©゙ doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(GUJRATI)

ELECTRO CHEMISTRY - I

Examples

1. If 50 milli ampere of current is passed through copper coulometer for 60 min , calculate the amount of copper deposited.
2. 0.1978 g of copper is deposited by a current of 0.2 ampere in 50 minutes. What is the electrichemical equivalent of copper ?

- Watch Video Solution

3. What current strength in amperes will be required to liberate 10 g of iodine from potassium iodide solution in one hour?
4. An electric current is passed through three cells in series containing respectively solutions of copper sulphate, silver nitrate and potassium iodide. What weights of silver and iodine will be liberated while 1.25 g of copper is being deposited ?

- Watch Video Solution

5. The resistance of a 0.01 N solution of an electrolyte was found to 210 ohm at $25^{\circ} \mathrm{C}$ using a conductance cell with a cell constant $0.88 \mathrm{~cm}^{-1}$.

Calculate the specific conductance and equivalent conductance of the solution.

D Watch Video Solution

6. 0.04 N solution of a weak acid has a specific conductance 4.23×10^{-4} mho. cm^{-1}. The degree of dissociation of acid at this dilution is 0.0612 .

Calculate the equivalent conductance of weak acid at infinite solution.

- Watch Video Solution

7. Equivalent conductivity of acetic acid at infinite
dilution is 39.7 and for 0.1 M acetic acid the equivalent conductance
$5.2 \mathrm{mho.cm}^{2}$. gm.equiv. ${ }^{-1}$. Calculate degree of dissociation, H^{+}ion concentration and dissociation constant of the acid.

- Watch Video Solution

8. Find the degree of dissociation of HF in 1 M aqueous solution. The value of K for the ionic equilibrium $H F=H^{+}+F^{-}$is 7.2×10^{-4}.
9. The hydrogen ion concentration of a fruit juice is $3.3 \times 10^{-2} M$. What is the pH of the juice ? Is it acidic or basic ?

D Watch Video Solution

10. If a solution has a pH of 7.41 , determine its $\mathrm{H}+$ concentration.
11. pH of a solution is 5.5 at $25^{\circ} \mathrm{C}$. Calculate its $\left[O H^{-}\right]$

- Watch Video Solution

12. Calculate the pH of 0.001 M HCl solution

D Watch Video Solution

13. Find the pH of a buffer solution containing 0.20 mole per litre $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.15 mole per
litre $\mathrm{CH}_{3} \mathrm{COOH}, K_{a}$ for acetic acid is 1.8×10^{-5}

D Watch Video Solution

14. The Ka of propionic acid is 1.34×10^{-5}. What is
the pH of a solution containing 0.5 M propionic and 0.5 M sodium proportionate ? What happens to the pH of the solution when volume is doubled by adding water ?

- Watch Video Solution

Self Evaluation A Choose The Correct Answer

1. The process in which chemical change occurs on passing electricity is termed as
A. neutralisation
B. hydrolysis
C. electrolysis
D. ionisation

Answer: electrolysis

- Watch Video Solution

2. The laws of electrolysis were enunciated first by
A. Dalton
B. Faraday
C. Kekule
D. Avogadro

Answer: Faraday

- Watch Video Solution

3. When one coulomb of electricity is passed through an electrolytic solution, the mass deposited on the electrode is equal to
A. equivalent weight
B. molecular weight
C. electrochemical equivalent
D. one gram

Answer: electrochemical equivalent

- Watch Video Solution

4. Faraday's laws of electrolysis are related to
A. atomic number of the cation
B. atomic number of the anion
C. equivalent weight of the electrolyte
D. speed of the cation

Answer: equivalent weight of the electrolyte

- Watch Video Solution

5. The specific conductance of a 0.01 M solution of KCl is $0.0014 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ at $25^{\circ} C$. Its equivalent conductance is
A. $14 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
B. $140 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
C. $1.4 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
D. $0.14 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$

Answer: $140 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
6. The equivalent conductivity of $\mathrm{CH}_{3} \mathrm{COOH}$ at $25^{\circ} \mathrm{C}$ is $80 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$ and at infinite dilution
$400 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$. The degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ is
A. 1
B. 0.2
C. 0.1
D. 0.3

Answer:
7. When sodium acetate is added to acetic acid, the degree of ionisation of acetic acid
A. increases
B. decreases
C. does not change
D. becomes zero

Answer:

- Watch Video Solution

A. it has low vapour pressure
B. it is only partially ionised
C. it is completely ionised
D. it has low density

Answer: it is completely ionised

- Watch Video Solution

9. Which one of the following formulae represents

Ostwald's dilution law for a binary electrolyte
whose degree of dissociation is α and concentration C .

$$
\begin{aligned}
& \text { A. } K=\frac{(1-\alpha) C}{\alpha} \\
& \text { B. } K=\frac{\alpha^{2} C}{1-\alpha} \\
& \text { C. } K=\frac{(1-\alpha) C}{\alpha^{2}} \\
& \text { D. } K=\frac{\alpha^{2} C}{(1-\alpha) C}
\end{aligned}
$$

Answer:

- Watch Video Solution

10. Ostwald's dilution law is applicable in the case of the solution of
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. NaCl
C. NaOH
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer:

- Watch Video Solution

11. Which one of the following relationship is correct ?

$$
\begin{aligned}
& \text { A. } p H=\frac{1}{\left[H^{+}\right]} \\
& \text {B. } p H=\log _{10}\left[H^{+}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \log _{10} p H=\left[H^{+}\right] \\
& \text {D. } p H=\log _{10} \cdot \frac{1}{\left[H^{+}\right]}
\end{aligned}
$$

Answer:

- Watch Video Solution

12. When 10^{-6} mole of a monobasic strong acid is dissolved in one litre of solvent, the pH of the solution is
A. 6
B. 7
C. less than 6
D. more than 7

Answer:

- Watch Video Solution

13. When pH of a solution is 2 , the hydrogen ion concentration in moles litre ${ }^{-1}$ is
A. 1×10^{-2}
B. 1×10^{-1}
C. 1×10^{-7}
D. 1×10^{-4}

Answer: 1×10^{-1}

- Watch Video Solution

14. The pH of a solution containing 0.1 N NaOH solution is
A. 1
B. 10^{-1}
C. 13
D. 10^{-13}

Answer:

- Watch Video Solution

15. A solution which is resistant to changes of pH on addition of small amounts of an acid or a base is known as
A. buffer solution
B. true solution
C. isohydric solution
D. ideal solution

Answer: buffer solution

- Watch Video Solution

16. The hydrogen ion concentration of a buffer solution consisting of a weak acid and its salt is given by
A. $\left[H^{+}\right]=K_{a} \frac{[\text { Acid }]}{[\text { Salt }]}$
B. $\left[H^{+}\right]=K_{a}[$ Salt $]$
C. $\left[H^{+}\right]=K_{a}[\mathrm{Acid}]$
D. $\left[H^{+}\right]=K_{a} \frac{[\text { Salt }]}{[\text { Acid }]}$

- Watch Video Solution

17. Indicators used in acid-base titrations are
A. strong organic acids
B. strong organic bases
C. weak organic acids or weak organic bases
D. non-electrolysis

Answer: weak organic acids or weak organic bases
18. For the titration between oxalic acid and sodium hydroxide, the indicator used in
A. potassium permanganate
B. phenolphthalein
C. litmus
D. methyl orange

Answer: phenolphthalein

- Watch Video Solution

1. The electrochemical equivalent of an electrolyte is $2.35 \mathrm{gm} . \mathrm{Amp}^{-1} \mathrm{sec}^{-1}$. Calculate the amount of the substance deposited when 5 ampere is passed for 10 sec ?

D View Text Solution

2. 0.5 F of electric current was passed though 5 molar solutions of $\mathrm{AgNO}_{3}, \mathrm{CuSO}_{4}$ and AlCl_{3} connected in series. Find out the concentration of each of the electrolyte after the electrolysis ?
3. A conductance cell has platinum electrodes, each with $5 \mathrm{~cm}^{2}$ area and separated by 0.5 cm distance.

What is the cell constant?

- View Text Solution

4. Using a conductivity cell with $0.9 \mathrm{~cm}^{-1}$ cell
constant, the conductance was observed to be 2.5×10^{-3} mho for 0.07 M KCl solution. What is the specific conductance of the solution?
5. Specific conductance of $1 \mathrm{M} \mathrm{KNO}_{3}$ solution is observed to be 5.55×10^{-3} mho.cm $^{-1}$. What is the equivalent conductance of KNO_{3} when one litre of the solution is used?

D View Text Solution

6. The equivalent conductances at infinite dilution
of $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COONa}$ and NaCl are 426.16, 91.0 and $126.45 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ gm.equivalent ${ }^{-1}$ respectively.. Calculate the λ_{∞} of acetic acid.

View Text Solution

