©゙" doubtnut

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

THERMAL PROPERTIES OF MATTER

Temperature And Heat

1. In order that the heat flows from one part of a
solid to another part, what is required a)
uniform density b) temperature gradient c) density gradient d) uniform temperature
A. uniform density
B. temperature gradient
C. density gradient

D. uniform temperature

Answer: B
2. How much work can be done by 100 calories of heat?
A. 100 J
B. 420 J
C. 42 J
D. 4200 J

Answer: B

- Watch Video Solution

Measurement Of Temperature

1. At what temperature do the Celsius and Fahrenheit readings have the same numerical value ? a) 273 b) -273 c) -40 d) 40
A. 273
B. -273
C. -40
D. 40
2. When a thermometer is taken from the melting ice to warm liquid, the mercury level
rises to $\frac{2^{t h}}{5}$ of the distance between the lower and the upper fixed points. The temperature of liquid in K is a) 217.15 b) 313.15 c) 220 d) 330
A. 217.15
B. 313.15
C. 220
D. 330

Answer: B

D Watch Video Solution

Thermal Expansion

1. The volume of a block of a metal changes by
0.12% when it is heated through $20^{\circ} \mathrm{C}$. The coefficient of linear expansion of the metal is
A. $4 \times 10^{-5}{ }^{\circ} C^{-1}$
B. $2 \times 10^{-5}{ }^{\circ} C^{-1}$
C. $0.5 \times 10^{-5 \circ} C^{-1}$

$$
\text { D. } 4 \times 10^{-4 \circ} C^{-1}
$$

Answer: B

D Watch Video Solution

2. There is a hole in the middle of a copper plate
. When heating the plate , diameter of hole
would a) always increase b) always decrease c)
remains the same d) none of these
A. always increase
B. always decrease

C. remains the same

D. none of these

Answer: A

D Watch Video Solution

3. Length of wire at room temperature is 4.55 m , when the temperature increases upto $100^{\circ} \mathrm{C}$ then its length becomes 4.57 m . The coefficient of linear expansion (α) of the given wire is
A. $5.021 \times 10^{-5} K^{-1}$
B. $6.021 \times 10^{-5} K^{-1}$
C. $7.021 \times 10^{-5} K^{-1}$
D. $8.021 \times 10^{-5} K^{-1}$

Answer: D

(D) Watch Video Solution

4. To increase the length of brass rod by 2% its
$\left(\alpha=0.00002^{\circ} C^{-1}\right)$ a) 800 degree C b) 900 degree C c) 1000 degree C d) 1100 degree C
A. $800^{\circ} \mathrm{C}$
B. $900^{\circ} \mathrm{C}$
C. $1000^{\circ} C$
D. $1100^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution
5. At $50^{\circ} \mathrm{C}$, a brass rod has a length 50 cm and
a diameter 2 mm . It is joined to a steel rod of the same length and diameter at the same temperature. The change in the length of the composite rod when it is heated to $250^{\circ} \mathrm{C}$ is
(Coefficient of linear expansion of brass $=$
$2.0 \times 10^{-5}{ }^{\circ} C^{-1} \quad, \quad$ coefficient of linear
expansion of steel $=1.2 \times 10^{-5 \circ} C^{-1}$)
A. 0.28 cm
B. 0.30 cm
C. 0.32 cm

D. 0.34 cm

Answer: C

- Watch Video Solution

6. The moment of inertia of a rod about its perpendicular bisector is I . When the temperature of the rod is increased by ΔT, the increase in the moment of inertia of the rod about the same axis is (Here, α is the coefficient of linear expansion of the rod)

A. $\alpha I \Delta T$

B. $2 \alpha I \Delta T$
C. $\frac{\alpha I \Delta T}{2}$
D. $\frac{2 I \Delta T}{\alpha}$

Answer: B

(D) Watch Video Solution

7. A brass wire 1.8 m long at $27^{\circ} \mathrm{C}$ is held taut
with negligible tension between two rigid supports. Diameter of the wire is 2 mm , its
$\alpha_{\text {Brass }}=2 \times 10^{-5} .{ }^{\circ} C^{-1} \quad$ and its young's modulus, $Y_{\mathrm{Brass}}=9 \times 10^{10} \mathrm{Nm}^{-2}$. If the wire is
cooled to a temperature $-39^{\circ} \mathrm{C}$, tension developed in the wire is
A. $2.7 \times 10^{2} N$
B. $3.7 \times 10^{2} N$
C. $4.7 \times 10^{2} N$
D. $5.7 \times 10^{2} N$

Answer: B
8. The coeefficient of volume expansion of liquid is γ. The fractional change in its density for ΔT rise in tempeature is

> A. $\gamma \Delta T$
> B. $\frac{\Delta T}{\gamma}$
> C. $1+\gamma \Delta t$
> D. $1-\gamma \Delta T$

Answer: A

9. A rectangular block is heated from $0^{\circ} C$ to

$100^{\circ} C$. The percentage increase in its length is
0.2%. The percentage increase in its volume is
A. 0.6%
B. 0.10%
C. 0.2%
D. 0.4%

Answer: A
10. Which of the following graphs correctly shows variation of coefficient of volume expansion of copper as a function of temperature ?

Answer: C

D Watch Video Solution

11. If α, β and γ coefficient of linear, superficial and volume expansion respectively, tehn
A. $\frac{\beta}{\alpha}=\frac{1}{2}$
B. $\frac{\beta}{\gamma}=\frac{2}{3}$
C. $\frac{\gamma}{\alpha}=\frac{3}{2}$
D. $\frac{\beta}{\alpha}=\frac{\gamma}{\beta}$

Answer: B

D Watch Video Solution

12. Two spheres A and B are made of the same material and have the same radius. Sphere A is hollow alnd sphere B is solid. Both the spheres are heated to the same temperature. Which of the following is correct ? a) A expands more than B. b) A expands less than B. c) Both the spheres expand equally.d) Data is insufficient
A. A expands more than B.

B. A expands less than B.

C. Both the spheres expand equally.

D. Data is insufficient

Answer: C

D Watch Video Solution

13. The volume of a metal sphere increases by
0.24% when its temperature is raised by $40^{\circ} \mathrm{C}$
. The coefficient of linear expansion of the metal
is
${ }^{\circ} C$

$$
\text { A. } 2 \times 10^{5} \cdot{ }^{\circ} C^{-1}
$$

$$
\text { B. } 6 \times 10^{-5} \cdot{ }^{\circ} C^{-1}
$$

C. $18 \times 10^{-5} \cdot{ }^{\circ} C^{-1}$
D. $1.2 \times 10^{-5} .{ }^{\circ} C^{-1}$

Answer: A

D Watch Video Solution

14. Calculate the stress developed inside a tooth
cavity filled with copper when hot tea at temperature of $57^{\circ} \mathrm{C}$ is drunk. You can take
body (tooth) temperature to be $37^{\circ} \mathrm{C}$ and $\alpha_{C u}=1.7 \times 10^{-5} /{ }^{\circ} C$ bulk modulus for copper $B_{C u}=140 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.
A. $1.43 \times 10^{8} \mathrm{Nm}^{-2}$
B. $4.13 \times 10^{8} \mathrm{Nm}^{-2}$
C. $2.12 \times 10^{4} \mathrm{Nm}^{-2}$
D. $3.12 \times 10^{4} \mathrm{Nm}^{-2}$

Answer: A

D Watch Video Solution

15. Which of the following graph shows the variationi of density of water increase in temperature ?

> A.
> B. Temperature $\left({ }^{\circ} \mathrm{C}\right)$
> C.

Answer: A

D Watch Video Solution

Specific Heat

1. Which one of the following substances has
highest specific heat capacity at room
temperature and atmospheric pressure ? a)

Water b) Ice c) Aluminum d) Mercury

A. Water
B. Ice
C. Aluminium
D. Mercury

Answer: A

- Watch Video Solution

2. If specific heat of a substance is infinite, it means a) heat is given out b) heat is taken in c) no change in temperature whether heat is taken in or given out d) all of these
A. heat is given out
B. heat is taken in
C. no change in temperature whether heat is
taken in or given out

D. all of these

3. Water is used as a collent because a) it has lower density b) it has low specific heat. c) it has high specific heat. d) It is early available.
A. it has lower density
B. it has low specific heat.
C. it has high specific heat.
D. It is earily available.

- Watch Video Solution

4. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8 kg . Find the rise in temperature of the block in 2.5 minutes, assuming 50% power is used up in heating the machine itself or lost to the surropundings.
(Specific
heat
of
aluminium
$\left.=0.91 \mathrm{Jg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}\right)$
A. $100 .^{\circ} \mathrm{C}$

B. $103 .^{\circ} C$

C. $150 .^{\circ} C$

D. $155 .^{\circ} C$

Answer: B

D Watch Video Solution

5. A person weighing 50 kg takes in 1500 kcal dict per day. If this energy were to be used in heating the body of person without any losses,
then the rise in his temperature is (specific heat of human body $=0.83 \mathrm{calg}^{-1} \mathrm{C}^{-1}$)
A. $30 .{ }^{\circ} C$
B. $48 .^{\circ} C$
C. $40.16 .{ }^{\circ} \mathrm{C}$
D. $36.14 .^{\circ} C$

Answer: D

D Watch Video Solution

1. 10 g of ice of $0^{\circ} \mathrm{C}$ is mixed with 100 g of water at $50^{\circ} \mathrm{C}$ in a calorimeter. The final temperature of the mixture is [Specific heat of water $=1 \mathrm{calg}{ }^{-1} .{ }^{\circ} C^{-1}$, latent of fusion of ice $\left.=80 \mathrm{calg}^{-1}\right]$
A. $31.2^{\circ} C$
B. $32.8^{\circ} \mathrm{C}$
C. $36.7^{\circ} \mathrm{C}$
D. $38.2^{\circ} \mathrm{C}$
2. When 1.5 kg of ice at $0^{\circ} \mathrm{C}$ mixed with 2 kg of water at $70^{\circ} \mathrm{C}$ in a container, the resulting temperature is $5^{\circ} \mathrm{C}$ the heat of fusion of ice is ($\left.s_{\text {water }}=4186 j \mathrm{~kg}^{-1} K^{-1}\right)$
A. $1.42 \times 10^{5} \mathrm{jkg}^{-1}$
B. $2.42 \times 10^{5} j \mathrm{~kg}^{-1}$
C. $3.42 \times 10^{5} \mathrm{jkg}^{-1}$
D. $4.42 \times 10^{5} \mathrm{jkg}^{-1}$

Answer: C

D Watch Video Solution

3. The temperature of equal masses of three different liquids A, B and C are
$12^{\circ} C, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The
temperature when A and B are mixed is $16^{\circ} \mathrm{C}$
and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What
should be the temperature when A and C are

mixed?

A. $18.2{ }^{\circ}{ }^{\circ} C$

B. $22 .{ }^{\circ} C$

C. $20.3 .{ }^{\circ} C$
D. $24.2{ }^{\circ}{ }^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

4. An ice cube of mass 0.1 kg at $0^{\circ} \mathrm{C}$ is placed in
an isolated container which is at $227^{\circ} C$. The
specific heat s of the container varies with temperature T according to the empirical

$$
A=100 \mathrm{cal} / \mathrm{kg} . K \text { and } B=2 \times 10^{-2} \mathrm{cal} / \mathrm{kg} . \mathrm{K}^{2}
$$

. If the final temperature of the container is
$27^{\circ} \mathrm{C}$, determine the mass of the container.
(Latent heat of fusion for water $=8 \times 10^{4} \mathrm{cal} / \mathrm{kg}$
, specific heat of water $=10^{3} \mathrm{cal} / \mathrm{kg}$. K).
A. 0.495 kg
B. 0.595 kg
C. 0.695 kg
D. 0.795 kg

- Watch Video Solution

Change Of State

1. The change from solid sate to vapour state
without passing through the liquid state is
called.
A. Fusion
B. Regulation
C. vaporation

D. sublimation

Answer: D

D Watch Video Solution

2. Match the following.

Column I		Column II	
(A)	Conversion of a liquid into solid is	(p)	Regelation
(B)	Conversion of a liquid into vapour is	(q)	Sublimation
(C)	Conversion of solid into vapour directly	(r)	Fusion
(D)	Melting of ice caused by pressure is	(s)	Vaporisation

A. $A-r, B-q, C-p, D-s$
B. $A-r, B-s, C-q, D-p$

$$
\begin{aligned}
& \text { C. } A-q, B-p, C-s, D-r \\
& \text { D. } A-p, B-q, C-r, D-s
\end{aligned}
$$

Answer: B

D Watch Video Solution

3. Which of the following statement is correct ?
a) The triple point of water is 253.16 K. b) Burns
from steam are less severe than those from boiling water. c) Ethyl alcohol expands less than mercury for the same rise in temperature. d)

When fully inflated balloon is immersed in cold water, it will contract.
A. The triple point of water is $253.16 K$.
B. Burns from steam are less severe than
those from boiling water.
C. Ethyl alcohol expands less than mercury
for the same rise in temperature.
D. When fully inflated ballon is immersed in
cold water, it will contract.
4. In the phase diagram showns, the point Q corresponds to the triple point of water. The region I, II and III respectively correspond to phases

A. liquid, solid, vapour
B. solid, liquid, vapour
C. liquid, vapour, solid
D. solid, vapour, liquid

Answer: A

(Watch Video Solution

5. Refer to the plot of temperature versus time
showing the changes in the state of ice on heating (not to scale).

Which of the following is correct ?
A. $A B$ represents ice and water are not in the
thermal equilibrium
B. At B water starts boiling.
C. At C all the water gets converted into
steam.

D. CD represents water and steam in

equilibrium at boiling point.

Answer: D

D Watch Video Solution

6. A block of ice at $-10^{\circ} C$ is slowly heated and converted to steam at $100^{\circ} C$. Which of the following curves represents the phenomenon qualitatively?
B.

C. Heat supplied

Answer: A

7. Two absolute scales A and B have triple points of water defined to be $200 A$ and $350 B$. What is the relation between T_{A} and T_{B} ?

$$
\begin{aligned}
& \text { A. } T_{A}=4 / 7 T_{B} \\
& \text { В. } T_{B}=4 / 7 T_{A} \\
& \text { С. } T_{A}=2 / 7 T_{B} \\
& \text { D. } T_{B}=2 / 7 T_{A}
\end{aligned}
$$

Answer: A
8. The triple point of carbon dioxide is 216.55 K
the corresponding temperature on the celsius and Fahrenheit scale respectively are

$$
\begin{aligned}
& \text { A. }-56.45^{\circ} C,-69.61^{\circ} \mathrm{F} \\
& \text { B. }-56.45^{\circ} \mathrm{C}, 69.61^{\circ} \mathrm{F} \\
& \text { C. } 54.45^{\circ} \mathrm{C}, 69.61^{\circ} \mathrm{F} \\
& \text { D. }-5445^{\circ},-6961^{\circ} \mathrm{F}
\end{aligned}
$$

Answer: D

9. The letent heat of vaporisation of a substance is always
A. greater than its latents heat of fusions
B. greater than its latent heat of sublimation
C. equal to its latent heat of sublimation
D. less than its latent heat of fusion

Answer: A

- Watch Video Solution

10. The sprinkling of water slightly reduces the temperature of a closed room because
A. temperature of water of less than that of
the room
B. specific heat of water is high
C. water has large latent heat of
vaportisation
D. water is a bad conductor of heat.

Answer: C

11. If 10 g of ice is added to 40 g of water at
$15^{\circ} \mathrm{C}$, then the temperature of the mixture is
(specific heat of water $=4.2 \times 10^{3} \mathrm{jkg}^{-1} \mathrm{~K}^{-1}$,
Latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{jkg}^{-1}$
)
A. $15^{\circ} \mathrm{C}$
B. $12^{\circ} \mathrm{C}$
C. $10^{2} C$
D. $0^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

12. If a ball of 80 kg mass hits an ice cube and temperature of ball is $100 .{ }^{\circ} C$, then how much ice converted into water ? (Specific heat of ball is $0.2 \mathrm{calg}{ }^{-1}$, Latent heat of ice $=80 \mathrm{calg}^{-1}$)
A. a. 20 g
B. b. $200 g$
C. c. $2 \times 10^{3} \mathrm{~kg}$

D. d. $2 \times 10^{4} g$

Answer: D

D Watch Video Solution

13. Rays from the sun ar focuseed by a lens of
diameter 5 cm on to a block of ice and 10 g of
ice is melted in 20 min . Therefore the heat from
the sun reaching the earth per min per square centrimetre is
(Latent heat of ice $L=80 \mathrm{calg}^{-1}$)
A. 2.04 cal

B. 0.51 cal

C. 4.08 cal
D. 3.02 cal

Answer: A

D Watch Video Solution

Heat Transper

1. For transmission of heat from one place to the other medium is required in
A. conduction
B. convection
C. radiation
D. both (a) and (b)

Answer: D

-

2. One end of a 0.25 m long metal bar is in steam and the other is in contact with ice. If 12 g of ice melts per minute, what is the thermal conductivity of the metal? Given cross-section of the bar $=5 \times 10^{-4} m^{2}$ and latent heat of ice is $80 \mathrm{calg}^{-1}$

$$
\begin{aligned}
& \text { A. } 20 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1} \\
& \text { B. } 10 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1} \\
& \text { C. } 40 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1} \\
& \text { D. } 80 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1}
\end{aligned}
$$

Answer: D

D Watch Video Solution

3. A pan filled with hot food cools from $94^{\circ} C$ to
$86^{\circ} C$ in 2 minutes when the room temperature
is at $20^{\circ} \mathrm{C}$. How long will it take to cool from
$71^{\circ} C$ to $69^{\circ} C$? Here cooling takes place according to Newton's law of cooling.
A. 12 s
B. 22 s
C. 32 s

D. 40 s

Answer: D

D Watch Video Solution

4. Two bars of same length and same crosssectional area but of different thermal conductivites K_{1} and K_{2} are joined end to end as shown in the figure. One end of the compound bar it is at temperature T_{1} and the
opposite end at temperature T_{2} (where $T_{1}>T_{2}$
). The temperature of the junction is

$$
\begin{aligned}
& \text { A. } \frac{K_{1} T_{1}+K_{2} T_{2}}{K_{1}+K_{2}} \\
& \text { B. } \frac{K_{1} T_{2}+K_{2} T_{1}}{K_{1}+K_{2}} \\
& \text { C. } \frac{K_{1}\left(T_{1}+T_{2}\right)}{K_{1}+K_{2}} \\
& \text { D. } K_{2} \frac{T_{1}+T_{2}}{K_{1}}
\end{aligned}
$$

Answer: A

5. In the question number of 45 , the equivalent

 thermal conductivity of the compound bar is$$
\begin{aligned}
& \text { A. } \frac{K_{1} K_{2}}{K_{1}+K_{2}} \\
& \text { B. } \frac{2 K_{1} K_{2}}{K_{1}+K_{2}} \\
& \text { c. } \frac{K_{1}}{K_{1}+K_{2}} \\
& \text { D. } \frac{K_{2}}{K_{1}+K_{2}}
\end{aligned}
$$

Answer: B
6. Consider a compound slab consisting of two different material having equal thickness and thermal conductivities K and $2 K$ respectively.

The equivalent thermal conductivity of the slab is
A. $\frac{2}{3} K$
B. $\sqrt{2} K$
C. $3 K$
D. $\frac{4}{3} K$

- Watch Video Solution

7. Two rods of equal length and diameter have thermal conductivite 3 and 4 units respectively.

If they are joined in series, the thermal conductivity of the combination in the given units would be
A. 3.43
B. 4.43
C. 5.43
D. 2.43

Answer: A

D Watch Video Solution

8. Three metal rods of the same material and identical in all respect are joined as shown in the figure. The temperatures at the ends are maintained as indicated. Assuming no loss of heat from the curved surface of the rods, the
temperature at the junction X would be

A. $45^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C}$
D. $20^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

9. Three very large plates of same area are kept parrallel and close to each other. They are considered as ideal black surfaces and have high thermal conductivity. The first and third plates are maintained at temperatures 2 T and 3 T respectively. The temperature of the middle (i.e.,
second) plate under steady state condition is
A. $\left(\frac{65}{2}\right)^{1 / 4} T$
B. $\left(\frac{97}{4}\right)^{1 / 4} T$

$$
\begin{aligned}
& \text { C. }\left(\frac{97}{2}\right)^{1 / 4} T \\
& \text { D. }(97)^{1 / 4} T
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. A cubical ice box of side 50 cm has a thickness of 5.0 cm . if 5 kg of ice is put in the box, estimate the amount of ice remaining after

4 hours. The outside temperature is $40^{\circ} \mathrm{C}$ and coefficient of thermal conductivity of the
material of the box $=0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$.

Heat of fusion of ice $=335 \mathrm{Jg}^{-1}$.
A. 3.7 kg
B. 3.9 kg
C. 4.7 kg
D. 4.9 kg

Answer: C

- Watch Video Solution

11. A wall has two layers A and B, each made of different material. Both the layers have the same thickness. The thermal conductivity of the material of A is twice that of B. Under thermal equilibrium, the temperature difference across the wall is $36^{\circ} C$. The temperature difference across the layer A is
A. $12 .{ }^{\circ} C$
B. $18 .{ }^{\circ} C$
C. $6 .{ }^{\circ} C$
D. $24 .{ }^{\circ} C$

Answer: A

D Watch Video Solution

12. Mud houses are cooler in summer and warmer in winter because
A. mud is a good condutor of heat
B. mud is a superconductor of heat
C. mud is a bad conductor of heat
D. none of these

Answer: C

D Watch Video Solution

13. Which of the following is the $v_{m}=T$ graph for a perfectly black body ($v_{m}=$ maximum frequency of radiation)

A. A
B. B

C. C

D. D

Answer: C

D Watch Video Solution

14. The equatorial and polar regions of the earth receive unequal solar heat. The convection current arising due to this is called
A. land breeze

B. sea breeze

C. trade wind

D. tornado

Answer: C

D Watch Video Solution

15. In which of the following process, convection does not take place primarily
A. Sea and land breeze

B. Trade wind

C. Boiling of water

D. Warming of glass of bulb due to filament

Answer: D

D Watch Video Solution

16. Wien's displacment law expresses relation between
A. colour of light and temperature
B. wavelength and temperature

C. radiation energy and wavelength

D. wavelength corresponding to maximum

energy and temperature

Answer: D

- Watch Video Solution

17. If λ_{m} denotes
A. $\lambda_{m} \propto T$
B. $\lambda_{m} \propto T^{-1}$
C. $\lambda_{m} \propto T$
D. λ_{m} is independent on T

Answer: B

D Watch Video Solution

18. A black body has maximum wavelength λ_{m} at temperature $2000 K$. Its corresponding wavelength at temperature 3000 will be

$$
\text { A. } \frac{3}{2} \lambda_{m}
$$

B. $\frac{2}{3} \lambda_{m}$
C. $\frac{16}{81} \lambda_{m}$
D. $\frac{81}{16} \lambda_{m}$

Answer: B

D Watch Video Solution

19. The thermal radiation from a hot body travels with a velocity of
A. $330 m s^{-1}$

$$
\text { B. } 2 \times 10^{8} \mathrm{~ms}^{-1}
$$

C. $1200 \mathrm{~ms}^{-1}$

D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: D

D Watch Video Solution

20. Experimental investigations show that the intensity of solar radiation is maximum for a wavelength 480 nm in the visible ragion.

Estimate the surface temperature of sun. (Given Wien's constant $b=2.88 \times 10^{-3} m K$).
A. $4000 K$
B. 6000 K
C. $8000 K$
D. $10^{6} \mathrm{~K}$

Answer: B

D Watch Video Solution
21. The wavelength of maximum intensity of radiation emitted by a star is 289.8 nm . The radiation intensity for the star is : (Stefan's constant $5.67 \times 10^{-8} W^{-2} K^{-4}, \quad$ constant $b=2898 \mu m K)-$
A. $5.67 \times 10^{8} W^{-2}$
B. $5.67 \times 10^{12} W^{-2}$
C. $10.67 \times 10^{7} W^{-2}$
D. $10.67 \times 10^{14} W^{-2}$

Answer: A

- Watch Video Solution

22. The temperature of a radiation body increases by 30%. Then the increase in the amount of radiation is
A. 185%
B. 285%
C. 325%
D. 130%

Answer: A
23. If the temperature of hot black body is raised
by 5%, rate of heat energy radiated would be increased by how much percentage ?
A. 12%
B. 22%
C. 32%
D. 42%
24. Two spheres of same material have radius 1 m and 4 m and temperature 4000 K and 2000 K respectively. The energy radiated per second by the first sphere is
A. greater than that by the second
B. less than that by the second
C. equal in both cases
D. the information is incomplete to draw any

Answer: C

D Watch Video Solution

25. If the temperature of the Sun were to increase from T to $2 T$ and its radius from R to $2 R$. The rat io of power, radiated by it would become
A. 64 times
B. 16 times
C. 32 times

D. 4 times

Answer: A

D Watch Video Solution

26. The rate of cooling at 600 K . If surrounding temperature is 300 K is H. The rate of cooling at $900 K$ is
A. $\frac{16}{3} H$
B. $2 H$
C. $3 H$

D. $\frac{2}{3} H$

Answer: A

D Watch Video Solution

27. Assertion: According to Newton's law of cooling, the rate of loss of heat, $-d Q / d t$ of the body is directly proportional to the difference of temperature.

Reason :This law holds for all type of temperature differences.
A. law of thermometry
B. Newton's law of cooling
C. law of calorimetry
D. zeroth law

Answer: B

D Watch Video Solution

28. A glass full of hot milk is poured in the table.

It begins to cool gradually.
Which of the following is incorrect?
A. The rate of cooling is constant till milk attains the temperature of the
surroundings
B. The temperature of milk falls off exponentially will time.
C. While cooling, there is a flow of heat from
milk to the sourroundings as well as from
surroundings to the milk but the net flow
of heat is from milk to the surroundings
and that is why it cools.
D. All three phenomenon, conduction, convection and radiation are responsible for the loss of heat from milk to the surroundings.

Answer: A

D Watch Video Solution

29. A hot liquid is kept in a bog room. Accoding to Newton's law of cooling rate of cooling liquid (represented as y) is plotted against its
temperature T. Which of the following curves

may represent the plot?

A. $\xrightarrow[\text { Time (minute) }]{\Delta T\left({ }^{\circ} \mathrm{C}\right) \xlongequal{4}}$
B.

C.

D.

Answer: C

Higher Order

1. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K and 2 K and thickness x and 4 x respectively.

Temperatures on the opposite faces of composite slab are T_{1} and T_{2} where $T_{2}>T_{1}$, as shown in fig. what is the rate of flow of heat
through the slab in a steady state?

A. 1
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: D

2. A wall of dimensions 2.00 m by 3.50 m has a single-pane window of dimensions $0.75 m$ by 1.20 m . If the inside temperature is $20^{\circ} \mathrm{C}$ and the outside temperature is $-10^{\circ} C$, effective thermal resistance of the opaque wall and window are $2.10 K W^{-1}$ and $0.21 K W^{-1}$ respectively. The heat flow through the entire wall will be .
A. $215 W$
B. 205 W

C. $175 W$

D. 110 W

Answer: A

- Watch Video Solution

3. The figure show a cross-section of a double glass unit of a window on a vertical wall. A graph
wall. A graph of the temperature at different points within the unit is show next to it. The temperature difference across the unit is $13 K$. It
has a crossp-sectional area of $1.3 m^{2}$ and the rate of heat flow through it is 65 W . Then the correct statement is (Glass has a thermal conductivity of $1 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)

A. The unit is in steady state and in thermal equilibrium
B. The unit is in steady state but not in thermal equalibrium.
C. The unit is not in steady state but is in
thermal
D. The unit neither in steady state nor in
thermal equilibrium

Answer: B

-
 Watch Video Solution

4. In question number 3, the thermal conductivity (in $W m^{-1} K^{-1}$) if air is

> A. $\frac{1}{10}$
> B. $\frac{1}{12}$
> C. $\frac{1}{14}$
> D. $\frac{9}{130}$

Answer: C

D View Text Solution

5. A lake surface is exposed to an atmosphere
where the temperature is $<0^{\circ} \mathrm{C}$. If the thickness of the ice layer formed on the surface
grows form 2 cm to 4 cm in 1 hour. The atmospheric temperature, T_{a} will be- (Thermal conductivity of ice
$K=4 \times 10^{-3} \mathrm{cal} / \mathrm{cm} / \mathrm{s} / \cdot^{\circ} \mathrm{C}$, density of ice
$=0.9 \mathrm{gm} /$ ice. Latent heat of fustion of ice
$=80 \mathrm{cal} / \mathrm{m}$. Neglect the change of density
during the state change. Assume that the water below the ice has 0° temperature every where)

$$
\text { A. }-20 .^{\circ} C
$$

B. $0 .{ }^{\circ} C$
C. $-30{ }^{\circ} C$
D. $15 .{ }^{\circ} C$

Answer: C

D Watch Video Solution

6. Two chunks of metal with heat capacities C_{1} and C_{2}, are interconnected by a rod length l and cross-sectional area S and fairly low heat conductivity K. The whole system is thermally insulated from the environment. At a moment $t=0$ the temperature difference betwene the two chunks of metal equals $(\Delta T)_{0}$. Assuming the heat capacity of the rod to be negligible,
find the temperature difference between the chucks as a function of time.

$$
\begin{aligned}
& \text { A. } T_{0} \exp \left(\frac{-K A\left(C_{1}+C_{2}\right) t}{C_{1} C_{2}}\right) \\
& \text { B. } T_{0} \exp \left(\frac{-K A\left(C_{1}+C_{2}\right)}{C_{1} C_{2}}\right) \\
& \text { C. } T_{0} \exp \left(\frac{K A\left(C_{1}+C_{2}\right) t}{C_{1} C_{2}}\right) \\
& \text { D. } T_{0} \exp \left(\frac{K A\left(C_{1}+C_{2}\right) t^{2}}{C_{1} C_{2}}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

7. A double pan window used for insulating a room thermally from outside consists of two glass sheets each of area $1 \mathrm{~m}^{2}$ and thickness
0.01 m separated by 0.05 m thick stagnant air space. In the steady state, the room-glass interface and the glass-outdoor interface are at constant temperatures of $27^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. The thermal conductivity of glass is $0.8 W m^{-1} K^{-1}$ and of air $0.08 W m^{-1} K^{-1}$. Answer the following questions.
(a) Calculate the temperature of the inner glassair interface.
(b) Calculate the temperature of the outer glassair interface.
(c) Calculate the rate of flow of heat through the window pane.
A. 41.5 W
B. 31.5 W
C. 21.5 W
D. 11.5 W

Answer: A
8. In question number 7 , the temperature of other interfaces (in.${ }^{\circ} C$) is
A. $26.5,0.5$
B. 27.5, 1
C. $28.5,2$
D. $29.5,3$

Answer: A

D View Text Solution

1. A bimetallic strip made of aluminum and steel
$\left(\alpha_{A l}>\alpha_{\text {steel }}\right)$ on heating the strip will a) remain straight b) get twisted c) will bend with aluminum on concave side d) will bend with steel on concave side.
A. remain straight
B. get twisted
C. will bend with aluminium on concave side

D. will bend with steel on concave side.

Answer: D

D Watch Video Solution

2. A uniform metallic rod rotates about its perpendicular bisector with constant angualr speed. If it is heated uniformly to raise its temperature slightly, then a) its speed of rotation increases b) its speed of rotation decreases c) its speed of rotation remains same
d) its speed increases because its moment of inertia increases
A. its speed of rotation increases
B. its speed of rotation decreases
C. its speed of rotation remains same
D. its speed increases because its moment of inertia increases

Answer: B

D Watch Video Solution

3. The graph between two temperature scales A
and B is shown in Fig. Between upper fixed
point and lower fixed point there are 150 equal
divisions on scales A and 100 on scale B. The relation between the temperature in two scales is given by_

A. $\frac{T_{A}-180}{100}=\frac{T_{B}}{150}$
B. $\frac{T_{A}-30}{150}=\frac{T_{B}}{100}$
c. $\frac{T_{B}-180}{150}=\frac{T_{A}}{100}$

$$
\text { D. } \frac{T_{B}-40}{100}=\frac{T_{A}}{180}
$$

Answer: B

D Watch Video Solution

4. An aluminium sphere is dipped into water.

Which of the following is true ?
A. Buoyancy will be less in water at $0^{\circ} C$ than
that in water at $4^{\circ} C$.
B. Buoyancy will be more in water at $0^{\circ} C$
than that in water at $4^{\circ} C$.
C. Buoyancy in water at $0^{\circ} \mathrm{C}$ will be same as
that in water at $4^{\circ} C$.
D. Buoyancy may be more or less in water at
$4^{\circ} C$ depending on the radius of the sphere.

Answer: A

D Watch Video Solution
5. As the temperature is increased, the period of a pendulum a) Increases as its effective length increases even through its centre of mass still remains at the centre of the bob. b) decreases
as its effective length increases even though its
centre of mass still remains at the centre of the
bob. c) Increases as its effective length increases
due to shifting of centre of mass below the
centre of the bob. d) decreases as its effective
length remains same but the centre of mass
shifts above the centre of the bob.
A. Increases as its effective length increases
even through its centre of mass still
remains at the centre of the bob.
B. decreases as its effective length increases
even though its centre of mass still remains at the centre of thed bob.
C. Increases as its effective length increases
due to shifting of centre of mass below
the centre of the bob.
D. decreases as its effective length remains same but the centre of mass shifts above the centre of the bob.

Answer: A

D Watch Video Solution

6. Heat is associated with a) kinetic energy of random motion of molecules b) kinetic energy of orderly motion of molecules c) total kinetic energy of random and orderly motion of
molecules d) kinetic energy of random motion in
some cases and kinetic energy orderly motion in other.
A. kinetic energy of random motion of molecules
B. kinetic energy of orderly motion of molecules
C. total kinetic energy of random and orderly
motion of molecules
D. kinetic energy of random motion in some
cases and kinetic energy orderly motion in

other.

Answer: A

D Watch Video Solution

7. The radius of metal sphere at room temperature T is R and the coefficient of linear expansion of the metal is α. The sphere is heated a little by a temperature T, so that new temperature is $T+\Delta T$. The increase in volume of sphere is approximately

A. $2 \pi R \alpha \Delta T$

B. $\pi R^{2} \alpha \Delta T$
C. $4 \pi R^{3} \alpha \Delta T / 3$
D. $4 \pi R^{3} \alpha \Delta T$

Answer: D

(D) Watch Video Solution

8. A sphere, a cube and a thin circular plate, all of same material and same mass are initially heated to same high temperature. a) Plate will
cool fastest and cube the slowest. b) Sphere will cool fastest and cube the slowest. c) Plate will cool fastest and sphere the slowest. d) Cube will cool fastest and plate the slowest.
A. Plate will cool fastet and cube the slowest.
B. Sphere will cool fastest and cube the slowest.
C. Plate will cool fastest and sphere the slowest.
D. Cube will cool fastest and plate the slowest.

Answer: C

D Watch Video Solution

Asseration And Reason

1. Assertion : A change in the temperature of a body cause change in dimentions. Reason : The dimentions of a body decrease due to the increase in its temperature.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: C

2. The Kelvin scale temperature is 0 K . What is the corresponding Celsius scale temperature?
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

3. Assertion : The density of water remains
constant as it is cooled from room temperature
untill its temperature reached $4^{\circ} C$.
Reason : Below $4^{\circ} C$, the density increases.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: D

Watch Video Solution
4. Water is used in car radiators as coolant because
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion : The specific heat capacity of a given solid can be determined by using the principle of calorimetry

Reason : Heat gained is equal to the heat lost.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion : In change of state from solid to
liquid the temperature decreases untill the
entire amount of the solid subtance melts.

Reason : The phenomenon of refreezing is called melting
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

7. Assertion : Cooking food is difficult on hills.

Reason : The boiling point decreases with increase in pressure a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion and reason are true and reason is not the correct explanation of assertion. c) If assertion
is true and reason is false. d) If both assertion and reason are false.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

8. Assertion : In the human body the heart acts
as the pump that circulates blood through differences parts of the body, transferring heat by force convection.

Reason : In forced convection, material is force
to move by a pump or by some other physics means.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true and

reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: a
9. Assertion : All bodies emit radiant energy
whether they are solid, liquid or gases.
Reason : Black bodies absorb and emit radiant
energy better than bodies of lighter colours.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: b

D Watch Video Solution

10. Assertion: According to Newton's law of cooling, the rate of loss of heat, $-d Q / d t$ of the body is directly proportional to the difference of temperature.

Reason :This law holds for all type of
temperature differences. a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion and reason are true and reason is not the correct explanation of assertion. c) If assertion is true and reason is false. d) If both assertion and reason are false.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

Specific Heat Capacity

1. Which one of the following substances has
highest specific heat capacity at room
temperature and atmospheric pressure ? a)
Water b) Ice c) Aluminum d) Mercury
A. Water
B. Ice
C. Aluminium
D. Mercury

Answer: A
2. If specific heat of a substance is infinite, it means a) heat is given out b) heat is taken in c) no change in temperature whether heat is taken in or given out d) all of these
A. heat is given out
B. heat is taken in
C. no change in temperature whether heat is
taken in or given out
D. all of these

Answer: C

D Watch Video Solution

3. Water is used as a collent because a) it has
lower density b) it has low specific heat. c) it has
high specific heat. d) It is early available.
A. it has lower density
B. it has low specific heat.
C. it has high specific heat.
D. It is earily available.

Answer: C

D Watch Video Solution

4. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8 kg . Find the rise in temperature of the block in 2.5 minutes, assuming 50% power is used up in heating the machine itself or lost to the surropundings.
(Specific
heat
of
aluminium
$\left.=0.91 \mathrm{Jg}^{-1} .^{\circ} C^{-1}\right)$
A. $100 .{ }^{\circ} C$
B. $103 .{ }^{\circ} C$
C. $150 .^{\circ} C$
D. $155 .^{\circ} C$

Answer: B

D Watch Video Solution

5. A person weighing 50 kg takes in 1500 kcal
dict per day. If this energy were to be used in heating the body of person without any losses,
then the rise in his temperature is (specific heat of human body $=0.83 \mathrm{calg}^{-1} \mathrm{C}^{-1}$)
A. $30 .{ }^{\circ} C$
B. $48 .^{\circ} C$
C. $40.16 .{ }^{\circ} \mathrm{C}$
D. $36.14 .^{\circ} C$

Answer: D

D Watch Video Solution

1. 10 g of ice of $0^{\circ} \mathrm{C}$ is mixed with 100 g of water at $50^{\circ} \mathrm{C}$ in a calorimeter. The final temperature of the mixture is [Specific heat of water $=1 \mathrm{calg}{ }^{-1} .{ }^{\circ} C^{-1}$, latent of fusion of ice $\left.=80 \mathrm{calg}^{-1}\right]$
A. $31.2^{\circ} C$
B. $32.8^{\circ} \mathrm{C}$
C. $36.7^{\circ} \mathrm{C}$
D. $38.2^{\circ} \mathrm{C}$

Answer: D
2. When 1.5 kg of ice at $0^{\circ} \mathrm{C}$ mixed with 2 kg of water at $70^{\circ} \mathrm{C}$ in a container, the resulting temperature is $5^{\circ} \mathrm{C}$ the heat of fusion of ice is ($\left.s_{\text {water }}=4186 j \mathrm{~kg}^{-1} K^{-1}\right)$
A. $1.42 \times 10^{5} \mathrm{jkg}^{-1}$
B. $2.42 \times 10^{5} j \mathrm{~kg}^{-1}$
C. $3.42 \times 10^{5} \mathrm{jkg}^{-1}$
D. $4.42 \times 10^{5} \mathrm{jkg}^{-1}$

Answer: C

D Watch Video Solution

3. The temperature of equal masses of three different liquids A, B and C are
$12^{\circ} C, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The
temperature when A and B are mixed is $16^{\circ} \mathrm{C}$
and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What
should be the temperature when A and C are

mixed?

A. $18.2{ }^{\circ}{ }^{\circ} C$

B. $22 .{ }^{\circ} C$

C. $20.3 .{ }^{\circ} C$
D. $24.2{ }^{\circ}{ }^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

4. An ice cube of mass 0.1 kg at $0^{\circ} \mathrm{C}$ is placed in
an isolated container which is at $227^{\circ} C$. The
specific heat s of the container varies with temperature T according to the empirical

$$
A=100 \mathrm{cal} / \mathrm{kg} . K \text { and } B=2 \times 10^{-2} \mathrm{cal} / \mathrm{kg} . \mathrm{K}^{2}
$$

. If the final temperature of the container is
$27^{\circ} \mathrm{C}$, determine the mass of the container.
(Latent heat of fusion for water $=8 \times 10^{4} \mathrm{cal} / \mathrm{kg}$
, specific heat of water $=10^{3} \mathrm{cal} / \mathrm{kg}$. K).
A. 0.495 kg
B. 0.595 kg
C. 0.695 kg
D. 0.795 kg

D Watch Video Solution

Heat Transfer

1. For transmission of heat from one place to the other medium is required in
A. conduction
B. convection
C. radiation
D. both (a) and (b)

Answer: D

D Watch Video Solution

2. One end of a 0.25 m long metal bar is in steam and the other is in contact with ice. If 12
g of ice melts per minute, what is the thermal conductivity of the metal? Given cross-section of
the bar $=5 \times 10^{-4} m^{2}$ and latent heat of ice is
$80 \mathrm{calg}^{-1}$
A. $20 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1}$

$$
\begin{aligned}
& \text { B. } 10 \mathrm{cals} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \cdot{ }^{\circ} C^{-1} \\
& \text { C. } 40 \mathrm{cals} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \cdot{ }^{\circ} C^{-1} \\
& \text { D. } 80 \mathrm{cals}^{-1} \mathrm{~m}^{-1} .{ }^{\circ} C^{-1}
\end{aligned}
$$

Answer: D

D Watch Video Solution

3. A pan filled with hot food cools from $94^{\circ} C$ to
$86^{\circ} C$ in 2 minutes when the room temperature is at $20^{\circ} \mathrm{C}$. How long will it take to cool from
$71^{\circ} C$ to $69^{\circ} C$? Here cooling takes place according to Newton's law of cooling.
A. 12 s
B. 22 s
C. 32 s
D. 40 s

Answer: D

- Watch Video Solution

4. Two bars of same length and same crosssectional area but of different thermal conductivites K_{1} and K_{2} are joined end to end as shown in the figure. One end of the compound bar it is at temperature T_{1} and the opposite end at temperature T_{2} (where $T_{1}>T_{2}$
). The temperature of the junction is

$$
\begin{aligned}
& \text { A. } \frac{K_{1} T_{1}+K_{2} T_{2}}{K_{1}+K_{2}} \\
& \text { B. } \frac{K_{1} T_{2}+K_{2} T_{1}}{K_{1}+K_{2}}
\end{aligned}
$$

> C. $\frac{K_{1}\left(T_{1}+T_{2}\right)}{K_{1}+K_{2}}$
> D. $K_{2} \frac{T_{1}+T_{2}}{K_{1}}$

Answer: A

D Watch Video Solution

5. In the question number of 45 , the equivalent thermal conductivity of the compound bar is

$$
\begin{aligned}
& \text { A. } \frac{K_{1} K_{2}}{K_{1}+K_{2}} \\
& \text { B. } \frac{2 K_{1} K_{2}}{K_{1}+K_{2}}
\end{aligned}
$$

C. $\frac{K_{1}}{K_{1}+K_{2}}$
D. $\frac{K_{2}}{K_{1}+K_{2}}$

Answer: B

- View Text Solution

6. Consider a compound slab consisting of two different material having equal thickness and thermal conductivities K and $2 K$ respectively.

The equivalent thermal conductivity of the slab is
A. $\frac{2}{3} K$
B. $\sqrt{2} K$
C. $3 K$
D. $\frac{4}{3} K$

Answer: D

D Watch Video Solution

7. Two rods of equal length and diameter have thermal conductivite 3 and 4 units respectively.

If they are joined in series, the thermal
conductivity of the combination in the given units would be
A. 3.43
B. 4.43
C. 5.43
D. 2.43

Answer: A

- Watch Video Solution

8. Three metal rods of the same material and identical in all respect are joined as shown in the figure. The temperatures at the ends are maintained as indicated. Assuming no loss of heat from the curved surface of the rods, the temperature at the junction X would be

A. $45^{\circ} \mathrm{C}$

B. $60^{\circ} \mathrm{C}$

C. $30^{\circ} C$

D. $20^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

9. Three very large plates of same area are kept parrallel and close to each other. They are considered as ideal black surfaces and have high thermal conductivity. The first and third plates
are maintained at temperatures 2 T and 3 T respectively. The temperature of the middle (i.e., second) plate under steady state condition is

$$
\begin{aligned}
& \text { A. }\left(\frac{65}{2}\right)^{1 / 4} T \\
& \text { B. }\left(\frac{97}{4}\right)^{1 / 4} T \\
& \text { C. }\left(\frac{97}{2}\right)^{1 / 4} T \\
& \text { D. }(97)^{1 / 4} T
\end{aligned}
$$

Answer: C

Watch Video Solution

10. A cubical ice box of side 50 cm has a thickness of 5.0 cm . if 5 kg of ice is put in the box, estimate the amount of ice remaining after

4 hours. The outside temperature is $40^{\circ} \mathrm{C}$ and coefficient of thermal conductivity of the material of the box $=0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} .^{\circ} \mathrm{C}^{-1}$. Heat of fusion of ice $=335 \mathrm{Jg}^{-1}$.
A. 3.7 kg
B. 3.9 kg
C. 4.7 kg
D. 4.9 kg

Answer: C

D Watch Video Solution

11. A wall has two layers A and B, each made of different material. Both the layers have the same thickness. The thermal conductivity of the material of A is twice that of B. Under thermal equilibrium, the temperature difference across the wall is $36^{\circ} \mathrm{C}$. The temperature difference across the layer A is
A. $12 .{ }^{\circ} C$

B. $18 .{ }^{\circ} C$

C. $6 .{ }^{\circ} C$
D. $24 .{ }^{\circ} C$

Answer: A

D Watch Video Solution

12. Mud houses are cooler in summer and warmer in winter because
A. mud is a good condutor of heat
B. mud is a superconductor of heat

C. mud is a bad conductor of heat

D. none of these

Answer: C

D Watch Video Solution

13. Which of the following is the $v_{m}=\mathrm{T}$ graph for a perfectly black body ($v_{m}=$ maximum frequency
of radiation)

A. A
B. B
C. C
D. D

Answer: C
14. The equatorial and polar regions of the earth receive unequal solar heat. The convection current arising due to this is called
A. land breeze
B. sea breeze
C. trade wind
D. tornado

Answer: C
15. In which of the following process, convection does not take place primarily
A. Sea and land breeze
B. Trade wind
C. Boiling of water
D. Warming of glass of bulb due to filament

Answer: D

16. Wien's displacment law expresses relation between

A. colour of light and temperature

B. wavelength and temperature
C. radiation energy and wavelength
D. wavelength corresponding to maximum
energy and temperature

Answer: D
17. If λ_{m} denotes
A. $\lambda_{m} \propto T$
B. $\lambda_{m} \propto T^{-1}$
C. $\lambda_{m} \propto T$
D. λ_{m} is independent on T

Answer: B

D Watch Video Solution
18. A black body has maximum wavelength λ_{m} at temperature $2000 K$. Its corresponding
wavelength at temperature 3000 will be

$$
\begin{aligned}
& \text { A. } \frac{3}{2} \lambda_{m} \\
& \text { B. } \frac{2}{3} \lambda_{m} \\
& \text { C. } \frac{16}{81} \lambda_{m} \\
& \text { D. } \frac{81}{16} \lambda_{m}
\end{aligned}
$$

Answer: B

19. The thermal radiation from a hot body travels with a velocity of
A. $330 m s^{-1}$
B. $2 \times 10^{8} \mathrm{~ms}^{-1}$
C. $1200 \mathrm{~ms}^{-1}$
D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: D

- Watch Video Solution

20. Experimental investigations show that the intensity of solar radiation is maximum for a
wavelength 480 nm in the visible ragion.
Estimate the surface temperature of sun. (Given
Wien's constant $b=2.88 \times 10^{-3} m K$).
A. 4000 K
B. 6000 K
C. 8000 K
D. $10^{6} \mathrm{~K}$
21. The wavelength of maximum intensity of radiation emitted by a star is 289.8 nm . The radiation intensity for the star is : (Stefan's
constant $5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$, constant $b=2898 \mu m K)-$

$$
\begin{aligned}
& \text { A. } 5.67 \times 10^{8} \mathrm{Wm}^{-2} \\
& \text { B. } 5.67 \times 10^{12} \mathrm{Wm}^{-2} \\
& \text { C. } 10.67 \times 10^{7} \mathrm{Wm}^{-2} \\
& \text { D. } 10.67 \times 10^{14} \mathrm{Wm}^{-2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

22. The temperature of a radiation body increases by 30%. Then the increase in the amount of radiation is
A. 185%
B. 285%
C. 325%
D. 130%

Answer: A

D Watch Video Solution

23. If the temperature of hot black body is raised by 5%, rate of heat energy radiated would be increased by how much percentage?
A. 12%
B. 22 \%
C. 32%
D. 42%

Answer: B

D Watch Video Solution

24. Two spheres of same material have radius 1 m and 4 m and temperature 4000 K and 2000 K respectively. The energy radiated per second by the first sphere is
A. greater than that by the second
B. less than that by the second
C. equal in both cases

D. the information is incomplete to draw any

conclusion

Answer: C

D Watch Video Solution

25. If the temperature of the Sun were to increase from T to 2 T and its radius from R to
$2 R$. The rat io of power, radiated by it would become
A. 64 times

B. 16 times

C. 32 times

D. 4 times

Answer: A

D Watch Video Solution

26. The rate of cooling at $600 K$. If surrounding temperature is 300 K is H. The rate of cooling at $900 K$ is

$$
\text { A. } \frac{16}{3} H
$$

B. $2 H$
C. $3 H$
D. $\frac{2}{3} H$

Answer: A

- Watch Video Solution

Higher Order Thinking Skills

1. The temperature of the two outer surfaces of
a composite slab, consisting of two materials
having coefficients of thermal conductivity K and 2 K and thickness x and 4 x respectively.

Temperatures on the opposite faces of composite slab are T_{1} and T_{2} where $T_{2}>T_{1}$, as shown in fig. what is the rate of flow of heat through the slab in a steady state?

A. 1
B. $\frac{1}{2}$

> C. $\frac{2}{3}$
> D. $\frac{1}{3}$

Answer: D

D Watch Video Solution

2. A wall of dimensions 2.00 m by 3.50 m has a single-pane window of dimensions 0.75 m by
1.20 m . If the inside temperature is $20^{\circ} \mathrm{C}$ and
the outside temperature is $-10^{\circ} C$, effective thermal resistance of the opaque wall and
window are $2.10 K W^{-1}$ and $0.21 K W^{-1}$ respectively. The heat flow through the entire wall will be .
A. $215 W$
B. 205 W
C. $175 W$
D. 110 W

Answer: A
3. The figure show a cross-section of a double glass unit of a window on a vertical wall. A graph
wall. A graph of the temperature at different points within the unit is show next to it. The temperature difference across the unit is $13 K$. It has a crossp-sectional area of $1.3 m^{2}$ and the rate of heat flow through it is 65 W . Then the correct statement is (Glass has a thermal conductivity of $1 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)

A. The unit is in steady state and in thermal
equilibrium
B. The unit is in steady state but not in
thermal equalibrium.
C. The unit is not in steady state but is in
thermal
D. The unit neither in steady state nor in
thermal equilibrium

Answer: B
4. In question number 3 , the thermal conductivity (in $W m^{-1} K^{-1}$) if air is

$$
\begin{aligned}
& \text { A. } \frac{1}{10} \\
& \text { B. } \frac{1}{12} \\
& \text { C. } \frac{1}{14} \\
& \text { D. } \frac{9}{130}
\end{aligned}
$$

Answer: C

5. A lake surface is exposed to an atmosphere where the temperature is $<0^{\circ} C$. If the thickness of the ice layer formed on the surface grows form 2 cm to 4 cm in 1 hour. The atmospheric temperature, T_{a} will be- (Thermal conductivity of ice
$K=4 \times 10^{-3} \mathrm{cal} / \mathrm{cm} / \mathrm{s} / \cdot^{\circ} \mathrm{C}$, density of ice
$=0.9 \mathrm{gm} /$ ice. Latent heat of fustion of ice
$=80 \mathrm{cal} / \mathrm{m}$. Neglect the change of density
during the state change. Assume that the water below the ice has 0° temperature every where)

$$
\text { A. }-20 .^{\circ} C
$$

> B. $0 .^{\circ} \mathrm{C}$
> C. $-30 .{ }^{\circ} \mathrm{C}$
> D. $15 .{ }^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

6. Two chunks of metal with heat capacities C_{1}
and C_{2}, are interconnected by a rod length l and cross-sectional area S and fairly low heat conductivity K. The whole system is thermally
insulated from the environment. At a moment $t=0$ the temperature difference betwene the two chunks of metal equals $(\Delta T)_{0}$. Assuming the heat capacity of the rod to be negligible,
find the temperature difference between the chucks as a function of time.

$$
\begin{aligned}
& \text { A. } T_{0} \exp \left(\frac{-K A\left(C_{1}+C_{2}\right) t}{C_{1} C_{2}}\right) \\
& \text { B. } T_{0} \exp \left(\frac{-K A\left(C_{1}+C_{2}\right)}{C_{1} C_{2}}\right) \\
& \text { C. } T_{0} \exp \left(\frac{K A\left(C_{1}+C_{2}\right) t}{C_{1} C_{2}}\right) \\
& \text { D. } T_{0} \exp \left(\frac{K A\left(C_{1}+C_{2}\right) t^{2}}{C_{1} C_{2}}\right)
\end{aligned}
$$

- Watch Video Solution

7. A double pan window used for insulating a room thermally from outside consists of two glass sheets each of area $1 \mathrm{~m}^{2}$ and thickness
0.01 m separated by 0.05 m thick stagnant air space. In the steady state, the room-glass interface and the glass-outdoor interface are at constant temperatures of $27^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. The thermal conductivity of glass is $0.8 W m^{-1} K^{-1}$ and of air $0.08 W^{-1} \mathrm{~K}^{-1}$. Answer the following questions.
(a) Calculate the temperature of the inner glassair interface.
(b) Calculate the temperature of the outer glassair interface.
(c) Calculate the rate of flow of heat through the window pane.
A. 41.5 W
B. 31.5 W
C. 21.5 W
D. 11.5 W
8. In question number 7, the temperature of other interfaces (in . ${ }^{\circ} C$) is
A. $26.5,0.5$
B. $27.5,1$
C. $28.5,2$
D. $29.5,3$

Answer: A

Ncert Exemplar

1. A bimetallic strip made of aluminum and steel
$\left(\alpha_{A l}>\alpha_{s t e e l}\right)$ on heating the strip will a) remain straight b) get twisted c) will bend with aluminum on concave side d) will bend with steel on concave side.
A. remain straight
B. get twisted
C. will bend with aluminium on concave side

D. will bend with steel on concave side.

Answer: D

- Watch Video Solution

2. A uniform metallic rod rotates about its perpendicular bisector with constant angualr speed. If it is heated uniformly to raise its temperature slightly, then a) its speed of rotation increases b) its speed of rotation decreases c) its speed of rotation remains same
d) its speed increases because its moment of inertia increases
A. its speed of rotation increases
B. its speed of rotation decreases
C. its speed of rotation remains same
D. its speed increases because its moment of
inertia increases

Answer: B
(D) Watch Video Solution
3. The graph between two temperature scales A
and B is shown in Fig. Between upper fixed point and lower fixed point there are 150 equal divisions on scales A and 100 on scale B. The relation between the temperature in two scales is given by_

$$
\text { A. } \frac{T_{A}-180}{100}=\frac{T_{B}}{150}
$$

$$
\begin{aligned}
& \text { B. } \frac{T_{A}-30}{150}=\frac{T_{B}}{100} \\
& \text { C. } \frac{T_{B}-180}{150}=\frac{T_{A}}{100} \\
& \text { D. } \frac{T_{B}-40}{100}=\frac{T_{A}}{180}
\end{aligned}
$$

Answer: B

D Watch Video Solution

4. An aluminium sphere is dipped into water.

Which of the following is true?

A. Buoyancy will be less in water at $0^{\circ} C$ than

that in water at $4^{\circ} C$.
B. Buoyancy will be more in water at $0^{\circ} C$
than that in water at $4^{\circ} C$.
C. Buoyancy in water at $0^{\circ} \mathrm{C}$ will be same as
that in water at $4^{\circ} C$.
D. Buoyancy may be more or less in water at
$4^{\circ} C$ depending on the radius of the sphere.

- Watch Video Solution

5. As the temperature is increased, the period of
a pendulum a) Increases as its effective length increases even through its centre of mass still remains at the centre of the bob. b) decreases as its effective length increases even though its centre of mass still remains at the centre of the bob. c) Increases as its effective length increases due to shifting of centre of mass below the centre of the bob. d) decreases as its effective
length remains same but the centre of mass shifts above the centre of the bob.
A. Increases as its effective length increases even through its centre of mass still remains at the centre of the bob.
B. decreases as its effective length increases
even though its centre of mass still remains at the centre of thed bob.
C. Increases as its effective length increases
due to shifting of centre of mass below
the centre of the bob.

D. decreases as its effective length remains

same but the centre of mass shifts above the centre of the bob.

Answer: A

D Watch Video Solution

6. Heat is associated with a) kinetic energy of random motion of molecules b) kinetic energy of orderly motion of molecules c) total kinetic
energy of random and orderly motion of molecules d) kinetic energy of random motion in some cases and kinetic energy orderly motion in other.
A. kinetic energy of random motion of molecules
B. kinetic energy of orderly motion of molecules
C. total kinetic energy of random and orderly
motion of molecules

D. kinetic energy of random motion in some

cases and kinetic energy orderly motion in other.

Answer: A

- Watch Video Solution

7. The radius of metal sphere at room temperature T is R and the coefficient of linear expansion of the metal is α. The sphere is heated a little by a temperature T, so that new
temperature is $T+\Delta T$. The increase in volume of sphere is approximately

A. $2 \pi R \alpha \Delta T$

B. $\pi R^{2} \alpha \Delta T$
C. $4 \pi R^{3} \alpha \Delta T / 3$
D. $4 \pi R^{3} \alpha \Delta T$

Answer: D

D Watch Video Solution
8. A sphere, a cube and a thin circular plate, all of same material and same mass are initially heated to same high temperature. a) Plate will
cool fastest and cube the slowest. b) Sphere will cool fastest and cube the slowest. c) Plate will cool fastest and sphere the slowest. d) Cube will cool fastest and plate the slowest.
A. Plate will cool fastet and cube the slowest.
B. Sphere will cool fastest and cube the slowest.
C. Plate will cool fastest and sphere the

slowest.

D. Cube will cool fastest and plate the

slowest.

Answer: C

D Watch Video Solution

Assertion And Reason

1. Assertion : A change in the temperature of a body cause change in dimentions.

Reason : The dimentions of a body decrease due to the increase in its temperature.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

2. The Kelvin scale temperature is 0 K . What is the corresponding Celsius scale temperature?
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: B

Watch Video Solution
3. Assertion : The density of water remains constant as it is cooled from room temperature untill its temperature reached $4^{\circ} C$. Reason : Below $4^{\circ} C$, the density increases.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

4. Water is used in car radiators as coolant because
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: A
5. Assertion : The specific heat capacity of a given solid can be determined by using the principle of calorimetry Reason : Heat gained is equal to the heat lost.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion : In change of state from solid to
liquid the temperature decreases untill the entire amount of the solid subtance melts.

Reason : The phenomenon of refreezing is called melting
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true and

reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: D
7. Assertion : Cooking food is difficult on hills.

Reason : The boiling point decreases with increase in pressure a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion and reason are true and reason is not the correct explanation of assertion. c) If assertion is true and reason is false. d) If both assertion and reason are false.
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: c

8. Assertion : In the human body the heart acts
as the pump that circulates blood through
differences parts of the body, transferring heat by force convection.

Reason: In forced convection, material is force
to move by a pump or by some other physics means.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of
assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: a

D Watch Video Solution

9. Assertion : All bodies emit radiant energy
whether they are solid, liquid or gases.

Reason : Black bodies absorb and emit radiant energy better than bodies of lighter colours.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.
D. If both assertion and reason are false.

Answer: b

D Watch Video Solution

10. Assertion: According to Newton's law of cooling, the rate of loss of heat, $-d Q / d t$ of the body is directly proportional to the difference of temperature.

Reason :This law holds for all type of temperature differences. a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion
and reason are true and reason is not the correct explanation of assertion. c) If assertion is true and reason is false. d) If both assertion and reason are false.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true and
reason is not the correct explanation of assertion.
C. If assertion is true and reason is false.

D. If both assertion and reason are false.

Answer: c

Watch Video Solution

Others

1. Assertion: According to Newton's law of cooling, the rate of loss of heat, $-d Q / d t$ of the body is directly proportional to the difference of temperature.

Reason :This law holds for all type of temperature differences.
A. law of thermometry
B. Newton's law of cooling
C. law of calorimetry
D. zeroth law

Answer: B

- Watch Video Solution

2. A glass full of hot milk is poured in the table.

It begins to cool gradually.
Which of the following is incorrect?
A. The rate of cooling is constant till milk
attains the temperature of the
surroundings
B. The temperature of milk falls off exponentially will time.
C. While cooling, there is a flow of heat from milk to the sourroundings as well as from
surroundings to the milk but the net flow
of heat is from milk to the surroundings
and that is why it cools.
D. All three phenomenon, conduction,
convection and radiation are responsible
for the loss of heat from milk to the
surroundings.

Answer: A

D Watch Video Solution

3. A hot liquid is kept in a bog room. Accoding to

Newton's law of cooling rate of cooling liquid (represented as y) is plotted against its temperature T. Which of the following curves may represent the plot?

B.

C. $\xrightarrow[\text { Time (minute) }]{\longrightarrow}$
D.

Answer: C

D View Text Solution

