

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(GUJRATI)

CHEMICAL EQUILIBRIUM - II

Self Evaluation A Choose The Correct Answer

1. State of chemical equilibrium is :

A. dynamic

B. stationery

C. none

D. both

Answer: A

Watch Video Solution

2. If the equilibrium constants of following reactions are $2A \Leftrightarrow B$ is K_1 and $B \Leftrightarrow 2A$ is K_2 , then

A. $K_1=2K_2$

$$\mathsf{B}.\,K_1=1/K_2$$

$$\mathsf{C}.\,K_2=\left(K_1\right)^2$$

D.
$$K_1 = 1 \, / \, K_2^{-2}$$

Answer: B

Watch Video Solution

3. For the equilibrium reaction $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$

A. greater than K_c

B. less than K_c

- C. Equal to K_c
- D. Zero

Answer: C

4. In the equilibrium $N_2 + 3H_2 \Leftrightarrow 2NH_3$, the maximum yield of ammonia will be obtained with the process having

A. low pressure and high temperature

B. low pressure and low temperature

C. high temperature and high pressure

D. high pressure and low temperature

Answer: C

Watch Video Solution

5. For the homogeneous gas reaction at 600 K

 $4NH_{3_g}+5O_{2_g} \Leftrightarrow 4NO_{(g)}+6H_2O_{(g)}$

the equilibrium constant K_c has the unit

A.
$$\left(\text{mol dm}^{-3} \right)^{-1}$$

B. $\left(\text{mol dm}^{-3} \right)$
C. $\left(\text{mol dm}^{-3} \right)^{10}$
D. $\left(\text{mol dm}^{-3} \right)^{-9}$

Answer: B

Watch Video Solution

6. Two moles of ammonia gas are introduced into a previously evacuated $1.0~{
m dm}^3$ vessel in which it partially dissociates at high

temperature. At equilibrium 1.0 mole of ammonia remains. The equilibrium constant K_c for the dissociation is

A.
$$27/16 \left(\text{mole dm}^{-3} \right)^2$$

B. $27/8 \left(\text{mole dm}^{-3} \right)^2$
C. $27/4 \left(\text{mole dm}^{-3} \right)^2$

D. None of these

Answer: A

7. An equilibrium reaction is endothermic if K_1 and K_2 are the equilibrium constants at T_1 and T_2 temperatures respectively and if T_2 is greater than T_1 then

A. K_1 is less than K_2

B. K_1 is greater than K_2

C. K_1 is equal to K_2

D. None

Answer: A

Self Evaluation B Answer In One Or Two Sentences

1. Dissociation of PCl_5 decreases in presence

of increase in Cl_2 why?

Watch Video Solution

2. Write the equilibrium constant for the following

(i) $H_2 O_{2(g)} \Leftrightarrow H_2 O_{(g)} + 1/2 O_{2(g)}$

Self Evaluation C Answer Not Exceeding 60 Words

1. Write the Kp expression for $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$

Self Evaluation D Practice Problems

 $0.05~{
m sec}^{-1}$. Calculate the rate constant of the

reverse reaction.

2. In the equilibrium $H_2 + I_2 \Leftrightarrow 2HI$ the number of moles of H_2 , I_2 and HI are 1,2,3 moles respectively. Total pressure of the reaction mixture is 60 atm. Calculate the partial pressures of H_2 , I_2 and HI in the mixture. **3.** In 1 litre volume reaction vessel, the equilibrium constant K_c of the reaction $PCl_5 \Leftrightarrow PCl_3 + Cl_2$ is 2×10^{-4} lit⁻¹. What will be the degree of dissociation assuming only a small of 1 mole of PCl_5 has dissociated ?

Watch Video Solution

4. At temperature T_1 , the equilibrium constant of eaction is K_1 . At a higher temperature T_2, K_2 is $10\,\%$ of K_1 . Predict whether the

equilibrium is endothermic or exothermic.

5. At $35^{\circ}C$, the value of K_p for the equilibrium reaction $N_2O_4 \Leftrightarrow 2NO_2$ is 0.3174, Calculate the degree of dissociation when P is 0.2382 atm

6. For the equilibrium $2NOCl_{(g)} \Leftrightarrow 2NO_{(g)} + Cl_{2(g)}$ the value of the equilibrium constant K_c is 3.75×10^{-6} at $790^{\circ}C$. Calculate K_p for this equilibrium at the same temperature.

At equilibrium, if the concentration of SO_3 and SO_2 are 0.60M and 0.15M respectively. Calculate the concentration of O_2 in the equillibrium mixture.

8. Hydrogen iodide is injected into a container at $458^{\circ}C$. Certain amount of HI dissociates to H_2 and I_2 At equilibrium, concentration of HI is found to be 0.421M while $[H_2]$ and $[I_2]$ each equal to $6.04 \times 10^{-2}M$, at $458^{\circ}C$. Calculate the value of the equilibrium constant of the dissociation of HI at the same temperature.

9. Dissociation equilibrium constant of HI is 2.06×10^{-2} at $458^{\circ}C$. At equilibrium, concentrations of HI and I_2 are 0.36M and 0.15M respectively. What is the equilibrium concentration of H_2 at $458^{\circ}C$.

10. The equilibrium constant for the reaction $2SO_{3(g)} \Leftrightarrow 2SO_{2(g)} + O_{2(g)}$ is 0.15 at 900 K. Calculate the equilibrium constant for the reaction $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ at the same temperature.

Watch Video Solution

11. For the reaction $A+B \Leftrightarrow 3C$ at $25^{\,\circ}\,C$, a 3

litre volume reaction vessel contains 1,2 and 4 moles of A,B and C respectively at equilibrium, calculate the equilibrium constant K_c of the

reaction at $25^{\circ}C$.

12. How much PCl_5 must be added to one litre volume reaction vessel at $250^{\circ}C$ in order to obtain a concentration of 0.1 mole of Cl_2, K_c for $PCl_5 \Leftrightarrow PCl_5 + Cl_2$ is $0.0414 \mod dm^{-3}$ at $250^{\circ}C$.

13. At 540, the equilibrium constant K_p for PCl_5 dissociation equilibrium at 1.0 atm 1.77 atm. Calculate equilibrium constant in molar concentration (K_c) at same temperature and pressure.