©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

THERMODYNAMICS

Mcqs

1. Zeroth law of thermodynamics gives the
concept of
A. internal energy
B. heat content
C. pressure
D. temperature

Answer: D

D Watch Video Solution

2. Two system in thermal equilibrium with a
third system separately are in thermal
equilibrium with each other. The above statement is
A. First law of thermaodynamics
B. Second law of thermodynamics
C. Third law of thermodynamics
D. Zeroth law of thermodynamics

Answer: D

D Watch Video Solution
3. Internal energy of an ideal gas depends upon
a) Temperature only b) volume only c) both
volume and temperature d) neither volume nor
temperature
A. Temperature only
B. volume only
C. both voume and temperature
D. neither volume no temperature

Answer: A
4. An ideal gas undergoing a change of state from A to B through four different paths $I, I I, I I$ and IV as shown in the P-V diagram that lead to the same change of state tyhen the change in internal energy is

A. same in I and II but not in III and IV

B. same in III and IV but not I I and II

C. same in I, II and III but not I IV

D. same in all the four cases

Answer: D

D Watch Video Solution

5. Which of the following is not a path function
A. ΔQ
B. $\Delta Q+\Delta W$
C. ΔW
D. $\Delta Q-\Delta W$

Answer: D

D Watch Video Solution

6. Air is expanded from 50 litres to 150 litres at

2 atomospheric pressure . The external work done is (Give , 1 atm $=10^{5} \mathrm{~N}^{-} 2$)
A. $2 \times 10^{-8} J$
B. $2 \times 10^{4} J$
C. 200 J
D. 2000 J

Answer: B

(D) Watch Video Solution

7. An electric heater supplies heat to a system at a rate of 120 W . if system performs work at a
rate of $80 \mathrm{~J} S^{-1}$, the rate of increase in internal energy is a) $30 \mathrm{~J} / \mathrm{S}$ b) $40 \mathrm{~J} / \mathrm{S}$ c) $50 \mathrm{~J} / \mathrm{S}$ d) $60 \mathrm{~J} / \mathrm{S}$
A. $30 J S^{-1}$
B. $40 \mathrm{JS}{ }^{-1}$
C. $50 \mathrm{JS}^{-1}$
D. $60 \mathrm{JS}{ }^{-1}$

Answer: B

D Watch Video Solution
8.1 kg of water is heated from $40^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}$, If
its volume remains constant, then the change
in internal energy is (specific heat of water $=$
$4148 \mathrm{~J} \mathrm{~kg}^{-1 K^{-1}}$ a) $2.44 \times 10^{\wedge} 5 \mathrm{~J}$ b) $1.62 \times 10^{\wedge} 5 \mathrm{~J}$ c)
$1.24 \times 10^{\wedge} 5 \mathrm{~J}$ d) $2.62 \times 10^{\wedge} 5 \mathrm{~J}$
A. $2.44 \times 10^{5} J$
B. $1.62 \times 10^{5} \mathrm{~J}$
C. $1.24 \times \times 10^{5} J$
D. $2.62 \times 10^{5} J$

- Watch Video Solution

9. A system goes from A to B by two different paths in the P-V diagram as shown in figure Heat given to the system in path 1 is 1100 j , the work done by the system along path 1 is more than path 2 by 150 J. The heat exchanged by the system in path 2 is

A. 800 J
B. 750 J
C. 1050 J
D. 950 J

Answer: D

D Watch Video Solution

10. A geyser heats water flowing at the rate of 4
litre per minute from 30° to $85^{\circ} \mathrm{C}$. If the geyser
operates on a gas burner then the amount of heat used per minute is
A. $9.24 \times 10^{5} J$
B. $6.24 \times 10^{7} J$
C. $9.24 \times 10^{7} J$
D. $6.24 \times 10^{5} \mathrm{~J}$

Answer: A

D Watch Video Solution
11. Mayer's kformula for the relation between
two principla specific heats C_{p} and C_{V} of a gas
is given by

$$
\begin{aligned}
& \text { A. } C_{V}-C_{P}=R \\
& \text { B. } \frac{C_{P}}{C_{V}}=R \\
& \text { C. } C_{P}-C_{V}=R \\
& \text { D. } \frac{C_{V}}{C_{P}}=R
\end{aligned}
$$

Answer: C

12. The ratio $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. Its molecular weight is M. Its specific heat capacity at constant pressure is

$$
\begin{aligned}
& \text { A. } \frac{R}{\gamma-1} \\
& \text { B. } \frac{\gamma R}{\gamma-1} \\
& \text { C. } \frac{\gamma R}{M}(\gamma-1) \\
& \text { D. } \frac{\gamma R M}{\gamma-1}
\end{aligned}
$$

Answer: C

13. Which one of the following graphs

represents variation of specific heat capacity of

water with temperature?

(a)

(b)

(c)

C.

Answer: A

- Watch Video Solution

14. An ideal gas having molar specific heat capaicty at constatnt volume is $\frac{3}{2} R$, the molar specific heat capacities at constant pressure is
A. $\frac{1}{2} R$
B. $\frac{5}{2} R$
C. $\frac{7}{2} R$
D. $\frac{9}{2} R$

Answer: B

D Watch Video Solution

15. For nitrogen $C_{p}-C_{V}=x$ and for argon
$C_{P}-C_{V}=\mathrm{Y}$. The relation between x and y is
given by a) $x=y b) x=7 y$ c) $y=7 x d) x=1 / 2 y$
A. $x=y$
B. $x=7 y$
C. $y=7 x$
D. $x=\frac{1}{2} y$

D Watch Video Solution

16. Two moles of oxygen are mixed with eight moles of helium. The effective specific heat of
the mixture at constant volume is a) 1.3 Rb) 1.4
$\mathrm{R} \mathrm{c)} 1.7 \mathrm{R} \mathrm{d}) 1.9 \mathrm{R}$
A. 1.3 R
B. 1.4 R
C. 1.7 R

D. 1.9 R

Answer: C

- Watch Video Solution

17. One mole of an ideal monoatomic gas at temperature T_{0} expands slowly according to the law $\frac{p}{V}=$ constant. If the final temperature is $2 T_{0}$, heat supplied to the gas is
A. a. $2 R T_{0}$
B. b. $R T_{0}$

> C. c. $\frac{3}{2} R T_{0}$
> D. d. $\frac{1}{2} R T_{0}$

Answer: A

D Watch Video Solution

18. The amount of heat supplied to $4 \times 10^{-2} \mathrm{~kg}$ of nitrogen at room temperature to rise its temperature by $50^{\circ} \mathrm{C}$ at constant pressure is
(Molecular mass of nitrogen is 28 and
$R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$)
A. $2.08 K J$
B. $3.08 K J$
C. $4.08 K J$
D. 5.08 KJ

Answer: A

D Watch Video Solution

19. A sample of ideal gas $(\gamma=1.4)$ is heated at constant pressure. If an amount of 100 J heat is
supplied to the gas, the work done by the gas is
a) 28.57 J b) 56.54 J c) 38.92 J d$) 65.38 \mathrm{~J}$
A. 28.57 J
B. 56.54 J
C. 38.92 J
D. 65.38 J

Answer: A

D Watch Video Solution
20. What amount of heat must be supplied to 35 g of oxygen at room temperature to raise its temperature by $80^{\circ} \mathrm{C}$ at constant volume (molecular mass of oxygen is 32 and $R=8.3 \mathrm{j}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$) a) $\left.\left.1.52 \mathrm{KJ} \mathrm{b)} 3.23 \mathrm{KJ} \mathrm{c}\right) 1.81 \mathrm{KJ} \mathrm{d}\right) 1.62$

KJ
A. 1.52 KJ
B. 3.23 KJ
C. 1.81 KJ
D. 1.62 KJ

Answer: C

D Watch Video Solution

21. Heat is supplied to a diatomic gas at constant pressure.

The ratio of $\Delta Q: \Delta U: \Delta W$ is a) 5: 3: 2 b) 7: 5: 2
c) 2: 3: 5 d) 2: 5: 7
A. $5: 3: 2$
B. 7:5:2
C. $2: 3: 5$

D. $2: 5: 7$

Answer: B

- Watch Video Solution

22. Calculate the change in internal energy when 5 g of air is heated from 0° to $4^{\circ} C$. The specific heat of air at constant volume is
$0.172 \mathrm{calg}^{-1} .^{\circ} \mathrm{C}^{-1}$. a) 28.8 J b) 14.4 J c) 7.2 J d$)$
3.51 J
A. 28.8 J
B. 14.4 J
C. 7.2 J
D. 3.51 J

Answer: B

D Watch Video Solution

23. If $R=$ universal gas constant, the amount of heat needed to raise the temperature the temperature of 2 mol of an ideal monatomic
gas from $273 K$ to $373 K$ when no work is done is
A. a. 100 R
B. b. 150 R
C. c. 300 R
D. d. 500 R

Answer: C

D Watch Video Solution
24. Which one of the following is not a thermodynamical coordinate?
A. a.Gas constant(R)
B. b.Pressure (P)
C. c.Volume(V)
D. d.Temperature (T)

Answer: A

- Watch Video Solution

25. Which is an intensive property?
A. 1.Volume
B. 2.Mass
C. 3.Refractive index
D. 4.Weight

Answer: C

D Watch Video Solution
26. Which of the following process is correct for given P-V diagram.

A. Adiabatic process
B. Isothermal process
C. Isobaric process
D. Isochoric process

Answer: C

- Watch Video Solution

27. Match the column I with columnII

A. (A)-(s),(B)-(R),(C)-(q),(D)-(p)
B. (A)-(p),(B)-(s),(C)-(r),(D)-(q)
C. (A)-(q),(B)-(r),(C)-(p),(D)-(s)
D. (A)-(r),(B)-(p),(C)-(q),(D)-(s)

Answer: A

- View Text Solution

28. The given P-V diagram expansion of a gas which one of the following statement is true?

A.1. A is isothermal and B is adiabatic process
B.2. A is adiabatic and B is isothermal
process
C. 3. Both are isothermal process
D. 4. Both are adiabatic process

Answer: A

29. The possibility of increase in the temperature of gas without adding heat to it happens in
A. 1.Adiabatic exapansion
B. 2.isothermal expansion
C. 3.adiabatic compression
D. 4.isothermal compression

Answer: C

30. The ideal gas equation for an adiabatic process is
A. $P V^{\gamma}=$ constant
B. $T V^{\gamma+1}=$ constant
C. $P^{\gamma-1}=$ constant
D. $P^{\gamma+1} \mathrm{~T}=$ constant

Answer: A
(Watch Video Solution
31. An ideal gas undergoes isothermal process
from some initial state i to final state f. Choose the correct alternatives.
A. 1. $d U=d Q$
B. 2. $d U=-d W$
C. $3 . \mathrm{dU}=0$
D. $4 . d U=d W$

Answer: C
32. The isothermal diagram of a gas at three different temperatures T_{1}, T_{2} and T_{3}, is show in the given figure .Then

A. a. $T_{1}<T_{2}<T$
B. b. $T_{1}<T_{2}>T_{3}$

$$
\text { C. с. } T_{1}>T_{2}>T_{3}
$$

$$
\text { D. d. } T_{1}>T_{2}<T_{3}
$$

Answer: C

D Watch Video Solution

33. The relation between the slope of isothemal curve and slope of adiabatic curve
A. a. slope of adiabatic curve $=\gamma$ times slope of isotharmal curve
B. b.slope of isothermal curve $=\gamma$ times slope
of adiabatic curve
C. c.slope of adiabatic curve $=\gamma^{2}$ times slope of isothermal curve
D. d. slope of isothermal curve $=\gamma^{2}$ times
slope of adiabatic curve

Answer: A

Watch Video Solution

34. Consider a cycle followed by an engine,
(figure)

1 to 2 is isothermal 2 to 3 is adiabatic 3 to 1 is
adiabatic
such a process does not exist because

A. heat is completely converted to

 mechanical energy in such a processwhich is not possible
B. mechanical energy is completely
converted to heat in this process, which is
not possible
C. curves representing two adiabatic processes can intersect
D. curves representing an adiabatic process

D Watch Video Solution

35. Which of the following P-V diagram represent the graph of isometric process?
A.
(a)

B.

C.
(c)

D.
 (d)

Answer: C

D Watch Video Solution

36. A gas is expanded form volume $V_{0} \rightarrow 2 V_{0}$ under three different processes as shown in the figure. Process 1 is isobaric process process 2 is isothermal and and process 3 is adiabatic .

Let $\Delta U_{1}, \Delta U_{2}$ and ΔU_{3} be the change in internal energy of the gas in these three
processes then

A. $\Delta U_{1}>\Delta U_{2}>\Delta U_{3}$
B. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$
C. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$
D. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$

Answer: A

D Watch Video Solution

37. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same velocity

V . The mass of the gas in A is m_{A}, and that in B
is m_{B}. The gas in each cylinder is now allowed
to expand isothermally to the same final volume 2 V . The changes in the pressure in A and B are found to be ΔP and $1.5 \Delta P$ respectively. Then

$$
\text { A. } 4 m_{A}=9 m_{B}
$$

B. $3 m_{A}=3 m_{B}$
C. $3 m_{A}=2 m_{B}$
D. $9 m_{A}=4 m_{B}$

Answer: C

D Watch Video Solution

38. Two different adiabatic parts for the same gas intersect two isothermals at T_{1} and T_2 as shown in P-V diagram. Then the ratio of $\frac{V_{a}}{V_{b}}$
will be

A. a. $\frac{V_{c}}{V_{d}}$
B. b. $\frac{V_{d}}{V_{c}}$
C. c. $\gamma \frac{V_{d}}{V_{c}}$
D. d. $\frac{1}{\gamma} \frac{V_{d}}{V_{c}}$

Answer: B

- Watch Video Solution

39. A heat insulating cylinder with a movable
piston contins 5 moles of hydrogen at standard temperature and prssure if the gas is cmpressed to quarter of its original volume
then the pressure of the gas is increased by
$(\gamma=1.4)$
A. $(2)^{1.4}$
B. $(3)^{1.4}$
C. $(4)^{1.4}$
D. $(5)^{1.4}$

Answer: C

Watch Video Solution

40. One mole of an ideal gas goes from an initial state A to final state B via two processs :

It first undergoes isothermal expansion from volume V to $3 V$ and then its volume is reduced
from $3 V$ to V at constant pressure. The correct
$P-V$ diagram representing the two process

in (figure)

- Watch Video Solution

41. The P-V diagram of path followed by one mole of perfect gas in a cylindrical container is shown in figure, the work done when the gas is taken from state A to state B is

$$
\begin{aligned}
& \text { A. } n R T \operatorname{In} \frac{V_{2}}{V_{1}} \\
& \text { B. } n R T \operatorname{In} \frac{V_{1}}{V_{2}} \\
& \text { C. } 2 n R T\left(\left(V_{1}\right)^{-\frac{1}{2}}-\left(\left(V_{2}\right)^{-\frac{1}{2}}\right)\right. \\
& \text { D. } 2 n R T \operatorname{In} \frac{V_{1}}{V_{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

42. An ideal gs at pressure P is adiabatically
compressed so that its density becomes n
times the initial vlaue The final pressure of the gas will be $\left(\gamma=\frac{C_{P}}{C_{V}}\right)$
A. $n \gamma P$
B. $(n-\gamma) P$
C. $n(\gamma-1) P$
D. $n(1-\gamma) P$

Answer: A

D Watch Video Solution
43. The work done in adiabatic process is given
by

$$
\begin{aligned}
& \text { A. } \frac{n R\left(T_{1}\right)-T_{2}}{\gamma} \\
& \text { B. } \frac{n R\left(T_{1}\right)-T_{2}}{\gamma-1} \\
& \text { C. }\left(n R\left(T_{1}\right)-T_{2}\right) R \\
& \text { D. } \frac{\gamma\left(T_{1}\right)-T_{2} R}{n}
\end{aligned}
$$

Answer: B

- View Text Solution

44. The cycle in the figure followed by an engine made of an ideal gas in ca cylinder with a piston, the heat exchanged by the engine with the surroundings for adiabatic section $A B$ of cycle is $\left(C_{V}=\frac{3}{2} R\right)$

A. $\frac{3}{2}\left(P_{B}-P_{A}\right) V_{A}$

$$
\begin{aligned}
& \text { B. } \frac{5}{2} P_{A}\left(V_{A}-V_{B}\right) \\
& \text { C. } \frac{1}{2}\left(P_{A}-P_{B}\right)\left(V_{A}-V_{B}\right) \\
& \text { D. Zero }
\end{aligned}
$$

Answer: D

View Text Solution

45. The initial state of certain gas $\left(P_{i} V_{i} T_{i}\right)$.lt undergoes expansion till its volume becomes
V_{f} at constant temperature T . The correct plot of $P-V$ diagram for it is

Answer: A

46. An ideal gas system undergoes an isothermal process, then the work done during the process is

$$
\begin{aligned}
& \text { A. } n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \text { B. } n R T \ln \left(\frac{V_{1}}{V_{2}}\right) \\
& \text { C. } 2 n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \text { D. } 2 n R T \ln \left(\frac{V_{1}}{V_{2}}\right)
\end{aligned}
$$

Answer: A
47. Pressure P, volume V and temperature T for a certain gas are related by $P=\frac{A T-B T^{2}}{V}$, where A and B are constatns. The work done by the gas as its temperature change from T_{1} to
T_{2} while pressure remaining constatn is

$$
\begin{aligned}
& \text { A. } A-\frac{B}{2}\left(R_{2}-T_{1}\right) \\
& \text { B. } A\left(T_{2}-T_{1}\right)-B\left(T_{2}^{2}-T_{1}^{2}\right) \\
& \text { C. } \frac{A}{2}\left(T_{2}^{2}-T_{1}^{2}\right)-\frac{B}{3}\left(T_{2}^{3}-T_{1}^{3}\right) \\
& \text { D. } A\left(T_{2}-T_{1}\right)-\frac{B}{3}\left(T_{2}-T_{1}\right)^{3}
\end{aligned}
$$

- Watch Video Solution

48. A quantity of a substance in a closed system is made to undergo a reversible process from an initial volume of $3 m^{3}$ and initial pressure $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ to a final volume of $5 \mathrm{~m}^{3}$. If the pressure is proportional to the square of the volume (i.e, $P=A V^{2}$), the work done by the substance will be
A. $3.6 \times 10^{2} J$
B. $7.4 \times 10^{3} J$
C. $2.2 \times 10^{4} J$

$$
\text { D. } 3.6 \times 10^{5} \mathrm{~J}
$$

Answer: D

D Watch Video Solution

49. When the state of a gas adiabatically changed from an equilibrium state A to another equilibrium state B an amount of work done on
the stystem is 35 J . If the gas is taken from state
A to B via process in which the net heat
absorbed by the system is 12 cal , then the net work done by the system is (1 cal = 4.19 J)
A. a. 13.2J
B. b. 15.4 J
C. c. 12.6 J
D. d. 16.8 J

Answer: B
50. If a gas is comprssed adiabatically by doing
work of 150 J the change in internal energy of the gas is
A. a. 100 J
B. b. 150 J
C. c. 200 J
D. d. 250 J

Answer: B
51. In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B an amount of work equal to
22.3 J is done on the system.lf the gas is taken
from state A to B via a process in which the net heat absorbed by the system is 9.35 cal then
the net work done by the system in latter case is
(Take 1 case $=4.2 \mathrm{~J}$)
A. 15 J
B. 16 J
C. 17 J
D. 18 J

Answer: C

D Watch Video Solution

52. A monoatomic gas is compressed adiabatically to $\frac{1}{(4)^{t h}}$ of its original volume,
the final pressure of gas in terms of initial pressure P is
A. 7.08 P
B. 8.08 P
C. 9.08 P

D. 10.08 P

Answer: B

D Watch Video Solution

53.1 mole of an ideal gas at STP is subjected to
a reversible adiabatic expansion to double its
volume. Find the change in internal energy
$(\gamma=1.4)$
A. 1169 J
B. 769 J
C. 1374 J
D. 969 J

Answer: B

D Watch Video Solution

54. If at 60° and 80 cm of mercury pressure a definite masss of a gas is compressed slowly,
then the final pressure of the gas if the final volume is half of the initial volume $\left(\gamma=\frac{3}{2}\right)$ is
A. a. 120 cm of Hg
B. b. 140 cm of Hg
C. c. 160 cm of Hg
D. d. 180 cm of Hg

Answer: A

Watch Video Solution
55. During an isothermal expansion, a confined
ideal gas does $-150 J$ of work aginst its surroundings. This implies that
A. a. 150 J of heat has been removed from
the gs
B. b. 300 J of heat has been added to the gas
C. c. no heat is transferred because the process is isothermal
D. d. 150 J of heat has been added to the gas

- Watch Video Solution

56. 1 mole of an ideal gas in a cylindrical container have the P-V diagram as shown in figure.If $V_{2}=4 V_{1}$ then the ratio of temperatures $\frac{T_{1}}{T_{2}}$ will be $P 4$
$A\left(P_{1}, V_{1}, T_{1}\right)$

V
A. a. $\frac{1}{2}$
B. b. $\frac{1}{4}$
C. c. $\frac{3}{2}$
D. d. $\frac{3}{4}$

Answer: A

- Watch Video Solution

57. Three samples of the same gas A, B and C
($\gamma=3 / 2$) have initially equal volume. Now the
volume of each sample is doubled. The process
is adiabatic for A. Isobaric for B and isothermal
for C. If the final pressures are equal for all
three samples, find the ratio of their initial pressures
A. $2: 1: \sqrt{2}$
B. $2 \sqrt{2}: 1: 2$
C. $\sqrt{2}: 1: 2$
D. $\sqrt{2}: 2: 1$

Answer: B
58. Two moles of an ideal monoatomic gas occupy a volume 2 V at temperature 300 K , it expands to a volume 4 V adiabatically, then the final temperature of gas is
A. a. 179 K
B. b. 189 K
C. c. 199 K
D. d. 219 K

Answer: B
59. The pressure P_{1} and densityd d_{1} of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$ change to P_{2} and d_{2} during an adiabatic operation .If $\frac{d_{2}}{d_{1}}=32$, then $\frac{P_{2}}{P_{1}}$ is
A. a. 76
B. b. 128
C. c. 168
D. d. 298
60. The fall in temperature of helium gas initially at 20° when it is suddenly expanded to
8 times its original volume is $\left(\gamma=\frac{5}{3}\right)$
A. a. 70.25 K
B. b. 71.25 K
C. c. 72.25 K
D. d .73 .25 K

(D) Watch Video Solution

61. A cycle followed an engine (made of one mole of an ideal gas in a cylinder with a piston) is shown in figure The heat exchanged by the engine with the surroundings at constant volume is (Take $C_{V}=\frac{3}{2} R$)

$$
\begin{aligned}
& \text { A. }\left(P_{B}-P_{A}\right) V_{A} \\
& \text { B. } \frac{1}{2}\left(P_{B}-P_{A}\right) V_{A} \\
& \text { C. } \frac{3}{2}\left(P_{B}-P_{A}\right) V_{A} \\
& \text { D. } \frac{5}{2}\left(P_{B}-P_{A}\right) V_{A}
\end{aligned}
$$

Answer: C

D Watch Video Solution

62. In the question number 61, the heat exchanged by the engine with the surrounding for path D to A is (at constant pressure)

$$
\begin{aligned}
& \text { A. } \frac{5}{2} P_{A}\left(V_{D}-V_{A}\right) \\
& \text { B. } \frac{5}{2} P_{A}\left(V_{A}-V_{D}\right) \\
& \text { C. } \frac{3}{2} P_{A}\left(V_{D}-V_{A}\right) \\
& \text { D. } \frac{1}{2} P_{A}\left(V_{D}-V_{A}\right)
\end{aligned}
$$

Answer: B

D View Text Solution

63. A one mole of an ideal gas expands adiabatically ato constant pressure such that
its temperature $T \propto \frac{1}{\sqrt{V}}$.The value of the adiabatic constant gas is
A. a.1.3
B. b.1.5
C. c.1.67
D. d. 2

Answer: B

- Watch Video Solution

64. A gas is suddenly compressed to $\frac{1}{4} t h$ of its original volume. Caculate the rise in temperature when original temperature is
$27^{\circ} C . \gamma=1.5$.
A. a. 400 K
B. b. 500 K
C. c. 600 K
D. d. 700 K

Answer: A
65.1 mole of gas expands isothermally at $37^{\circ} \mathrm{C}$.

The amount of heat is absorbed by it until its
volume doubled is $\left(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. a. 411.25 cal
B. b. 418.50 cal
C. c. 420.25 cal
D. d. 425.40 cal

Answer: D
66. The temperature of n moles of an ideal gas
is increased from T to 4T through a process for
which pressure $P=a T^{-1}$ where a is a constant .Then the work done by the gas is
A. a. nRT
B. b. 4 nRT
C. c. 2 nRT
D. d. $6 n R T$

Answer: D

(D) Watch Video Solution

67. A gas expands with temperature according to the relation $V=K T^{\frac{2}{3}}$. Work done when the temperature changes by 60K is.

A. 10R

B. 30R
C. 40 R
D. 20R

- Watch Video Solution

68. 50 g of oxygen at NTP is compressed adiabatically to a pressure of 5 atmosphere. The

$$
\begin{aligned}
& \text { work done on the gas, if } \\
& \gamma=1.4 \text { and } R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \text { is }
\end{aligned}
$$

A. $-5173 J$
B. 1131 J
C. $-1364 J$
D. 5673 J

Answer: A

D Watch Video Solution

69. In a cyclic process, which of the following statement is correct?
A. Change in internal energy is not zero
B. The system returns to its initial state and
it is reversible
C. The total heat absorbed by the system is

D. Change in internal energy is zero

Answer: D

D Watch Video Solution

70. Which one of the following is not possible in a cyclic process?
A. Work done by the system is positive
B. Heat added to the system is positive
C. Wok done on the system is positive

D. Heat removed from the system is negative

Answer: C

- Watch Video Solution

71. A thermodynamic process is carried out
from an original state D to an intermediate
state E by the linear process shown in figure.

The total work is done by the gas from D to E to
F is

A. 100 J
B. 800 J
C. 300 J
D. 250 J

Answer: B
72. One mole of an ideal gas undergoes a cyclic process $A B C D A$ as shown in the $\mathrm{P}-\mathrm{V}$ diagram, The net work done in the process is
(1 atm=10^(6)
dyne
$\left.c m^{\wedge}(-2)\right)$
$P(\mathrm{~atm}){ }_{4}^{4}$
A. 500 J
B. 700 J
C. 800 J
D. 900 J

Answer: B

D Watch Video Solution

73. The cycle is shown in figure is made of one mole of perfect gas in a cylinder with a piston.

The processes A to B and C to D are isochoric whereas process B to C and D to A are
adiabatic, the work done in one cycle is

$$
\left(V_{A}=V_{B}=V, V_{C}=V_{D}=2 V \text { and } \gamma=5 / 3\right)
$$

$$
\begin{aligned}
& \text { A. }\left[1-\frac{4^{3}}{2}\right]\left(P_{B}-P_{A}\right) V \\
& \text { B. } \frac{3}{2}\left[1-\frac{3^{2}}{3}\right]\left(P_{B}-P_{A}\right) V \\
& \text { C. } \frac{3}{2}\left[1-2^{\frac{-2}{3}}\right]\left(P_{B}-P_{A}\right) V \\
& \text { D. } \frac{5}{2}\left[1-\frac{2^{-2}}{3}\right]\left(P_{B}-P_{A}\right) V
\end{aligned}
$$

Answer: C

D Watch Video Solution

74. Two moles of Helium gas undergo a reversible cyclic process as shown in figure.

Assuming gas to be ideal, what is the net work
involved in the cyclic process?

A. $200 \mathrm{R} \ln 2$
B. $100 \mathrm{R} \ln 2$
C. $300 \mathrm{R} \ln 2$
D. $400 \mathrm{R} \ln 2$

Answer: A

D Watch Video Solution

75. The cyclic process for 1 mole of an ideal gas
is shown in the V-T diagram. The work done in
$A B, B C$ and $C A$ respectively is

$$
\begin{aligned}
& \text { A. } 0, R T_{1} \ln \left(\frac{V_{1}}{V_{2}}\right), R\left(T_{1}-T_{2}\right) \\
& \text { B. } R,\left(T_{1}-T_{2}\right) R, R T_{1} \operatorname{In}\left(\frac{V_{1}}{V_{2}}\right) \\
& \text { C. } 0, R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right), \frac{R T_{1}}{V_{1}}\left(V_{1}-V_{2}\right) \\
& \text { D. } 0, R T_{2} \frac{\ln \left(V_{1}\right)}{V_{2}}, R\left(T_{1}-T_{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

76. The heat absorbed by the system in going through the cyclic process as shown in figure is

A. 30.4 J
B. 31.4 J
C. 32.4 J
D. 33.4 J

Answer: B
77. A thermodynamical system undergoes cyclic process ABCDA as shown in figure work done by
the system is

A. Zero
B. $2 P_{0} V_{0}$
C. $P_{0} V_{0}$
D. $\frac{3}{2} P_{0} V_{0}$

Answer: A

D Watch Video Solution

78. A heat engine has an efficiency η
.Temperatures of source and sink are each decreased by 100 K . The efficiency of the engine
A. Increases

B. Decreases

C. Remains constant
D. Becomes 1

Answer: A

D Watch Video Solution

79. An engine has an efficiency of 0.25 when temperature of sink is reduced by $58^{\circ} \mathrm{C}$, If its
efficiency is doubled, then the temperature of the source is

A. $150^{\circ} \mathrm{C}$

B. $222^{\circ} \mathrm{C}$
C. $242^{\circ} \mathrm{C}$
D. $232^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution
80. If a steam engine delivers $6.0 \times 10^{8} \mathrm{~J}$ of
work per minute and absorbs $5.4 \times 10^{9} J$ of heat per minute from its boiler then the efficiency of the engine is
A. 0.11
B. 0.12
C. 0.13
D. 0.14

Answer: A
81. In a heat engine, the temperature of the source and sink are 500 K and 375 K . If the engine consumes $25 \times 10^{5} J$ per cycle, find(a) the efficiency of the engine, (b) work done per cycle, and (c) heat rejected to the sink per cycle.
A. $6.25 \times 10^{5} \mathrm{~J}$
B. $3 \times 10^{5} J$
C. $2.19 \times 10^{5} J$
D. $4 \times 10^{4} J$

Answer: A

- Watch Video Solution

82. When the door of a refrigerator is kept open
then the room temperature starts
A. cool down
B. hot up
C. first cool down then hot up
D. neither cool down nor hot up

Answer: B

- Watch Video Solution

83. Consider a heat engine as shown in (figure).
Q_{1} and Q_{2} are heat added to heat bath T_{1} and
heat taken from T_{2} one cycle of engine. W is
the mechanical work done on the engine.

If $W>0$, then possibillities are:
A. $Q_{1}>Q_{2}>0$
B. $Q_{2}>Q_{1}>0$

$$
\text { C. } Q_{2}<Q_{1}<0
$$

$$
\text { D. } Q 1<0, Q 2>0
$$

Answer: B

D Watch Video Solution

84. A refrigerator is to maintain eatables kept inside at $7^{\circ} \mathrm{C}$. The coefficient opf performance of refrigerator if room temperature is $38^{\circ} \mathrm{C}$ is
A. a. 15.5

B. b. 16.3

C. c. 20.1

D. d. 9.03

Answer: D

D Watch Video Solution

85. The coefficient of performance of refrigerator, whose efficiencty is 25% is
A. 1
B. 3
C. 5
D. 7

Answer: B

D Watch Video Solution

86. If the coefficient of performance of a refrigerator is 5 and operates at the room temperature ($27^{\circ} \mathrm{C}$), find the temperature inside the refrigerator.
A. 240 K
B. 250 K
C. 230 K
D. 260 K

Answer: B

D Watch Video Solution

87. The temperature inside a refrigerator is $t_{2}^{\circ} C$
. The amount of heat delivered to the room for
each joule of electrical energy consumed ideally
will be

$$
\begin{aligned}
& \text { A. } \frac{t_{1}}{t_{1}-t_{2}} \\
& \text { B. } \frac{t_{1}+273}{t_{1}-t_{2}} \\
& \text { C. } \frac{t_{2}+273}{t_{1}-t_{2}} \\
& \text { D. } \frac{t_{1}+t_{2}}{t_{1}+273}
\end{aligned}
$$

Answer: B

View Text Solution

88. The reezer in a refrigeratror is located at the

 top section so thatA. the entire chamber of the refirgerator is
cooled quickly due to convection
B. the motor is not heated
C. the heat gained from the environment is
high
D. the heat gained from the environment is
low

Answer: A

- View Text Solution

89. A refrigerator with $C O P=1 / 3$ release

200 J of heat to a reservoir. Then the work done
on the working substance is
A. $\frac{100}{3} J$
B. 100 J
C. $\frac{200}{3} J$
D. 150 J

Answer: D

D Watch Video Solution

90. A process is said to be reversible if

A. the system return to their original states
B. the surrounding return to their original
states
C. both the system as well as the
surrounding return to their original

states

D. neither system nor surroundings return

to their original states

Answer: C

D Watch Video Solution

91. Which of the processes described below are irreversible?
A. a. The increase in temperature of an iron
rod by hammering it
B.b. A gas in a small container at a
temperature T_{1} is brought in contact
with a big reservoir at a higher
temperature T_{2} which increases the temperature of the gas
C. c. An ideal gas is enclosed in a piston cylinder arrangement with adiabatic walls.

A weight W is added to the piston, resulting in compression of gas.

D. d. All of above

Answer: D

D Watch Video Solution

92. Carnot engine is

A. 1. reversible engine
B. 2. operating between two temperatures
T_{1} (source) and T_{2} (sink) have maximum
efficiency
C. 3. consisting of two isothermal processes
connected by two adiabatic processes
D. 4. all of these

Answer: D

Watch Video Solution

93. The efficiency of carnot's heat engine is 0.5
when the temperature of the source is T_{1} and
that of sink is T_{2}. The efficiency of another
carnot's heat engine is also 0.5.the temperature of source and sink of the second engine are respecitvely

$$
\begin{aligned}
& \text { A. a. } 2 T_{1}, 2 T_{2} \\
& \text { B. b. } 2 T_{1}, \frac{T_{2}}{2} \\
& \text { C. с. } T_{1}+5, T_{2}-5 \\
& \text { D. d. } T_{1}+10, T_{2}-10
\end{aligned}
$$

Answer: A

- Watch Video Solution

94. A Carnot engine, whose efficiency is 40%,
takes in heat from a source maintained at a
temperature of 500 K . It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:
A. 1200 K
B. 750 K
C. 600 K
D. 800 K

Answer: B

(D) Watch Video Solution

95. A Carnot engine absorbs 750 J of heat energy from a reservoir at $137^{\circ} \mathrm{C}$ and rejects

500 J of heat during each cycle then the temperature of sink is
A. $0.25^{\circ} C$
B. $0.34^{\circ} C$
C. $0.44^{\circ} C$
D. $0.54^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

96. A carnot engine takes 900 Kcal of heat from
a reservoir at $723^{\circ} \mathrm{C}$ and exhausts it to a sink at $30^{\circ} C$ the work done by the engine is
A. $2.73 \times 10^{6} \mathrm{cal}$
B. $3.73 \times 10^{6} \mathrm{cal}$
C. $6.27 \times 10^{5} \mathrm{cal}$
D. $3.73 \times 10^{5} \mathrm{cal}$

Answer: C

D Watch Video Solution

97. A Carnot's cycle operating betiween
$T_{1}=600 K$ and $T_{2}=300 K$ Producing 1.5 KJ
of mechanical work per cycle. The transferred to the engine by the reservoirs is
A. 2.5 KJ
B. 3 KJ
C. 3.5 KJ
D. 4 KJ

Answer: B

D Watch Video Solution
98. Consider a carnot cycle operating between source tempeature 750 K and sink temperature 350 K producing 1.25 J KJ of mechanical work per cycle, the heat transferred to the engine by the reservers
A. 1.34 KJ
B. 2.34 KJ
C. 3.34 KJ
D. 4.34 KJ

- Watch Video Solution

99. Efficiency of carnot engine working between ice point and steam point is
A. 0.249
B. 0.257
C. 0.268

D. 0.288

Answer: C
100. The efficiencty of a carnot engine working between $127^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{C}$ is

A. 0.105

B. 0.125
C. 0.268
D. 0.135

Answer: C
101. An ideal gas undergoes for different processes from the same initial state (figure).

Four processes are adiabatic, isothermal, isobaric and isochoric. Out of 1, 2, 3 and 4 which one is adiabatic ?

A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

102. If an average jogs, he produces 14.5×10^{3}
$\mathrm{cal} / \mathrm{min}$. This is removed by the evaporation of
sweat. The amount of sweat evaporated per minute (assuming 1 kg requires 580×10^{3} cal
for evaporation) is a) 0.25 kg b) $2.25 \mathrm{~kg} \mathrm{c)} 0.05$ $\mathrm{kg} \mathrm{d}) 0.20 \mathrm{~kg}$
A. 0.25 Kg
B. 2.25 Kg
C. 0.05 kg
D. 0.20 Kg

Answer: A

D Watch Video Solution
103. Consider $p-V$ diagram for an ideal gas shown in figure.

Out of the following diagrams, which figure represents the $T-p$ diagram ?

(ii)

(i)
(iii) $\underbrace{T \uparrow}_{p}$
(iv)

A. (iv)
B. (ii)

C. (iii)

D. (i)

- Watch Video Solution

104. An ideal gas undergoes cyclic process
$A B C D A$ as shown in given $p-V$ diagram.
The amount of work done by the gas is

A. $6 P_{0} V_{0}$
B. $-2 P_{0} V_{0}$

C. $+2 P_{0} V_{0}$

D. $+4 P_{0} V_{0}$

Answer: B

D Watch Video Solution

105. Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original
volume isothermally while the gas in container
B is compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is
A. $2^{\gamma-1}$
B. $\frac{1}{(2)^{\gamma-1}}$
C. $\frac{1}{(1-\gamma)^{2}}$
D. $\frac{1}{(\gamma-1)^{2}}$

Answer: A
106. Three copper blocks of masses
M_{1}, M_{2} and $M_{3} \mathrm{~kg}$ respectively are brought into thermal contact till they each equilibrium. Before contact, they were at
$T_{1}, T_{2}, T_{3}\left(T_{1}>T_{2}>T_{3}\right)$. Assuming there is no heat loss to the surroundings, the equilibrium temperature T is (s is specific heat of copper)

$$
\begin{aligned}
& \text { А. } T=\frac{T_{1}+T_{2}+T_{3}}{3} \\
& \text { В. } T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{M_{1}+M_{2}+M_{3}} \\
& \text { С. } T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{3\left(M_{1}+M_{2}+M_{3}\right)}
\end{aligned}
$$

$$
\text { D. } T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{M_{1}+M_{2}+M_{3}}
$$

Answer: B

D Watch Video Solution

Hots

1. A thermodynamic process of one mole ideal monoatomic gas is shown in figure. The efficiency of cyclic process $A B C A$ will be
A. 0.25
B. 0.125
C. 0.5
D. 0.077

Answer: D

D View Text Solution

2. Some gas ($\left.C_{p} / C_{V}=\gamma=1.25\right)$ follows the
cycle ABCDA as shown in the figure. The ratio of
the energy given out by the gas to its
surrounding durning the isochoric section of
the cycle to the expansion work done during the isobaric section of the cycle is

A. 2
B. 4
C. 6
D. 0.08

Answer: B

D Watch Video Solution

3. For an ideal gas the equation of a process for which the heat capacity of the gas varies with temperatue as $C=(\alpha / T(\alpha)$ is a constant) is given by
A. $V \ln T=c o n s \tan t$
B. $V T^{1 /(\gamma-1)}-(e)^{\alpha / R T}=$ constant
C. $\frac{V^{1}}{\gamma-1} T^{\alpha / R T}=$ constant
D. $V^{\gamma-1} T=$ constant

Answer: B

- Watch Video Solution

4. A monatomic ideal gas is following the cyclic proces ABCA. Then choose the incorrect option.

A. molar heat capacity for the process $A B$ is

$$
\frac{R}{2}
$$

B. Heat is rejected by the system in path BC.
C. Molar heat capacity for the process $B C$ is

$$
\frac{2}{3} R
$$

D. Work done by the system in the process

$$
\text { CA is } \frac{2 U_{0}}{3} \ln 4
$$

Answer: C

D Watch Video Solution

5. Consider PT graph of cyclic process shown in the figure. Maximum pressure during the cycle is twice the minimum pressure. The heat received by the gas in the process $1-2$ is equal to the heat received in the process 3-4. The
process is done on one mole of monoatomic gas.

Correct PV diagram for the process is-
A.
B.
C.
D.

Answer: D

- View Text Solution

6. In the question number 5 , if the maiximum pressure is P then what is the pressur at the point 5? (in P-T diagram)
A. $\frac{2 P}{3}$
B. $\frac{4 P}{3}$
C. $\frac{3 P}{3}$

D. None of these.

Answer: C

- View Text Solution

7. One mole of a monatomic ideal gas is taken through the cycle shown in figure The pressures and temperatures at A, B etc, are denoted by $P_{A}, T_{A}, P_{B}, T_{B}$ etc respectively.Given

$$
T_{A}=1000 K, P_{B}=(2 / 3) P_{A} \text { and } P_{C}=(1 / 3) P_{A}
$$

Then choose the incorrect option.
A. The work done by the gas in the process A
$\rightarrow B$ is 1869.75J
B. The heat lost by the gas sin the process B \rightarrow C is -5297.25J
C. Temperature T_{D} is 500 K
D. Work done from $B \rightarrow C$ is $40 J$

Answer: D
8. A gaseous mixture enclosed in a vessel of
volume V consists of one mole of gas A with
$\gamma=\frac{C_{P}}{C_{V}}=\frac{5}{3}$ an another gas B with $\gamma=\frac{7}{5}$ at
a certain temperature T. The gram molecular
weights of the gases A and B are 4 and 32
respectively. The gases A and B do not react
with each other and are assumed to be ideal.

The gaseous mixture follows the equation
$P V^{19 / 13}=$ constant, in adiabatic process. Find the number of moles of the gas B in the gaseous mixture.
A. 2
B. 3
C. 4
D. 5

Answer: A

D Watch Video Solution

Assertion Reason

1. Assertion: The zeroth law said that, when two
systems A and B, are in thermal equilibrium,
there must be a physical quantitiy that has the same value for both.

Reason : The physical quantity which is same for both system is temperature.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but

assertion

C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: A

D Watch Video Solution

2. Assertion : When a bullet is fired from a gun
the bullet pierces a wooden block and stops.

The temperature of the bullet and the surrounding layers of wood changes.

Reason : Temperature is related to the energy of motion of the bullet as a whole.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: C

D Watch Video Solution

3. Assertion : First law of thermodynamics does
not forbid flow of heat from lower temperature
to higher temperature.

Reason : Heat supplied to a system always equal to the increase in its internal energy.
A. Both assertion and reason are true and
reason is the correct explanation of

assertion

B. Both assertion and reason are true but reason is not the correct explanation of

assetion

C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: B

D Watch Video Solution
4. Assertion:A constant volume gas thermometer, reads temperature in terms of pressure.

Reason : In this case a plot of Pressure versus temperature gives a straight line.
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but reason is not the correct explanation of

assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion: The isothermal curves intersect each other at a certain point.

Reason: The isothermal changes takes place
rapidly, so the isothermal curves have very little slope.
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of assetion
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

6. Assertion : In an isothemal expansion the gas
absorbs heat and does work .

Reason: In an isothermal process there is no
change in internal energy of an ideal gas.
A. Both assertion and reason are true and
reason is the correct explanation of
B. Both assertion and reason are true but reason is not the correct explanation of
assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

D Watch Video Solution

7. Assertion : In an adiabatic process, change in internal energy of a gas is equal to work done
on/by the gas in the process.

Reason : This is because temp.of gas remains
constant in an adiabatic process.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but reason is not the correct explanation of assetion
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

8. Assetion : The temperature of a gas does not
change when it undergoes on adiabatic process

Reason: During adiabatic process, heat energy
is exchanged between a system and surroundings.
A. If both assetion and reason are true and reaasons is the correct expanation of

assetion

B. If both assetion and reason are tur but reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

Watch Video Solution

9. Assertion : In an isolated system the entropy

 increases.Reason : The processes in an isolated system are adiabatic.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of
assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

10. Assertion: A heat engine is the reverse of a refrigerator.

Reason : A refrigerator cannnot work without some external work done on the system
A. If both assetion and reason are true and reaasons is the correct expanation of

assetion

B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A
11. Assertion : The efficiency of a heat engine
can never be unity.
Reason : Efficiency of heat engine is
fundamental limitation given by first law of thermodynamics.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assetion : A refrigerator transfers heat from
a lower temperature to a higher temperature.
Reason: Heat cannot flow from a lower temperature to a higher temperature.
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B
13. Assertion : A quasi static isothermal expansion of an ideal gas in a cylinder fitted with a frictionless movable pistonis a irreversible process.

Reason : A process is irreversible only if system remains in equilibrium with the surroundings at every stage.
A. If both assetion and reason are true and
reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

14. Assertion: Thermodynamics process in nature are irreversible.

Reason: Dissipative effects cannot be eliminated.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but
reason is not the correct explanation of assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

D Watch Video Solution

15. Assetion : No engine can have efficiencyt greater than that of the carnot engine

Reason : The efficiencyt of a cornot engine is
given by $\eta=1-\frac{T_{2}}{T_{1}}$
A. If both assetion and reason are true and
reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

Zeroth Law Of Thermodynamics

1. Zeroth law of thermodynamics gives the concept of
A. internal energy
B. heat content
C. pressure
D. temperature

Answer: D

- Watch Video Solution

2. Two system in thermal equilibrium with a third system separately are in thermal equilibrium with each other. The above statement is
A. First law of thermaodynamics
B. Second law of thermodynamics
C. Third law of thermodynamics
D. Zeroth law of thermodynamics

Answer: D

Heat Internal Energy And Work

1. Internal energy of an ideal gas depends upon
a) Temperature only b) volume only c) both
volume and temperature d) neither volume nor temperature
A. Temperature only
B. volume only
C. both voume and temperature
D. neither volume no temperature

Answer: A

D Watch Video Solution

2. An ideal gas undergoing a change of state
from A to B through four different paths $I, I I, I I$ and IV as shown in the P-V diagram that lead to the same change of state tyhen the change in
internal energy is
CACs)

(D) Watch Video Solution

First Law Of Thermodynamics

1. Which of the following is not a path function
?
A. ΔQ
B. $\Delta Q+\Delta W$
C. ΔW
D. $\Delta Q-\Delta W$

Answer: D

D Watch Video Solution

2. Air is expanded from 50 litres to 150 litres at

2 atomospheric pressure . The external work done is (Give , 1 atm $=10^{5} N^{-} 2$)
A. $2 \times 10^{-8} J$
B. $2 \times 10^{4} J$
C. 200 J
D. 2000 J

Answer: B

- Watch Video Solution

3. An electric heater supplies heat to a system
at a rate of 120 W . if system performs work at a
rate of $80 J S^{-1}$, the rate of increase in internal energy is a) $30 \mathrm{~J} / \mathrm{S}$ b) $40 \mathrm{~J} / \mathrm{S} \mathrm{c)} 50 \mathrm{~J} / \mathrm{S}$ d) $60 \mathrm{~J} / \mathrm{S}$
A. $30 J S^{-1}$
B. $40 \mathrm{JS}{ }^{-1}$
C. $50 J S^{-1}$

D. $60 J S^{-1}$

Answer: B

D Watch Video Solution

4. 1 kg of water is heated from $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, If its volume remains constant, then the change in internal energy is (specific heat of water $=$
$4148 \mathrm{~J} \mathrm{~kg}^{-1 K^{-1}}$ a) $2.44 \times 10^{\wedge} 5 \mathrm{~J}$ b) $1.62 \times 10^{\wedge} 5 \mathrm{~J}$ c)
$1.24 \times 10^{\wedge} 5 \mathrm{~J}$ d) $2.62 \times 10^{\wedge} 5 \mathrm{~J}$
A. $2.44 \times 10^{5} \mathrm{~J}$

B. $1.62 \times 10^{5} \mathrm{~J}$

C. $1.24 \mathrm{xx} 10^{5} \mathrm{~J}$
D. $2.62 \times 10^{5} \mathrm{~J}$

Answer: C

D Watch Video Solution

5. A system goes from A to B by two different paths in the P-V diagram as shown in figure Heat given to the system in path 1 is 1100 j , the work done by the system along path 1 is more
than path 2 by 150 J . The heat exchanged by the
system in path 2 is

A. 800 J
B. 750 J
C. 1050 J
D. 950 J

Answer: D

D Watch Video Solution

Specific Heat Capacity

1. A geyser heats water flowing at the rate of 4
litre per minute from 30° to $85^{0} C$. If the geyser operates on a gas burner then the amount of heat used per minute is
A. $9.24 \times 10^{5} J$
B. $6.24 \times 10^{7} J$
C. $9.24 \times 10^{7} J$
D. $6.24 \times 10^{5} \mathrm{~J}$

Answer: A

D Watch Video Solution

2. Mayer's kformula for the relation between
two principla specific heats C_{p} and C_{V} of a gas
is given by
A. $C_{V}-C_{P}=R$
B. $\frac{C_{P}}{C_{V}}=R$
C. $C_{P}-C_{V}=R$
D. $\frac{C_{V}}{C_{P}}=R$

Answer: C

D Watch Video Solution

3. The ratio $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. Its molecular
weight is M. Its specific heat capacity at constant pressure is

$$
\begin{aligned}
& \text { A. } \frac{R}{\gamma-1} \\
& \text { B. } \frac{\gamma R}{\gamma-1} \\
& \text { C. } \frac{\gamma R}{M}(\gamma-1) \\
& \text { D. } \frac{\gamma R M}{\gamma-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. Which one of the following graphs represents variation of specific heat capacity of water with temperature?
(a)

(b)

(c)

D.
(d)

Answer: A

D Watch Video Solution

5. An ideal gas having molar specific heat
capaicty at constatnt volume is $\frac{3}{2} R$, the molar specific heat capacities at constant pressure is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} R \\
& \text { B. } \frac{5}{2} R \\
& \text { C. } \frac{7}{2} R \\
& \text { D. } \frac{9}{2} R
\end{aligned}
$$

Answer: B
6. For nitrogen $C_{p}-C_{V}=x$ and for argon
$C_{P}-C_{V}=\mathrm{Y}$. The relation between x and y is

$$
\text { given by a) } x=y \text { b) } x=7 y \text { c) } y=7 x \text { d) } x=1 / 2 y
$$

A. $x=y$
B. $x=7 y$
C. $y=7 x$
D. $x=\frac{1}{2} y$

Answer: A
7. Two moles of oxygen are mixed with eight moles of helium. The effective specific heat of
the mixture at constant volume is a) 1.3 R b) 1.4

R c) 1.7 R d) 1.9 R
A. 1.3 R
B. 1.4 R
C. 1.7R
D. 1.9 R

Answer: C
8. One mole of an ideal monoatomic gas at temperature T_{0} expands slowly according to the law $\frac{p}{V}=$ constant. If the final temperature is $2 T_{0}$, heat supplied to the gas is

A. a. $2 R T_{0}$

B. b. $R T_{0}$
C. . $\frac{3}{2} R T_{0}$
D. d. $\frac{1}{2} R T_{0}$

- Watch Video Solution

9. The amount of heat supplied to $4 \times 10^{-2} \mathrm{~kg}$ of nitrogen at room temperature to rise its temperature by $50^{\circ} \mathrm{C}$ at constant pressure is
(Molecular mass of nitrogen is 28 and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$)
A. 2.08 KJ
B. 3.08 KJ
C. 4.08 KJ
D. 5.08 KJ

Answer: A

D Watch Video Solution

10. A sample of ideal gas $(\gamma=1.4)$ is heated at constant pressure. If an amount of 100 J heat is supplied to the gas, the work done by the gas is
a) 28.57 J b) 56.54 J c) 38.92 J d$) 65.38 \mathrm{~J}$
A. 28.57 J
B. 56.54 J
C. 38.92 J

D. 65.38 J

Answer: A

- Watch Video Solution

11. What amount of heat must be supplied to 35
g of oxygen at room temperature to raise its
temperature by $80^{\circ} \mathrm{C}$ at constant volume (molecular mass of oxygen is 32 and $R=8.3 \mathrm{j}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$) a) $\left.\left.1.52 \mathrm{KJ} \mathrm{b)} 3.23 \mathrm{KJ} \mathrm{c}\right) 1.81 \mathrm{KJ} \mathrm{d}\right) 1.62$

KJ

A. 1.52 KJ

B. 3.23 KJ

C. 1.81 KJ
D. 1.62 KJ

Answer: C

Watch Video Solution

12. Heat is supplied to a diatomic gas at constant pressure.

The ratio of $\Delta Q: \Delta U: \Delta W$ is a) 5: 3: 2 b) 7: 5: 2
c) 2: 3: 5 d) 2: 5: 7
A. $5: 3: 2$
B. 7:5:2
C. 2:3:5
D. 2:5:7

Answer: B

D Watch Video Solution
13. Calculate the change in internal energy
when 5 g of air is heated from 0° to $4^{\circ} C$. The
specific heat of air at constant volume is
$0.172 \mathrm{calg}^{-1} .^{\circ} \mathrm{C}^{-1}$. a) 28.8 J b) 14.4 J c) 7.2 J d$)$
3.51 J
A. 28.8 J
B. 14.4 J
C. 7.2 J
D. 3.51 J

- Watch Video Solution

14. If $R=$ universal gas constant, the amount of heat needed to raise the temperature the temperature of 2 mol of an ideal monatomic gas from $273 K$ to $373 K$ when no work is done is
A. a. 100 R
B. b. 150 R
C. c. 300 R
D. d. 500 R

Answer: C

D Watch Video Solution

Thermodynamic State Variables

1. Which one of the following is not a thermodynamical coordinate?
A. a.Gas constant(R)
B. b.Pressure (P)
C. c.Volume(V)

D. d.Temperature (T)

Answer: A

D Watch Video Solution
2. Which is an intensive property?
A. 1.Volume
B. 2.Mass
C. 3.Refractive index
D. 4.Weight

Answer: C

D Watch Video Solution

Thermodynamic Process

1. Which of the following process is correct for given P-V diagram.

A. Adiabatic process
B. Isothermal process
C. Isobaric process
D. Isochoric process

Answer: C

2. Match the column I with columnII

$$
\begin{aligned}
& \text { A. (A)-(s),(B)-(R),(C)-(q),(D)-(p) } \\
& \text { B. (A)-(p),(B)-(s),(C)-(r),(D)-(q) } \\
& \text { C. (A)-(q),(B)-(r),(C)-(p),(D)-(s) } \\
& \text { D. (A)-(r),(B)-(p),(C)-(q),(D)-(s) }
\end{aligned}
$$

Answer: A
3. The given P-V diagram expansion of a gas which one of the following statement is true?

A.1. A is isothermal and B is adiabatic process
B.2. A is adiabatic and B is isothermal

C. 3. Both are isothermal process

D. 4. Both are adiabatic process

Answer: A

D Watch Video Solution

4. The possibility of increase in the temperature of gas without adding heat to it happens in
A. 1.Adiabatic exapansion
B. 2.isothermal expansion

C. 3.adiabatic compression

D. 4.isothermal compression

Answer: C

D Watch Video Solution

5. The ideal gas equation for an adiabatic process is
A. $P V^{\gamma}=$ constant
B. $T V^{\gamma+1}=$ constant
C. $P^{\gamma-1}=$ constant

D. $P^{\gamma+1} \mathrm{~T}=$ constant

Answer: A

D Watch Video Solution

6. An ideal gas undergoes isothermal process from some initial state i to final state f. Choose the correct alternatives.
A. 1.dU=dQ

B. 2. $\mathrm{dU}=-\mathrm{dW}$

C. $3 . \mathrm{dU}=0$

D. 4. $d U=d W$

Answer: C

D Watch Video Solution

7. The isothermal diagram of a gas at three different temperatures T_{1}, T_{2} and T_{3}, is show
in the given figure .Then

A. a. $T_{1}<T_{2}<T$
B. b. $T_{1}<T_{2}>T_{3}$
C. c. $T_{1}>T_{2}>T_{3}$
D. d. $T_{1}>T_{2}<T_{3}$

Answer: C

D Watch Video Solution

8. The relation between the slope of isothemal
curve and slope of adiabatic curve
A. a. slope of adiabatic curve $=\gamma$ times slope
of isotharmal curve
B. b.slope of isothermal curve $=\gamma$ times slope of adiabatic curve
C. c.slope of adiabatic curve $=\gamma^{2}$ times slope of isothermal curve

D. d. slope of isothermal curve $=\gamma^{2}$ times

slope of adiabatic curve

Answer: A

D Watch Video Solution

9. Consider a cycle followed by an engine,
(figure)
1 to 2 is isothermal 2 to 3 is adiabatic 3 to 1 is
adiabatic
such a process does not exist because

A. heat is completely converted to
mechanical energy in such a process
which is not possible
B. mechanical energy is completely
converted to heat in this process, which is
not possible
C. curves representing two adiabatic
processes can intersect
D. curves representing an adiabatic process
and an isothermal process don't intersect

Answer: A

- Watch Video Solution

10. Which of the following $P-V$ diagram represent the graph of isometric process?
A.
(a)

B.

C.
(c)
(d)

Answer: C
11. A gas is expanded form volume $V_{0} \rightarrow 2 V_{0}$ under three different processes as shown in the figure . Process 1 is isobaric process process 2 is isothermal and and process 3 is adiabatic .

Let $\Delta U_{1}, \Delta U_{2}$ and ΔU_{3} be the change in internal energy of the gas in these three
processes then

A. $\Delta U_{1}>\Delta U_{2}>\Delta U_{3}$
B. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$
C. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$
D. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$

Answer: A

D Watch Video Solution

12. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same velocity

V . The mass of the gas in A is m_{A}, and that in B
is m_{B}. The gas in each cylinder is now allowed
to expand isothermally to the same final volume 2 V . The changes in the pressure in A and B are found to be ΔP and $1.5 \Delta P$ respectively. Then

$$
\text { A. } 4 m_{A}=9 m_{B}
$$

B. $3 m_{A}=3 m_{B}$
C. $3 m_{A}=2 m_{B}$
D. $9 m_{A}=4 m_{B}$

Answer: C

D Watch Video Solution

13. Two different adiabatic parts for the same gas intersect two isothermals at T_{1} and T_2 as shown in P-V diagram. Then the ratio of $\frac{V_{a}}{V_{b}}$
will be

A. a. $\frac{V_{c}}{V_{d}}$
B. b. $\frac{V_{d}}{V_{c}}$
C. c. $\gamma \frac{V_{d}}{V_{c}}$
D. d. $\frac{1}{\gamma} \frac{V_{d}}{V_{c}}$

Answer: B

- Watch Video Solution

14. A heat insulating cylinder with a movable piston contins 5 moles of hydrogen at standard temperature and prssure if the gas is cmpressed to quarter of its original volume
then the pressure of the gas is increased by $(\gamma=1.4)$
A. $(2)^{1.4}$
B. $(3)^{1.4}$
C. $(4)^{1.4}$
D. $(5)^{1.4}$

Answer: C

D Watch Video Solution

15. One mole of an ideal gas goes from an initial
state A to final state B via two processs : It first
undergoes isothermal expansion from volume
V to $3 V$ and then its volume is reduced from
$3 V$ to V at constant pressure. The correct $P-V$ diagram representing the two process in (figure)
A.
(a)

B.
(b)

C.

(d)

- Watch Video Solution

16. The P-V diagram of path followed by one mole of perfect gas in a cylindrical container is shown in figure, the work done when the gas is taken from state A to state B is

$$
\begin{aligned}
& \text { A. } n R T \operatorname{In} \frac{V_{2}}{V_{1}} \\
& \text { B. } n R T \operatorname{In} \frac{V_{1}}{V_{2}} \\
& \text { C. } 2 n R T\left(\left(V_{1}\right)^{-\frac{1}{2}}-\left(\left(V_{2}\right)^{-\frac{1}{2}}\right)\right. \\
& \text { D. } 2 n R T \operatorname{In} \frac{V_{1}}{V_{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

17. An ideal gs at pressure P is adiabatically
compressed so that its density becomes n
times the initial vlaue The final pressure of the gas will be $\left(\gamma=\frac{C_{P}}{C_{V}}\right)$
A. $n \gamma P$
B. $(n-\gamma) P$
C. $n(\gamma-1) P$
D. $n(1-\gamma) P$

Answer: A

D Watch Video Solution
18. The work done in adiabatic process is given
by

$$
\begin{aligned}
& \text { A. } \frac{n R\left(T_{1}\right)-T_{2}}{\gamma} \\
& \text { B. } \frac{n R\left(T_{1}\right)-T_{2}}{\gamma-1} \\
& \text { C. }\left(n R\left(T_{1}\right)-T_{2}\right) R \\
& \text { D. } \frac{\gamma\left(T_{1}\right)-T_{2} R}{n}
\end{aligned}
$$

Answer: B

- View Text Solution

19. The cycle in the figure followed by an engine made of an ideal gas in ca cylinder with a piston, the heat exchanged by the engine with the surroundings for adiabatic section $A B$ of cycle is $\left(C_{V}=\frac{3}{2} R\right)$

A. $\frac{3}{2}\left(P_{B}-P_{A}\right) V_{A}$

$$
\begin{aligned}
& \text { B. } \frac{5}{2} P_{A}\left(V_{A}-V_{B}\right) \\
& \text { C. } \frac{1}{2}\left(P_{A}-P_{B}\right)\left(V_{A}-V_{B}\right) \\
& \text { D. Zero }
\end{aligned}
$$

Answer: D

View Text Solution

20. The initial state of certain gas $\left(P_{i} V_{i} T_{i}\right)$.lt undergoes expansion till its volume becomes
V_{f} at constant temperature T . The correct plot of $P-V$ diagram for it is

Answer: A

21. An ideal gas system undergoes an isothermal process, then the work done during the process is

$$
\begin{aligned}
& \text { A. } n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \text { B. } n R T \ln \left(\frac{V_{1}}{V_{2}}\right) \\
& \text { C. } 2 n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \text { D. } 2 n R T \ln \left(\frac{V_{1}}{V_{2}}\right)
\end{aligned}
$$

Answer: A
22. Pressure P, volume V and temperature T for a certain gas are related by $P=\frac{A T-B T^{2}}{V}$, where A and B are constatns. The work done by the gas as its temperature change from T_{1} to
T_{2} while pressure remaining constatn is

$$
\begin{aligned}
& \text { A. } A-\frac{B}{2}\left(R_{2}-T_{1}\right) \\
& \text { B. } A\left(T_{2}-T_{1}\right)-B\left(T_{2}^{2}-T_{1}^{2}\right) \\
& \text { C. } \frac{A}{2}\left(T_{2}^{2}-T_{1}^{2}\right)-\frac{B}{3}\left(T_{2}^{3}-T_{1}^{3}\right) \\
& \text { D. } A\left(T_{2}-T_{1}\right)-\frac{B}{3}\left(T_{2}-T_{1}\right)^{3}
\end{aligned}
$$

D Watch Video Solution

23. A quantity of a substance in a closed system
is made to undergo a reversible process from
an initial volume of $3 m^{3}$ and initial pressure $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ to a final volume of $5 \mathrm{~m}^{3}$. If the pressure is proportional to the square of the volume (i.e, $P=A V^{2}$), the work done by the substance will be
A. $3.6 \times 10^{2} J$
B. $7.4 \times 10^{3} J$
C. $2.2 \times 10^{4} J$

$$
\text { D. } 3.6 \times 10^{5} \mathrm{~J}
$$

Answer: D

D Watch Video Solution

24. When the state of a gas adiabatically changed from an equilibrium state A to another equilibrium state B an amount of work done on
the stystem is 35 J . If the gas is taken from state
A to B via process in which the net heat
absorbed by the system is 12 cal , then the net work done by the system is (1 cal = 4.19 J)
A. a. 13.2J
B. b. 15.4 J
C. c. 12.6 J
D. d. 16.8 J

Answer: B
25. If a gas is comprssed adiabatically by doing work of 150 J the change in internal energy of the gas is
A. a. 100 J
B. b. 150 J
C. c. 200 J
D. d. 250 J

Answer: B
26. In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B an amount of work equal to
22.3 J is done on the system.If the gas is taken
from state A to B via a process in which the net heat absorbed by the system is 9.35 cal then
the net work done by the system in latter case is
(Take 1 case $=4.2 \mathrm{~J}$)
A. 15 J
B. 16 J
C. 17 J
D. 18 J

Answer: C

D Watch Video Solution

27. A monoatomic gas is compressed adiabatically to $\frac{1}{(4)^{t h}}$ of its original volume,
the final pressure of gas in terms of initial pressure P is
A. 7.08 P
B. 8.08 P
C. 9.08 P

D. 10.08 P

Answer: B

D Watch Video Solution

28. 1 mole of an ideal gas at STP is subjected to
a reversible adiabatic expansion to double its
volume. Find the change in internal energy
$(\gamma=1.4)$
A. 1169 J
B. 769 J
C. 1374 J
D. 969 J

Answer: B

D Watch Video Solution

29. If at 60° and 80 cm of mercury pressure a definite masss of a gas is compressed slowly,
then the final pressure of the gas if the final volume is half of the initial volume $\left(\gamma=\frac{3}{2}\right)$ is
A. a. 120 cm of Hg
B. b. 140 cm of Hg
C. c. 160 cm of Hg
D. d. 180 cm of Hg

Answer: A

Watch Video Solution
30. During an isothermal expansion, a confined ideal gas does $-150 J$ of work aginst its surroundings. This implies that

A. a. 150 J of heat has been removed from

 the gsB. b. 300 J of heat has been added to the gas
C. c. no heat is transferred because the process is isothermal
D. d .150 J of heat has been added to the gas

- Watch Video Solution

31. 1 mole of an ideal gas in a cylindrical container have the $\mathrm{P}-\mathrm{V}$ diagram as shown in figure.If $V_{2}=4 V_{1}$ then the ratio of temperatures $\frac{T_{1}}{T_{2}}$ will be PA
$A\left(P_{1}, V_{1}, T_{1}\right)$

V
A. a. $\frac{1}{2}$
B. b. $\frac{1}{4}$
C. c. $\frac{3}{2}$
D. d. $\frac{3}{4}$

Answer: A

- Watch Video Solution

32. Three samples of the same gas A, B and C
($\gamma=3 / 2$) have initially equal volume. Now the
volume of each sample is doubled. The process
is adiabatic for A. Isobaric for B and isothermal
for C. If the final pressures are equal for all
three samples, find the ratio of their initial pressures
A. $2: 1: \sqrt{2}$
B. $2 \sqrt{2}: 1: 2$
C. $\sqrt{2}: 1: 2$
D. $\sqrt{2}: 2: 1$

Answer: B
33. Two moles of an ideal monoatomic gas occupy a volume 2 V at temperature 300 K , it expands to a volume 4 V adiabatically, then the final temperature of gas is
A. a. 179 K
B. b. 189 K
C. c. 199 K
D. d. 219 K

Answer: B
34. The pressure P_{1} and densityd d_{1} of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$ change to P_{2} and d_{2} during an adiabatic operation .If $\frac{d_{2}}{d_{1}}=32$, then $\frac{P_{2}}{P_{1}}$ is
A. a. 76
B. b. 128
C. c. 168
D. d. 298

Watch Video Solution

35. The fall in temperature of helium gas initially at 20° when it is suddenly expanded to

8 times its original volume is $\left(\gamma=\frac{5}{3}\right)$
A. a. 70.25 K
B. b. 71.25 K
C. c. 72.25 K
D. d .73 .25 K

- Watch Video Solution

36. A cycle followed an engine (made of one mole of an ideal gas in a cylinder with a piston) is shown in figure The heat exchanged by the engine with the surroundings at constant volume is (Take $C_{V}=\frac{3}{2} R$)

$$
\begin{aligned}
& \text { A. }\left(P_{B}-P_{A}\right) V_{A} \\
& \text { B. } \frac{1}{2}\left(P_{B}-P_{A}\right) V_{A} \\
& \text { C. } \frac{3}{2}\left(P_{B}-P_{A}\right) V_{A} \\
& \text { D. } \frac{5}{2}\left(P_{B}-P_{A}\right) V_{A}
\end{aligned}
$$

Answer: C

D Watch Video Solution

37. In the question number 61, the heat exchanged by the engine with the surrounding for path D to A is (at constant pressure)

$$
\begin{aligned}
& \text { A. } \frac{5}{2} P_{A}\left(V_{D}-V_{A}\right) \\
& \text { B. } \frac{5}{2} P_{A}\left(V_{A}-V_{D}\right) \\
& \text { C. } \frac{3}{2} P_{A}\left(V_{D}-V_{A}\right) \\
& \text { D. } \frac{1}{2} P_{A}\left(V_{D}-V_{A}\right)
\end{aligned}
$$

Answer: B

D View Text Solution

38. A one mole of an ideal gas expands adiabatically ato constant pressure such that
its temperature $T \propto \frac{1}{\sqrt{V}}$.The value of the adiabatic constant gas is
A. a.1.3
B. b.1.5
C. c.1.67
D. d. 2

Answer: B

- Watch Video Solution

39. A gas is suddenly compressed to $\frac{1}{4} t h$ of its original volume. Caculate the rise in temperature when original temperature is
$27^{\circ} C . \gamma=1.5$.
A. a. 400 K
B. b. 500 K
C. c. 600 K
D. d. 700 K

Answer: A
40.1 mole of gas expands isothermally at $37^{\circ} \mathrm{C}$.

The amount of heat is absorbed by it until its
volume doubled is $\left(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. a. 411.25 cal
B. b. 418.50 cal
C. c. 420.25 cal

D. d. 425.40 cal

Answer: D
41. The temperature of n moles of an ideal gas is increased from T to 4T through a process for which pressure $P=a T^{-1}$ where a is a constant .Then the work done by the gas is
A. a. nRT
B. b. 4 nRT
C. c. 2 nRT
D. d. $6 n R T$

Answer: D

(D) Watch Video Solution

42. A gas expands with temperature according to the relation $V=K T^{\frac{2}{3}}$. Work done when the temperature changes by 60K is.

A. 10R

B. 30R
C. 40 R
D. 20R

- Watch Video Solution

43. 50 g of oxygen at NTP is compressed adiabatically to a pressure of 5 atmosphere. The

$$
\begin{aligned}
& \text { work done on the gas, if } \\
& \gamma=1.4 \text { and } R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \text { is }
\end{aligned}
$$

A. -5173 J
B. $1131 J$
C. -1364 J
D. 5673 J

Answer: A

- Watch Video Solution

44. In a cyclic process, which of the following statement is correct?
A. Change in internal energy is not zero
B. The system returns to its initial state and
it is reversible
C. The total heat absorbed by the system is

D. Change in internal energy is zero

Answer: D

- Watch Video Solution

45. Which one of the following is not possible in a cyclic process?
A. Work done by the system is positive
B. Heat added to the system is positive
C. Wok done on the system is positive

D. Heat removed from the system is negative

Answer: C

D Watch Video Solution

46. A thermodynamic process is carried out
from an original state D to an intermediate
state E by the linear process shown in figure.

The total work is done by the gas from D to E to
F is

A. 100 J
B. 800 J
C. 300 J
D. 250 J

Answer: B
47. One mole of an ideal gas undergoes a cyclic process $A B C D A$ as shown in the $\mathrm{P}-\mathrm{V}$ diagram, The net work done in the process is
(1 atm=10^(6)
dyne
$\left.c m^{\wedge}(-2)\right)$
$P(\mathrm{~atm}){ }_{4}^{4}$
A. 500 J
B. 700 J
C. 800 J
D. 900 J

Answer: B

D Watch Video Solution

48. The cycle is shown in figure is made of one mole of perfect gas in a cylinder with a piston.

The processes A to B and C to D are isochoric whereas process B to C and D to A are
adiabatic, the work done in one cycle is

$$
\left(V_{A}=V_{B}=V, V_{C}=V_{D}=2 V \text { and } \gamma=5 / 3\right)
$$

$$
\begin{aligned}
& \text { A. }\left[1-\frac{4^{3}}{2}\right]\left(P_{B}-P_{A}\right) V \\
& \text { B. } \frac{3}{2}\left[1-\frac{3^{2}}{3}\right]\left(P_{B}-P_{A}\right) V \\
& \text { C. } \frac{3}{2}\left[1-2^{\frac{-2}{3}}\right]\left(P_{B}-P_{A}\right) V \\
& \text { D. } \frac{5}{2}\left[1-\frac{2^{-2}}{3}\right]\left(P_{B}-P_{A}\right) V
\end{aligned}
$$

Answer: C

D Watch Video Solution

49. Two moles of Helium gas undergo a reversible cyclic process as shown in figure.

Assuming gas to be ideal, what is the net work
involved in the cyclic process?

A. $200 \mathrm{R} \ln 2$
B. $100 \mathrm{R} \ln 2$
C. $300 \mathrm{R} \ln 2$
D. $400 \mathrm{R} \ln 2$

Answer: A

- Watch Video Solution

50. The cyclic process for 1 mole of an ideal gas is shown in the V-T diagram. The work done in $A B, B C$ and $C A$ respectively is

> A. $0, R T_{1} \ln \left(\frac{V_{1}}{V_{2}}\right), R\left(T_{1}-T_{2}\right)$
> B. $R,\left(T_{1}-T_{2}\right) R, R T_{1} \operatorname{In}\left(\frac{V_{1}}{V_{2}}\right)$
> C. $0, R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right), \frac{R T_{1}}{V_{1}}\left(V_{1}-V_{2}\right)$
> D. $0, R T_{2} \frac{\ln \left(V_{1}\right)}{V_{2}}, R\left(T_{1}-T_{2}\right)$

Answer: C

D Watch Video Solution

51. The heat absorbed by the system in going through the cyclic process as shown in figure is

A. 30.4 J
B. 31.4 J
C. 32.4 J
D. 33.4 J

Answer: B
52. A thermodynamical system undergoes cyclic process ABCDA as shown in figure work done by
the system is

A. Zero

B. $2 P_{0} V_{0}$

C. $P_{0} V_{0}$
D. $\frac{3}{2} P_{0} V_{0}$

Answer: A

- Watch Video Solution

Heat Engines

1. A heat engine has an efficiency η
.Temperatures of source and sink are each decreased by 100 K . The efficiency of the engine
A. Increases
B. Decreases
C. Remains constant
D. Becomes 1

Answer: A
2. An engine has an efficiency of 0.25 when temperature of sink is reduced by $58^{\circ} \mathrm{C}$, If its efficiency is doubled, then the temperature of the source is
A. $150^{\circ} \mathrm{C}$
B. $222^{\circ} \mathrm{C}$
C. $242^{\circ} \mathrm{C}$
D. $232^{\circ} \mathrm{C}$

Answer: D
3. If a steam engine delivers $6.0 \times 10^{8} \mathrm{~J}$ of work per minute and absorbs $5.4 \times 10^{9} \mathrm{~J}$ of heat per minute from its boiler then the efficiency of the engine is
A. 0.11
B. 0.12
C. 0.13
D. 0.14

- Watch Video Solution

4. In a heat engine, the temperature of the source and sink are 500 K and 375 K . If the engine consumes $25 \times 10^{5} J$ per cycle, find(a)
the efficiency of the engine, (b) work done per cycle, and (c) heat rejected to the sink per cycle.
A. $6.25 \times 10^{5} \mathrm{~J}$
B. $3 \times 10^{5} \mathrm{~J}$
C. $2.19 \times 10^{5} J$
D. $4 \times 10^{4} J$

D Watch Video Solution

Refrigerators And Heat Pumps

1. When the door of a refrigerator is kept open then the room temperature starts
A. cool down
B. hot up
C. first cool down then hot up

D. neither cool down nor hot up

Answer: B

- Watch Video Solution

2. Consider a heat engine as shown in (figure).
Q_{1} and Q_{2} are heat added to heat bath T_{1} and heat taken from T_{2} one cycle of engine. W is the mechanical work done on the engine.

If $W>0$, then possibillities are:
A. $Q_{1}>Q_{2}>0$
B. $Q_{2}>Q_{1}>0$

$$
\text { C. } Q_{2}<Q_{1}<0
$$

$$
\text { D. } Q 1<0, Q 2>0
$$

Answer: B

D Watch Video Solution

3. A refrigerator is to maintain eatables kept inside at $7^{\circ} \mathrm{C}$. The coefficient opf performance of refrigerator if room temperature is $38^{\circ} \mathrm{C}$ is
A. a. 15.5

B. b. 16.3

C. c. 20.1

D. d. 9.03

Answer: D

D Watch Video Solution

4. The coefficient of performance of refrigerator, whose efficiencty is 25% is
A. 1
B. 3
C. 5
D. 7

Answer: B

D Watch Video Solution

5. If the coefficient of performance of a refrigerator is 5 and operates at the room temperature $\left(27^{\circ} \mathrm{C}\right)$, find the temperature inside the refrigerator.

A. 240 K

B. 250 K

C. 230 K
D. 260 K

Answer: B

- Watch Video Solution

6. The temperature inside a refrigerator is $t_{2}^{\circ} C$.

The amount of heat delivered to the room for
each joule of electrical energy consumed ideally
will be

$$
\begin{aligned}
& \text { A. } \frac{t_{1}}{t_{1}-t_{2}} \\
& \text { B. } \frac{t_{1}+273}{t_{1}-t_{2}} \\
& \text { C. } \frac{t_{2}+273}{t_{1}-t_{2}} \\
& \text { D. } \frac{t_{1}+t_{2}}{t_{1}+273}
\end{aligned}
$$

Answer: B

View Text Solution

7. The reezer in a refrigeratror is located at the

 top section so thatA. the entire chamber of the refirgerator is cooled quickly due to convection
B. the motor is not heated
C. the heat gained from the environment is
high
D. the heat gained from the environment is
low

Answer: A

D View Text Solution

8. A refrigerator with $C O P=1 / 3$ release $200 J$
of heat to a reservoir. Then the work done on
the working substance is
A. $\frac{100}{3} J$
B. 100 J
C. $\frac{200}{3} J$
D. 150 J

Answer: D

- Watch Video Solution

9. A process is said to be reversible if
A. the system return to their original states
B. the surrounding return to their original
states
C. both the system as well as the
surrounding return to their original

states

D. neither system nor surroundings return

to their original states

Answer: C

D Watch Video Solution

10. Which of the processes described below are irreversible?
A. a. The increase in temperature of an iron
rod by hammering it
B.b. A gas in a small container at a
temperature T_{1} is brought in contact
with a big reservoir at a higher
temperature T_{2} which increases the temperature of the gas
C. c. An ideal gas is enclosed in a piston cylinder arrangement with adiabatic walls.

A weight W is added to the piston, resulting in compression of gas.

D. d. All of above

Answer: D

D Watch Video Solution

Carnot Engine

1. Carnot engine is
A. 1. reversible engine
B. 2. operating between two temperatures
T_{1} (source) and T_{2} (sink) have maximum
efficiency
C. 3. consisting of two isothermal processes
connected by two adiabatic processes
D. 4. all of these

Answer: D

D Watch Video Solution
2. The efficiency of carnot's heat engine is 0.5
when the temperature of the source is T_{1} and that of sink is T_{2}. The efficiency of another carnot's heat engine is also 0.5.the temperature of source and sink of the second engine are respecitvely
A. a. $2 T_{1}, 2 T_{2}$
B. b. $2 T_{1}, \frac{T_{2}}{2}$
C. c. $T_{1}+5, T_{2}-5$
D. d. $T_{1}+10, T_{2}-10$

Answer: A

- Watch Video Solution

3. A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K . It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:
A. 1200 K

B. 750 K

C. 600 K

D. 800 K

Answer: B

D Watch Video Solution

4. A Carnot engine absorbs 750 J of heat energy from a reservoir at $137^{\circ} C$ and rejects 500 J of heat during each cycle then the temperature of sink is
A. $0.25^{\circ} C$
B. $0.34^{\circ} C$
C. $0.44^{\circ} C$
D. $0.54^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

5. A carnot engine takes 900 Kcal of heat from a reservoir at $723^{\circ} C$ and exhausts it to a sink at $30^{\circ} C$ the work done by the engine is
A. $2.73 \times 10^{6} \mathrm{cal}$
B. $3.73 \times 10^{6} \mathrm{cal}$
C. $6.27 \times 10^{5} \mathrm{cal}$
D. $3.73 \times 10^{5} \mathrm{cal}$

Answer: C

D Watch Video Solution

6. A Carnot's cycle operating betiween
$T_{1}=600 K$ and $T_{2}=300 K$ Producing 1.5 KJ
of mechanical work per cycle. The transferred to the engine by the reservoirs is
A. 2.5 KJ
B. 3 KJ
C. 3.5 KJ
D. 4 KJ

Answer: B

D Watch Video Solution
7. Consider a carnot cycle operating between source tempeature 750 K and sink temperature 350 K producing 1.25 J KJ of mechanical work per cycle, the heat transferred to the engine by the reservers
A. 1.34 KJ
B. 2.34 KJ
C. 3.34 KJ
D. 4.34 KJ

- Watch Video Solution

8. Efficiency of carnot engine working between ice point and steam point is
A. 0.249
B. 0.257
C. 0.268
D. 0.288

Answer: C
9. The efficiencty of a carnot engine working between $127^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{C}$ is

A. 0.105

B. 0.125
C. 0.268
D. 0.135

Answer: C
(Watch Video Solution

Higher Order Thinking Skills

1. A thermodynamic process of one mole ideal monoatomic gas is shown in figure. The efficiency of cyclic process $A B C A$ will be
A. 0.25
B. 0.125
C. 0.5
D. 0.077
2. Some gas ($C_{p} / C_{V}=\gamma=1.25$) follows the cycle ABCDA as shown in the figure. The ratio of
the energy given out by the gas to its
surrounding durning the isochoric section of
the cycle to the expansion work done during
the isobaric section of the cycle is

A. 2
B. 4
C. 6
D. 0.08

Answer: B

D Watch Video Solution

3. For an ideal gas the equation of a process for which the heat capacity of the gas varies with temperatue as $C=(\alpha / T(\alpha)$ is a constant) is given by
A. $V \ln T=c o n s \tan t$
B. $V T^{1 /(\gamma-1)}-(e)^{\alpha / R T}=$ constant
C. $\frac{V^{1}}{\gamma-1} T^{\alpha / R T}=$ constant
D. $V^{\gamma-1} T=$ constant

Answer: B

- Watch Video Solution

4. A monatomic ideal gas is following the cyclic proces ABCA. Then choose the incorrect option.

A. molar heat capacity for the process $A B$ is

$$
\frac{R}{2}
$$

B. Heat is rejected by the system in path BC.
C. Molar heat capacity for the process $B C$ is

$$
\frac{2}{3} R
$$

D. Work done by the system in the process

$$
\text { CA is } \frac{2 U_{0}}{3} \ln 4
$$

Answer: C

D Watch Video Solution

5. Consider PT graph of cyclic process shown in the figure. Maximum pressure during the cycle is twice the minimum pressure. The heat received by the gas in the process $1-2$ is equal to the heat received in the process 3-4. The
process is done on one mole of monoatomic gas.

Correct PV diagram for the process is-
A.
B.
C.
D.

Answer: D

D View Text Solution

6. In the question number 5 , if the maiximum pressure is P then what is the pressur at the point 5? (in P-T diagram)
A. $\frac{2 P}{3}$
B. $\frac{4 P}{3}$
C. $\frac{3 P}{3}$

D. None of these.

Answer: C

- View Text Solution

7. One mole of a monatomic ideal gas is taken through the cycle shown in figure The pressures and temperatures at A, B etc, are denoted by $P_{A}, T_{A}, P_{B}, T_{B}$ etc respectively.Given

$$
T_{A}=1000 K, P_{B}=(2 / 3) P_{A} \text { and } P_{C}=(1 / 3) P_{A}
$$

Then choose the incorrect option.
A. The work done by the gas in the process A
$\rightarrow B$ is 1869.75J
B. The heat lost by the gas sin the process B \rightarrow C is -5297.25J
C. Temperature T_{D} is 500 K
D. Work done from $B \rightarrow C$ is $40 J$

Answer: D
8. A gaseous mixture enclosed in a vessel of
volume V consists of one mole of gas A with
$\gamma=\frac{C_{P}}{C_{V}}=\frac{5}{3}$ an another gas B with $\gamma=\frac{7}{5}$ at
a certain temperature T. The gram molecular
weights of the gases A and B are 4 and 32
respectively. The gases A and B do not react
with each other and are assumed to be ideal.

The gaseous mixture follows the equation
$P V^{19 / 13}=$ constant, in adiabatic process. Find the number of moles of the gas B in the gaseous mixture.
A. 2
B. 3
C. 4
D. 5

Answer: A

D Watch Video Solution

Assertion And Reason

1. Assertion: The zeroth law said that, when two
systems A and B, are in thermal equilibrium,
there must be a physical quantitiy that has the same value for both.

Reason : The physical quantity which is same for both system is temperature.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but

assertion

C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: A

D Watch Video Solution

2. Assertion : When a bullet is fired from a gun
the bullet pierces a wooden block and stops.

The temperature of the bullet and the surrounding layers of wood changes.

Reason : Temperature is related to the energy of motion of the bullet as a whole.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: C

D Watch Video Solution

3. Assertion : First law of thermodynamics does
not forbid flow of heat from lower temperature
to higher temperature.

Reason : Heat supplied to a system always equal to the increase in its internal energy.
A. Both assertion and reason are true and
reason is the correct explanation of

assertion

B. Both assertion and reason are true but reason is not the correct explanation of

assetion

C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: B

D Watch Video Solution
4. Assertion:A constant volume gas thermometer, reads temperature in terms of pressure.

Reason : In this case a plot of Pressure versus temperature gives a straight line.
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but reason is not the correct explanation of

assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion: The isothermal curves intersect each other at a certain point.

Reason: The isothermal changes takes place
rapidly, so the isothermal curves have very little slope.
A. If both assetion and reason are true and reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of
assetion
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

6. Assertion : In an isothemal expansion the gas
absorbs heat and does work .

Reason: In an isothermal process there is no
change in internal energy of an ideal gas.
A. Both assertion and reason are true and
reason is the correct explanation of
B. Both assertion and reason are true but reason is not the correct explanation of
assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

D Watch Video Solution

7. Assertion : In an adiabatic process, change in internal energy of a gas is equal to work done
on/by the gas in the process.

Reason : This is because temp.of gas remains
constant in an adiabatic process.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but reason is not the correct explanation of assetion
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

8. Assetion : The temperature of a gas does not
change when it undergoes on adiabatic process

Reason: During adiabatic process, heat energy
is exchanged between a system and surroundings.
A. If both assetion and reason are true and reaasons is the correct expanation of

assetion

B. If both assetion and reason are tur but reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

Watch Video Solution

9. Assertion : In an isolated system the entropy

 increases.Reason : The processes in an isolated system are adiabatic.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of
assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

10. Assertion: A heat engine is the reverse of a refrigerator.

Reason : A refrigerator cannnot work without some external work done on the system
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A
11. Assertion : The efficiency of a heat engine
can never be unity.
Reason : Efficiency of heat engine is
fundamental limitation given by first law of thermodynamics.
A. If both assetion and reason are true and
reaasons is the correct expanation of
assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assetion : A refrigerator transfers heat from
a lower temperature to a higher temperature.

Reason: Heat cannot flow from a lower temperature to a higher temperature.
A. If both assetion and reason are true and reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B
13. Assertion : A quasi static isothermal expansion of an ideal gas in a cylinder fitted with a frictionless movable pistonis a irreversible process.

Reason : A process is irreversible only if system remains in equilibrium with the surroundings at every stage.
A. If both assetion and reason are true and
reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

14. Assertion: Thermodynamics process in nature are irreversible.

Reason: Dissipative effects cannot be eliminated.
A. Both assertion and reason are true and reason is the correct explanation of assertion
B. Both assertion and reason are true but
reason is not the correct explanation of assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

- Watch Video Solution

15. Assetion : No engine can have efficiencyt greater than that of the carnot engine

Reason : The efficiencyt of a cornot engine is
given by $\eta=1-\frac{T_{2}}{T_{1}}$
A. If both assetion and reason are true and
reaasons is the correct expanation of assetion
B. If both assetion and reason are tur but
reason is not the correct explanation of

assetion

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

