©゙’doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(GUJRATI)

CHEMICAL KINETICS-II

Examples

1. In the thermal decomposition of
$\mathrm{N}_{2} \mathrm{O}$ at $764^{\circ} \mathrm{C}$, the time required to decompose half the reactant was 263 seconds,
when the initial pressure was 290 mm of Hg and 212 seconds at an initial pressure of 360 mm of Hg . What is the order of this reaction?

D Watch Video Solution

2. In a first-order reaction, it takes the reactant
40.5 minutes to be 25% decomposed. Find the rate constant of the reaction.

D Watch Video Solution

3. A certain amount of methyl acetate was
hydrolysed in the presence of excess of 0.05 M HCl at $25^{\circ} \mathrm{C} .20 \mathrm{~mL}$ of reaction mixture were removed and titrated with

NaOH solution, the volume V of alkali required for neutralisation after time ' t ' were as follows :
t (min) $\begin{array}{llllll}0 & 20 & 40 & 60 & \infty\end{array}$ $\begin{array}{lllllll}\mathrm{v}(\mathrm{mL}) & 20.2 & 25.6 & 29.5 & 32.8 & 50.5\end{array}$

Show that the reaction is the first order reaction.
4. The following values for the first order rate constant were obtained for a certain reaction :

Temp $\left({ }^{\circ} C\right) \quad k \times 10^{-5} \mathrm{sec}^{-1}$
$25 \quad 3.46$
$35 \quad 13.50$
Calculate the Arrhenius frequency factor and activation energy ' E_{a} '.

- Watch Video Solution

Self Evaluation A Choose The Correct Answer

1. Hydrolysis of an ester by dilute HCl is an example for
A. second order reaction
B. zero order reaction
C. pseudo first order reaction
D. first order reaction

Answer: pseudo first order reaction
(Watch Video Solution

2. The unit of zero order rate constant is

A. litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$
B. mol litre $^{-1} \mathrm{sec}^{-1}$
C. $\sec ^{-1}$
D. litre $^{2} \mathrm{sec}^{-1}$

Answer: litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$
(Watch Video Solution
3. The excess energy which a molecule must posses to become active is known as
A. kinetic energy
B. threshold energy
C. potential energy

D. activation energy

Answer:

(Watch Video Solution

4. Arrhenius equation is

$$
\begin{aligned}
& \text { A. } k=A e^{-1 / R T} \\
& \text { B. } k=A e^{-R T / E a} \\
& \text { C. } A e^{-E a / R T}=k \\
& \text { D. } k=A e^{E a / R T}
\end{aligned}
$$

Answer:

D Watch Video Solution

5. Arrhenius equation is
A. Probability factor
B. Activation of energy
C. Collision factor
D. Frequency factor

Answer:

D Watch Video Solution
6. The sum of the powers of the concentration terms that occur in the rate equation is called
A. molecularity
B. order
C. rate
D. rate constant

Answer: order

D Watch Video Solution
7. Reactions in which the reacting molecules
react in more than one way yielding different set of products are called
A. consecutive reactions
B. parallel reactions
C. opposing reactions
D. chain reactions

Answer: parallel reactions

D Watch Video Solution

8. The half life period of a first order reaction is 10 minutes. Then its rate constant is
A. $6.93 \times 10^{2} \min ^{-1}$
B. $0.693 \times 10^{-2} \min ^{-1}$
C. $6.932 \times 10^{-2} \mathrm{~min}^{-1}$
D. $69.3 \times 10^{-1} \min ^{-1}$

Answer:

D Watch Video Solution

9. For a reaction : $a A \rightarrow b B$, the rate of reaction is doubled when the concentration of

A is increased by four times. The rate of reaction is equal to
A. $k[A]^{a}$
B. $k[A]^{\frac{1}{2}}$
C. $k[A]^{\frac{1}{a}}$
D. $k[A]$

Answer:
(Watch Video Solution
10.
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}, \frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$

$$
\frac{d\left[N O_{2}\right]}{d t}=k_{2}\left[N_{2} O_{5}\right] \text { and } \frac{d\left[O_{2}\right]}{d t}=k_{3}\left[N_{2} O_{5}\right]
$$

, the relation between k_{1}, k_{2} and k_{3} is

$$
\begin{aligned}
& \text { A. } 2 k_{1}=4 k_{2}=k_{3} \\
& \text { B. } k_{1}=k_{2}=k_{3} \\
& \text { C. } 2 k_{1}=k_{2}=4 k_{3} \\
& \text { D. } 2 k_{1}=k_{2}=k_{3}
\end{aligned}
$$

$E_{a}=0$ and $k=4.2 \times 10^{5} \mathrm{sec}^{-1}$ at $300 K$,
the value of k at 310 K will be
A. $4.2 \times 10^{5} \mathrm{sec}^{-1}$
B. $8.4 \times 10^{5} \mathrm{sec}^{-1}$
C. $8.4 \times 10^{6} \mathrm{sec}^{-1}$
D. unpredictable

(D) Watch Video Solution

Self Evaluation B Answer In One Or Two Sentences

1. Define order of a reaction.

- Watch Video Solution

2. Derive the relationship between half-life period and rate constant for a first order
reaction.

(Watch Video Solution

Self Evaluation D Solve The Problems

1. The specific reaction rates of a chemical reaction are $2.45 \times 10^{-5} \mathrm{sec}^{-1}$ at $273 K$ and $16.2 \times 10^{-4} \mathrm{sec}^{-1}$ at 303 K . Calculate the activation energy.

D Watch Video Solution

2. Rate constant of a first order reaction is $0.45 \mathrm{sec}^{-1}$, calculate its half life.

D Watch Video Solution

3. A first order reaction completes 25% of the reaction in 100 mins. What are the rate constant and half life values of the reaction?
4. If 30% of a first order reaction is completed in 12 mins, what percentage will be completed in 65.33 mins?

D Watch Video Solution

5. Show that for a first order reaction the time
required for 99.9% completion is about 10
times its half life period.

D Watch Video Solution

6. The half life period of a first order reaction is 10 mins, what percentage of the reactant will remain after one hour?

D Watch Video Solution

7. The initial rate of a first order reaction is
5.2×10^{-6} mol.lit ${ }^{-1} . s^{-1}$ at 298 K . When
the initial concentration of reactant is
2.6×10^{-3} mol.lit ${ }^{-1}$, calculate the first order rate constant of the reaction at the same temperature.

Watch Video Solution

