©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(GUJRATI)

ATOMIC STRUCTURE - II

Problem

1. The kinetic energy of sub-atomic particle is
5.85×10^{-25} J. Calculate the frequency of the

$$
\left.h=6.626 \times 10^{-34} \mathrm{Js}\right)
$$

D Watch Video Solution

2. Calculate the de-Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1 kV
3. Calculate the wavelength associated with an electron (mass $9.1 \times 10^{-31} \mathrm{~kg}$) moving with a velocity of $10^{3} \mathrm{~m} \mathrm{sec}^{-1}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$.

- Watch Video Solution

4. A moving electron has 4.55×10^{-25} joules of kinetic energy. Calculate its wavelength

$$
\begin{aligned}
& \text { (mass }=9.1 \times 10^{-31} \quad \text { kg } \quad \text { and } \\
& \left.h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right) .
\end{aligned}
$$

5. Calculate the kinetic energy of a moving electron which has a wavelength of 4.8 pm .
[mass
of
electron
$=9.11 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Kgm}^{2} \mathrm{~s}^{-1}$
].

- Watch Video Solution

6. Two particles A and B are in motion. If the wavelength associated with the particle A is
$5 \times 10^{-8} m$, calculate the wavelength of particle B, if its momentum is half of A.

- Watch Video Solution

Example

1. Calculate the uncertainty in the velocity of a
wagon of mass 3000 kg whose position is
known to an accuracy of $\pm 10 \mathrm{pm}$ (Planck's
constant $=6.626 \times 10^{-34} \mathrm{Kgm}^{2} s^{-1}$.
2. Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is $5.7 \times 10^{5} \mathrm{~m} / \mathrm{sec}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.$, mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$).

- Watch Video Solution

3. The ionization energy of hydrogen atom in the ground state is $1312 \mathrm{kJmol}^{-1}$. Calculate the wavelength of radiation emitted when the electron in hydrogen atom makes a transition
from $\mathrm{n}=2$ state to $\mathrm{n}=1$ state (Planck's constant, $h=6.626 \times 10^{-34} J s$, velocity of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$, Avogadro's constant, $\left.N_{A}=6.0237 \times 10^{23} \mathrm{~mol}^{-1}\right)$.

D Watch Video Solution

4. The electron energy of hydrogen atom in
the ground state works out to be
$-2.18 \times 10^{-18} \mathrm{~J}$ per atom. Calculate what will happen to the position of the electron in this
atom if an energy of $1.938 \times 10^{-18} \mathrm{~J}$ is supplied to the each hydrogen atom.

D Watch Video Solution

5. Calculate the ionisation energy of hydrogen atom as well as energy needed to promote its electron from first energy level to third energy level

D Watch Video Solution

1. Calculate the momentum of a particle which has a de-Broglie wavelength of

1A. $\left[h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right]$

D Watch Video Solution

2. What is the mass of a photon of sodium
light with a wavelength of 5890 Å?
$\left[h=6.626 \times 10^{-34} J s\right]$
3. Calculate the wavelength of 1000 kg rocket moving with a velocity of 300 km per hour.

D Watch Video Solution

4. What must be the velocity of a beam of electrons if they are to display a de- Broglie wavelength of $100 \AA ̊$?
5. The wavelength of a moving body of mass 0.1 mg is $3.31 \times 10^{-29} \mathrm{~m}$. Calculate its kinetic energy $\left(h=6.626 \times 10^{-34} J s\right)$.

D Watch Video Solution

6. Calculate the wavelength of a particle of mass $m=6.62 \times 10^{-27}$ kg moving with kinetic energy
$7.425 \times 10^{-13} J\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$
7. Calculate the wavelength of an electron in a 10 MeV particle accelerator $\left(1 \mathrm{MeV}=10^{6} \mathrm{eV}\right)$.

D Watch Video Solution

8. What will be the wavelength of oxygen molecule in picometers moving with a velocity of $660 \mathrm{~ms}^{-1}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$.
9. A moving electron has 4.9×10^{-25} joules of kinetic energy. Find out its de - Broglie wavelength
(Given

$$
\left.h=6.626 \times 10^{-34} J s, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)
$$

D Watch Video Solution

10. The approximate mass of an electron is 10^{-27} g. Calculate the uncertainty in its velocity if the uncertainty in its position were of the order of $10^{-11} \mathrm{~m}$
11. Calculate the product of uncertainity in position and velocity for an electron of mass
$9.1 \times 10^{-31} \mathrm{~kg}$ according to Heisenberg uncertainty principle.

D Watch Video Solution

12. Calculate the uncertainty in velocity (Δv)
of a cricket ball (mass $=0.15 \mathrm{~kg}$) if the
uncertainty position (Δx) is of the order of 1
$\AA\left(i . e .10^{-10} m\right)$.

D Watch Video Solution
13. Using uncertainity principle,calculate the uncertainty in velocity of an electron if the uncertainty in position is $10^{-4} \mathrm{~m}$.
14. The uncertainity in the position of a moving bullet of mass 10 g is $10^{-5} \mathrm{~m}$.Calculate the uncertainty in its velocity .

- Watch Video Solution

Self Evaluation Choose The Correct Answer

1. $E_{n}=-\frac{313.6}{n^{2}}$, If the value of $E_{i}=-34.84$
to which value ' n ' corresponds
A. 4
B. 3
C. 2
D. 1

Answer:

D Watch Video Solution

2. Dual character of an electron was explained by

A. Bohr

B. Heisenberg

C. de-Broglie

D. Pauli

Answer: Bohr

D Watch Video Solution

3. de-Broglie equation is
A. $\lambda=\frac{m v}{h}$
B. $\lambda=h m v$

$$
\begin{aligned}
& \text { C. } \lambda=\frac{h v}{m} \\
& \text { D. } \lambda=\frac{h}{m v}
\end{aligned}
$$

Answer: $\lambda=\frac{h}{m v}$

D Watch Video Solution

4. The value of Bohr radius for hydrogen atom is

$$
\text { A. } 0.529 \times 10^{-8}
$$

B. $0.529 \times 10^{-10} \mathrm{~cm}$

$$
\begin{aligned}
& \text { C. } 0.529 \times 10^{-6} \mathrm{~cm} \\
& \text { D. } 0.529 \times 10^{-12} \mathrm{~cm}
\end{aligned}
$$

Answer: 0.529×10^{-8}

- Watch Video Solution

5. Which of the following particle having same kinetic energy, would have the maximum deBroglie wave length
A. α-particle

B. proton

C. β-particle
D. neutron

Answer: β - particle

D Watch Video Solution

6. If the energy of an electron in the second Bohr orbit of H -atom is - E , what is the energy of the electron in the Bohr's first orbit?
A. 2 E

$$
\text { B. }-4 E
$$

C. $-2 E$
D. $4 E$

Answer: $-4 E$

- Watch Video Solution

7. The bond order of oxygen molecule is
A. 2.5
B. 1
C. 3
D. 2

Answer: (d) 2

D Watch Video Solution

8. The hybridisation in SF6 molecule is
A. $s p^{3}$
B. $s p^{3} d^{2}$
C. $s p^{3} d$
D. $s p^{2} d^{3}$

Answer: (b) $s p^{3} d^{2}$

- Watch Video Solution

9. The intramolecular hydrogen bonding is present in
A. o-nitrophenol
B. m-nitro phenol

C. p-nitrophenol

D. None

Answer: (a) o-nitrophenol

D Watch Video Solution

Self Evaluation Answer In One Or Two Sentences

1. Define an orbital

2. What are molecular orbitals?

D Watch Video Solution

3. Why $\mathrm{He} e_{2}$ is not formed?
(Watch Video Solution
4. What is bond order?

D Watch Video Solution

5. Define hybridisation

D Watch Video Solution

Self Evaluation Answer Not Exceeding 60 Words

1. Derive de-Broglie's equation. What is its significance?

D Watch Video Solution

2. Discuss the shapes of s, p and d orbitals.

D Watch Video Solution

