© ${ }^{\text {T doubtnut }}$ India's Number 1 Education App

MATHS

JEE MAIN AND ADVANCED

MATRICES

Example 1

1. Consider the following information regarding the number of men and women workers in three factories I, II and III.

Men workers Women workers
$\begin{array}{lll}I & 100 & 70\end{array}$
$\begin{array}{lll}I I & 120 & 50\end{array}$
III $180 \quad 90$
Represent above information in the form of a 3×2 matrix. What does the entry in the $2^{\text {nd }}$ row and $2^{\text {nd }}$ column represent ?

Example 2

1. We a matrix has 18 elements what are the possible orders it can have ?

- Watch Video Solution

Example 3

1. Construct a 3×3 matrix whose elements are given by $a_{i j}=\left\{\begin{array}{l}\frac{1}{2}|2 i-3 j|, i \neq j \\ |2 i-j|, i=j\end{array}\right.$

- Watch Video Solution

Example 4

1. If $\left[\begin{array}{ll}x-2 & y-3 \\ z+1 & t-4\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ then find $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and t .

Example 5

1. If $\left[\begin{array}{cc}x-2 y & 2 x-y \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 3 & 4\end{array}\right]$ then find x and y .

- Watch Video Solution

Example 6

1. $A=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ -1 & 8 & 3 & 2\end{array}\right], B=\left[b_{i j}\right]_{m \times n}$. Find the value of m and n for which $A+B$ can be defined.

Watch Video Solution

Example 7

1. Let $A=\left[\begin{array}{cc}\sqrt{3} & -1 \\ 2+\sqrt{3} & a-\sqrt{3}\end{array}\right], B=\left[\begin{array}{cc}-\sqrt{3} & 2 \\ 2-\sqrt{3} & 1+\sqrt{3}\end{array}\right]$ Find $\mathrm{A}+\mathrm{B}$.

- Watch Video Solution

Example 8

1. Let $A=\left[\begin{array}{ccc}3 & 2 & 3 \\ -1 & 4 & -2 \\ 1 & 4 & 2\end{array}\right]$ Find additive inverse of A .

- Watch Video Solution

Example 9

1. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 4 & 3 \\ 1 & 0 & 0\end{array}\right]$ Find $2 \mathrm{~A}+3 \mathrm{~B}$.

- Watch Video Solution

Example 10

1. Let $A+2 B=\left[\begin{array}{ccc}3 & 2 & -3 \\ 1 & 0 & 4 \\ 3 & 1 & 2\end{array}\right]$ and $-A-B=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & 4 & 1 \\ 3 & 2 & 1\end{array}\right]$. Find A and B.

- Watch Video Solution

Example 11

1. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{cc}0 & 1 \\ -1 & 2 \\ -2 & 1\end{array}\right]$, then find matrix X such that $2 \mathrm{~A}+3 \mathrm{X}=5 \mathrm{~B}$.

- Watch Video Solution

Example 12

1. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-1 & -2 \\ -4 & -3\end{array}\right]$, find $A B$ and $B A$.

Example 13

1. If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & 2 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 1\end{array}\right]$ and $C=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 2\end{array}\right]$ Find
$A(B C),(A B) C$ and prove that $A(B C)=(A B) C$.

- Watch Video Solution

Example 14

1. If $A+I=\left[\begin{array}{ccc}2 & 2 & 3 \\ 3 & -1 & 1 \\ 4 & 2 & 2\end{array}\right]$ then show that $A^{3}-23 A-40 I=0$

- Watch Video Solution

Example 15

1. A trust has Rs. 60,000 that must be invested in two different types of bonds. The first type of bond pays 10% interest per year and the second type pays 12%. Using matrix multiplication, determine how to invest Rs. 60,000 into two types of bonds so that the total annual interest received is Rs. 6400.

- Watch Video Solution

Example 16

1. If $A=\left[\begin{array}{ccc}1 & 4 & 2 \\ -1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 1\end{array}\right]$, verify that
(i) $\left(A^{\prime}\right)^{\prime}=A$
(ii) $(k B)^{\prime}=k B^{\prime}$
(iii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

- Watch Video Solution

Example 17

1. $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 4\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & 3 \\ -1 & 1\end{array}\right]$, verify (AB)'=B'A'

- Watch Video Solution

Example 18

1. If $A=\left[\begin{array}{lll}a & 2 & 3 \\ b & c & 4 \\ d & e & f\end{array}\right]$ is skew symmetric matrix, then find a,b,c,d,e,f.

- Watch Video Solution

Example 19

1. Express the matrix $A=\left[\begin{array}{ccc}2 & -3 & 4 \\ -1 & 4 & 3 \\ 1 & -2 & 3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix

Example 20

1. Show that every real orthogonal matrix is of any one of the forms
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

- Watch Video Solution

Example 21

1. Prove that the matrix $\mathrm{A}=\left[\begin{array}{cc}\frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}\end{array}\right]$ is unitary.

- Watch Video Solution

1. If A is an idempotent matrix, then show that $\mathrm{B}=-\mathrm{A}$ is also idempotent and $A B=B A=0$

- Watch Video Solution

Example 23

1. Let $A=\left[\begin{array}{cc}4 & 1 \\ -9 & -2\end{array}\right]$, then find A^{100}.

- Watch Video Solution

Try Yourself

1. If a matrix has 20 elements what are possible orders it can have ?

- Watch Video Solution

2. Construct a 3×2 matrix whose elements are given by $a_{i j}=\frac{1}{2}|i-3 j|$.

- Watch Video Solution

3. Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a scalar matrix and $a_{11}+a_{22}+a_{33}=15$ then write matrix A .

- Watch Video Solution

4. If $\left[\begin{array}{cc}-5 & 8 \\ -3 & 4\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & 4\end{array}\right]$ then find the value of $a^{3}+b^{3}+c^{3}$

- Watch Video Solution

5. Find additive inverse of $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -4 & 3 & -2 \\ 1 & -1 & 4\end{array}\right]$.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}2 & 1 \\ -3 & 2\end{array}\right], B=\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$ Find $2 \mathrm{~A}+3 \mathrm{~B}$.

- Watch Video Solution

7. $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & -1 & 2 \\ 1 & 0 & 3\end{array}\right], B=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1 \\ 2 & -2 & 2\end{array}\right]$ then find matrix X such that $2 A+X=2 B$.

- Watch Video Solution

8. $A+B=\left[\begin{array}{ccc}4 & -2 & 2 \\ 6 & 8 & 10 \\ 2 & -4 & 12\end{array}\right], A-B=\left[\begin{array}{ccc}2 & -4 & -2 \\ 6 & -8 & -8 \\ -2 & 4 & -6\end{array}\right]$. Find A,B.

- Watch Video Solution

9. $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & -1 \\ 2 & 3 & 1\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$, verify (AB)' $=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.
10. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 4 \\ 2 & 3 & 1\end{array}\right]$, verify that
(i) (B^{\prime})' $=B$, (ii) ($\left.a-B\right)^{\prime}=A^{\prime}-B^{\prime}$
(iii) $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$, (iv) (kA$)^{\prime}=\mathrm{kA}$ ', where k is any constant
(v) $(2 A+3 B)^{\prime}=2 A^{\prime}+3 B^{\prime}$

- Watch Video Solution

11. $A=\left[\begin{array}{ccc}1 & 4 & 9 \\ -1 & 2 & 0 \\ 3 & 1 & 9\end{array}\right]$. Represent A as sum of symmetric and skew symmetric matrix

- Watch Video Solution

12. Let $A=\left[\begin{array}{ccc}1 & a & 4 \\ 2 & 3 & c \\ b & -2 & 4\end{array}\right]$. If A is symmetric matrix, then find $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

- Watch Video Solution

1. Let A be 5×8 matrix, then each column of A contains
A. 5 elements
B. 8 elements
C. 40 elements
D. 13 elements

Answer: A

- Watch Video Solution

2. If A is matrix of order 10×15, then each row of A contains
A. 25 elements
B. 15 elements
C. 10 elements
D. 150 elements

Answer: B

- Watch Video Solution

3. The number of all possible matrices of order 2×3 with each entry 1 or
-1 is
A. 32
B. 12
C. 6
D. 64

Answer: D

4. If A is of order $m \times n$ and B is of oredr $p \times q$, then AB is defined only if
A. $m=q$
B. $m=p$
C. $n=p$
D. $\mathrm{n}=\mathrm{q}$

Answer: C

- Watch Video Solution

5. Question 1: If P is of order 2×3 and Q is of order 3×2, then $P Q$ is of order
A. 2×3
B. 2×2
C. 3×2
D. 3×3

Answer: B

D Watch Video Solution

6. If $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, then
A. $A^{2}=0$
B. $A^{2}=A$
C. $A^{3}=A$
D. $A^{2}=2 A$

Answer: A

- Watch Video Solution

7. If A is a square matrix, then A is symmetric, if
A. $A^{2}=A$
B. $A^{2}=l$
C. $A^{T}=A$
D. $A^{T}=-A$

Answer: C

- Watch Video Solution

8. If A is a square matrix, then A is skew symmetric if
A. $A^{2}=A$
B. $A^{2}=l$
C. $A^{T}=A$
D. $A^{T}=-A$

Answer: D

9. If A is any square matrix, then $A+A^{T}$ is skew symmetric
A. $A+A^{T}$ is skew symmetric
B. $A-A^{T}$ is symmetric
C. $A A^{T}$ is symmetric
D. $A A^{T}$ is skew symmetric

Answer: C

- Watch Video Solution

10. If A and B are symmetric matrices of the same order then (AB-BA) is always
A. $A B$ is a symmetrix matrix
B. A-B is a skew - symmetric matrix
C. $A B+B A$ is a symmetric matrix
D. AB-BA is a symmetric matrix

Answer: C

- Watch Video Solution

11. Let A be a square matrix. Then which of the following is not a symmetric matrix -
A. $A+A^{T}$
B. $A-A^{T}$
C. $A A^{T}$
D. $A^{T} A$

Answer: B

- Watch Video Solution

12. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B)
negative (C) positive (D) non real
A. Zero
B. Positive and equal
C. Negative and equal
D. any real number

Answer: A

D Watch Video Solution

13. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, then A^{2008} is equal to
A. $\left[\begin{array}{cc}2008 & 0 \\ 1 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 0 \\ 2008 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 1 & 2008\end{array}\right]$
D. $2007\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

Answer: B

14. If $A=[x y z], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right], C=[\alpha \beta \gamma]^{T}$ then $A B C$ is
A. Not defined
B. Is a 3×3 matrix
C. Is a 1×1 matrix
D. Is a 3×2 matrix

Answer: C

Watch Video Solution
15. if for a matrix $A, A^{2}+I=O$, where I is the identity matrix, then A equals
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

16. If A and B are two matrices such that $A B=B$ and $B A=A$, then
A. 2 AB
B. 2BA
C. AB
D. $A+B$

Answer: D

17. If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$, then $A=$
A. $\frac{1}{3}\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
B. $\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Answer: A

- Watch Video Solution

18. $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to
A. $\left[\begin{array}{l}45 \\ 44\end{array}\right]$
B. $\left[\begin{array}{l}43 \\ 45\end{array}\right]$
C. $\left[\begin{array}{l}44 \\ 43\end{array}\right]$
D. $\left[\begin{array}{l}43 \\ 44\end{array}\right]$

- Watch Video Solution

19. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$, then $\mathrm{f}(\mathrm{A})$ is equal to
A. $\left[\begin{array}{cc}0 & -4 \\ 8 & 8\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$

Answer: D

- Watch Video Solution

20. Multiplicative inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ is (i) $\left[\begin{array}{cc}4 & -1 \\ -7 & -2\end{array}\right]$ $\left[\begin{array}{cc}-4 & -1 \\ 7 & -2\end{array}\right]$ (iii) $\left[\begin{array}{cc}4 & -1 \\ 7 & 2\end{array}\right]$ (iv) $\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$
A. $\left[\begin{array}{cc}4 & -1 \\ -7 & -2\end{array}\right]$
B. $\left[\begin{array}{cc}-4 & -1 \\ 7 & -2\end{array}\right]$
C. $\left[\begin{array}{cc}4 & -1 \\ 7 & 2\end{array}\right]$
D. $\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$

Answer: D

- Watch Video Solution

21. If the matrix A is such that $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right) A=\left(\begin{array}{ll}1 & 1 \\ 0 & -1\end{array}\right)$, then what is A equal to ?
A. $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & -1 \\ -3 & 1\end{array}\right]$
22. If A is a squqre matrix such that $A^{2}=l$, then A^{-1} is equal to
A. 1
B. 0
C. A
D. I+A

Answer: A

- Watch Video Solution

23. If $X+\left[\begin{array}{ll}2 & 1 \\ 6 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ then ' X ' is equal to
A. $\left[\begin{array}{ll}0 & 1 \\ 0 & 6\end{array}\right]$
B. $\left[\begin{array}{ll}0 & -1 \\ 0 & -6\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & 0 \\ -6 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ 6 & 0\end{array}\right]$

Answer: C

- Watch Video Solution

24. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 5 & 7\end{array}\right]$ and $2 A-3 B=\left[\begin{array}{ccc}4 & 5 & -9 \\ 1 & 2 & 3\end{array}\right]$ then B is equal to
A. $\frac{1}{3}\left[\begin{array}{ccc}-2 & -1 & 15 \\ 5 & 8 & -11\end{array}\right]$
B. $\frac{1}{3}\left[\begin{array}{ccc}2 & 1 & -15 \\ 5 & -8 & -11\end{array}\right]$
C. $\frac{1}{3}\left[\begin{array}{ccc}2 & -1 & 15 \\ 5 & 8 & 11\end{array}\right]$
D. $\frac{1}{3}\left[\begin{array}{ccc}-2 & -1 & 15 \\ -5 & 8 & 11\end{array}\right]$

Answer: D
25. If $\left[\begin{array}{cc}x & 1 \\ -1 & -y\end{array}\right]+\left[\begin{array}{ll}y & 1 \\ 3 & x\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then
A. $x=-1, y=0$
B. $x=1, y=0$
C. $x=0, y=1$
D. $x=1, y=1$

Answer: B

- Watch Video Solution

26. Let $A=\left[\begin{array}{lll}2 & 3 & 5 \\ 1 & 0 & 2 \\ 3 & 4 & 5\end{array}\right]$ and $A+B-4 I=0$, then B is equal to
A. $\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}2 & 3 & 5 \\ 1 & -4 & 2 \\ 3 & 4 & 1\end{array}\right]$
C. $\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -1\end{array}\right]$
D. $\left[\begin{array}{ccc}2 & 3 & 5 \\ -1 & 4 & -2 \\ 3 & 4 & 1\end{array}\right]$

Answer: A

Watch Video Solution

27. If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 8 \\ 4 & 9\end{array}\right]$ and $X+A=0$, then X is equal to
A. $\left[\begin{array}{ll}1 & 2 \\ 1 & 8 \\ 4 & 9\end{array}\right]$
B. $\left[\begin{array}{cc}-1 & -2 \\ 1 & 8 \\ 4 & 9\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ 1 & -8 \\ 4 & 9\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & -2 \\ 1 & -8 \\ -4 & -9\end{array}\right]$

Answer: D
28. Show that $\cos \theta \cdot\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta \cdot\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]=I$.
A. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
D. $-\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Answer: B

- Watch Video Solution

29. If $\left[\begin{array}{cc}x+y & y-z \\ z-2 x & y-x\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$, then
A. $x=2, y=1, z=3$
B. $x=3, y=1, z=2$
C. $x=1, y=2, z=3$
D. $x=1, y=3, z=2$

D Watch Video Solution

30. If $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 2 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1\end{array}\right]$, find a matrix C such that
$(A+B+C)$ is a zero matrix.
A. $\left[\begin{array}{lll}-3 & 4 & -1 \\ -3 & 0 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & 3\end{array}\right]$
C. $\left[\begin{array}{ccc}-1 & -2 & 3 \\ 1 & 2 & -3\end{array}\right]$
D. $\left[\begin{array}{lll}3 & 4 & 1 \\ 3 & 0 & 1\end{array}\right]$

Answer: A

- Watch Video Solution

1. If A is a matrix of order $[x-1] \times 3$ and B is matrix of order $3 \times[y-2]$,where [] represent greatest integer function, such that $A B$ is a matrix of order 4×5 then
A. $x \in[5,6)$
B. $x \in[5,6]$
C. $y \in[7,8]$
D. $y \in[8,9]$

Answer: A

- Watch Video Solution

2. If A is a diagonal matrix of order 3×3 is commutative with every square matrix or order 3×3 under multiplication and $\operatorname{tr}(A)=12$, then the value of $|A|^{1 / 2}$ is \qquad .
A. A diagonal matrix with atleast two diagonal elements different
B. A scalar matrix
C. A unit matrix
D. A diagonal matrix with exactly two diagonal elements different

Answer: B

- Watch Video Solution

3. If the square matrices A and B are such that $A B=A$ and $B A=B$, then
A. A is an idempotent matrix but B is not
$B . B$ is an idempotent matrix but A is not
C. A and B are both idempotent matrices
D. Neither A nor B are idempotent matrices

Answer: C

4. Which of the following about the trace of a matrix is false?
A. $\operatorname{tr}(\mathrm{ABC})=\operatorname{tr}(\mathrm{BCA})=\operatorname{tr}(\mathrm{ACB})=\operatorname{tr}(\mathrm{BAC})=\operatorname{tr}(\mathrm{CBA})$
B. $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$
C. $\operatorname{tr}(\mathrm{A}-\mathrm{B})=\operatorname{tr} \mathrm{A}-\operatorname{tr} \mathrm{B}$
D. $\operatorname{tr}\left(A^{2}\right)=(\operatorname{tr} A)^{2}$

Answer: D

Watch Video Solution
5. If A, B and $A+B$ are idempotent matrices, then
A. $A B=B A$
B. $A B+B A=O$
C. $A B-B A=I$
D. $A B+B A=1$

Answer: B

- Watch Video Solution

6. If $A=\left[\begin{array}{ll}a & b\end{array}\right], B=\left[\begin{array}{ll}-b & -a\end{array}\right]$ and $C=\left[\begin{array}{c}a \\ -a\end{array}\right]$, then correct statement is
$A . A=-B$
B. $A+B=A-B$
C. $A C=B C$
D. $C A=C B$

Answer: C

D Watch Video Solution

7. Let $A=\left[\begin{array}{cc}1 & \frac{x}{n} \\ -\frac{x}{n} & 1\end{array}\right]$, then $\lim _{n \rightarrow \infty} A^{n}$ is
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$
C. $\left[\begin{array}{cc}\cos x & -\sin x \\ \sin x & \cos x\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

8. Let A be a squarematrix of order n .
$l=$ maximum number of different entries if A is a upper triangular matrix. $m=$ minimum number of zeros if A is a triangular matrix.
$p=$ minimum number of zeros if A is a diagonal matrix.
If $l+2 m=2 p+1$, then $\mathrm{n}=$
A. 1
B. 2
C. 3
D. 4

Answer: C

- View Text Solution

9. let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $P=\left[\begin{array}{cc}\cos \left(\frac{\pi}{6}\right) & \sin \left(\frac{\pi}{6}\right) \\ -\sin \left(\frac{\pi}{6}\right) & \cos \left(\frac{\pi}{6}\right)\end{array}\right]$ and $Q=P A P^{T}$ then $P^{T} Q^{2013} P$ (i) $\left[\begin{array}{cc}1 & 2013 \\ 0 & 1\end{array}\right]$ (ii) $\left[\begin{array}{cc}0 & 2013 \\ 0 & 1\end{array}\right]$ (iii) $\left[\begin{array}{cc}2013 & 0 \\ 0 & 2103\end{array}\right]$ (iv) $\left[\begin{array}{cc}0 & 2103 \\ 2013 & 0\end{array}\right]$
A. $\left[\begin{array}{cc}1 & 2013 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}0 & 2013 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}2013 & 0 \\ 0 & 2013\end{array}\right]$
D. $\left[\begin{array}{cc}0 & 2013 \\ 2013 & 0\end{array}\right]$

Answer: A

10. Let t be the trace of matrix A
$\left.\left.\left[\left[\frac{|x+y|}{|x|+|y|}, \alpha_{1}, \beta_{1}\right],\left[\alpha_{2}, \frac{|y+z|}{|y|+|z|}, \beta_{2}\right], \frac{\alpha_{3},|x+z|}{|x|+|z|}, \beta_{3}\right)\right]\right]$ then
A. $0 \leq t<3$
B. $1 \leq t \leq 2$
C. $1 \leq t \leq 3$
D. $-1 \leq t \leq 1$

Answer: C

Watch Video Solution

11. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is
A. 6
B. 12
C. 9
D. 18

Answer: B

- Watch Video Solution

12. The number of matrices of A of order 2×2 such that $A B-B A=I$, where B is a given matrix,
A. 0
B. 1
C. 2
D. Infinite

Answer: A

13. Let A be an involutary matrix and S be the set containing solution of $A^{x}=1$ where $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ Then minimum value of $\sum_{x \in S}^{\infty}\left(\sin ^{x} \theta+\cos ^{x} \theta\right)$
A. 2
B. 4
C. 0
D. -2

Answer: A

- Watch Video Solution

Assignment Section C Objective Type Questions More Than One Options Are Correct

1. $A(\theta)=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $C(\theta, \phi)=A(\theta) A(\phi)$, then which of the following matrices is a null matrix?
A. $C\left(\frac{2 \pi}{5},-\frac{11 \pi}{10}\right)$
B. $C\left(\frac{11 \pi}{10},-\frac{2 \pi}{5}\right)$
C. $C\left(\frac{3 \pi}{7},-\frac{41 \pi}{14}\right)$
D. $C\left(\frac{7 \pi}{3},-\frac{29 \pi}{6}\right)$

Answer: A::B::C::D

- Watch Video Solution

2. If A and B are commuting square matrices of the same order, then which of the following is/are correct ?
A. A and B^{n} commute, $n \in N$
B. A^{n} and B commute, $n \in N$
C. $A-\lambda$ and $B+\mu$ commute, $\lambda, \mu \in R$
D. $A+\lambda$ and $B-\mu$ commute, $\lambda, \mu \in R$

Answer: A::B::C::D

- Watch Video Solution

3. A matrix $A=\left[a_{i j}\right]_{m \times n}$ is
A. Horizontal matrix if $m>n$
B. Horizontal matrix if $m<n$
C. Vertical matrix if $m>n$
D. Vertical matrix if $m<n$

Answer: B::C

- Watch Video Solution

4. If $A=\left[a_{i j}\right]$ is a square matrix of even order such that $a_{i j}=i^{2}-j^{2}$, then
A. A is skew - symmetric
B. $|A|$ is perfect square
C. A is symmetric and $|A|=0$
D. A is neither symmetric nor skew - symmetric

Answer: A: B

- Watch Video Solution

5. If A and B are two square matrices such that they commute, then which of the following is true?
A. $A B^{2013}=B^{2013} A$
B. $(A B)^{2013}=A^{2013} B^{2013}$
C.

$$
\begin{aligned}
& \qquad(A+B)^{n}=.^{n} C_{0} A^{n}+.{ }^{n} C_{1} A^{n-1} B+.{ }^{n} C_{2} A^{n-2} B^{2}+\ldots+.^{n} C_{n} \\
& \text { D. } A^{2}-B^{2}=(A-B)(A+B)
\end{aligned}
$$

Answer: A::B::C::D

- Watch Video Solution

6. If A is a nilpotent matrix of odd order r, then which of the following is true?
A. $l=(l-A)\left(l^{r-2} A+l^{r-3} A^{2}+\ldots+A^{r-1}\right)$
B. $l=(l+A)\left(l^{r-1}+l^{r-2} A+l^{r-3} A^{2}+\ldots+A^{r-1}\right)$
C. $l=(l+A)\left(l^{r-1}-l^{r-2} A+l^{r-3} A^{2}-\ldots+A^{r-1}\right)$
D. $l=(l=A)\left(l^{r-1}-l^{r-2} A+l^{r-3} A^{2}-\ldots+A^{r-1}\right)$

Answer: A: C

7. If A is any square matrix such that $A+\frac{I}{2}$ and $A-\frac{I}{2}$ are orthogonal matrices, then
A. A is symmetric
B. A is skew-symmetric
C. $A^{2}=\frac{3 l}{2}$
D. $A^{2}=\frac{-3 l}{2}$

Answer: B::D

- Watch Video Solution

Assignment Section D Linked Comprehension Type Questions

1. Let ψ_{A} be defined as trace of a matrix which is sum of diagonal elements of a square matrix. $\psi_{\lambda A+\mu B}=$
A. $\lambda \Psi_{A}+\mu \Psi_{B}$
B. $\lambda \Psi_{B}+\mu \Psi_{A}$
C. $\lambda \Psi_{A B}+\mu \Psi_{B A}$
D. none of these

Answer: A

- Watch Video Solution

2. Let ψ_{A} be defined as trace of a matrix which is sum of diagonal elements of a square matrix. $\psi_{\lambda A+\mu B}=$
A. $\Psi_{A+B}=\Psi_{A-B}$
B. $\Psi_{A+B}=\Psi_{A B}$
C. $\Psi_{A B}=\Psi_{B A}$
D. $\Psi_{A-B}=\Psi_{B A}$

Answer: C

3. Let ψ_{A} be defined as trace of a matrix which is sum of diagonal elements of a square matrix. $\psi_{\lambda A+\mu B}=$
A. $\Psi_{A B C}=\Psi_{B A C}$
B. $\Psi_{A B C}=\Psi_{C B A}$
C. $\Psi_{A B C}=\Psi_{B C A}$
D. none of these

Answer: C

- Watch Video Solution

Assignment Section E Assertion Reason Type Questions

1. Let A and B be n-rowed square matrices

STATEMENT - 1 The identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$ doesn't hold when
x and y are substituted by A and B.
and

STATEMENT- 2 : Matrix multiplication is not commutative
A. Statement -1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement-1
C. Statement -1 is True, Statement -2 is False
D. Statement -1 is False , Statement -2 is True

Answer: A

- Watch Video Solution

2. If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ then A is ${ }^{1}$) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix
A. Statement -1 is True, Statement -2 is True , Statement -2 is a correct explanation for Statement-2
B. Statement-1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement-2
C. Statement -1 is True, Statement -2 is False
D. Statement -1 is False , Statement -2 is True

Answer: A

- Watch Video Solution

3. STATEMENT -1 : $a=\frac{1}{3}\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is an orthogonal matrix and

STATEMENT-2 : If A and B are otthogonal, then $A B$ is also orthogonal.
A. Statement -1 is True, Statement -2 is True , Statement -2 is a correct explanation for Statement-3
B. Statement- 1 is True, Statement -2 is True , Statement -2 is NOT a correct explanation for Statement-3
C. Statement -1 is True, Statement -2 is False
D. Statement -1 is False , Statement -2 is True

Answer: B

- Watch Video Solution

Assignment Section F Matrix Match Type Question

1. Match the following

Column-I
(A) If A and B are otthogonal, then AB is
(B) If A and B are nilpotent matrices of order r and s and A and B comm
(C) If A is a hermitian matrix such that $A^{2}=0$, then A is
(D) If A and B are unitary matrices, then AB is

- View Text Solution

1. Let $A=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ and $(A+1)^{100}-100 A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right], \quad$ then $\alpha+\beta+\gamma+\delta=\ldots$

- Watch Video Solution

2. Let $A=\left[\begin{array}{cc}\omega & -\omega \\ -\omega & \omega\end{array}\right]$ where w is a complex cube root of unity, $B=\left[(1,-1),(-1,1)\right.$ and $A^{9}=2^{k} B$, where $k=\ldots$

- Watch Video Solution

3. If A is a 3×3 skew-symmetric matrix, then trace of A is equal to -1 b .
$1 \mathrm{c} .|A|$ d. none of these

- Watch Video Solution

4. Let A be a square matrix of $2 x 2$ satisfyinga. $a_{i j}=1$ or -1 and $a_{11} \cdot a_{21}+a_{12} \cdot a_{22}=0$ then the no. of matrix

- Watch Video Solution

Assignment Section H Multiple True False Type Questions

1. STATEMENT -1 All positive odd integral powers of a skew - symmetric matrix are symmetric.

STATEMENT-2 : All positive even integral powers of a skew - symmetric matrix are symmetric.

STATEMENT-3 If A is a skew - symmetric matrix of even order then $|A|$ is perfect square
A. FTT
B. TTT
C.TFT
D. TTF

D Watch Video Solution

2. If A and B are symmetric matrices of same order, then

STATEMENT-1: $\mathrm{A}+\mathrm{B}$ is skew - symmetric matrix.

STATEMENT -2 : AB-BA is skew - symmetric matrix.

STATEMENT-3 A-B is skew - symmetric matrix .
A. TTT
B. F T F
C. F T T
D. F F F

Answer: B

1. If A and B are two square matrices of the order 3 , then the value of 998 $\operatorname{tr}(I)-999 \operatorname{tr}(A B)+999 \operatorname{tr}(\mathrm{BA})$ is

- Watch Video Solution

2. The matrix $A=\left[\begin{array}{ccc}\lambda_{1}^{2} & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} \\ \lambda_{2} \lambda_{1} & \lambda_{2}^{2} & \lambda_{2} \lambda_{3} \\ \lambda_{3} \lambda_{1} & \lambda_{3} \lambda_{2} & \lambda_{3}^{2}\end{array}\right]$ is idempotent if
$\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=k$ where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are non-zero real numbers. Then the value of $(10+k)^{2}$ is \ldots

- Watch Video Solution

3. Find all solutions of the matrix equation $X^{2}=1$, where 1 is the 2rowed unit matrix, and X is a real matrix,i.e. a matrix all of whose elements are real.

Assignment Section J Aakash Challengers Questions

1. The matrix $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$ is
A. Unitary
B. Orthogonal
C. Nilpotent
D. Involutary

Answer: C

D Watch Video Solution

2. Let A be an idemopotent matrix and $(l+A)^{100}=l+\left(2^{20 k}-1\right) A$, then $k=\ldots$.
3. Let $A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$ such that $A^{3}=0$, then sum of all the elements of A^{2} is

- Watch Video Solution

