©゙ doubtnut India's Number 1 Education App

CHEMISTRY

JEE MAIN AND ADVANCED

CHEMICAL KINETICS

Example

1. For a reaction, $2 A+D \rightarrow 3 C$, the rate of appearance of C at time t is $1.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. Find the rate of reaction.

- Watch Video Solution

2. The decomposition of NH_{3} on platinum surface is a zero order reaction. What would be the rate of production of N_{2} and H_{2} if $k=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1} ?$
3. The form of rate law for a reaction is expressed as, rate $=\mathrm{k}\left[\mathrm{Cl}_{2}\right][\mathrm{NO}]^{2}$ Find out the order of the reaction with respect to $C l_{2}$, with respect to NO and also the overall order of the reaction.

- Watch Video Solution

4. From the expression of the following reactions, determine order of reaction and the dimensions of the rate constant.
(i) $3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g) \quad$ Rate $=k[\mathrm{NO}]^{2}$
(ii)
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 l^{-}(a q)+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+l_{3}^{-} \quad$ Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][l]$
(iii)
$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \quad$ Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$
(iv) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \quad$ Rate $=k\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]$

- Watch Video Solution

5. The half life period of a first order reaction is 60 min . What percentage will be left after 240 min .

- Watch Video Solution

6. A first order reaction has specific reaction rate of $10^{-3} s^{-1}$. How much time will it takes for 10 gm of the reactant to reduce to 2.5 gm ?

- Watch Video Solution

7. A first order reaction is found to have a rate constant $k=7.39 \times 10^{-5} s^{-1}$. Find the half life of this reaction.

- Watch Video Solution

8. Half life for a first order reaction is 20 minutes. What is its rate constant?
9. Half life time for first order reaction is 25 minutes. What time will be required for 99% completion of reaction ?

- Watch Video Solution

10. A first order reaction has a specific rate constant of $2 \times 10^{-3} s^{-1}$. How much time it will take for20 gm to reduce to 5 g ?

- Watch Video Solution

11. The rate constant k for the order gas phase decomposition of ethyl iodide, $\mathrm{C}_{2} \mathrm{H}_{5} l \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Hl}$ is $1.60 \times 10^{-5} s^{-1}$ ar 600 K and $6.36 \times 10^{-3} s^{-1}$ at 700 K . Calculate the energy of activation for this reaction.
12. What would be the energy of activation for a reaction when a change of temperature from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ exactly triples the reaction rate constant?

- Watch Video Solution

13. The rate constant of a reaction is $1.5 \times 10^{7} \mathrm{~s}^{-1}$ at $50^{\circ} \mathrm{C}$ and $4.5 \times 10^{7} \mathrm{~s}^{-1}$ at $100^{\circ} \mathrm{C}$. Calculate the value of activation energy for the reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

14. Calculate the activation energy of a reaction whose reaction rate at 310 K gets doubled for 320 K rise in temperature.

- Watch Video Solution

15. Half life of a first order chemical reaction is 69 hr at 300 K . Also , rate of this reaction is doubled as temperature is increased from 300 K to 310 K. Determine activation energy and pre - exponential factor for this reaction.

- Watch Video Solution

16. If the rate of a reaction gets doubled as the temperature is increased from 27° to $37^{\circ} \mathrm{C}$. Find the activation energy of reaction?

- Watch Video Solution

17. Why reactions having molecularity are less observed ?

- Watch Video Solution

18. Rate constant k of a reaction varies with temperature according to the equation
$\operatorname{logk}=$ constant $-\frac{E_{a}}{2.303 R}\left(\frac{1}{T}\right)$
where E_{a} is the energy of activation for the reaction. When a graph is plotted for $\log \mathrm{k}$ versus $\frac{1}{T}$, a straight line with a slope -6670 K is obtained. Calculate the energy of activation for this reaction

- Watch Video Solution

19. Why do reaction rates depend on temperature ? Explain.

- Watch Video Solution

20. What is the effect of catalyst on activation energy ?

- Watch Video Solution

1. The rate of formation of nitric oxide (NO) in the following reaction is $3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$.
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
Find the rate of disappearance of oxygen.

- Watch Video Solution

2. For the reaction $R \rightarrow P$, the concentration of reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction rate of reaction using units of time both in minutes and seconds.

- Watch Video Solution

3. For the reaction $A+B \rightarrow C+D$, doubling the concentration of both the reactants increases the reaction rate by 8 times and doubling the concentration of only B simply doubles the reaction rate. Find the rate law for the above equation.
4. For the reaction $A \rightarrow B$, the rate of reaction becomes twenty seven times when the concentration of A is increased three times. What is the order of the reaction ?

- Watch Video Solution

5. The rate of constant for first reaction is $0.0005 \mathrm{~min}^{-1}$. Calculate its half life.

- Watch Video Solution

6. A first order reaction has a rate constant of $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?

- Watch Video Solution

7. The half life time , $t_{1 / 2}$ for the first order decomposition of $\mathrm{NH}_{4} \mathrm{NO}_{2}$ is 123 minutes at $15^{\circ} \mathrm{C}$.
(a) What is the value of k ?
(b) How long will it take for 2 g of $\mathrm{NH}_{4} \mathrm{NO}_{2}$ to decompose until 0.2 remains?

- Watch Video Solution

8. The rate of a reaction triples when temperature change from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Calculate the energy of activation.

- Watch Video Solution

9. The rate constant of a reaction is $1.2 \times 10^{-3} s^{-1}$ at $30^{\circ} \mathrm{C}$ and $2.1 \times 10^{-3} s^{-1}$ at $40^{\circ} \mathrm{C}$. Calculate the energy of activation of the reaction.
10. The activation energy of a reaction is $94.14 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the value of rate constant at 313 K is $1.8 \times 10^{-5} s^{-1}$. Calculate the frequency factor A

- Watch Video Solution

Exercise

1. In a reaction,
$a A+b B \rightarrow c C+d D$
rate $=-\frac{1}{a} \frac{d[A]}{d t}$, the - ve sign in it represents
A. The rate of reaction increases with time
B. The rate is negative for the reaction
C. The concentration of the reactant ' A ' decreases during the reaction
D. The concentration of reactant ' A ' increases in the reaction

Answer: C

2. Unit of rate of a reaction is
A. mol/Ls
B. Same for instantaneous rate and average rate
C. Same for all reactions and not depend upon the nature of reaction
D. All of these

Answer: D

- Watch Video Solution

3. For the reaction,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Select the correct statement
A. Rate of formation of O_{2} is same as rate of formation of NO_{2}
B. Rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is two times the rate of formation of NO_{2}
C. Rate of formation of O_{2} is 0.5 time rate disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$
D. Rate of formation of NO_{2} is equal to rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: C

- Watch Video Solution

4. What is the unit of rate constant of $n^{\text {th }}$ order of the reaction?
A. $(\mathrm{mol} / L)^{n} \mathrm{~s}^{-1}$
B. $\left(\mathrm{mol} / L s^{-1}\right)^{n-1}$
C. $\left(\frac{L}{m o l} s^{-1}\right)^{n-1}$
D. $(L / m o l)^{n-1} s^{-1}$

Answer: D

5. $\frac{d x}{d t}=K[A]^{0.5}[B]^{0.5}[C]^{0.5}$. What will be the order of the reaction ?
A. 1
B. 1.5
C. Zero
D. 2

Answer: B

- Watch Video Solution

6. $H_{2}+l_{2} \rightarrow 2 \mathrm{HI}$ (An elementary reaction) of second order

If the volume of the container containing the gaseous mixture is increased to two time, then final rate of the reaction.
A. Become four times
B. Become $\frac{1}{4}$ th of the original rate
C. Become 2 times
D. Become $\frac{1}{2}$ of the original rate

Answer: B

- Watch Video Solution

7. In a certain reaction shown below,
$4 A+2 B \rightarrow 3 C$
If rate of formation of C is $9.6 \times 10^{-2} \mathrm{~mol} / \mathrm{Ls}$. What will be rate of reaction ?
A. $9.6 \times 10^{-2} \mathrm{~mol} / \mathrm{Ls}$
B. $3.2 \times 10^{-2} \mathrm{~mol} / \mathrm{Ls}$
C. $2.4 \times 10^{-2} \mathrm{~mol} / \mathrm{Ls}$
D. $4.8 \times 10^{-2} \mathrm{~mol} / \mathrm{Ls}$

- Watch Video Solution

8. The rate of reaction is always equal to the rate constant. The order of the reaction. Will be
A. First order
B. Second order
C. Half order
D. Zero order

Answer: D

- Watch Video Solution

9. For the reaction,
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+3 l^{-} \rightarrow l_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}$

select the correct statement

A. Rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$ will be three times the rate of disappearance of l^{-}
B. Rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $\frac{1}{3}$ of rate of formation of l_{3}^{-}
C. Rate of disappearance of l^{-}ions will be three times the rate of formation l_{3}^{-}ions
D. Rate of formation of $\mathrm{H}_{2} \mathrm{O}$ is $\frac{1}{2}$ of rate formation of l_{3}^{-}

Answer: C

- Watch Video Solution

10. The value rate constant depends upon
A. Temperature
B. Concentration
C. Catalyst
D. Both (1) \& (3)

Answer: D

- Watch Video Solution

11. $2 A \rightarrow C+D$

In this reaction, if we double the concentration of A , reaction rate become , two time .. What is the order of this reaction ?
A. 1
B. 3
C. 2
D. 1.5

Answer: A

- Watch Video Solution

12. In a zero order reaction, 20% of the reaction complete in 10 s . How much time it will take to complete 50% of the reaction ?
A. 20 s
B. 25 s
C. 30 s
D. 40 s

Answer: B

- Watch Video Solution

13. If the half - life of the first order reaction is 50 s , what be the value of its rate constant ?
A. $1.38 \times 10^{-2} s^{-1}$
B. $25 s^{-1}$
C. $34.66 s^{-1}$
D. $1.38 \times 10^{-4} s^{-1}$

Answer: A

- Watch Video Solution

14. In a first order reaction, on plotting a graph between $t_{1 / 2}$ and concentration of reactant
A. A curve is obtained
B. A straight line is obtained having slope 45°
C. A straight line is parallel to time axis
D. A straight line is parallel to the concentration axis

Answer: D

- View Text Solution

15. In data given below.

$[A]$	$[B]$	rate
mol / L	$\mathrm{~mol} / \mathrm{L}$	$\mathrm{molL} \mathrm{m}^{-1} \mathrm{~s}^{-1}$

a. $\quad 0.02 \quad 1.2 \quad 3.0 \times 10^{-3}$
b. $0.04 \quad 2.4 \quad 6.0 \times 10^{-3}$

The reaction may be
A. First order
B. Second order
C. Pseudo second order
D. Second order w.r.t. A

Answer: A

- Watch Video Solution

16. For certain first order reaction, 75% of the reaction complete in 30 min. How much time it require to complete 99.9% of the reaction ?
A. 150 min
B. 100 min
C. 90 min
D. 300 min

Answer: A

- Watch Video Solution

17. For zero order reaction , $t_{1 / 2}$ will be (A_{0} is the initial concentration , K is rate constant)
A. $0.693 / \mathrm{K}$
B. $2.303 / \mathrm{K}$
C. $\frac{A_{0}}{2 K}$
D. $\frac{\operatorname{In} A_{0}}{2}$

Answer: C

18. In pseudo - order reactions
A. The actual order of reaction is different from that expected using rate law expression
B. The concentration of at least one reactant is taken in large excess
C. The concentration of reactant taken in excess may be taken as constant
D. All of these

Answer: D

- Watch Video Solution

19. The depletion of ozone involves the following steps :

Step 1: $O_{3} \underset{K_{1}}{\stackrel{K_{2}}{\Longleftrightarrow}} O_{2}+O$ (fast)
Step 2: $O_{3}+O \underset{K}{\longrightarrow} 2 O_{2}$ (slow)
The predicted order of the reaction will be
A. First
B. 1.5
C. -1.5
D. Zero

Answer: A

- Watch Video Solution

20. The half life for the zero order reaction will be
A. $t_{1 / 2} \propto(\text { conc. })^{0}$
B. $t_{1 / 2} \propto(\text { conc. })^{1}$
C. $t_{1 / 2} \propto(\text { conc. })^{-1}$
D. $t_{1 / 2} \propto(\text { conc. })^{2}$

Answer: B

21. A catalyst cannot change
A. Rate constant of the reaction
B. Equilibrium constant of the reaction
C. Activation energy of reaction
D. All of these

Answer: B

- Watch Video Solution

22. Select the incorrect statement
A. The minimum amount of energy required by reactant molecules to give product is threshold energy
B. Activation energy is the sum of threshold energy and average kinetic energy
C. Threshold energy is the sum of initial potential energy of reactants and activation energy
D. Lower is the activation energy faster is the reaction

Answer: B

- Watch Video Solution

23. If the rate of reaction increases by two times with every $10^{\circ} \mathrm{C}$ rise in temperature, then if we raise the temperature by $40^{\circ} \mathrm{C}$, the new rate of the reaction will be :-
A. 4 times
B. 8 times
C. 16 times
D. 32 times

Answer: C

- Watch Video Solution

24. According to collision theory, rate of the reaction increases, because
A. Number of collision decreases
B. Number of molecules crossing energy barrier increases
C. Kinetic energy of molecules increases
D. Value of rate constant increases

Answer: B

- Watch Video Solution

25. $A+B \rightarrow C, \Delta H=+60 \mathrm{~kJ} / \mathrm{mol}$
$E_{a_{f}}$ is 150 kJ . What is the activation energy for the backward reaction ?
A. 210 kJ
B. 105 kJ
C. 90 kJ
D. 145 kJ

Answer: C

- Watch Video Solution

Reaction progress

26.

Reaction progress \rightarrow
A. It is a 2 steps reaction, step 1 is slower than step 2
B. It is a 2 steps reaction, step 2 is slower than step 1
C. Single step reaction where B is a activated complex
D. Single step reaction where B is a reaction intermediate

Answer: A

- Watch Video Solution

27. Rate of reaction depends upon
A. Nature of reactants
B. Physical state of the reactants
C. Temperature
D. All of these

Answer: D

28. The correct expression for Arrhenius equation is (where K is rate constant)
A. $K=e^{-\Delta H / R T} A$
B. $\ln K=\frac{\Delta E_{a}}{R T}+\operatorname{In} A$
C. $\ln K=\operatorname{In} \mathrm{A}+\frac{E_{a}}{R T}$
D. $\ln \left(\frac{A}{K}\right)=\frac{E_{a}}{R T}$

Answer: D

- Watch Video Solution

29. The temperature coefficient of a certain reaction is found to be 3 . If temperature changes from 25° to 55°, the new rate of reaction will be
A. 8 times
B. 9 times
C. 16 times
D. 27 times

Answer: D

- Watch Video Solution

30. In Arrhenius equation,$K=A e^{-E_{a} / R T}$. The A is
A. Activation energy
B. Enthalpy of reaction
C. Free energy of reaction
D. Rate constant of the reaction at infinite temperature

Answer: D

- Watch Video Solution

1. The unit of rate constant and rate of a reaction are same for
A. First order
B. Zero order
C. Second order
D. Third order

Answer: B

- Watch Video Solution

2. For a reaction of type
$a A+b B \rightarrow$ products, $\frac{-d[A]}{d t}$ is equal to
A. $\frac{-d[B]}{d t}$
B. $-\frac{b}{d} \frac{d[B]}{d t}$
C. $-\frac{a}{b} \times \frac{d[B]}{d t}$
D. $-\frac{b}{a} \times \frac{d[B]}{d t}$

Answer: C

- Watch Video Solution

3. For a gaseous reaction, the rate of reaction may be expressed in the units
A. atm
B. $\operatorname{atm} \mathrm{s}$
C. atm/s
D. $\mathrm{atm} / \mathrm{s}^{2}$

Answer: C

- Watch Video Solution

4. In gaseous state reaction, $A_{2}(g) \rightarrow B(g)+\left(\frac{1}{2}\right) C(g)$. The increase in pressure from 100 mm to 120 mm is noticed in 5 minutes. The rate of
disappearance of $A_{2} \mathrm{in} \mathrm{mm} \mathrm{min}^{-1}$ is :
A. $4 \mathrm{~min} \min ^{-1}$
B. $8 \mathrm{~min} \min ^{-1}$
C. $16 \mathrm{~min} \min ^{-1}$
D. $2 \mathrm{~min} \min ^{-1}$

Answer: B

- Watch Video Solution

5. Which of the following will react at the highest rate ?
A. 1 mol of A and 1 mol of B in a 1 L vessel
B. 2 mol of A and 2 mol of B in a $2 L$ vessel
C. 3 mol of A and 3 mol of B in a 3 L vessel
D. All would react at the same rate

Answer: D

6. Which of the following does not affect the rate of reaction?
A. Amount of the reactant taken
B. Physical state of the reactant
C. ΔH of reaction
D. Size of vessel

Answer: C

- Watch Video Solution

7. In a reaction, $2 X+Y \rightarrow X_{2} Y$, the X disappears at
A. Half the rate as that of disappearance of Y
B. The same rate as that of disappearance of Y
C. The same rate as that of appearance of $X_{2} Y$
D. Twice the rate as that of appearance of $X_{2} Y$

Answer: D

- Watch Video Solution

8. During the course of a chemical reaction , the rate constant \qquad .
A. Remains constant throughout
B. Increases as the reaction proceeds
C. Decreases as the reaction proceeds
D. First increases followed by a decreases

Answer: C

- Watch Video Solution

9. A reaction involiving two different reactants can never be:
A. Second order reaction
B. Bimolecular reaction
C. Unimolecular reaction
D. First order reaction

Answer: C

D Watch Video Solution

10. For the hypothetical reaction $2 A \rightarrow 3 C$, the reaction rate r in terms of the rate of change of the concentration is given by
A. $r=-\frac{d[A]}{d t}$
B. $r=-\frac{1}{2} \frac{d[A]}{d t}$
C. $r=\frac{1}{3} \frac{d[A]}{d t}$
D. $r=\frac{d[A]}{d t}$
11. In the reaction $A+2 B \rightarrow C+2 O$ the initial rate $\frac{-d[A]}{d t}$ at $t=0$ was found to the $2.6 \times 10^{-2} \mathrm{M} \mathrm{sec}^{-1}$. What is the value of $\frac{-d[B]}{d t}$ at $t=0$ in $m s^{-1}$?
A. 2.6×10^{-2}
B. 5.2×10^{-2}
C. 1.3×10^{-2}
D. 1.0×10^{-1}

Answer: B

- Watch Video Solution

12. For the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of change of concentration for hydrogen is
$0.3 \times 10^{-4} \mathrm{Ms}^{-1}$ The rate of change of concentration of ammonia is:
A. -0.2×10^{4}
B. 0.2×10^{-4}
C. 0.1×10^{-4}
D. 0.3×10^{-4}

Answer: B

- Watch Video Solution

13. The graph plotted between concentration versus time

A. It gives rate of disappearance of reactant
B. Rate $=\left(d\left[C_{2}-C_{1}\right)\right] \frac{)}{t_{2}-t_{1}}$
C. Both (1) \& (2)
D. It predicts the order of reaction

Answer: C

- Watch Video Solution

14. For reaction, $2 B+A \rightarrow 2 C$

Which of the following is correct ?
A. Rate of disappearance of B is twice that of rate of disappearance of C
B. Rate of disappearance of A is twice that of rate of disappearance of

C
C. Rate of appearance of C is twice that of rate of disappearance of A
D. All of these

Answer: C

- Watch Video Solution

15. For the homogeneous elementary reaction, $A+B \rightarrow C$, the unit of rate constant is
A. s^{-1}
B. $s^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
C. $s^{-1} \mathrm{~mol}^{-1} L$
D. s

Answer: C

- Watch Video Solution

16. The rate law for a reaction between the substances A and B is given by Rate $=k[A]^{n}[B]^{m}$

On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as:
A. $\frac{1}{2^{n+m}}$
B. $m+n$
C. 2^{n+m}
D. 2^{n-m}

Answer: C

- Watch Video Solution

17. Consider the reaction,
$2 A+B \rightarrow C+D$, If the rate expression is $r=K[A]^{2}[B]^{1}$ and if volume is reduced to $\frac{1}{3}$, the rate of reaction will increases
A. 27 times
B. 9 times
C. 8 time
D. Rate will not get affected

Answer: A

- Watch Video Solution

18. The rate constant is numerically the same for three reaction of first, second and third order respectively. Which one is true for the of three reaction, if concentration of reactant is greater than 1M ?
A. $r_{1}=r_{2}=r_{3}$
B. $r_{1}>r_{2}>r_{3}$
C. $r_{1}<r_{2}<r_{3}$
D. All of these

Answer: C

- Watch Video Solution

$\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+I_{3}^{-}$. The effect on the rate of this reaction brought about by doubling the concentration of I^{-}without changing the order
A. The rate would increase by a factor of 3
B. The rate would increase by a factor of 8
C. The rate would decrease by a factor of $1 / 3$
D. The rate would increase by a factor of 9

Answer: B

- Watch Video Solution

20. For a reaction $A+B \rightarrow$ products, the rate of reaction was doubled when concentration of A was doubled. When concentration of A and B both was double, the rate was again doubled, order of reaction w.r.t. A and B are
A. 1,1
B. 2,0
C. 1,0
D. 0,1

Answer: C

- Watch Video Solution

21. The overall order of reaction between X \& Y is 3 . Which of the following rate equation must be correct, if on doubling the concentration of X, the rate of reaction gets doubled ?
A. $r=K[X]^{2}[Y]^{0}$
B. $r=K[X]^{1}[Y]^{2}$
C. $r=K[X]^{1}[Y]^{3}$
D. $r=K[X]^{2}[Y]^{1}$

D Watch Video Solution

22. For a zero order reaction,
$K=1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$

If initial concentration of the reactant is $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$, the concentration after 10 minutes would be
A. $1 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $0.6 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $0.4 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: C

23. Which of the following statement is not correct ?
A. Molecularity of a reaction cannot be fractional
B. Molecularity of a reaction cannot be more than three
C. Molecularity of a reaction may or may not be equal to the order of reaction
D. Molecularity of a reaction is obtained from balanced chemical equation

Answer: D

- Watch Video Solution

24. Consider the following in respect of zero order reaction.
I. $t_{1 / 2}$ is directly proportional to the initial concentration
II. Time taken for the completion of the reaction is twice its $t_{1 / 2}$

III Concentration of the reactant decreases linearly with time

Which of the statements given above are correct ?
A. I \& II only
B. I \& III only
C. II \& III only
D. I, II \& III

Answer: D

- Watch Video Solution

25. If initial concentration is reduced to $1 / 4^{\text {th }}$ in a zero order reaction, the time taken for half the reaction to complete
A. Remains same
B. Becomes 4 time
C. Become one fourth
D. Doubles

Answer: C

- Watch Video Solution

26. If initial concentration is doubled, the time for half-reaction is also doubled, the order of reaction is
A. Zero
B. One
C. Two
D. Three

Answer: A

27. The inversion of cane sugar is represented by

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

It is a reaction of
A. Unimolecular
B. Second order
C. Zero order
D. First order

Answer: D

- Watch Video Solution

28. For a Ist order reaction, a straight line is obtained if you plot
A. log conc. vs time
B. conc. vs time
C. 1/conc. vs time
D. log conc. vs $1 /$ time

Answer: A

- Watch Video Solution

29. Which order reaction obeys the expression $t_{1 / 2} \propto 1[A]$?
A. First
B. Second
C. Third
D. Zero

Answer: B

- Watch Video Solution

30. The graph of $t_{1 / 2}$ versus initial concentration 'a' is for

A. First order
B. Second order
C. Zero order
D. Can't predict

Answer: A

31. Reactant 'A' (initial concentration, a) reacts according to zero order kinetics, the time takews for the completion of the reaction is
A. $\frac{a}{k}$
B. $\frac{a}{2 k}$
C. $\frac{k}{a}$
D. $\frac{2 k}{a}$

Answer: A

- Watch Video Solution

32. A first order reaction completes $60 \% 20$ minutes. The time required for the completion of 90% of the reaction is approx.
A. 30 minutes
B. 40 minutes
C. 50 minutes
D. 60 minutes

Answer: C

- Watch Video Solution

33. The half life period of a substance is 50 minutes at a certain initial concentration. When the concentration is reduced to one half of the initial value, the half-life period is 25 minutes. Calculate the order of the reaction.
A. Zero
B. First
C. Second
D. Third

Answer: A

34. The half life of a second order process, $2 A \rightarrow$ products, is
A. Independent of initial concentration
B. Directly proportional to initial concentration of A
C. Inversely proportional to initial concentration of A
D. Inversely proportional to square of initial concentration

Answer: C

- Watch Video Solution

35. The rate law for the reaction
$\mathrm{RCl}+\mathrm{NaOH}(a q) \rightarrow \mathrm{ROH}+\mathrm{NaCl}$ is given by
Rate $=k[R C l]$. The rate of the reaction will be
A. Doubled on doubling the concentration of NaOH
B. Halved on reducing the concentration of alkyl halide to one half
C. Decreases on increasing the temperature
D. Unaffected by increasing the temperature

Answer: B

- Watch Video Solution

36. The rate constant for forward and backward reactions of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. Equilibrium constant for the reaction is
A. 7.33
B. 0.733
C. 73.3
D. 733

Answer: A

- Watch Video Solution

37. For a reaction, $A \rightarrow B$, it has been found that the order of the reaction, is zero with respect to A. Which of the following expressions correctly describes the reaction?
A. $K=\frac{2.303}{t} \log \cdot \frac{[A 0]}{[A]}$
B. $[A]_{0}-[A]=K t$
C. $t_{1 / 2}=\frac{0.693}{K}$
D. $t_{1 / 2} \propto \frac{1}{[A]_{0}}$

Answer: B

- Watch Video Solution

38. A sample of a radioactive substance undergoes 80% decomposition in 345 minutes. Its half life is \qquad minutes
A. $\frac{I n 2}{I n 5} \times 345$
B. $\frac{\operatorname{In} 5}{I n 2} \times 345$
C. $\frac{\operatorname{In} 5}{\operatorname{In} 4} \times 345$
D. $\frac{\operatorname{In} 4}{I n 5} \times 345$

Answer: A

- Watch Video Solution

39. 99% at a first order reaction was completed in 32 min . When will 99.9% of the reaction complete.
A. 50 minute
B. 46 minutes
C. 49 minute
D. 48 minute

Answer: D

40. Check, which of the following statements is false?
A. A catalyst does not differentiate between forward and backward reaction
B. Large activation energy is associated with low reaction rate
C. Maxwell's distribution of velocities remains- unaltered under all conditions of temperature and pressure
D. A catalyst does not affect the equilibrium state of reaction

Answer: C

- View Text Solution

41. Arrhenius parameter (A) depends on
A. Steric factor
B. Collision frequency
C. Both (1) \& (2)
D. Neither (1) nor (2)

Answer: C

- Watch Video Solution

42. The chemical reactions in which the reactants require high amount of activation energy are generally
A. Slow
B. Fast
C. Instantaneous
D. Spontaneous

Answer: A

43. For an exothermic chemical process ocuuring in two process occuring in two steps as follows
(i) $A+B \rightarrow X$ (slow)
(ii) $X \rightarrow A B$ (fast)

The progress of reaction can be best described by :

B.
c.

D. None of these

Answer: B

44. A chemical process occurring in two steps, is plotted as

Progress of Reaction

Endothermic
A.

$$
\begin{aligned}
A+B & \rightarrow X(\text { slow }) \\
X & \rightarrow A B(\text { fast })
\end{aligned}
$$

Exothermic
B.

$$
\begin{aligned}
A+B & \rightarrow X(\text { slow }) \\
X & \rightarrow A B(\text { fast })
\end{aligned}
$$

Exothermic
C. $\quad A+B \rightarrow X$ (fast)

$$
X \rightarrow A B \text { (slow) }
$$

Endothermic
D.

$$
\begin{aligned}
A+B & \rightarrow X(\text { fast }) \\
X & \rightarrow A B(\text { slow })
\end{aligned}
$$

- Watch Video Solution

45. For the chemical process energies are plotted in graph.

Progress of reaction

Which of the following is correct?
A. It is the exothermic reaction , $\Delta H=b-a$
B. Threshold energy , $\mathrm{e}=\mathrm{a}+\mathrm{c}$
C. $\left(E_{a}\right)_{f}<\left(E_{a}\right)_{b}$
D. All of these

Answer: D

- Watch Video Solution

46. The rate of a reaction becomes 2 times for every $10^{\circ} \mathrm{C}$ rise in temperature. How many times rate of reaction will be increased when temperature is increased from $30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$?
A. 16
B. 32
C. 64
D. 128

Answer: B

47. The rate of a reaction increases by 2.5 times when the temperature is raised from 300 K to 310 K . If K is the rate constant at 310 K will be equal to
A. K
B. 2 K
C. 2.5 K
D. 3 K

Answer: C

(D) Watch Video Solution

48. The minimum amount of energy that the reacting molecules must possess at the time of collisions in order to produce effective collision is called
A. Activation energy
B. Threshold energy
C. Internal energy
D. Free energy

Answer: B

- Watch Video Solution

49. The rate constant, the activation energy and Arrhenius parameter of a chemical reaction at $25^{\circ} \mathrm{C}$ are $\mathrm{x}, 10 \mathrm{xkJ} / \mathrm{mol}$ and $2 \mathrm{xs}^{-1}$. Value of rate constant as $T \rightarrow \infty$ is
A. $x s^{-1}$
B. $2 x s^{-1}$
C. ∞
D. $10 x s^{-1}$

Answer: B

50. At particular concentration, the half life of the reaction is 100 minutes. When the concentration of the reactant become double half life becomes, 25 minutes, then what will be the order of the reaction ?
A. 1
B. 2
C. 0
D. 3

Answer: D

- Watch Video Solution

Assignment Section B Objective Type Questions

1. Consider the data given below for hypothetical reaction $A \rightarrow X$

Time (s) Rate of the reaction $\left(\mathrm{molL}^{-1} s^{-1}\right)$

0	1.60×10^{-2}
10	1.60×10^{-2}
20	1.60×10^{-2}
30	1.59×10^{-2}

From the above data, the order of reaction is:
A. Zero
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

2. The graph between the $\log \mathrm{K}$ versus $\frac{1}{T}$ is a straight line. The slope of the line is
A. $-\frac{2.303 R}{E_{a}}$
B. $-\frac{E_{a}}{2.303 R}$
C. $\frac{2.303 R}{E_{a}}$
D. $\frac{E_{a}}{2.303 R}$

Answer: B

- Watch Video Solution

3. The temperature coefficient of most of the reactions lies between
A. 1 \& 3
B. 2 \& 3
C. 1 \& 4
D. 2 \& 4

Answer: B

4. If the volume of the vessel in which the reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is occurring is diminished to $1 / 3 \mathrm{rd}$ of its initial volume. The rate of the reaction will be increased by
A. One third
B. Three times
C. Nine times
D. Twenty seven times

Answer: D

- Watch Video Solution

5. For the raction $A+B \rightarrow$ products, it is found that order of A is 2 and the order of B is 3 . In the rate expression when the concentration of both
A and B are doubled the rate will increases by a factor
A. 10
B. 16
C. 32
D. 28

Answer: C

- Watch Video Solution

6. Nitric oxide (NO) reacts with oxygen to produce nitrogen dioxide
$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2(g)}$
If the mechanism of reaction is
$\mathrm{NO}+\mathrm{O}_{2} \stackrel{K}{\Longleftrightarrow} \mathrm{NO}_{3}$ (fast)
$\mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{K_{1}} \mathrm{NO}_{2}+\mathrm{NO}_{2}$ (slow)
then rate law is
A. Rate $=K^{\prime}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$
B. Rate $=K^{\prime}[N O]\left[O_{2}\right]^{2}$
C. Rate $=K^{\prime}[N O]^{2}\left[O_{2}\right]$
D. Rate $=K^{\prime}[N O]^{3}\left[O_{2}\right]$

Answer: C

- Watch Video Solution

7. For the first order reaction, the taken to reduce the initial concentration to a factor of $\frac{1}{4}$ is 10 minutes if the reduction in concentration is carried out to a factor of $\frac{1}{16}$, then time required will be
A. 10 minutes
B. 20 minutes
C. 40 minutes
D. 60 minutes

Answer: B

8. For the reaction,
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
Given : $-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=K_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
$\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=K_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$ and $\frac{d\left[\mathrm{O}_{2}\right]}{d t}=K_{3}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
The relation between K_{1}, K_{2} and K_{3} is
A. $2 K_{1}=K_{2}=4 K_{3}$
B. $K_{1}=K_{2}=K_{3}$
C. $2 K_{1}=4 K_{2}=K_{3}$
D. $K_{1}=2 K_{2}=3 K_{3}$

Answer: A

- Watch Video Solution

9. For the reaction , $N_{2} O_{4}(g) \underset{K_{2}}{\stackrel{K_{1}}{\Longrightarrow}} 2 \mathrm{NO}_{2}(\mathrm{~g})$, the rate of disappearance of NO_{2} will be
A. $K_{1}\left[N_{2} O_{4}\right]-K_{2}\left[\mathrm{NO}_{2}\right]^{2}$
B. $2 K_{1}\left[N_{2} O_{4}\right]-2 K_{2}\left[N O_{2}\right]^{2}$
C. $K_{2}\left[N O_{2}\right]^{2}-K_{1}\left[N_{2} O_{4}\right]$
D. $2 K_{2}\left[N O_{2}\right]^{2}-2 K_{1}\left[N_{2} O_{4}\right]$

Answer: D

- Watch Video Solution

10. For a homogeneous gaseous reaction $A \rightarrow B+C+D$, the initial pressure was P_{0} white pressure after time 't' was P. if $\left(P>P_{0}\right)$ The expression for the constant K is
A. $K=\frac{2.303}{t} \log .\left(\frac{2 P_{0}}{3 P_{0}-P}\right)$
B. $K=\frac{2.303}{t} \log .\left(\frac{3 P_{0}}{2 P_{0}-P}\right)$
C. $K=\frac{2.303}{t} \log .\left(\frac{P_{0}}{P_{0}-P}\right)$
D. $K=\frac{2.303}{t} \log .\left(\frac{P_{0}}{4 P_{0}-P}\right)$

D Watch Video Solution

11. form the gaseous reaction
$2 A+B_{2} \rightarrow 2 A B$, the following rate data were obtained at $300 K$.

	Rate of disappearance of $\mathrm{B}_{2}\left(\mathrm{~mol} \mathrm{~L}^{1} \mathrm{~min}^{1}\right)$	Concentration		
i	1.8×10^{-3}	0.015	0.15	
ii	1.08×10^{-2}	0.090	0.15	
iii	5.4×10^{-3}	0.015	0.45	

Calculate the rate constant for the reaction and the rate of formation of $A B$ when $[A]$ is 0.02 and $\left[B_{2}\right]$ is $0.04 \mathrm{molL}^{-1}$ at 300 K .
A. $0.5 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ litre
B. $0.8 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ litre
C. $1.5 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ litre
D. $2 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ litre

Answer: B

- Watch Video Solution

12. The inversion of a sugar follows first order rate equation which can be followed by noting the change in the rotation of the plane of polarization of light in the polarimeter. If r_{∞}, r_{f} and r_{0} are the rotations at $t=\infty, t=t$, and $t=0$, then the first order reaction can be written as
A. $K=\frac{1}{t} \log _{\circ} \cdot \frac{r_{1}-r_{\infty}}{r_{0}-r_{\infty}}$
B. $K=\frac{1}{t}$ In. $\frac{r_{0}-r_{\infty}}{r_{t}-r_{\infty}}$
C. $K=\frac{1}{t}$ In. $\frac{r_{\infty}-r_{0}}{r_{t}-r_{\infty}}$
D. $K=\frac{1}{t}$ In. $\frac{r_{\infty}-r_{t}}{r_{\infty}-r_{0}}$

Answer: B

- Watch Video Solution

13. Which of the following is correct
A. log. $\frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303}\left[\frac{\Delta T}{T_{1} T_{2}}\right]$
B. For zero order $t_{1 / 2}$ is inversely proportional to initial concentration
C. Catalyst decreases the activation energy
D. All of these

Answer: C

- Watch Video Solution

14. The rate constant for a reaction is 1.5×10^{-7} at $50^{\circ} \mathrm{C}$ and $4.5 \times 10^{7} \mathrm{~s}^{-1}$ at $100^{\circ} \mathrm{C}$. What is the value of activation energy?
A. $2.2 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$
B. $2300 \mathrm{~J} \mathrm{~mol}^{-1}$
C. $2.2 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}$
D. $220 \mathrm{~J} \mathrm{~mol}^{-1}$
15. In Arrhenius equation, $k=A e^{\frac{E_{a}}{R T}}$, A may not be termed as rate constant.
A. When 100% reactant will convert into the product
B. When the temperature becomes infinite.
C. When the fraction of molecule crossing over the energy barrier becomes unity
D. At very low temperature

Answer: D

- View Text Solution

16. The rate constant of the production of $2 \mathrm{~B}(\mathrm{~g})$ by the reaction, $A(g) \xrightarrow{\Delta} 2 B(g)$ is $2.48 \times 10^{-4} s^{-1} \mathrm{~A} 1: 1$ molar ratio of A to B in the reaction mixture is attained after
A. 26.25 minute
B. 27.25 minute
C. 28.25 minute
D. 0 minute

Answer: B

- Watch Video Solution

17. Two substances A and B are present such that $\left[A_{0}\right]=4\left[B_{0}\right.$ and halflife of A is 5 minutes and that of B is 15 minutes. If they start decaying at the same time following first order kinetics after how much time the concentration of both of them would be same ?
A. 15 minute
B. 10 minute
C. 5 minute
D. 12 minute

D Watch Video Solution

18. If the rate of reaction increases by 27 times, when temperature is increased by 30 K , then temperature coefficient of the reaction is
A. 3
B. 2
C. 1
D. 2.5

Answer: A

- Watch Video Solution

19. The reaction $A \rightarrow B$ follows first order kinetics. The time taken for 0.8 mol of A to produce 0.6 mol of B is 1 hr . What is the time taken for
the conversion of 9.0 mol of A to Product 0.675 mol of B ?
A. 1 hour
B. 30 min
C. 15 min
D. 5 min

Answer: A

- Watch Video Solution

20. If
A. 25%
B. 50%
C. 75%
D. 80%

Answer: A

- Watch Video Solution

Assignment Section C Previous Year Questions

1. A first order reaction has a specific reaction rate of $10^{-2} s^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
A. 2.38 .6 second
B. 138.6 second
C. 346.5 second
D. 693.0 second

Answer: B

2. Mechanism of a hypothetical reaction
$X_{2}+Y_{2} \rightarrow 2 X Y$ is given below:
(i) $X_{2} \rightarrow X+X$ (fast)
(ii) $X+Y_{2} \Leftrightarrow X Y+Y$ (slow)
(iii) $X+Y \rightarrow X Y$ (fast)

The overall order of the reaction will be :
A. 1
B. 2
C. 0
D. 1.5

Answer: D

- Watch Video Solution

3. The decomposition of phosphine $\left[\mathrm{PH}_{3}\right]$ on tungsten at low pressure is a first-order reaction. It is because the
A. Rate is proportional to the surface coverage
B. Rate is inversely proportional to the surface coverage
C. Rate in independent of the surface coverage
D. Rate of decomposition is very slow

Answer: A

- Watch Video Solution

4. The addition of a catallystic during a chemical reaction alters which of the following quantities?
A. Activation energy
B. Entropy
C. Internal energy
D. Enthalpy
5. The rate of a first-order reaction is $0.04 \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ at 10 seconds and $0.03 \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ at 20 seconds after initiation of the reaction. The hlaflife period of the reaction is:
A. 54.1 s
B. 24.1 s
C. 34.1 s
D. 44.1 s

Answer: B

- Watch Video Solution

6. The rate constant of the reaction $A \rightarrow B$ is 0.6×10^{-3} mole per second. If the concentration of A is $5 M$, then concentration of B after 20 minutes is:
A. 0.36 M
B. 0.72 M
C. 1.08 M
D. 3.60 M

Answer: B

- Watch Video Solution

7. The activation energy of a reaction can be determine from the slope of which of the following graphs?
A. $\frac{T}{\operatorname{In} \mathrm{~K}}-v s \frac{1}{T}$
B. In K vs T
C. $\frac{\operatorname{In} \mathrm{K}}{T} v s T$
D. $\operatorname{In} \mathrm{K}$ vs $\frac{1}{T}$
8. When initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction is
A. More than zero but less than first
B. Zero
C. First
D. Second

Answer: C

- Watch Video Solution

9. A reaction having equal energies of activation for forward and reverse reactions has

$$
\text { A. } \Delta G=0
$$

B. $\Delta H=0$
C. $\Delta H=\Delta G=\Delta S=0$
D. $\Delta S=0$

Answer: B

- Watch Video Solution

10. What is the activation energy for a reaction if its rate doubles when the temperature is raised from $20^{\circ} \mathrm{C}$ to $35^{\circ} C ?\left(R=8.314 \mathrm{Jmol} \mathrm{K}{ }^{-}\right)$
A. $269 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $34.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $15.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $342 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

11. In a zero order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the rate of the reaction will become
A. 64 times
B. 128 times
C. 256 times
D. 512 times

Answer: D

- Watch Video Solution

12. In a reaction , $A+B \rightarrow$ product rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as
A. Rate $=K[A][B]$
B. Rate $=k[A]^{2}[B]$
C. Rate $=k[A][B]^{2}$
D. Rate $=k[A]^{2}[B]^{2}$

Answer: B

- Watch Video Solution

13. Which one of the following statements for the order of a reaction is incorrect?
A. Order of reaction is always whole number
B. Order can be determined only experimentally
C. Order is not influenced by stoichiometric coefficient of the reactants
D. Order of reaction is sum of power to the concentration terms of reactants to express the rate reaction

Answer: A

- Watch Video Solution

14. The unit of rate constant for a first order reaction
A. $L^{2} \mathrm{~mol}^{-2} s^{-1}$
B. s^{-1}
C. $\mathrm{mol} L^{-1} s^{-1}$
D. $L \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Answer: B

15. The half life of a substance in a certain enzyme catalyzed reaction is 138s. The time required for the concentration of the substance to fall from $1.28 m g L^{-1} \rightarrow 0.04 m g L^{-1}:$
A. 690 s
B. 276 s
C. 414 s
D. 552 s

Answer: A

- Watch Video Solution

16. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$, the value of rate of disappearance of $N_{2} O_{5}$ is given as $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as
A. $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \& 6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
B. $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \& 3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
C. $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \& 3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
D. $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \& 6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Answer: B

- Watch Video Solution

17. For an endothermic reaction, energy of activation is E_{a} and enthalpy of reaction is ΔH (both of these in $\mathrm{kJ} / \mathrm{mol}$). Minimum value of E will be
A. Less than ΔH
B. Equal to ΔH
C. More than ΔH
D. Equal to zero

Answer: C

18. During the kinetic study of the reaction, $2 A+B \rightarrow C+D$, following results were obtained

Run $[A] / m o l L^{-1}$
$[B] \mathrm{molL}^{-1}$ Initial rate formation of $\mathrm{D} / \mathrm{molL}^{-1} \mathrm{mi}$

I	0.1	0.1	6.0×10^{-3}
$I I$	0.3	0.2	7.2×10^{-2}
$I I I$	0.3	0.4	2.88×10^{-1}
$I V$	0.4	0.1	2.40×10^{-2}

Based on the above data which one of the following is correct ?
A. Rate $=K[A]^{2}[B]$
B. Rate $=K[A][B]$
C. Rate $=K[A]^{2}[B]^{2}$
D. Rate $=K[A][B]^{2}$

Answer: D

19. The rate of the reaction, $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$ is given by the rate equation rate $k[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$

The value of the rate constant can be increased by
A. Increasing the temperature
B. Increasing the concentration of NO
C. Increasing the concentration of the Cl_{2}
D. Doing all of these

Answer: A

- Watch Video Solution

20. For the reaction $\quad N_{2}+3 H_{2} \rightarrow 2 \mathrm{NH}_{3}$
$\frac{d\left[N H_{3}\right]}{d t}=2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$, the value of $\frac{-d\left[H_{2}\right]}{d t}$ would be
A. $4 \times 10^{-(4)} \mathrm{mol} \mathrm{L}^{-1} s^{-1}$
B. $6 \times 10^{-(4)} \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
C. $1 \times 10^{-(4)} \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
D. $3 \times 10^{-(4)} \mathrm{mol} \mathrm{L}^{-1} s^{-1}$

Answer: D

- Watch Video Solution

21. In the reaction
$\mathrm{BrO}^{-3}(a q)+5 \mathrm{Br}^{-}(a q)+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}(1)+3 \mathrm{H}_{2} \mathrm{O}(1)$
The rate of appearance of bromine $\left(B r_{2}\right)$ is related to rate of disapperance of bromide ions as folllwoing :
A. $\frac{d\left(B r_{2}\right)}{d t}=-\frac{5}{3} \frac{d\left(B r^{-}\right)}{d t}$
B. $\frac{d\left(B r_{2}\right)}{d t}=\frac{5}{3} \frac{d\left(B r^{-}\right)}{d t}$
C. $\frac{d\left(B r_{2}\right)}{d t}=\frac{3}{5} \frac{d\left(B r^{-}\right)}{d t}$
D. $\frac{d\left(B r_{2}\right)}{d t}=-\frac{3}{5} \frac{d\left(B r^{-}\right)}{d t}$
22. Half life period of a first - order reaction is 1396 seconds. The specific rate constant of the reaction is
A. $0.5 \times 10^{-2} s^{-1}$
B. $4.9 \times 10^{-4} s^{-1}$
C. $5.0 \times 10^{-2} s^{-1}$
D. $5.0 \times 10^{-3} s^{-1}$

Answer: B

- Watch Video Solution

23. For the reaction $A+B$ products, it is observed that:
(1) on doubling the initial concentration of A only, the rate of reaction is also doubled and
(2) on doubling te initial concentration of both A and B, there is a
charge by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by
A. Rate $=K[A][B]^{2}$
B. Rate $=K[A]^{2}[B]^{2}$
C. Rate $=k[A][B]$
D. Rate $=K[A]^{2}[B]$

Answer: A

- Watch Video Solution

24. The rate constant k_{1} and k_{2} for two different reactions are $10^{16} e^{-2000 / T}$ and $10^{15} e^{-1000 / T}$, respectively. The temperature at which $k_{1}=k_{2}$ is
A. $\frac{1000}{2.303} K$
B. 1000 K
C. $\frac{2000}{2.303} K$
D. 2000 K

Answer: A

- Watch Video Solution

25. The bromination of acetone that occurs in acid solution is represented by

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(a q .)+\mathrm{Br}_{2}(a q .) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q .)+\mathrm{H}^{+}(a q .)+\mathrm{Br}
$$

These kinetic data were obtained for given reaction concentrations :

Initial concentrations (M)			Initial rate of disappearance of $\mathrm{Br}_{2}, \mathrm{M} \mathrm{s}^{-1}$
$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$	$\left[\mathrm{Br}_{2}\right]$	$\left[\mathbf{H}^{+}\right]$	
0.30	0.05	0.05	5.7×10^{-5}
0.30	0.10	0.05	5.7×10^{-5}
0.30	0.10	0.10	1.2×10^{-4}
0.40	0.05	0.20	3.1×10^{-4}

Based on these data, rate equations is :
A. Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]$
B. Rate $k=\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
C. Rate

$$
\left[C H_{3}-C-C H_{3}\right]\left[B r_{2}\right]
$$

D. Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]^{2}$

Answer: B

- Watch Video Solution

26. In a first order reaction, $A \rightarrow B$, if K is rate constant and initial concentration of the reactant A is 0.7 M then half - life is
A. $\frac{\operatorname{In} 2}{K}$
B. $\frac{0.693}{0.5 K}$
C. $\frac{\log 2}{K}$
D. $\frac{\log 2}{K \sqrt{0.5}}$

Answer: A

27. The reaction obey I order with respect to H_{2} and ICl both.
$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl}(\mathrm{g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$
Which of the following mechanism is in consistent with the given fact ?
Mechanism A: $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Cl} \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$
Mechanism B: (i) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{g}) \xrightarrow{\text { slow }} \mathrm{HCl}(\mathrm{g})+\mathrm{HI}(\mathrm{g})$
(ii) $\mathrm{HI}(g)+\operatorname{ICl}(g) \rightarrow \mathrm{HCl}(g)+I_{2}$
A. A only
B. B only
C. Both (1) and (2)
D. Neither (1) nor (2)

Answer: B

- Watch Video Solution

28. If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately ($\log 4=0.60 \log$

$$
5=0.69)
$$

A. 40 minutes
B. 50 minutes
C. 45 minutes
D. 60 minutes

Answer: C

- Watch Video Solution

29. for the reaction, $2 A+B \rightarrow 3 C+D$, which of the following does not express the reaction rate
A. $-\frac{d[C]}{3 d t}$
B. $-\frac{d[B]}{d t}$
C. $\frac{d[D]}{d t}$
D. $-\frac{d[A]}{2 d t}$

- Watch Video Solution

30. For this reaction
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
The relation between $\frac{d\left(\mathrm{NH}_{3}\right)}{d t}$ and $-\frac{d\left(\mathrm{H}_{2}\right)}{d t}$ is :-
A. $\frac{d\left[N H_{3}\right]}{d t}=-\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}$
B. $+\frac{d\left[N H_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[H_{2}\right]}{d t}$
C. $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{3}{2} \frac{d\left[H_{2}\right]}{d t}$
D. $\frac{d\left[N H_{3}\right]}{d t}=\frac{d\left[H_{2}\right]}{d t}$

Answer: B

D Watch Video Solution

31. For a first order reaction $A \rightarrow B$, the reaction rate at reactant concentration of 0.01 M is found to be $2.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. The half life period of the reaction is
A. 220 s
B. 30 s
C. 300 s
D. 347 s

Answer: D

- Watch Video Solution

32. A nuclide of an alkaine earth metal undergoes radioactive deacy by emission of the $\alpha-$ particles in sucession. The group of the periodic tablle to which the resulting daughter element would belong to:
A. Group 14
B. Group 16
C. Group 4
D. Group 6

Answer: A

D Watch Video Solution

33. The rate of reaction between two A and B decreases by factor 4 if the concentration of reactant B is doubled. The order of this reaction with respect to B is
A. -1
B. -2
C. 1
D. 2

Answer: B

34. A reaction is 50% complete in 2 hours and 75% complete in 4 hours the order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

35. Activation energy (E_{a}) and rate constants (k_{1} and k_{2}) of a chemical reaction at two different temperature (T_{1} and T_{2}) are related by
A. $\ln \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
B. $\ln \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
C. $\ln \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}+\frac{1}{T_{1}}\right)$
D. $\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$

Answer: B::D

- Watch Video Solution

36. The half life of 2 g sample of radioactive nuclide ' X ' is 15 min . The half life time of 1 g sample of X is
A. 7.5 min
B. 15 min
C. 22.5 min
D. 30 min

Answer: B

37. The rate of reaction.
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
can be written in three ways.
$\frac{-d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]$
$\frac{d\left[N_{2} O_{5}\right]}{d t}=\left(k^{\prime}\left[N_{2} O_{5}\right]\right)$
$\frac{d\left[O_{2}\right]}{d t}=\left(k^{\prime}\left[N_{2} O_{5}\right]\right)$
The relation between k and k^{\prime} are:
A. $k^{\prime}=2 k, k^{\prime \prime}=2 k$
B. $k^{\prime}=k, k^{\prime \prime}=k$
C. $k^{\prime}=2 k, k^{\prime \prime}=k$
D. $k^{\prime}=2 k, k^{\prime \prime}=\frac{k}{2}$

Answer: D

38. For the following reaction $C_{6} H_{12}(a q)+H_{2}(g) \Leftrightarrow C_{6} H_{14} O_{6}(a q)$

Which one of the following is not affected by the addition of catalyst ?
A. Rate of forward reaction
B. Rate of backward reaction
C. Time required to reach the equilibrium
D. Spontaneity

Answer: D

- Watch Video Solution

39. A chemical reaction proceeds into the following steps

Step I, $2 A \Leftrightarrow X$ fast
Step II, $X+B \rightarrow Y$ slow
Step III, $Y+B \Leftrightarrow$ product fast
The rate law for the overall reaction is
A. Rate $=k[A]^{2}$
B. Rate $=k[B]^{2}$
C. Rate $=k[A][B]$
D. Rate $=k[A]^{2}[B]$

Answer: D

- Watch Video Solution

40. The data for the reaction: $A+B \xrightarrow{k} C$.
$\left|\begin{array}{llll}\text { Experiment } & {[A]_{0}} & {[B]_{0}} & \text { Initial rate } \\ 1 & 0.012 & 0.035 & 0.10 \\ 2 & 0.024 & 0.070 & 0.80 \\ 3 & 0.024 & 0.035 & 0.10 \\ 4 & 0.012 & 0.070 & 0.80\end{array}\right|$

The rate law corresponding to the above data is
(a) Rate $=k[B]^{3}$, (b) Rate $=k[B]^{4}$
(c) Rate $=k[A][B]^{3}$, (d) Rate $=k[A]^{2}[B]^{2}$
A. Rate $=k[A][B]^{3}$
B. Rate $=k[A]^{2}[B]^{2}$
C. Rate $=k[B]^{3}$
D. Rate $=k[B]^{4}$

Answer: C

- Watch Video Solution

41. Half - life for radioactive. ${ }^{14} C$ is 5760 years. In how many years 200 mg of. ${ }^{14} C$ will be reduced to 25 mg ?
A. 17280 years
B. 23040 years
C. 5760 years
D. 11524 years

Answer: D

42. A chemical reaction has catalyst X. Hence X
A. Reduces enthalpy of the reaction
B. Does not affect equilibrium constant of reaction
C. Decreases rate constant of the reaction
D. Increases activation energy of the reaction

Answer: B

- Watch Video Solution

43. The given elementary reaction $2 \mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \rightarrow 2 \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4}$ is an example of
A. Third order reaction
B. First order reaction
C. Second order reaction
D. None of these

Answer: A

- Watch Video Solution

44. Carbon 14 dating method is based on the fact that
A. Ratio of carbon - 14 and carbon -12 is constant
B. Carbon - 14 is the same in all objects
C. Carbon -14 is highly insoluble
D. All of these

Answer: A

- Watch Video Solution

45. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the rate of reaction is expressed as
A. $\frac{\Delta\left[H_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta\left[l_{2}\right]}{\Delta t}=-\frac{\Delta[H l]}{\Delta t}$
B. $-\frac{\Delta\left[l_{2}\right]}{\Delta t}=\frac{\Delta\left[H_{2}\right]}{\Delta t}-\frac{1}{2} \frac{\Delta[H l]}{\Delta t}$
C. $-\frac{\Delta\left[l_{2}\right]}{\Delta t}=\frac{\Delta\left[H_{2}\right]}{\Delta t}-\frac{\Delta[H l]}{2 \Delta t}$
D. None of these

Answer: D

- Watch Video Solution

46. The experiment data for the reaction $2 A+B_{2} \rightarrow 2 A B$ is

Experiment	$[A] M$	$\left[B_{2}\right] M$	Initial rate $($
I	0.50	0.5	1.6×10^{-4}
$I I$	0.50	1.0	3.2×10^{-4}
III	1.00	1.0	3.2×10^{-4}

Write the most probable rate equation for the reacting giving reason for you answer.
A. rate $=K[A]^{2}[B]^{2}$
B. rate $=K[A]^{2}[B]$
C. rate $=k\left[B_{2}\right]$
D. rate $=k\left[B_{2}\right]^{2}$

Answer: C

- Watch Video Solution

47. Activation energy of a chemical reaction can be determined by
A. Evaluating rate constants at two different temperatures
B. Evaluating velocities of reaction at two different temperature
C. Evaluating rate constant at standard
D. Changing concentration of reactants

Answer: A

48. For a first order reaction, the half-life period is independent of
A. First power of final concentration
B. Cube root of initial concentration
C. Initial concentration
D. Square root of final concentration

Answer: C

- Watch Video Solution

49. The half - life of ${ }_{6} C^{14}$, if its λ is 2.31×10^{-4} year $^{-1}$ is
A. 3.5×10^{4} years
B. 3×10^{3} years
C. 2×10^{2} years
D. 4×10^{3} years

Answer: B

- Watch Video Solution

50. A 300 gram radioactive sample has life of 3 hour's After 18 hour's remaining quantity will be:
A. 4.68 gram
B. 2.34 gram
C. 3.34 gram
D. 9.37 gram

Answer: A

- Watch Video Solution

51. Enzymes enhance the rate of reaction by
A. By lowering activation energy
B. By changing activation energy
C. By changing equilibrium constant
D. By forming enzyme substrate complex

Answer: A

- Watch Video Solution

52. For the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ rate and rate constant are $1.02 \times 10^{-4} M \sec ^{-1} \quad$ and $\quad 3.4 \times 10^{-5} \mathrm{sec}^{-1} \quad$ respectively, the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$, at that time will be
A. 1.732
B. 3
C. 1.02×10^{-4}
D. 3.4×10^{5}

Answer: B

- Watch Video Solution

53. A human body required the 0.01 M activity of radioactive substance after 24 h . Half life of radioactive substance is 6 h . Then injection of maximum activity of radioactie substance that can be injected will be
A. 0.08
B. 0.04
C. 0.16
D. 0.32

Answer: C

- Watch Video Solution

54. When a biochemical reaction is carried out in laboratory from outside of human body in the absence of enzyme, the rate of reaction obtained is 10^{-6} times, then activation energy of the reaction in the presence of enzyme is
A. $\frac{6}{R T}$
B. P is required
C. Different from E_{a} obtained in laboratory
D. Can't say anything

Answer: C

- Watch Video Solution

55. $2 A+2 C \rightarrow 2 B$, rate of reaction $\frac{+d(B)}{d t}$ is equal to
A. $-\frac{3}{2} \frac{d(A)}{d t}$
B. $-\frac{d(A)}{d t}$
C. $-\frac{1}{3} \frac{d(A)}{d t}$
D. $+2 \frac{d(A)}{d t}$

Answer: B

- Watch Video Solution

56. $2 A \rightarrow B+C$

It would be a zero order reaction when
A. The rate of reaction is proportional to sequare of conc of A
B. The rate of reaction remains same at any conc of A
C. The rate remains unchanged at any conc of B and C
D. The rate of reaction doubles if conc of B is increased to double

Answer: B

- Watch Video Solution

57. The activation energy for a simple chemical reaction $A \rightarrow B$ is E_{a} in the forward reaction: The activation of the reverse reaction
A. Is negative of E_{a}
B. Is always less than E_{a}
C. Can be less than or more than E_{a}
D. Is always double of E_{a}

Answer: C

- Watch Video Solution

58. The reaction $A \rightarrow B$ follows first order reaction. The time taken for 0.8 mole of A to produce 0.6 mole of B is 1 hour. What is the time taken for conversion of 0.9 mole of A to produce 0.675 moles of B ?
A. 1 hour
B. 0.5 hour
C. 0.25 hour
D. 2 hour

Answer: A

- Watch Video Solution

59. If the rate of the reaction is equal to the rate constant, the order of the reaction is
A. 1
B. 2
C. 0
D. 3

Answer: A

60. The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $k=A e^{-E_{a} / R T}$) Activation energy $\left(E_{a}\right)$ of the reaction can be calculate by plotting
A. kVs T
B. $\mathrm{kVs} \frac{1}{\log T}$
C. $\log \mathrm{k}$ Vs $\frac{1}{T}$
D. $\log \mathrm{k}$ Vs T

Answer: C

- Watch Video Solution

61. The radioisotope, tritium $\left({ }_{1}^{3} H\right)$ has a half-life of 12.3 years. If the initial amount of tritium is 32 mg , how many milligrams of it would remain after 49.2 years ?
A. 1 mg
B. 2 mg
C. 4 mg
D. 8 mg

Answer: B

- Watch Video Solution

62. The rate of a first order reaction is 1.5×10^{-2} and $L^{-1} \min ^{-1}$ at 0.8
M concentration of the reactant. The half - life of the reaction is
A. 0.383 min
B. 36.97 min
C. 8.73 min
D. 7.53 min

Answer: B

Assignment Section D Assertion Reason Type Questions

1. A: Rate of reaction depends upon the concentration of the reactants. R : The order of reaction can be negative with respect to substance present in the reaction.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: B

- Watch Video Solution

2. A : $\mathrm{NO}_{2}+\mathrm{CO} \xrightarrow{\text { Slow }} \mathrm{CO}_{2}+\mathrm{NO}$

Rate $=K\left[\mathrm{NO}_{2}\right]^{2}$
R : Rate does not depend upon [CO] because it is involved in the first step.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: D

- Watch Video Solution

3. A : If temperature does not affect the rate of reaction , $E_{a}=0$

R : Lesser the activation energy, slower will be the reaction.
A. If both Assertion \& Reason are true and the reason is the correct
explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: C

D Watch Video Solution

4. A : The rate constant of first order reaction is used to calculate population if growth rate is given.

R : The rate constant is independent of concentration for first order reaction.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: B

D Watch Video Solution

5. A : A positive catalyst increases the rate of reaction .

R : A positive catalyst alters reaction mechanism and decreases activation energy.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: A

- Watch Video Solution

6. A : The molecularity of reaction can never be fractional.

R: Molecularity is the number of molecules needed to form activated complex, which will never be fractional.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: A

7. A : The decomposition of gaseous $\mathrm{N}_{2} \mathrm{O}_{5}$ follows first order kinetics.

R : The plot of log of its partial pressure versus time is linear with slope,
$-\frac{k}{2.303}$ and having intercept equal to log P .
A. If both Assertion \& Reason are true and the reason is the correct
explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: A

- Watch Video Solution

8. Assertion: Order and molecularity of a reaction are always equal.

Reason: Complex reactions take place in steps and slowest step determines the reaction order.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: D

- Watch Video Solution

9. A: Rate constant increases with temperature.

R: Rate of exothermic reaction increases with temperature.
A. If both Assertion \& Reason are true and the reason is the correct
explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: B

D Watch Video Solution

10. A : Hydrolysis of ester in acidic medium follows first order kinetics.

R : Hydrolysis of ester is independent of the concentration of acid used.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: A

D Watch Video Solution

11. A : The rate constant of zero order reaction is equal to rate of reaction. $\mathrm{R}: t_{1 / 2}$ for zero order reaction is directly proportional to initial concentration.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: B

- Watch Video Solution

12. A : For exothermic reaction,
$\Delta H=E_{a}($ forward $)-E_{a}($ backward $)$
R : The value of activation energy for forward direction is less than activation energy for backward reaction.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: A

- Watch Video Solution

13. A: Arrhenius parameter
(A) $=P$ (steric factor) $\times z$ (collision frequency)
R : On increasing temperature, the value of A increases.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements, then mark (4)

Answer: C

14. A : In presence of +ve catalyst, activation energy \& threshold energy decreases.

R : Minimum energy required to permit a reaction is known as threshold energy.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: B

- Watch Video Solution

15. A : when temperature becomes ∞ then the value of rate constant is maximum.
$\mathrm{R}: \mathrm{a}$ is also known as maximum rate constant.
A. If both Assertion \& Reason are true and the reason is the correct explanation of the assertion , then mark (1).
B. If both Assertion \& Reason are true but the reason is not the correct explanation of the assertion , then mark (2).
C. If Assertion is true statement but Reason is false, then mark (3).
D. If both Assertion and Reason are false statements , then mark (4)

Answer: B

- Watch Video Solution

