

# CHEMISTRY JEE MAIN AND ADVANCED

# THE D AND F-BLOCK ELEMENTS

**Example** 

**1.** On what ground can you say that scandium  $\left(Z=21\right)$  is

a transition element but zinc (Z=30) is not?



**2.** Silver atom has completely filled d orbitals  $\left(4d^{10}\right)$  in its ground state. How can you say it is a transition element?



**Watch Video Solution** 

**3.** The second ionisation enthalpies of both Cr and Cu are higher than those of the next element. Explain.



**Watch Video Solution** 

**4.** Why is enthalpy of atomisation is the lowest for Zn in 3d series of transition elements ?



**5.** Why Zn generally do not show oxidation state greater than 2 ?



6. Why d block metals show variable oxidation state?



**7.** How can we show that change in oxidation state is different from variable oxidation state for non transition element?



**8.** How would you account for the increasing oxidising power in the series  $VO_2^\oplus < Cr_2O_7^{2-} < MnO_4^\Theta$ ?



**Watch Video Solution** 

**9.** Name the transition element which does not exhibit variable oxidation states .



**Watch Video Solution** 

**10.** Name any two transition metals which exhibit oxidation state of +8.



**11.** The oxidation state of Fe in  $Fe(CO)_5$  is



**Watch Video Solution** 

12. In 3d series, Mn shows highest oxidation state. Why?



**Watch Video Solution** 

**13.** For the first row transition metals the  $E^{\Theta}$  value are:

Explain the irregularity in the above values.



**14.** Why is the value for  $\frac{Mn^{3+}}{Mn^{2+}}$  couple much more positive than that for  $\frac{Cr^{3+}}{Cr^{2+}}$  or  $\frac{Fe^{3+}}{Fe^{2+}}$ ? Explain



**15.** Why is  $Cr^{2+}$  reducing and  $Mn^{3+}$  oxidising when both have  $d^4$  configuration ?



**16.** The  $E^0ig(M^{2+}/Mig)$  value for copper is positive (+0.34V). What is possibly the reason for this?



**17.** Which is a stronger reducing agent  $Cr^{2+}$  or  $Fe^{2+}$  and why?



**Watch Video Solution** 

**18.** Calculate the magnetic moment of a divalent ion in aqueous solution if its atomic number is 25.



**Watch Video Solution** 

**19.** Why permanganate titrations in presence of hydrochloric acid are unsatisfactory?



**20.** Explain why is  $Ce^{4+}$  ion a strong oxidising agent ?



Watch Video Solution

21. Out of following which is more than basic  $Lu(OH)_3$  and  $Ce(OH)_3$ .



**Watch Video Solution** 

22. Actinoid contraction is greater from element to element than lanthanoid contraction Why?



**23.** Why do actinoids elements show wide range of oxidation states?



Watch Video Solution

**24.** Given chemical test for making distinction between  $Fe^{2+}$  and  $Fe^{3+}$  ions.



**Watch Video Solution** 

**Try Yourself** 

1. Write the electronic configuration of given atoms/ions.

(i) Cr (ii) $Mn^{3\,+}$  (iii)  $Fe^{3\,+}$ 

(iv) W (v)  $Pd^{2+}$  (vi) Pd



**2.** Out of Mn and Fe which has higher  $IE_3$  and why?



**3.** In 3d series which element have highest  $IE_3$ ?



**4.** In 3d , 4d and 5d series which element is expected to have highest  $IE_1$  ?



**5.**  $MnF_7$  is not stable while  $Mn_2O_7$  is stable.



**6.** What is the hybridisation of Mn in  $K_2MnO_4$ ?



**7.** Why is  $FeI_3$  not stable ?



8. Why highest oxidation state are stable with F and O?



**Watch Video Solution** 

**9.** Why  $IE_3$  of Mn is high?



**Watch Video Solution** 

10. Calculate spin only moment of given ions

- (i)  $Cu^{2+}$
- (ii)  $Cr^{2\,+}$
- (iii)  $Fe^{3\,+}$
- (iv)  $Ni^{2+}$



**11.** Why is  $Cu^+$  ion not stable in aqueous solution ? or

Why is  $Cu^+$  is not known in aqueous solution ?



**Watch Video Solution** 

**12.** Write the disproportionate reaction of  $MnO_4^{2-}$  ?



**Watch Video Solution** 

**13.** Why  $Ce(OH)_3$  is more basic than  $Lu(OH)_3$  ?



**14.** Which have maximum paramagnetism in  $M^{3\,+}$  ion for Lanthanoid (spin only ) ?



Watch Video Solution

**15.** Discuss the effect of pH on  $CrO_4^{2-}$  ?



**Watch Video Solution** 

Assingnment Section A Objective Type Questions One Option Is Correct

**1.** The general valence shell electronic configuration of transition elements is

A. 
$$(n-1)d^{1-10}ns^1$$

B. 
$$(n-1)d^{10}ns^2$$

C. 
$$(n-1)d^{1-10}ns^{1-2}$$

D. 
$$(n-1)d^5ns^1$$

#### **Answer: C**



**Watch Video Solution** 

**2.** Which of the following does not have abnormal electronic configuration ?

A. Cr

B. Pd

| C. Pt                                                                |
|----------------------------------------------------------------------|
| D. Hg                                                                |
| Answer: D                                                            |
| Watch Video Solution                                                 |
|                                                                      |
| <b>3.</b> Which of the element is not a typical transition element ? |
| A. Fe                                                                |
| B. Pd                                                                |
| C. Cr                                                                |
| D. Zn                                                                |
|                                                                      |

#### **Answer: D**



# **Watch Video Solution**

- **4.** The trend in ionisation enthalpy of transition element is not regular because
  - A. Removal of one electron alters the relative energies of 4s and 3d orbitals.
  - B. Due to different E.C. ( stability )
  - C. Poor screening of 3p orbital
  - D. Both(1) & (2)

#### **Answer: A**



**5.** The element having lowest  $IE_1$ 

A. Fe

B. Co

C. Ni

D. Cu

**Answer: C** 



**6.** Choose the pair in which  $IE_1$  of first element is greater than  $IE_1$  of second element but in case of  $IE_2$  order is/are reversed

A. 
$$Mn>Cr$$

$$B.\,Mn>Fe$$

$$\mathsf{C}.\,Zn>Cu$$

D. All of these

#### **Answer: D**



**7.** Which of the following element does not show the variable oxidation state ?

- A. Fe
- B. Mn
- C. Cu
- D. Zn

#### **Answer: D**



**Watch Video Solution** 

**8.** The most common oxidation states of 3d series elements

- A. + 2
- B.+3
- $\mathsf{C.}+4$
- D. + 7

# Answer: A



- 9. In 3d series highest oxidation state is shown by
  - A. Mn
  - B. Fe
  - C. Cu

#### **Answer: A**



**Watch Video Solution** 

# 10. With F highest stable oxidation state of Mn is

A. + 6

B.+4

C. + 7

D. + 3

#### **Answer: B**



11. With O highest possible oxidation state of Mn is

A. + 7

B. + 4

C. + 5

D. + 3

## **Answer: A**



**Watch Video Solution** 

12. Oxygen stablises higher oxidation state because

- A. It is electronegative
- B. Of its tendency to form double bond
- C. Of small size
- D. Of large size

#### **Answer: B**



- 13. Which of the following have highest magnetic moment
- ?
- A.  $Fe^{2+}$
- B.  $Mn^+$

C.  $Fe^{3+}$ 

D.  $Fe^+$ 

# **Answer: B**



**Watch Video Solution** 

# **14.** Reduction potential of $Mn^{2\,+}$ / M will depend on

A.  $IE_1+IE_2$ 

B.  $\Delta H_{
m atomisation}$ 

C. Hydration energy

D. All of these

# Answer: D

**15.** Amongst the following ions, which is considered as most stable in  $M^{2\,+}$  state ?

A. 
$$Ti^{2+}/Ti(-1.63V)$$

B. 
$$V^{2+}/V(-1.11V)$$

C. 
$$Cr^{2+}$$
  $/$   $Cr(-0.90V)$ 

D. 
$$Mn^{2+}/Mn(1.18V)$$

#### **Answer: A**



**16.** Electrode potential of  $Mn^{2\,+}\,/M$  for Ni is abnormal because of

- A. High  $IE_1+IE_2$
- B. High hydration energy
- C.  $\Delta H_{
  m atomisation}$
- D. Electronic configuration of  $Ni^{2\,+}$

# **Answer: B**



**Watch Video Solution** 

17. The species which is paramagnetic

A.  $Cr^+$ 

B. 
$$Zn^{2+}$$

C. 
$$Cu^+$$

D. 
$$MnO_2O^-$$

#### **Answer: A**



**Watch Video Solution** 

**18.** A compound of a metal ion  $M^{X+}(z=24)$  has a spin only magnetic moment of  $\sqrt{15}B.\ M.$  . The number of unpaired electrons in the compound are

A. 2

B. 4

C. 5

D. 3

# **Answer: D**



Watch Video Solution

# **19.** The species which convert $Cu^{2\,+}$ to $Cu^{\,+}$

A.  $I^{\,-}$ 

B.  $HCHO/OH^-$ 

C.  $CN^-$ 

D. All of these

# Answer: D

**20.** Which of the following is not a condition for complex formation?

- A. Small atomic size
- B. High nuclear charge
- C. Variable oxidation state
- D. Availability of vacant d-orbitals

**Answer: C** 



21. Brass is an alloy of

A. Silver and copper

B. Copper and zinc

C. Copper and tin

D. Copper, zinc and tin

## **Answer: B**



**Watch Video Solution** 

**22.** In acidic medium one mole of  $MnO_4^-$  accepts how many moles of electrons in a redox process?

A. 1

- B. 3
- C. 5
- D. 6

#### **Answer: C**



- 23. In the dichromate dianion,
  - A. 4 Cr-O bonds are equivalent
  - B. 6 Cr-O bonds are equivalent
  - C. All Cr-O bonds are equivalent
  - D. All Cr-O bonds are non-equivalent

#### **Answer: B**



**Watch Video Solution** 

24. Which of the following oxide is acidic in nature?

A. 
$$CrO$$

B.  $Cr_2O_3$ 

C.  $CrO_3$ 

D.  $CrO_2$ 

#### **Answer: C**



| <b>25.</b> The inner transition element that is radioactive is         |
|------------------------------------------------------------------------|
| A. Pm                                                                  |
| B. Gd                                                                  |
| C. Lu                                                                  |
| D. Sm                                                                  |
|                                                                        |
| Answer: A                                                              |
| Watch Video Solution                                                   |
|                                                                        |
| <b>26.</b> The lanthanide contraction is responsible for the fact that |
| A. Zr and Y have about the same radius                                 |

- B. Zr and Nb have similar oxidation state
- C. Zr and Hf have about the same radius
- D. Zr and Zn have the same oxidation state

#### **Answer: C**



**Watch Video Solution** 

**27.** Size of lanthanoid decrease becaue of poor screening of

- A. 4f
- B. 3d
- C. 5f

D. 4d

## **Answer: A**



**Watch Video Solution** 

# **28.** The strongest base is

A.  $Ce(OH)_3$ 

 $\operatorname{B.}Lu(OH)_3$ 

 $\operatorname{C.} Yb(OH)_3$ 

D.  $Pm(OH)_3$ 

# **Answer: A**



| <b>29.</b> The element that is not present in misch metal is |  |
|--------------------------------------------------------------|--|
| A. La                                                        |  |
| R Iron                                                       |  |

C. Na

D. Ce

## **Answer: C**



Watch Video Solution

30. Most stable oxidation state of Lanthanoids

- A. + 2
- B. + 3
- $\mathsf{C.}+4$
- D. + 1

## **Answer: B**



**Watch Video Solution** 

**31.** When intimate mixture of potassium dichromate and potassium chloride is heated with  ${\rm conc.}H_2SO_4$  which of the following is produced in the form of red vapours ?

A.  $CrO_3$ 

- B.  $Cr_2O_3$
- C.  $CrO_2Cl_2$
- D.  $CrCl_2$

#### **Answer: C**



**Watch Video Solution** 

**32.** Which one of the following pairs of ions have the same electronic configuration?

- A.  $Cr^{3+}Fe^{3+}$
- B.  $Mn^{2\,+}$  ,  $Fe^{3\,+}$
- C.  $Fe^{3+}Co^{3+}$

D. 
$$Sc^{3\,+}$$
 ,  $Cr^{3\,+}$ 

## **Answer: B**



**Watch Video Solution** 

# 33.

in the above reaction cannot be

 $Cr_2O_7^{2\,-} + X \stackrel{H^{\,\oplus}}{\longrightarrow} Cr^{3\,+} + H_2O + ext{oxidised product} of X, X$ 

A. 
$$C_2 O_4^{2\,-}$$

B. 
$$Fe^{2+}$$

$$\mathsf{C.}\,SO_4^{2\,-}$$

D. 
$$S^{2\,-}$$

## **Answer: C**



**34.** The reducing nature of any metal in aqueous solution depends upon

a.Enthalpy of atomisation

b. Ionisation enthalpies

c. Hydration energy

A. a & b only

B. Only b

C.b&conly

D. a,b & c

## **Answer: D**



**Watch Video Solution** 

**35.** Which of the following oxide is basic?

- A. CrO
- B.  $Cr_2O_3$
- C.  $CrO_3$
- D.  $Cr_2O_4$

## **Answer: A**



**36.** The spin only magnetic moment of transition metal ion found to be 5.92 BM. The number of unpaired electrons present in the species is :

- A. 2
- B. 3
- C. 4
- D. 5

## **Answer: D**



**Watch Video Solution** 

37. The correct electronic configuration of lanthanum is

- A.  $[Xe]5d^16s^2$ 
  - $\mathsf{B.}\,[Xe]4d^15s^2$
  - C.  $[Xe]4f^15s^2$
- D.  $[Xe]5f^16s^2$

## **Answer: A**



- **38.** Give the general electronic configuration of actinides.
- A.  $(6-2)f^{1-14}(6-1)d^{1-10}6s^2$ 
  - B.  $(6-2)f^{1-14}(6-1)d^{0-1}6s^2$
  - C.  $(7-2)f^{1-14}(7-1)d^{1-10}7s^2$

D. 
$$(7-2)f^{1-14}(7-1)d^{0-1}7s^2$$

## **Answer: D**



**Watch Video Solution** 

- 39. Lanthanoid which is radioactive is
  - A. Promethium
  - B. Europium
  - C. Plutonium
  - D. Neptunium

# **Answer: A**



## 40. Which is correct

- A.  $Ce(OH)_3$  is weaker base than  $Lu(OH)_3$  .
- B.  $E^{\circ}_{Mn^{3+}\,/Mn^{2+}}$  is more positive than  $Fe^{3+}\,/Fe^{2+}$
- C. Ti > Zr > Hf (Group 4 atomic radii )
- D. Lanthanides are not separated by ion exchange method

## **Answer: B**



Watch Video Solution

41. Lanthanides and Actinides generally differ in

- A. Oxoion formation
- B. Radioactive nature
- C. Tendency towards complex formation
- D. All of these

## **Answer: D**



- **42.** Acidified  $K_2Cr_2O_7$  on reaction with hydrogen peroxide give deep blue solution due to formation of
  - A.  $Cr_2(SO_4)_3$
  - B.  $CrO_5$

C. 
$$CrO_4^{2-}$$

D. 
$$Cr_2O_3$$

## **Answer: B**



# **Watch Video Solution**

**43.** Hybridisation of chromium ions in chromate and dichromate ions is respectively

A. 
$$sp^2$$
 and  $sp^2$ 

$$B. sp^2 \text{ and } sp^3$$

$$\mathsf{C}.\,sp^3 \;\; \mathrm{and} \;\; sp^2$$

$$D. sd^3$$
 and  $sd^3$ 

## **Answer: D**



**Watch Video Solution** 

- 44. Equivalent weight of Baeyer's reagent is
  - A. 158
  - B. 31.6
  - C. 52.6
  - D. All of these

## **Answer: A**



**45.** On oxidation with  $KMnO_4$  in acidic medium ,  $SO_2$  is oxidised to

- A.  $SO_2$
- B.  $H_2SO_4$
- $\mathsf{C.}\,SO_3^{2\,-}$
- D.  $H_2S$

## **Answer: B**



**Watch Video Solution** 

**46.**  $MnO_4^{2-} + H^+ \rightarrow \text{Product}$ 

Product is formed

| A. $MnO_4^{-}$                                           |
|----------------------------------------------------------|
| B. $MnO_2$                                               |
| C. Mn                                                    |
| D. Both(1) & (2)                                         |
|                                                          |
| Answer: D                                                |
| Watch Video Solution                                     |
|                                                          |
| <b>47.</b> Which is coloured because of d-d transition ? |
| $\Lambda \ KM_mO$                                        |
| A. $KMnO_4$                                              |
| B. $K_2 Cr O_4$                                          |
|                                                          |

D. All of these

### **Answer: C**



**Watch Video Solution** 

# **48.** $FeO\cdot Cr_2O_3 \xrightarrow[O_2]{Na_2CO_3} A \xrightarrow[O_2]{H_2SO_4} B \xrightarrow[]{KCl} C$

The hybridisation of compound C and colour of its crystal is

A.  $sp^3$  , orange red

B.  $sp^3$ , yellow

C.  $\mathit{sp}^2$  , orange red

D.  $sp^2$  , yellow

## **Answer: A**



**Watch Video Solution** 

**49.** Number of moles of ferrous sulphate oxidised by 1 mole of potassium permanganate in acidic medium is

- A.  $\frac{2}{5}$
- B.  $\frac{5}{2}$
- c.  $\frac{1}{5}$
- D. 5

## **Answer: D**



**50.** Which of the following will not give positive chromyl chloride test?

- A.  $CuCl_2$
- B. NaCl
- C.  $ZnCl_2$
- D.  $C_6H_5NH_3^{\ +}Cl$

**Answer: C** 



**Watch Video Solution** 

Assingnment Section B Objective Type Questions One Option Is Correct

| 1. The most abundant transition metal belong to           |
|-----------------------------------------------------------|
| A. 3d series                                              |
| B. 4d series                                              |
| C. 5d series                                              |
| D. 6d series                                              |
|                                                           |
| Answer: A                                                 |
| Watch Video Solution                                      |
|                                                           |
|                                                           |
| <b>2.</b> The number of electrons exchanged when $KMnO_4$ |
| react with $H_2 O_2$ is equal to that of                  |
| A. s electrons in Ca ( at. no. : 20)                      |

- B. p electrons in neon (at. no.: 10)
- C. d electrons in chromium (at. No.: 24)
- D. f electron in lanthanum (at. no.: 57)

### **Answer: C**



- **3.** The yellow colour of chromates changes to orange on acidification due to formation of:
  - A.  $Cr^{3\,+}$
  - B.  $Cr_2O_3$
  - C.  $Cr_2O_7$

D.  $CrO_4^-$ 

**Answer: C** 



**Watch Video Solution** 

- 4. Each coinage metal has
  - A. 8
  - B. 2
  - C. 18
  - D. 32

**Answer: C** 



5. White vitriol, and blue vitriol are respectively

A. 
$$ZnSO_4.7H_2O, CuSO_4.5H_2O$$

- $\mathsf{B.}\ FeSO_4.7H_2O,\ ZnSO_4.\ 7H_2O$
- C.  $ZnSO_4.7H_2O$ ,  $FeSO_4.7H_2O$
- D.  $ZnSO_4.7H_2O$ ,  $CuSO_4$

### **Answer: A**



**Watch Video Solution** 

6. The correct statement about interstitial compound is

A. Interstitial compound are formed by small atoms such as  $C,\,N,\,H,\,B$  etc .

- B. These compounds are nonstoichiometric
- C. They show difference in physical properties but similarity in chemical properties
- D. All of these

## **Answer: D**

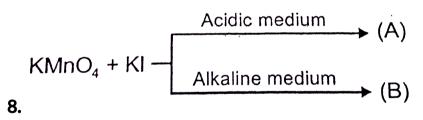


**Watch Video Solution** 

7. The pair having similar magnetic moment is

A.  $Ti^{2+}$  ,  $V^{3+}$ 

B. 
$$Cr^{3\,+}$$
 ,  $Mn^{2\,+}$ 


C. 
$$Mn^{2+}$$
,  $Fe^{3+}$ 

D. 
$$Fe^{2+}$$
 ,  $Mn^{2+}$ 

## **Answer: A::C**



**Watch Video Solution** 

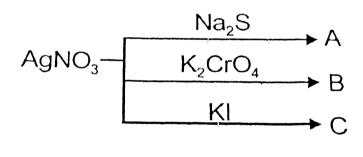


The products (A) and (B) are respectively

A. 
$$KI,\,I_2$$

B. 
$$I_2$$
,  $KIO_3$ 

C.  $KIO_3$ ,  $KIO_4$ 


D.  $I_2, I_2$ 

## **Answer: B**



9.

**Watch Video Solution** 



The colours of ppt. A,B and C respectively are

A. Black, yellow, deep yellow

B. Black , red , yellow

C. Brown, red, white

D. Black, white, red

## **Answer: B**



**Watch Video Solution** 

10. Addition of NaOH on  $\mathbb{Z}n^{2+}$  ion gives a white ppt. which on addition of excess of NaOH which dissolves . In this solution Zn exists in

- A.  $Zn^{2\,+}$  form
- B. Cationic form
- C. Anionic form
- D. Both (2) & (3)

## **Answer: C**



**Watch Video Solution** 

**11.** Oxidation state of mercury in amalgam , calomel and corrosive sublimate is

A. 
$$0, +1, +2$$

$$B. +1, +1, +2$$

$$C. +1, +2, +1$$

D. 
$$0, +1, +1$$

## **Answer: A**



**12.** Addition of  $K_4igl[Fe(CN)_6igr]$  solution to  $FeCl_3$  solution gives

- A. Ferro-ferrocyanide
- B. Ferro-ferricyanide
- C. Ferri-ferrocyanide
- D. Ferri-ferricyanide

### **Answer: C**



**Watch Video Solution** 

Assingnment Section C Objective Type Questions More Tha One Option Is Correct

**1.** Which of the following compound are coloured due to charge transfer spectra ?

- A.  $K_2Cr_2O_7$
- B.  $KMnO_4$
- $\mathsf{C}.\,AgBr$
- D.  $FeSO_4$

### **Answer: A::B**



**Watch Video Solution** 

**2.** Which of the following can be employed for the conversion of potassium manganate to potassium permanganate?

| A. $Cl_2$                                             |
|-------------------------------------------------------|
| B. $O_3$                                              |
| $C.SO_2$                                              |
| D. $KNO_3$                                            |
|                                                       |
| Answer: A::B                                          |
| Watch Video Solution                                  |
|                                                       |
|                                                       |
| 3. Highest oxidation state of Manganese and Osmium is |
| shown with                                            |
| A. S                                                  |
| В. Н                                                  |
|                                                       |

| C. O                                                                                                    |
|---------------------------------------------------------------------------------------------------------|
| D. F                                                                                                    |
| Answer: C::D                                                                                            |
| Watch Video Solution                                                                                    |
|                                                                                                         |
| <b>4.</b> Which of the following metals have both valence shell and penultimate shell partially filled? |
| A. Cr                                                                                                   |
| B. Mo                                                                                                   |
| C. Cu                                                                                                   |
| D. Zn                                                                                                   |
|                                                                                                         |


## Answer: A::B



- **5.** Which of the following statement is correct when a mixture of  $CaCl_2$  and  $K_2Cr_2O_7$  is gently warmed with conc .  $H_2SO_4$  acid ?
  - A. Deep red vapours are evolved
  - B. The vapours when passed into NaOH solution gives a yellow solution of  $Na_2CrO_4$
  - C. Chlorine gas is evolved
  - D. Chromyl chloride is formed

## Answer: A::B::D





- A. A is NaOH and B is  $NH_4OH$
- B. Both  $\left[Cu(OH)_2\right]$  and  $\left[Cu(NH_3)_4\right]SO_4$  are pale blue precipitates
- C. Blue colour of solution is due to d-d-transition
- D.  $Cu(OH)_2$  is paramagnetic and  $\left[Cu(NH_3)_4
  ight]^{2+}$  is diamagnetic

## Answer: A::B::C



**Watch Video Solution** 

**7.** Which of the following pairs is coloured in aqueous solution?

A. 
$$Sc^{3+}$$
 ,  $Co^{3+}$ 

B. 
$$Ni^{2+}$$
 ,  $Cu^{2+}$ 

C. 
$$Ni^{2+}$$
 ,  $Ti^{3+}$ 

D. 
$$Sc^{3+}$$
 ,  $Ti^{3+}$ 

## **Answer: B::C**



8. Correct statement about FeO at room temperature

A. It is non-stoichiometirc and metal deficient

B. It is basic oxide

C. Its aqueous solution changes to  $Fe(OH)_3$  and then

to  $Fe_2O_3,\,xH_2O$  by atmospheric oxygen

D. It gives red colour with KCNS

Answer: A::B::C



**Watch Video Solution** 

9. Correct statement about calomel is

- A. Ionises as  $Hg_2^{2+}$  and  $2Cl^-$  ions
- B. Cation is diamagnetic
- C. Used in medicine as purgative
- D. With aqueous ammonia it turns black

## Answer: A::B::C::D



**Watch Video Solution** 

- **10.** Some of the following reagents are used as primary standard
- I.  $KMnO_4$
- II. NaOH

III .  $K_2Cr_2O_7$ 

IV.  $FeSO_4(NH_4)_2SO_4.6H_2O$ 

 $\mathsf{V.}\,H_2C_2O_4.2H_2O$ 

Select the primary standard

A. II,IV

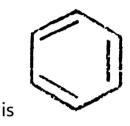
B. I,II

C. I,III

D. All of these

# **Answer: C**




**View Text Solution** 

11. Incorrect statement is

A. In acidic medium  $MnO_4^-$  disproportionates to

$$MnO_2$$
 and  $MnO_4^{2\,-}$ 

- B.  $KMnO_4$  spot can be bleached by  $H_2O_2$
- C. Alkaline  $KMnO_4$  can be used to test unsaturation



D. Eq. wt. of  $KMnO_4$  in acidic medium is  $\frac{M}{5}$ 

## Answer: A::C



**Watch Video Solution** 

Assingment Section D Linked Comprehension Type Questions Comprehension I

1. The transition element ( with few exceptions ) show a large number of oxidation states. The various oxidation states are related to the electronic configuration of their atoms. The variable oxidation states of a transition metal is due to the involvement of (n-1)d and outer ns electrons. For the first five elements of 3d transition series, the minimum oxidation state is equal to the number of electrons in 4s shell and the maximum oxidation state is equal to the sum of 4s and 3d electrons. The relative stability of various oxidation states of a given element can be explained on the basis of stability of  $d^0, d^5$  and  $d^{10}$ configuration.

In 3d series, the maximum oxidation state is shown by

A. Sc( At . no. 21)

B. Cr(24)

C. Mn(At. no. 25)

D. Fe(26)

#### **Answer: C**



**Watch Video Solution** 

2. The transition element ( with few exceptions ) show a large number of oxidation states . The various oxidation states are related to the electronic configuration of their atoms. The variable oxidation states of a transition metal is due to the involvement of (n-1)d and outer ns electrons . For the first five elements of 3d transition series , the minimum oxidation state is equal to the number of

electrons in 4s shell and the maximum oxidation state is equal to the sum of 4s and 3d electrons. The relative stability of various oxidation states of a given element can be explained on the basis of stability of  $d^0$ ,  $d^5$  and  $d^{10}$  configuration .

In which of the following pairs , the first species is more stable than second one

A. 
$$Ti^{3+}$$
,  $Ti^{4+}$ 

$$\mathsf{B.}\,Mn^{2\,+}\,,Mn^{3\,+}$$

C. 
$$Fe^{2+}$$
 ,  $Fe^{3+}$ 

D. 
$$Sc^{+2}$$
,  $Sc^{+3}$ 

#### **Answer: B**



3. The transition element ( with few exceptions ) show a large number of oxidation states. The various oxidation states are related to the electronic configuration of their atoms. The variable oxidation states of a transition metal is due to the involvement of (n-1)d and outer ns electrons. For the first five elements of 3d transition series, the minimum oxidation state is equal to the number of electrons in 4s shell and the maximum oxidation state is equal to the sum of 4s and 3d electrons. The relative stability of various oxidation states of a given element can be explained on the basis of stability of  $d^0$ ,  $d^5$  and  $d^{10}$ configuration.

Identify the correct statement

- A. The most common oxidation state of 3d series is +2
- B. The lowest oxidation state of Cr and Cu is +1 while

for other it is +2

- C.  $Ti^{4+}$ ,  $Mn^{2+}$  are stable oxidation states
- D. All of these

#### **Answer: D**



**Watch Video Solution** 

Assingment Section D Linked Comprehension Type Questions Comprehension Ii

1. Transition metals combine with halogens at high temperature to form compounds called halides. On account of high activation energy, the reactions require high temperature to start, but once the the reaction is started, the heat of reaction is sufficient to maintain the continuity.

Metals in higher oxidation state form flourides as it is the most electronegative element. Flourides are ionic in nature. The chlorides, bromides and iodides have ionic as well as covalent character. Halides of metals is higher oxidation states are relatively unstable and hydrolysed very easily.

 $\Delta H_f$  is negative for

A. Flourides

- **B.** Bromides
- C. Iodides
- D. All of these

#### **Answer: D**



# **Watch Video Solution**

**2.** 
$$Cr_2O_7^{2-} \xrightarrow{pH=x} CrO_4^{2-} \xrightarrow{pH=y} Cr_2O_7^{2-}$$

x and y can be:

- A. 4 and 5
- B. 4 and 8
- C. 8 and 4

#### **Answer: C**



## **Watch Video Solution**

**3.** Transition metals combine with halogens at high temperature to form compounds called halides. On account of high activation energy, the reactions require high temperature to start, but once the the reaction is started, the heat of reaction is sufficient to maintain the continuity.

Metals in higher oxidation state form flourides as it is the most electronegative element. Flourides are ionic in nature. The chlorides, bromides and iodides have ionic as

well as covalent character . Halides of metals is higher oxidation states are relatively unstable and hydrolysed very easily .

Aqueous solution of which compound will have pH < 7 ?

- A.  $TiCl_4$
- B.  $FeCl_3$
- C.  $CuSO_4$
- D. All of these

**Answer: D** 



**Watch Video Solution** 

Assingment Section E Assertion Reason Type Questions

**1.** STATEMENT-1 : Oxidation number of Cr in  $K_3CrO_8$  is +5 and

STATEMENT-2: It contains tetraperoxo species , i.e.,  $\left[Cr(O_2)_4\right]^{3-}$ 

- A. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

#### **Answer: A**



**2.** STATEMENT-1 :  $MnO_{{\mbox{${\cal I}$}}}^-$  is tetrahedral in shape .

and

STATEMENT-2:  $KMnO_4$  is purple in colour .

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True



**3.** STATEMENT-1 : In zinc, outermost shell is completely filled and

STATEMENT-2: Zn does not much resemblance with transition metals.

A. Statement-1 is True, Statement-2 is True, Statement-

- 2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

### **Answer: D**

and



**4.** STATEMENT-1 : Chromium atom has electronic configuration  $[Ar]3d^54s^1$  .

STATEMENT-2: Atomic number of chromium is 24.

- A. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

#### **Answer: B**



**Watch Video Solution** 

**5.** STATEMENT-1 :  $CrO_2Cl_2$  has tetrahedral shape .

and

STATEMENT-2:  $CrO_3$  reacts with HCl to form  $CrO_2Cl_2$  .

A. Statement-1 is True, Statement-2 is True, Statement-

- 2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

#### **Answer: B**



**View Text Solution** 

**6.** STATEMENT-1 : Common oxidation states of iron and +2 and +3 in its compound .

and

STATEMENT-2: Iron can have only +2 and +3 oxidation states in its compounds .

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

#### **Answer: C**



- **7.**  $K_2PtCl_6$  is a well known compound whereas corresponding Ni compound is not known. Explain.
  - A. Statement-1 is True, Statement-2 is True, Statement-
    - 2 is a correct explanation for Statement-1

- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

#### **Answer: A**



**Watch Video Solution** 

8. STATEMENT-1: Zn is not a typical transition metal.

and

STATEMENT-2: Zn is a d-block element.

- A. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-
  - 2 is NOT a correct explanation for Statement-1
- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

### **Answer: B**



**Watch Video Solution** 

**9.** STATEMENT-1 : In  $Cr_2O_7^{-2}$  bond length of all Cr-O bond is equal

and

STATEMENT-2:  $Cr_2O_7^{-2}$  , resonance is possible.

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

#### **Answer: D**



**10.** STATEMENT-1: Lanthanoids show less oxidation states than actinoids

STATEMENT-2: 4f subshell is dieperseated than 5f.

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

#### **Answer: A**



**11.** STATEMENT-1 : Out of all actinoids , Th has highest melting point .

STATEMENT-2: Th has largest size among actinoids.

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True



**12.** STATEMENT-1 : AgBr is yellow coloured and

STATEMENT-2: AgBr is unstable is presence of sunlight.

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True



13. STATEMENT-1: Hg exists in liquid state at room.

Temperature

and

STATEMENT-2: Hg has  $(n-1)d^{10}ns^2$  E.C.

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

**14.** STATEMENT-1 : CuO is called balck oxide of copper .

and

STATEMENT-2: CuO is diamagnetic

A. Statement-1 is True, Statement-2 is True, Statement-

2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

**Answer: C** 

**15.** STATEMENT-1 :  $Lu(OH)_3$  is more basic than  $Ce(OH)_3$ 

STATEMENT-2:  $Lu^{\,+\,3}$  has smaller size than  $Ce^{\,+\,3}$ 

A. Statement-1 is True, Statement-2 is True, Statement-

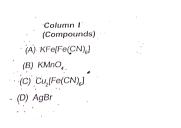
2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-

2 is NOT a correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True


Answer: D

and



## **Assingment Section F Matrix Match Type Questions**

## 1. Match the following





- (p) d-d transition is possible in any of atom
- (q) Charge transfer from metal to metal
- (r) Paramagnetic
- (s) Colour due to polarisation
- (t) Charge transfer from ligand to metal



## Watch Video Solution

2. Match the product of given reaction in column I to the properties given in column II

#### Column I (Reaction)

(A) 
$$K_2Cr_2O_7 + H_2O_2$$
 acidic medium

$$(C) K_2Cr_2O_7 + H_2O_2 \xrightarrow{\text{a-basic}}$$

(D) 
$$K_2Cr_2O_7 + SO_2 \xrightarrow{H^+}$$

#### - Column II

(About Product and Reaction)

- (p) Change in oxidation state of Cr
- (q) Blood red coloured complex
- (r) Blue colour in etheral layer
- (s) Oxidation state of Cr is 6 in product
  - (t) Green colour



## **Watch Video Solution**

## 3. Match the following

#### Column I

- (A)  $Co(NH_3)_6^{+2}$ (B)  $Fe(CN)_6^{-3}$ 

  - (C) CuF<sub>2</sub> (D) CuSO<sub>4</sub> 5H<sub>2</sub>O

## Column II

- (p) Paramagnetic
- (q) Coloured due to d-d transition
  - (r) Blue vitrol
    - (s) Hydrogen bonding
      - (t) Ionic bonding



## **Watch Video Solution**

**Assingment Section G Integer Answer Type Questions** 

**1.** What is the oxidation state of Mn in product formed by the oxidising action of  $KMnO_4$  inneutral medium ?



**Watch Video Solution** 

**2.** What will be oxidation state of Sc in  $ScC_2$  ?



**Watch Video Solution** 

**3.** What should be the oxidation state of iron for maximum magnetic moment?



**4.** What is the oxidation state of iron in haemoglobin?



**5.** A trivalent lanthanoid ion having yellow colour in aqueous solution have five 4f electrons. What should be number of electrons in 4f orbital of another trivalent lanthanoid ion having yellow colour in aqueous solution?



Assingment Section H Multiple True False Type Questions

**1.** STATEMENT-1:  $KMnO_4$  is coloured due to d-d transition

STATEMENT-2: Colour due to d-d transition will be less intense.

STATEMENT-3:  $Feig[Fe(CN)_6ig]$  will retain a brown coloured complex after a long time of its formation .

A. TFT

B. FTF

C. TTT

D. TFF

## Answer: 2



**2.** STATEMENT-1: Ti metal present in Zieglar Natta catalyst STATEMENT-2: Os with +8 oxidation state exist in  $OsF_8$  STATEMENT-3: +7 oxidation state is more stable for 4d and 5d elements compared to 3d metal

A. TTT

B. TFT

C. FTT

D. FFT

### **Answer: 2**



3. STATEMENT-1: U can show oxidation state +6

STATEMENT-2: Uranium is a radioactive element

STATEMENT-3: Uranium is lanthanoid

A. TTF

B. TFF

C. TTT

D. FTF

#### **Answer: 1**



**4.** STATEMENT-1:  $VO_4^{-3}$  is coloured due to charge transfer

STATEMENT-2: Colour due to charge transfer is highly intense colour

STATEMENT-3: Fe may form Fe-Fe bond

A. FTF

B. FTT

C. TTF

D. TTT

#### **Answer: 4**



5. STATEMENT-1: Platinum metal is called white gold

STATEMENT-2: Pt is less costly than gold.

STATEMENT-3: Pt is good catalyst in reduction process

A. TTT

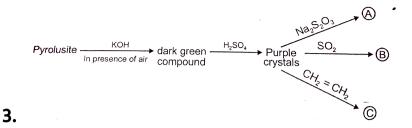
B. FTF

C. TFT

D. FFT

**Answer: 3** 

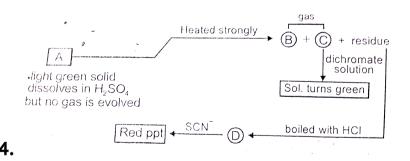



**Watch Video Solution** 

**Assingment Section I Subjective Type Questions** 

- 1. Explain by giving equation for the reaction :
- (i)  $Mn^{3\,+}$  disproportionates to  $Mn^{2\,+}$  and  $MnO_2$  in acidic medium.
- (ii)  $KMnO_4$  heated with KOH
  - **Watch Video Solution**

**2.**  $Zn^{2+}$  salts appears acidic due to hydrolysis. Identify acid and base in the following reaction  $\Big[Zn(H_2O_4]^{2+} + H_2O o \big[Zn(H_2O)_3OH\big]^+ + H_3O^+\Big]$ 


$$Zn(H_2O_4) + H_2O \rightarrow [Zn(H_2O)_3OH] + H_3O$$



Identify A, B and C and write chemical equtions.



**Watch Video Solution** 



Identify A,B,C,D in the flow diagram and write equations.



- **5.** Write the equations .
- (i) Acidified solution of  $K_2Cr_2O_7$  turns green when sodium sulphite is added to it.
- (ii) Potassium ferricyanide is added to ferrous sulphate.
- (iii) Silver chloride is treated with aqueous sodium cyanide

(iv) Zinc is exposed to moist air.



- 6. Explain the following
- (i) A little acid is always added in the preparation of ageous ferrous sulphate solution
- (ii) Aqueous solution of mercuric chloride and stannous

chloride cannot exist together.

(ii) Ferric iodide is very unstable but ferric chloride is not.

(iv)  $Hg^{2+}$  and  $Hg_2^{2+}$  salts are colourless generaly .



Watch Video Solution

**7.** (a). 
$$CuSO_4.5H_2O \xrightarrow{100^\circ} (A) \xrightarrow{230^\circ} (B) \xrightarrow{800^\circ} (C) + (D)$$
 (b).  $AgNO_3 \xrightarrow{redhot} (E) + (F) + O_2$ 



# Assingment Section J Aakash Challengers Questions

**1.**  $KMnO_4$  dissollution in concentration  $H_2SO_4$  results in explosion due to

- A. Formation of MnO which explode
- B. Formation of  $Mn_2O_7$  which explode
- C. Formation of  $MnO_2$  which explode
- D. Formation of  $MnSO_4$  which explode

### **Answer: B**



- **2.** When  $K_2MnO_4$  is added in solution of  $NH_4Cl$  then
  - A. Green colour will appear
  - B. Yellow colour will appear
  - C. Pink colour will appear

D. Colour will appear

# **Answer: B**



**View Text Solution** 

- **3.** Which of the following lanthanoids has highest tendency to form complexes ?
  - A.  $Ce^{\,+\,3}$
  - B.  $Pm^{+2}$
  - C.  $Lu^{\,+\,3}$
  - D.  $Eu^{\,+\,2}$

Answer: C

| <b>4.</b> What will the structure | of ( | $CrO_5$ | in | presence | of | pyridine |
|-----------------------------------|------|---------|----|----------|----|----------|
|-----------------------------------|------|---------|----|----------|----|----------|

?

A. Butterfly

B. Square pyramidal

C. Pentagonal pyramidal

D. Cannot be predicted

#### **Answer: C**



5. Choose the correct statement regarding bonding in

 $FeCl_3$ 

- (I) It contains  $2c-2e^{\,-}$  bond
- (II) It contains  $3c-2e^-$  bond

(III) It contain co-ordinate bond

- A. (I),(II)
- B. (I),(III)
- C. (II),(III)
- D. (I),(II) &(III)

**Answer: B** 



**6.** The hybridisation of Cu in

 $(NH_4)_2[CuCl_4]$  and  $Cs_2[CuCl_4]$  is

- A.  $dsp^2$  in both
- B.  $dsp^2$  and  $sp^3$  respectively
- $\mathsf{C}.\,sp^3 \;\; \mathrm{and} \;\; dsp^2 \; \mathsf{respectively}$
- D.  $sp^3$  in both

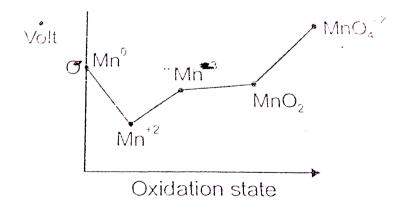
# **Answer: B**



**View Text Solution** 

7. Stability of the complex may depend on

A. Ionisation energy


- B. Hydration energy
- C. Sublimation energy
- D. All of these

#### **Answer: D**



**Watch Video Solution** 

# 8. In this diagram, the most stable oxidation is



A.  $Mn^0$ 

- B.  $Mn^{+2}$
- C.  $MnO_4^{-2}$
- D.  $Mn^{+3}$

#### **Answer: B**



- **9.** The correct regarding  $CuCl_5^{-3}$  compound is
  - A. Hybridisation is  $sp^3d$
  - B. Axial bond length is larger than equitorial bond length

C. Equatorial bond length is longer than axial bond

length

D. Both (1) & (3)

#### **Answer: D**



**Watch Video Solution** 

**10.** What will be the hybridisation of  $Ni(CN)_5^{-3}$  ?

A.  $sp^3d^2$ 

B.  $sp^3d$ 

C.  $dsp^3$ 

D.  $d^2sp^3$ 

# **Answer: C**

