
foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

- Watch Video Solution

2. In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of
the latus rectum of the ellipse.
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

- Watch Video Solution

3. In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

- Watch Video Solution

4. In each of the Find the coordinates of the
foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

- Watch Video Solution

5. In each of the Find the coordinates of the
foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of
the latus rectum of the ellipse.
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

- Watch Video Solution

6. In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

$$
\frac{x^{2}}{100}+\frac{y^{2}}{400}=1
$$

- Watch Video Solution

7. In each of the Find the coordinates of the
foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $36 x^{2}+4 y^{2}=144$

- Watch Video Solution

8. In each of the Find the coordinates of the
foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of
the latus rectum of the ellipse.
$16 x^{2}+y^{2}=16$

- Watch Video Solution

9. In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$4 x^{2}+9 y^{2}=36$
10. In each of the following find the equation
fot the ellipse that satisfies the given conditions :

Vertices $(\pm 5,0)$, foci $(\pm 4,0)$

D Watch Video Solution

11. In each of the following find the equation
fot the ellipse that satisfies the given conditions:

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
12. In each of the following find the equation fot the ellipse that satisfies the given conditions :

Vertices $(\pm 6,0)$, foci $(\pm 4,0)$

- Watch Video Solution

13. In each of the following find the equation
fot the ellipse that satisfies the given conditions:

Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$

D Watch Video Solution

14. In each of the following find the equation fot the ellipse that satisfies the given conditions :

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
15. In each of the following find the equation
fot the ellipse that satisfies the given conditions :

Length of major axis 26 , foci $(\pm 5,0)$

D Watch Video Solution

16. In each of the following find the equation
fot the ellipse that satisfies the given conditions:

Length of minor axis 16 , foci $(0, \pm 6)$
17. In each of the following find the equation fot the ellipse that satisfies the given conditions :

Foci $(\pm 3,0), a=4$

D Watch Video Solution

18. In each of the following find the equation
fot the ellipse that satisfies the given conditions:
$b=3, c=4$, centre at the origin, foci on the x axis.

D Watch Video Solution

19. In each of the following find the equation for the ellipse that satisfies the given conditions :

Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.
20. In each of the following find the equation
fot the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through
the points $(4,3)$ and $(6,2)$.

- Watch Video Solution

Exercise 114

1. In each of the find the coordinates of the
foci and the vertices, the eccentricity and the
length of the latus rectum of the hyperbolas.

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

- Watch Video Solution

2. In each of the find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$
3. In each of the find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. $9 y^{2}-4 x^{2}=36$

- Watch Video Solution

4. In each of the find the coordinates of the
foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.
$16 x^{2}-9 y^{2}=576$
5. In each of the find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.
$5 y^{2}-9 x^{2}=36$

D Watch Video Solution

6. In each of the find the coordinates of the foci and the vertices, the eccentricity and the
length of the latus rectum of the hyperbolas.
$49 y^{2}-16 x^{2}=784$

- Watch Video Solution

7. In each of the find the equations of the hyperbola satisfying the given conditions.

Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

- Watch Video Solution

8. In each of the find the equations of the hyperbola satisfying the given conditions.

Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

D Watch Video Solution

9. In each of the find the equations of the
hyperbola satisfying the given conditions.

Vertices $(0, \pm 3)$, foci $(0, \pm 5)$

D Watch Video Solution

10. In each of the find the equations of the hyperbola satisfying the given conditions.

Foci $(\pm 5,0)$, the transverse axis is of length 8.

D Watch Video Solution

11. In each of the find the equations of the hyperbola satisfying the given conditions.

Foci $(0, \pm 13)$, the conjugate axis is of length 24.
12. In each of the find the equations of the hyperbola satisfying the given conditions.

Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8.

D Watch Video Solution

13. In each of the find the equations of the hyperbola satisfying the given conditions.

Foci $(\pm 4,0)$, the latus rectum is of length 12 .

Watch Video Solution

14. In each of the find the equations of the hyperbola satisfying the given conditions.

Vertices $(\pm 7,0), e=\frac{4}{3}$.

- Watch Video Solution

15. In each of the find the equations of the hyperbola satisfying the given conditions.

Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

Miscellaneous Exercise

1. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.

- Watch Video Solution

2. An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m
wide at the base. How wide is it 2 m from the vertex of the parabola?

D Watch Video Solution

3. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a
supporting wire attached to the roadway 18 m from the middle.

- Watch Video Solution

4. An arch is in the from of a semi-ellipse. It is

8 m wide and 2 m high at the centre. Find the
height of the arch at a point 1.5 m from one end.

D Watch Video Solution

5. A rod of length 12 cm moves with its ends always touching the coordinate axes.

Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.

- Watch Video Solution

6. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.
7. A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the posts traced by the man.

D Watch Video Solution

8. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$, where one vertex is at the
vertex of the parabola. Find the length of the side of the triangle.

- View Text Solution

