©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS (GUJRATI)

PRINCIPLE OF MATHEMATICAL INDUCTION

Example

1. For all $\begin{gathered}n \geq 1, \quad \text { prove }\end{gathered} \quad$ that,

- Watch Video Solution

2. Prove that $2^{n}>n$ for all positive integers n.
3. For all $n \geq 1$, prove that,

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

- Watch Video Solution

4. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

5. Prove that $(1+x)^{n} \geq(1+n x)$ for all natural number n where $x>-1$

- Watch Video Solution

6. Prove that $2.7^{n}+3.5^{n}-5$ is divisible by 24 , for all $n \in N$

- Watch Video Solution

7. Prove that, $1^{2}+2^{2}+\ldots .+n^{2}>\frac{n^{3}}{3}, n \in N$

- Watch Video Solution

8. Prove the rule of exponents $(a b)^{n}=a^{n} b^{n}$ by using principle of mathematical induction for every natural number.

- Watch Video Solution

Exercise 41

1. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+3+3^{2}+\ldots \ldots \ldots \ldots+3^{n-1}=\frac{3^{n}-1}{2}$

- Watch Video Solution

2. Prove the following by using the principle of mathematical induction for all $n \in N$
$1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots \ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots \ldots+\frac{1}{1+2+3+\ldots .+n}=\frac{2 n}{n+1}$

(Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N$
1.2.3. $+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
5. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.3+2.3^{2}+3.3^{3}+\ldots \ldots \ldots . .+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2+2.3+3.4+\ldots \ldots+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.3+3.5+5.7+\ldots \ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
8. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2+2.2^{2}+3.2^{3}+\ldots \ldots \ldots . .+n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots .+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

- Watch Video Solution

10. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots .+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$
11. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N$
$a+a r+a r^{2}+\ldots \ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}
$$

14. Prove the following by using the principle of mathematical induction for all $n \in N$
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=(n+1)$

- Watch Video Solution

15. Prove the following by using the principle of mathematical induction for all $n \in N$
$1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots \ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

17. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

- Watch Video Solution

18. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+2+3+\ldots \ldots+n<\frac{1}{8}(2 n+1)^{2}$

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N$
$n(n+1)(n+5)$ is a multiple of 3
20. Prove the following by using the principle of mathematical induction for all $n \in N$
$10^{2 n-1}+1$ is divisible by 11 .

- Watch Video Solution

21. Prove the following by using the principle of mathematical induction for all $n \in N$
$x^{2 n}-y^{2 n}$ is divisible by $\mathrm{x}+\mathrm{y}$.

- Watch Video Solution

22. Prove the following by using the principle of mathematical induction for all $n \in N$
$3^{2 n+2}-8 n-9$ is divisible by 8 .
23. Prove the following by using the principle of mathematical induction for all $n \in N$
$41^{n}-14^{n}$ is a multiple of 27.

- Watch Video Solution

24. Prove the following by using the principle of mathematical induction for all $n \in N$
$(2 n+7)<(n+3)^{2}$

- Watch Video Solution

