đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

UNITS AND MEASUREMENTS

Mcq S

1. In Internationan System of units, there are
seven base quantities whose units are defined.

Which physical quatity has a prefix with its

unit?

A. Mass
B. Thermodynamic temperature
C. Luminous intenstiy
D. Amount of substance

Answer: A

D View Text Solution
2. The wrong unit conversation among the following is
A. 1 angstrom $=10^{-10} \mathrm{~cm}$
B. 1 fermi $=10^{-15} m$
C. 1 light year $=9.46 \times 10^{15} \mathrm{~m}$
D. 1 astronomical unit $=1.496 \times 10^{-11} \mathrm{~m}$

Answer: D
(D) Watch Video Solution
3. Which of the following physical quantities
has same unit in all the three system of units?
A. mass
B. lenth
C. time
D. none of these

Answer: C

D Watch Video Solution
4. Which of the following is not the name of
the physical quantity?

Time
impulse
mass
kilogram
A. Time
B. impulse
C. mass
D. kilogram

Answer: D

- Watch Video Solution

5. Which one of the following physical quantities is not a fundamental quantity?
A. Luminious intensity
B. Thermodynamic temperature
C. Electric current
D. work

Answer: D

- Watch Video Solution

6. Which one of the following statements is incorrect?
A. Direct and indirect methods are used for
the measurement of physical quantities.
B. Scientific notation and the prefixes are
used to simplify numberical
computation.
C. A dimensionally correct equation need not be a correct equation.
D. The SI units is based on six base units.

Answer: D

D Watch Video Solution

7. Which one of the following is not a unit of British system of units?
A. foot
B. metre
C. pound
D. second

Answer: B

- Watch Video Solution

8. Which of the following is not a unit of time?
A. Parsec

B. Year

C. second

D. Hour

Answer: A

- Watch Video Solution

9. Which one of the following is not a derived unit?
A. Joule

B. watt

C. Kilogram
D. newton

Answer: C

D Watch Video Solution

10. Which of the following units is not a base unit?
A. metre
B. candala
C. ampere
D. pascal

Answer: D

- Watch Video Solution

11. Which of the following system of units is not based on units of mass, length and time alone
A. CGS
B. FPS
C. MKS
D. SI

Answer: D

D Watch Video Solution

12. In which year SI system of units was developed and recommended by General conference on weights and measures?
A. 1951
B. 1961
C. 1971
D. 1981

Answer: C

- Watch Video Solution

13. Spot out the odd one.
A. Calorie
B. kilowatt hour
C. joule
D. watt

Answer: D

D Watch Video Solution

14. Which of the following is unitless quantity?
A. Pressure gradient
B. Displacement gradient

C. force gradient

D. velocity gradient.

Answer: B

- Watch Video Solution

15. Match the column I with Column II.

	Column I Physical quantity)	Column II (Name of unit)	
(\wedge)	Conductance	(p)	gray
(1)	Magnetic induction	(q)	lumen
(C)	Nbsorbed dose	(r)	tesla
(1)	Iuminous flux	(s)	siemens

A. A-s,B-r,C-p,D-q
B. A-p,B-q,C-r,D-s
C. A-q,B-p,C-s,D-r
D. A-r,B-s,C-p,D-q

Answer: A

D Watch Video Solution
16. The SI unit of pressure gradient is
A. $N m^{-2}$
B. $N m$
C. $N m^{-1}$
D. $N m^{-3}$

Answer: D

D Watch Video Solution

17. The relative density of lead is 11.3. its density $=\ldots . . \mathrm{gcm}^{-3}=\ldots \ldots . . \mathrm{kgm}^{-3}$. Fill in the blanks.
A. 1.13×10^{3}
B. 1.13×10^{2}
C. 1.13×10^{4}
D. 11.3

Answer: C

D Watch Video Solution

18. The value of universal gravitational
constant $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$. The
value of G in units of $g^{-1} \mathrm{~cm}^{3} s^{-2}$ is
A. 6.67×10^{-8}
B. 6.67×10^{-7}
C. 6.67×10^{-9}
D. 6.67×10^{-10}

Answer: A

D Watch Video Solution

19. If the value of atmospheric pressure is 10^{6} dyne cm^{-2}. Its value in SI units is:
A. $10^{4} \mathrm{~N} \mathrm{~m}^{-2}$
B. $10^{6} \mathrm{~N} m^{-2}$
C. $10^{5} \mathrm{~N} \mathrm{~m}^{-2}$
D. $10^{3} \mathrm{~N}^{-2}$

Answer: C

D Watch Video Solution
20. The solid angle subtended by the periphery of an area $1 \mathrm{~cm}^{2}$ at a point situtated
symmetrically at a distance of 5 cm from the area is
A. 2×10^{-2} steradian
B. 4×10^{-2} steradian
C. 6×10^{-2} steradian
D. 8×10^{-2} steradian

Answer: B

D Watch Video Solution

21. One barn is equal to

$$
\begin{aligned}
& \text { A. } 10^{-30} \mathrm{~m}^{2} \\
& \text { B. } 10^{28} \mathrm{~m}^{2} \\
& \text { C. } 10^{-28} \mathrm{~m}^{2} \\
& \text { D. } 10^{30} \mathrm{~m}^{2}
\end{aligned}
$$

Answer: C

22. Fathom is the unit to measure the

A. speed of ship
B. depth of sea
C. distance of the ship
D. speed of cyclone

Answer: B
23. Which of the following is not unit of length?
A. asgstrom
B. fermi
C. barn
D. parsec

Answer: C

D Watch Video Solution

24. Which of the following is smallest unit?

A. millimetre
B. angstrom
C. fermi
D. metre.

Answer: C
(Watch Video Solution

25. Match the column I with Column II.

Column I		Column II	
(A)	Distance between earth and sun	(p)	Micron
(B)	Interatomic distance in a solid	(q)	Fermi
(C)	Size of a nucleus	(r)	Light year
(D)	Wavelength of infrared laser	(s)	Angstrom

A. A-p,B-q,C-r,D-s

B. A-r,B-s,C-q,D-p

C. A-q,B-p,C-s,D-r

D. $A-s, B-r, C-p, D-q$

26. Which one of the following intruments is not used for the measurement of length?

Atomic clock
vernier callipers

Screw gauge

Spherometer
A. Atomic clock
B. varnier callipers
C. Screw gauge

D. Spherometer

Answer: A

D Watch Video Solution

27. A new unit of length is chosen such that
the speed of light in vacuum is unity. What is
the distance between the sun and the earth in
terms of the new unit, if light takes 8 min and

20 sec. to cover the distance ?
A. 300
B. 400
C. 500
D. 600

Answer: C

D View Text Solution

28. Light year is :
A. light emitted by the sun in one year.
B. The time taken by light to travel from
sun to earth.
C. The distance travelled by light in free
space in one year.
D. The time taken by earth to go once
around the sun.

Answer: C

D View Text Solution
29. Light year is a unit of
A. Distance
B. time
C. speed

D. intensity of light

Answer: A
30. How many light years alpha centauri away from the earth?
A. 1.29
B. 2.29
C. 3.29
D. 4.29

Answer: D

D Watch Video Solution
31. Which one of the following methods is used to measure distance of a planet or a star from the earth?
A. Echo method
B. Parallax method
C. Triangulation method
D. none of these

Answer: B
32. Laser beams are used to measure long distances because
A. it is very intense.
B. It is highly monochromatic.
C. It is an unidirectional beam of light.
D. All of these

Answer: D

D Watch Video Solution

33. The distnace of the moon from the earth is
about 60 times the radius of the earth. What
will be diameter of the earth (approximately in degrees) as see from the moon?
A. 1°
B. 2°
C. 4°
D. 6°

Answer: B
34. The sun's angular diameter is measured to be 1920". The distance of the sun from the earth is $1.496 \times 10^{11} \mathrm{~m}$. What is the diameter of the sun?
A. A. $1.39 \times 10^{9} m$
B. B. $1.39 \times 10^{10} \mathrm{~m}$
C. C. $1.39 \times 10^{11} \mathrm{~m}$
D. $D \cdot 1.39 \times 10^{12} \mathrm{~m}$

Answer: A

D Watch Video Solution

35. Calculate the length of the arc of a circle of radius 31.0 cm which subtands and angle of $\frac{\pi}{6}$ at the centre.
A. 11.7 cm
B. 14.7 cm
C. 16.7 cm
D. 15.7 cm

Answer: D

D Watch Video Solution

36. The order of magnitude of the diameter of
the earth is (diamtere of the earth is
$\left.1.28 \times 10^{7} \mathrm{~m}\right)$

5

6

7

8
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution

37. How many wavelength of $K r^{86}$ are there is one metre
1553164.13
1650763.73
2348123.73
652189.63
A. 1553164.13
B. 1650763.73
C. 2348123.73
D. 652189.63

Answer: B

D Watch Video Solution
38. The ratio of molar volume to atomic volume for 1 mole of hydrogen is (Take size of hydrogen molecule to be $1 \tilde{A} . .$.
A. 7.1×10^{4}
B. 7.1×10^{6}
C. 7.1×10^{10}
D. 7.1×10^{8}

Answer: A

- View Text Solution

39. If the size of bacteria is 1 micron, what will be the number of it in 1 m length?
A. One hundred
B. One crore
C. One thousand
D. One million

Answer: D

D Watch Video Solution
40. One astronomical unit (AU) is equal to
A. $1.496 \times 10^{8} \mathrm{~km}$
B. $9.46 \times 10^{12} \mathrm{~km}$
C. $3.084 \times 10^{13} \mathrm{~km}$
D. $4.596 \times 10^{15} \mathrm{~km}$

Answer: A

D Watch Video Solution
41. What is the ratio of volume of atom of the volume of nucleus?
A. 10^{10}
B. 10^{15}
C. 10^{20}
D. 10^{25}

Answer: B

D Watch Video Solution
42. The ratio of one micron to one nanometre is
A. 10^{3}
B. 10^{-3}
C. 10^{-6}
D. 10^{-9}

Answer: A

- Watch Video Solution

43. Which of the following conversions is incorrect?
A. 1 curie $=3.7 \times 10^{10} g^{-1}$
B. 1 barn $=10^{-25} \mathrm{~m}^{2}$
C. 1 quintal $=100 \mathrm{~kg}$
D. 1 litre $=10^{-3} \mathrm{~m}^{3}$

Answer: B

D Watch Video Solution
44. the device used for measuring the mass of atoms and molecules is
A. spring balance
B. torsional balance
C. mass specrograph
D. common balance

Answer: C

- Watch Video Solution

45. Which of the following statements is incorrect regarding mass?
A. it is a basic property of matter.
B. The SI unit of mass is kg.
C. The mass of an atom is expressed in u.
D. It depends upon the temperature, pressure or location of the object in space.
46. Express unified atomic mass unit in kg .

$$
\begin{aligned}
& \text { A. } 1.66 \times 10^{-25} \mathrm{~kg} \\
& \text { B. } 1.66 \times 10^{-27} \mathrm{~kg} \\
& \text { C. } 1.66 \times 10^{-29} \mathrm{~kg} \\
& \text { D. } 1.66 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

Answer: B

47. 10^{-3} gram is called

A. kilogram
B. milligram
C. decigram
D. microgram

Answer: B
48. If the value of force is 100 N and vlaue of
acceleration is $0.001 \mathrm{~ms}^{-2}$ what is the value of mass in this system of units?
A. $10^{3} \mathrm{~kg}$
B. $10^{4} \mathrm{~kg}$
C. $10^{5} \mathrm{~kg}$
D. $10^{6} \mathrm{~kg}$

Answer: C

- Watch Video Solution

49. Match the column I with column II ItBrgt

	Column I (Event)	Column II (Time interval) (s)	
(A)	Life time of an excited state of an atom	(p)	10^{17}
(B)	Average human life-span	(q)	10^{11}
(C)	Age of Egyptian pyramids	(r)	10^{9}
(D)	Age of the universe	(s)	10^{-8}

A. A-s,B-r,C-q,D-p
B. A-p,B-q,C-r,D-s
C. A-q,B-p,C-s,D-r
D. A-r,B-s,C-p,D-q
A. A. 1650763.73 perods of krypton clock
B. B. 652189.6 peridos of krypton clock
C. C. 1650763.73 periods of cesium clock
D. D. 9192631770 periods of cesium clock.

Answer: D

51. Light from the sun reaches the earth approximately in
A. A. 5 s
B. B.50s
C. C. 500s
D. D. 0.5 s

Answer: C

D Watch Video Solution
52. The distance of a galaxy from the earth is of the order of $10^{25} \mathrm{~m}$. The time taken by light to reach the earth from the galaxy is
A. A. $3 \times 10^{14} s$
B. B. $3 \times 10^{16} s$
C. C. $3 \times 10^{18} s$
D. D. $3 \times 10^{20} s$

Answer: B

53. If the error in measuring the radius of the sphere is 2% and that in measuring its mass is
3%, Then the error in measuring the density of material of the sphere is:
A. 0.05
B. 0.07
C. 0.09
D. 0.11

Answer: C
54. Which of the following is the most precise instrument for measuring length?
A. Metre rod of least count 0.1 cm
B. vernier callipers of least count 0.01 cm
C. Screw gauge of least count 0.001 cm
D. none of these

Answer: C
55. Which of the following time measuring devices is most precise
A. A wall clock
B. An atomic clock
C. A digital watch
D. A stop watch.

Answer: B

- Watch Video Solution

56. Which of the following statements is incorrect?
A. Every measurement by measuring instrument has some error.
B. A measurement can have more accuracy
but less precision and vice versa.
C. Every calculated quantity that is based on measured values has some error.
D. The magnitude of the difference
between the true value of the quantity
and the individual measurement value is
called the relative error of the
measurement.

Answer: D

D Watch Video Solution

57. Which of the followig inctruemnts has minium least count?
A. A screw gauge of pitch 1 mm and 100 divisions n the circular scale.
B. A spherrrometer of pitch 0.1 mm and 100
divisions on the circular scale.
C. An optical intrument that can measure
length to within a wavelength of light.
D.

Answer: D

D Watch Video Solution

58. The vernier scale of a travelling microscope
has 50 divisions which coincide with 49 main
scale divisions. If each main scale division is 0.5 mm , then the least count of the microscope is
A. 0.01 cm
B. 0.5 mm
C. 0.01 mm

D. 0.5 cm

Answer: C

D Watch Video Solution

59. The period of oscillation of a simple pendulum in the experiment is recorded as
$2.63 s, 2.56 s, 2.42 s, 2.71 s$, and $2.80 s$.
Find
the average absolute error.
A. 0.11 s
B. 0.12 s
C. 0.13 s
D. 0.14 s

Answer: A

- Watch Video Solution

60. Find the relative error in Z, if

$$
Z=A^{4} B^{1 / 3} / C D^{3 / 2}
$$

A.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}
$$

B.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}
$$

C.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}
$$

D.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}
$$

Answer: A
61. The temperature of two bodies measured by a thermometer are $t_{1}=20^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ and $t_{2}=50^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$. Calculate the temperature difference and error there in .
A. $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
B. $70^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
D. $70^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
62. Two resistors of resistances
$R_{1}=(300 \pm 3) \Omega$ and $R_{2}=(500 \pm 4) \Omega$ are connected in series. The equivalent resistance of the series combination is
A. $(800 \pm 1) \Omega$
B. $(800 \pm 7) \Omega$
C. $(200 \pm 7) \Omega$
D. $(200 \pm 1) \Omega$

Answer: B

- Watch Video Solution

63.

Two
resistances
$R_{1}=100 \pm 3 \Omega$ and $R_{2}=200 \pm 4 \Omega \quad$ are
connected in series . Find the equivalent resistance of the series combination.
A. $(66.7 \pm 1.8) \Omega$
B. $(66.7 \pm 4.0) \Omega$
C. $(66.7 \pm 3.0) \Omega$

D. $(66.7 \pm 7.0) \Omega$

Answer: A

D Watch Video Solution

64. Percentage erros in the measurement of mass and speed are 2% and 3% respectively.

The error in the estimation of kinetic energy
obtained by measuring mass and speed will be:
B. 0.02
C. 0.12
D. 0.1

Answer: A

D Watch Video Solution

65. A physical quantitiy X is related to four measurable quantities, a, b, c and d as give $X=a^{2} b^{3} c^{5 / 2} d^{-2}$. The percentage error in
the measurement of a, b, c and d are
$1 \%, 2 \%, 2 \%$ and 4% respectively. What is the percentage error in quantitiy X ?
A. 0.15
B. 0.17
C. 0.21
D. 0.23

Answer: C

D View Text Solution
66. The time period of a simple pendulum is given by $T=2 \pi \sqrt{L / g}$, where L is length and g acceleration due to gravity. Measured value of length is 10 cm known to 1 mm accuracy and time for 50 oscillations of the pendulum is 80 s using a wrist watch of 1 s resloution.

What is the accuracy in the determination of g
?
A. 0.02
B. 0.03
C. 0.04

D. 0.05

Answer: D

- Watch Video Solution

67. Which of the following statement is incorrect regarding significant figures?
A. All the non-zero digits are significant
B. All the zeros betwee two non-zero digits
are significant

C. Greater the number of significant figrues

in a measurement, smaller is the percentage error.
D. The power of 10 is counted while
counting the number of significant
figures.

Answer: D

D View Text Solution
68. The value of resistance is 10.845Ω and the urrent is $3.23 \mathrm{~A} .$. .. On multiplying, we get the potential difference is 35.02935 V . the value of potential difference in terms of significant figures would be
A. 35 V
B. 35.0 V
C. 35.029 V
D. 35.03 V
69. A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$.

Calculate its volume

A. $1.7 \times 10^{-6} \mathrm{~m}^{3}$
B. $1.73 \times 10^{-6} m^{3}$
C. $1.78 \times 10^{-6} m^{3}$
D. $1.732 \times 10^{-6} \mathrm{~m}^{3}$

Answer: A
70. The radius of a sphere is 1.41 . its volume to an appropring number of significant figure is
A. $11.73 \mathrm{~cm}^{3}$
B. $11.736 \mathrm{~cm}^{3}$
C. $11.7 \mathrm{~cm}^{3}$
D. $117 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

71. The mass of a box measured by a grocer's balance is 2.3 kg . Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is (a) total mass of the box (b) the difference in masses of gold pieces to correct significant figures.
A. 2.3 kg
B. 2.34 kg
C. 2.340 kg
D. 2.3403 kg

- Watch Video Solution

72. In the quastion number 71, what is the difference in the masses of the pieces?
A. 0.02 g
B. 0.021 g
C. 0.022 g
D. 0.024 g

D View Text Solution

73. The numbers 3.845 and 3.835 on rounding

 off to 3 significant figures will giveA. 3.85 and 3.84
B. 3.84 and 3.83
C. 3.85 and 3.83
D. 3.84 and 3.84

Answer: D

- Watch Video Solution

74. The respective number of significant
figures for thenumbers 6.320, 6.032, 0.0006032
are
A. $3,4,8$
B. $4,4,8$
C. $4,4,4$
D. $4,3,4$

Answer: C

D Watch Video Solution

75. The number of significant figures in the numbers 4.8000×10^{4} and 48000.50 are respectively
A. 5 and 6
B. 5 and 7
C. 2 and 7
D. 2 and 6

Answer: B

D Watch Video Solution

76. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Find the velocity of the body within error limits and the percentage error.
A. $(3.5 \pm 0.6) m s^{-1}$
B. $(3.5 \pm 0.3) m s^{-1}$
C. $(6.1 \pm 0.6) m s^{-1}$
```
D. \((6.1 \pm 0.3) m s^{-1}\)
```


Answer: B

D Watch Video Solution

77. Which of the following physical quantities
has a unit but no dimensions?
A. Relative velocity
B. Relative density
C. Strain

D. Angle

Answer: D

D Watch Video Solution

78. Which of the following physical quantities
has neither units nor dimensions?
A. 1. Relative velocity
B. 2. Relative density
C. 3. Angle
D. 4. Energy

Answer: B

D Watch Video Solution

79. A dimensionless quantity
A. never has a unit
B. always has unit
C. may have a unit
D. does not exit

- Watch Video Solution

80. Which of the following pairs of physical quantities have same dimensions?
A. Force and power
B. Torque and energy
C. Torque and power
D. Force and torque.

Answer: B

D Watch Video Solution

81. If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

$$
\text { A. } \frac{(P-Q)}{R}
$$

B. $P Q-R$
C. $\frac{P Q}{R}$
D. $\frac{\left(P R-Q^{2}\right)}{R}$

Answer: A

D Watch Video Solution

82. Which of the following sets have different dimensions?
A. Pressure, Young's modulus, stress
B. Emf, potential difference, electric potential
C. Heat, work done, energy
D. Dipole moment, electric flux, electric field.

Answer: D

D View Text Solution

83. Match the column I with column II

Column I (Physical quantity)		Column II (Dimensional formula)	
(1)	Permillivily ol froe space	(p)	$\left\|\mathrm{M}^{(1)} \mathrm{L}^{(1)} \mathrm{I}^{-1}\right\|$
(1)	Radiant Ilux	(4)	$\mid \mathrm{ML}{ }^{3} \mathrm{I}^{3} \mathrm{~A}$
(${ }^{\prime}$)	Ressistivity	(1)	\| M1 'I'
(1))	Ilubble constant	(s)	$\left\|M^{1} \mathrm{~L},{ }^{3} \mathrm{I}^{4} \mathrm{~A}^{2}\right\|$

A. A-p,B-q,C-r,D-s
B. A-q,B-p,C-s,D-r

C. A-s,B-r,C-q,D-p

D. $A-r, B-s, C-p, D-q$
84. If E, M, J, and G, respectively, denote energy , mass , angular momentum , and gravitational constant, then $E J^{2} / M^{5} G^{2}$ has the dimensions of
A. mass
B. length
C. time
D. angle

Answer: D

D Watch Video Solution

85. If power (P), surface tension (S) and

Planck's constant (h) are arranged so that the dimensions of time in their dimensional
formulae are in ascending order, then which of the following is correct?
A. P,S,h
B. P,h,S
C. S,P,h
D. S,h,P

Answer: A

- Watch Video Solution

86. The dimension of Planck's constant are the
same as that of
A. charge
B. work

C. force

D. Angular momentum

Answer: D

- Watch Video Solution

87. Match the column I with column II

Column I (Units)		Column II (Dimensional formulae)
(A) Pas (p) $\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$ (B) $\mathrm{N} \mathrm{m} \mathrm{K} \mathrm{K}^{-1}$ (q) $\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$ (C) $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ (r) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$ (I) $\mathrm{W} \mathrm{m} \mathrm{m}^{-1} \mathrm{~K}^{-1}$ (s) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$		

A. A-q,B-p,C-r,D-s
B. A-p,B-q,C_s,D-r
C. A-r,B-s,C-p,D-q
D. $A-s, B-r, C-q, D-p$

Answer: C

D Watch Video Solution
88. The dimensional formula of electric potential is
A. $\left[M L^{2} T^{-3} A^{1}\right]$
B. $\left[M^{-1} L^{2} T^{-2} A\right]$
C. $\left[M^{-1} L^{2} T^{-2} A^{-1}\right]$
D. $\left[M L^{2} T^{-2} A\right]$

Answer: A

D Watch Video Solution
89. Dimensional formula of ΔQ, heat supplied to the system is:
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{1}\right]$

Answer: A

D Watch Video Solution

90. The dimensional formula of physical quantity is $\left[M^{a} L^{b} T^{c}\right]$.Then that physical quantity is
A. A. surface tension if $a=1, b=1, c=-2$
B. B. force if $a=1, b=1, c=2$
C. C. angular frequency if $a=0, b=0, c=-1$
D. D. spring constant if $a=1, b=-1, c=-2$

Answer: C

- Watch Video Solution

91. Checking the correctness of equations using the method of dimensions is based on
A. the type of system
B. equality of inertial frames of references
C. principle of homogeneity of dimensions
D. none of these

Answer: C

D Watch Video Solution

92. Using the principle of homogeneity of dimensions, which of the following is correct?
A. $T^{2}=\frac{4 \pi^{2} r^{3}}{G M}$
B. $T^{2}=4 \pi^{2} r^{2}$
C. $T^{2}=\frac{4 \pi^{2} r^{3}}{G}$
D. $T=\frac{4 \pi^{2} r^{3}}{G}$

Answer: A

D Watch Video Solution

93. Which of the following relations is dimensionally incorrect?
A. $1 u=931.5 \mathrm{MeV}$
B. $1 \mathrm{u}=931.5 \mathrm{MeV} / c^{2}$
C. $1 \mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}$
D. none of these

Answer: B

D Watch Video Solution
94. On the basis of dimensions, decide which of the following relation for the displacement
of a particle undergoing simple harmonic motion is not correct :

$$
\begin{aligned}
& \text { A. A. } y=a \sin \left(\frac{2 \pi t}{T}\right) \\
& \text { B. B. } y=a \cos \omega t \\
& \text { C. C. } y=\frac{a}{T} \sin \left(\frac{t}{a}\right) \\
& \text { D. D. } y=a \sqrt{2}\left(\sin \left(\frac{2 \pi t}{T}\right)+\cos \left(\frac{2 \pi t}{T}\right)\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

95. The displacement of a progressive wave is

represented by $y=A \sin (\omega t-k x)$ where x is
distance and t is time. The dimensions of $\frac{\omega}{k}$ are same as those of
A. velocity
B. wave number
C. wavelength
D. frequency

Answer: A

96. If velocity of light c , planck's constant h and

 gravitational constnat G are taken asfundamental quantities then the dimensions of the length will be
A. $\sqrt{\frac{c h}{G}}$
B. $\sqrt{\frac{h G}{c^{5}}}$
C. $\sqrt{\frac{h G}{c^{3}}}$
D. $\sqrt{\frac{h c^{3}}{G}}$

Answer: C

D Watch Video Solution

97. A new system of units is proposed in which
unit of mass is $\alpha k g$, unit of length $\beta \mathrm{m}$ and
unit of time γs. How much will 5 J measure in
this new system?
A. $5 \alpha \beta^{2} \gamma^{-2}$
B. $5 \alpha^{-1} \beta^{-2} \gamma^{2}$
C. $5 \alpha^{-2} \beta^{-1} \gamma^{-2}$

D. $5 \alpha^{-1} \beta^{2} \gamma^{2}$

Answer: B

D Watch Video Solution

98. If the energy, $E=G^{p} h^{q} c^{r}$, where G is the universal gravitational constant, h is the Planck's constant and c is the velocity of light, then the values of p are q and r are, respectively

$$
\text { A. }-1 / 2,1 / 2 \text { and } 5 / 2
$$

$$
\text { B. } 1 / 2,-1 / 2 \text { and }-5 / 2
$$

C. $-1 / 2,1 / 2$ and $3 / 2$
D. $1 / 2,-1 / 2$ and $-3 / 2$

Answer: A

D Watch Video Solution

99. The equation fo state of a gas is given by
$\left(P+\frac{a}{V^{3}}\right)\left(V-b^{2}\right)=c T$, where $\mathrm{P}, \mathrm{V}, \mathrm{T}$ are
respectively, and a, b, c are constants. The dimesions of a and b are respectively

$$
\begin{aligned}
& \text { A. }\left[M L^{8} T^{-2}\right] \text { and }\left[L^{3 / 2}\right] \\
& \text { B. }\left[M L^{5} T^{-2}\right] \text { and }\left[L^{3}\right] \\
& \text { C. }\left[M L^{5} T^{-2}\right] \text { and }\left[L^{6}\right] \\
& \text { D. }\left[M L^{6} T^{-2}\right] \text { and }\left[L^{3 / 2}\right]
\end{aligned}
$$

Answer: A

D View Text Solution

100. The velocity of a paritcle (v) at an instant t
is given by $v=a t+b t^{2}$. The dimesion of b is
A. [L]
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

D Watch Video Solution

Higher Order Thinking Skills

1. In the formula $X=3 Y Z^{\wedge}(2), X$ and Z have dimension of capacitance and magnetic induction respectively. The dimensions of Y in MKSQ system are

$$
\begin{aligned}
& \text { A. 1. }\left[M^{-3} L^{-2} T^{4} Q^{4}\right] \\
& \text { B. 2. }\left[M^{-2} L^{-1} T^{5} Q^{3}\right] \\
& \text { C. 3. }\left[M^{-1} L^{-2} T^{4} Q^{4}\right] \\
& \text { D. 4. }\left[M^{-3} L^{-1} T^{4} Q^{4}\right]
\end{aligned}
$$

Answer: A

- Watch Video Solution

2. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where
ϵ_{0} is the permittivity of the free space, L is a
length, ΔV is a potential difference and Δt is
a time interval. The dimensinal formula for X
is the same as that of
A. resistance
B. charge
C. voltage
D. current

Answer: D

D Watch Video Solution

3. A student uses a simple pendulum of exactly
$1 m$ length to determine g, the acceleration due ti gravity. He uses a stop watch with the least count of 1 sec for this and record 40 sec onds for 20 oscillations for this
observation, which of the following statement (s)is(are) true?
A. Error ΔT in measuring T, the time period, is 0.05 seconds.
B. Error ΔT in measuring T , the time period, is 1 second.
C. Percentage error in the determination of g is 5%.
D. Both a and c

- Watch Video Solution

4. The energy of a system as a function of time
t is given as $E(t)=A^{2} \exp (-\alpha t)$,
$\alpha=0.2 s^{-1}$. The measurement of A has an error of 1.25%. If the error In the measurement of time is 1.50%, the percentage error in the value of $E(t)$ at $\mathrm{t}=5 \mathrm{~s}$ ` is
A. 0.02
B. 0.04

C. 0.03

D. 0.05

Answer: B

D Watch Video Solution

5. To find the distance d over which a signal
can be seen clearly in foggy conditions, a
railways engineer uses dimensional analysis
and assumes that the distance depends on
the mass density ρ of the fog, intensity
(power / area) S of the light from the signal and its frequency f. The engineer finds that d is proportional to $S^{1 / n}$. The value of n is.
A. 4
B. 2
C. 3
D. 1

Answer: C

- View Text Solution

6. The dimensions of R in the equations
$Q=Q_{0}\left(1-e^{-t / R C}\right)$ are
A. $\left[M L^{2} T^{-3} A^{-2}\right]$
B. $\left[M L^{2} T^{-2} A^{-3}\right]$
C. $\left[M^{2} L^{2} T^{-3} A^{-2}\right]$
D. $\left[M L^{2} T^{-1} A^{-2}\right]$

Answer: A
7. Turpentine oil is flowing through a tube of length L and radius r. The pressure difference between the two ends of the tube is p, the viscosity of the coil is given by $\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v L}$, where v is the velocity of oil at a distance x from the axis of the tube. From this relation, the dimensions of viscosity η are
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left.M^{1} L^{-1} T^{-1}\right]$
C. $\left[M L^{2} T^{-1}\right]$

$$
\text { D. }\left[M^{-1} L^{-1} T^{1}\right]
$$

Answer: B

D Watch Video Solution

8. A calorie is a unit of heat or energy and it equals about $4.2 J$, where $1 J=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$.

Suppose we employ a system of units in which the unit of mass equals $\alpha k g$, the unit of length equals is βm, the unit of time is γs.

Show that a calorie has a magnitude 4. $2 \alpha^{-1} \beta^{-1} \gamma^{2}$ in terms of the new units.

$$
\begin{aligned}
& \text { A. } 4.18 \frac{\gamma^{2}}{\alpha \beta^{2}} \\
& \text { B. } 4.18 \frac{\alpha \beta^{2}}{\gamma^{2}} \\
& \text { C. } 4.18 \frac{\gamma^{2}}{\alpha} \\
& \text { D. } 4.18 \frac{\beta^{2}}{\alpha \gamma^{2}}
\end{aligned}
$$

Answer: A
(Watch Video Solution
9. The time period of oscillation of a body is
given by $T=2 \pi \sqrt{\frac{m g A}{K}}$
K: Represents the kinetic energy, m mass, g acceleration due to gravity and A is unknown If $[A]=M^{x} L^{y} T^{z}$, then what is the value of $x+y+z$?
A. A. 3
B. B. 2
C. C. 1
D. D. 5

D Watch Video Solution

10. The richardson equaction is given by
$I=A T^{2} e^{-B / k T}$. The dimensional formula for
$A B^{2}$ is
A. 1. $\mathrm{IT}^{\wedge}(2)^{\wedge}$
B. 2. $k T$
C. 3. $I k^{2}$
D. 4. $I k^{2} / T$

Answer: C

- Watch Video Solution

Exemplar Problems

1. The number of significant figures in 0.06900
is
A. A. 5
B. B. 4
C. C. 2
D. D. 3

Answer: B

D Watch Video Solution

2. The sum of the numbers $436.32,227.2$ and
0.301 in appropriate significant figures is
A. A. 663.821
B. B. 664
C. C. 663.8
D. D. 663.82

Answer: C

D Watch Video Solution

3. The mass and volume of a body are 4.237 g and $2.5 \mathrm{~cm}^{3}$, respectively. The density of the meterial of the body in correct significant figures is
A. $1.1 .6948 \mathrm{gcm}^{-3}$
B. $2.1 .69 \mathrm{gcm}^{-3}$
C. 3. ' $1.7 \mathrm{gcm}^{-3}$
D. $4.1 .695 \mathrm{gcm}^{-3}$

Answer: C

D Watch Video Solution

4. The numbers 2.745 and 2.735 on rounding off to 3 significant figures will give
A. 2.75 and 2.74
B. 2.74 and 2.73
C. 2.75 and 2.73
D. 2.74 and 2.74

Answer: D

D Watch Video Solution

5. The length and breadth of a rectangular sheet are 16.2 cm and 10.1 cm , respectively. The area of the sheet in appropriate significant figures and error is
A. $164 \pm 3 \mathrm{~cm}^{2}$
B. $163.62 \pm 2.6 \mathrm{~cm}^{2}$
C. $163.6 \pm 2.6 \mathrm{~cm}^{2}$
D. $163.62 \pm 3 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution
6. Which of the following pairs of physical quantites does not have same dimensional formula ?
A. Work and torque

B. Angular momentum and Planck's

constant.
C. Tension and surface tension.
D. Impulse and linear momentum.

Answer: C

- Watch Video Solution

7. Measure of two quantities along with the precision of respective measuring instrument is $\quad A=2.5 m s^{-1} \pm 0.5 m s^{-1}, \mathrm{~B}=0.10 \mathrm{~s}+-0.01 \mathrm{~s}^{\prime}$. The value of $A B$ will be
A. $(0.25 \pm 0.08) m$
B. $(0.25 \pm 0.5) m$
C. $(0.25 \pm 0.05) m$
D. $(0.25 \pm 0.135) m$

Answer: A

8. You measure two quantities as

$A=1.0 m \pm 0.2 m, B=2.0 m \pm 0.2 m$. We
should report correct value for $\sqrt{A B}$ as
A. $1.4 m \pm 0.4 m$
B. $1.41 m \pm 0.15 m$
C. $1.4 m \pm 0.3 m$
D. $1.4 m \pm 0.2 m$

Answer: D
9. which of the following measurements is most precise?
A. 5.00 mm
B. 5.00 cm
C. 5.00 m
D. 5.00 kg

Answer: A
10. The mean length of an object is 5 cm .

Which of the following measurements is most accurate?
A. 4.9 cm
B. 4.805 cm
C. 5.25 cm
D. 5.4 cm

Answer: A

D Watch Video Solution
11. Young's modulus of steel is
$1.9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ When expressed is CGS units
of dynes $/ \mathrm{cm}^{2}$ it will be equal to
$\left(1 N=10^{5} d y\right.$ ne, $\left.1 m^{2}=10^{4} \mathrm{~cm}^{2}\right)$
A. 1.9×10^{10}
B. 1.9×10^{11}
C. 1.9×10^{12}
D. 1.9×10^{13}

D Watch Video Solution

12. If momentum (p), area (A) and time (t) are
taken to be fundamental quantities then
energy has the dimensional formula
A. $\left[p^{1} A^{-1} t^{-1}\right]$
B. $\left[p^{2} A^{1} t^{1}\right]$
C. $\left[p^{1} A^{1 / 2} t^{1}\right]$
D. $\left[p^{1} A^{1 / 2} t^{-1}\right]$

Answer: D

D Watch Video Solution

Assertion Reason

1. Assertion: The units of some physical quantities can be expressed as combination of the base units. Itbr. Reason: We need only a limited number of units for expressing the derived physical quantities.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

2. Assertion: When we change the unit of measurerment of a quantity its numerical
value changes.
Reason: Smaller the unit of measurement smaller is its numerical value.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

D Watch Video Solution

3. Assertion : Parallax method cannot be used
for measuring distance of stars morer then

100 light year away.
Reason : Because parallax angle reduces so much that it cannot be measured accurately.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

- Watch Video Solution

4. Assertion: Light year is the distance that
light travels with velocity of $3 \times 10^{8} \mathrm{~ms}^{-1}$ in one year.

Reason: Light year is the unit for measuring time.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

D Watch Video Solution

5. Assertion: When percentage error in the meansurement of mass and velocity are 1%
and 2% respectively the percentagwe error in
K.E. is 5%.

Reason: $\frac{\Delta K}{K}=\frac{\Delta m}{m}=\frac{2 \Delta v}{v}$.
A. if both assertion and reason are true
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion: The number 1.202has four significant figure and the number 0.0024 has two significant figure.

Reason: All the zero digits are significant.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution

7. Assertion: A number 2.746 rounded off to
three significant figures is 2.75 , while the number 2.743 would be 2.74 .

Reason: In rounding off the uncertain digits,
the preceding digit is raised by 1 if the
insignificant digit to be dropped is more than 5 and is left unchanged if the latter is less than 5.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

8. Assertion: The given equation
$x=x_{0}+u_{0} t+\frac{1}{2} a t^{2} \quad$ is dimensionsally
correct, where x is the distance travelled by a particle in time t , initial position x_{0} initial velocity u_{0} and uniform acceleration a is along the direction of motion.

Reason: Dimensional analysis can be used for cheking the dimensional consistency or homogenetly of the equation.
A. if both assertion and reason are true reason is the correct explanation of assertion.

B. If both assertion and reason are true but

reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

9. Assertion: A dimensionally wrong or inconsistaent equation must be wrong.

Reason: A dimensionally consistent equation is a exact or a correct equation.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

10. Assertion: Force can be added to pressure.

Reason: Force and pressure have same dimensions.
A. if both assertion and reason are true
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.

C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: D

- Watch Video Solution

11. Assertion : 'Light year' and 'Wavelength' both measure distance.

Reason : Both have dimensions of time.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

12. Assertion: Pressure can not be subtracted
from pressure gradient.
Reason: Pressure and pressure gradient have different dimensions.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution
13. Assertion: Both velocity and pseed have same dimesions.

Reason: Velocity cannot be added to speed.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution
14. Assertion: The dimensional formula of surface energy is $\left[M^{1} L^{2} T^{-2}\right]$. Reason:

Surface energy has same dimensions as that of potential energy.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution

15. Assertion: Angle and angular displacement a dimensionless quantities.

Reason: Angle is equal in arc length divided by radius.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

The International System Of Units

1. In Internationan System of units, there are seven base quantities whose units are defined.

Which physical quatity has a prefix with its unit?
A. Mass
B. Thermodynamic temperature
C. Luminous intenstiy

D. Amount of substance

Answer: A

D View Text Solution

2. The wrong unit conversation among the following is
A. 1 angstrom $=10^{-10} \mathrm{~cm}$
B. 1 fermi $=10^{-15} m$
C. 1 light year $=9.46 \times 10^{15} \mathrm{~m}$

D. 1 astronomical unit $=1.496 \times 10^{-11} \mathrm{~m}$

Answer: D

D Watch Video Solution

3. Which of the following physical quantities
has same unit in all the three system of units?
A. mass
B. lenth
C. time

D. none of these

Answer: C

D Watch Video Solution

4. Which of the following is not the name of
the physical quantity?

Time
impulse
mass
kilogram
A. Time
B. impulse
C. mass
D. kilogram

Answer: D

D Watch Video Solution

5. Which one of the following physical quantities is not a fundamental quantity?
A. Luminious intensity
B. Thermodynamic temperature
C. Electric current
D. work

Answer: D

D Watch Video Solution
6. Which one of the following statements is incorrect?
A. Direct and indirect methods are used for the measurement of physical quantities.
B. Scientific notation and the prefixes are
used to simplify numberical
computation.
C. A dimensionally correct equation need not be a correct equation.
D. The SI units is based on six base units.

Answer: D

7. Which one of the following is not a unit of British system of units?
A. foot
B. metre
C. pound
D. second

Answer: B

8. Which of the following is not a unit of time?

A. Parsec
B. Year
C. second

D. Hour

Answer: A

9. Which one of the following is not a derived

unit?

A. Joule
B. watt
C. Kilogram
D. newton

Answer: C

D Watch Video Solution
10. Which of the following units is not a base unit?
A. metre
B. candala
C. ampere
D. pascal

Answer: D

- Watch Video Solution

11. Which of the following system of units is
not based on units of mass, length and time alone
A. CGS
B. FPS
C. MKS
D. SI

Answer: D

D Watch Video Solution
12. In which year SI system of units was developed and recommended by General conference on weights and measures?
A. 1951
B. 1961
C. 1971
D. 1981

Answer: C

D Watch Video Solution

13. Spot out the odd one.

A. Calorie
B. kilowatt hour
C. joule
D. watt

Answer: D

14. Which of the following is unitless quantity?
A. Pressure gradient
B. Displacement gradient
C. force gradient
D. velocity gradient.

Answer: B

15. Match the column I with Column II.

	Column I Physical quantity)	Column II (Name of unit)	
(A$)$	Conductance	(p)	gray
(1)	Magnetic induction	(q)	lumen
(C)	Nbsorbed dose	(r)	tesla
(1)	Iuminous flux	(s)	siemens

A. A-s,B-r,C-p,D-q

B. A-p,B-q,C-r,D-s
C. A-q,B-p,C-s,D-r
D. A-r,B-s,C-p,D-q

D Watch Video Solution

16. The SI unit of pressure gradient is
A. $N m^{-2}$
B. $N m$
C. $N m^{-1}$
D. $N m^{-3}$

Answer: D

D Watch Video Solution
17. The relative density of lead is 11.3. its density $=\ldots . . g c m^{-3}=\ldots \ldots . . \mathrm{kgm}^{-3}$. Fill in the blanks.

A. 1.13×10^{3}
B. 1.13×10^{2}
C. 1.13×10^{4}
D. 11.3

Answer: C

D Watch Video Solution
18. The value of universal gravitational constant $\quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$. The
value of G in units of $g^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-2}$ is
A. 6.67×10^{-8}
B. 6.67×10^{-7}
C. 6.67×10^{-9}
D. 6.67×10^{-10}

Answer: A

- Watch Video Solution

19. If the value of atmospheric pressure is 10^{6} dyne cm^{-2}. Its value in SI units is:
A. $10^{4} \mathrm{~N}^{-2}$
B. $10^{6} \mathrm{~N} m^{-2}$
C. $10^{5} \mathrm{~N}^{-2}$
D. $10^{3} \mathrm{~N} \mathrm{~m}^{-2}$

Answer: C
(Watch Video Solution
20. The solid angle subtended by the periphery of an area $1 \mathrm{~cm}^{2}$ at a point situtated symmetrically at a distance of 5 cm from the area is
A. 2×10^{-2} steradian
B. 4×10^{-2} steradian
C. 6×10^{-2} steradian
D. 8×10^{-2} steradian

Answer: B

21. One barn is equal to

A. $10^{-30} m^{2}$
B. $10^{28} \mathrm{~m}^{2}$
C. $10^{-28} m^{2}$
D. $10^{30} \mathrm{~m}^{2}$

Answer: C

D Watch Video Solution

Measurement Of Length

1. Fathom is the unit to measure the
A. speed of ship
B. depth of sea
C. distance of the ship
D. speed of cyclone

Answer: B

2. Which of the following is not unit of length?

A. asgstrom
B. fermi
C. barn
D. parsec

Answer: C

3. Which of the following is smallest unit?

A. millimetre

B. angstrom
C. fermi
D. metre.

Answer: C

4. Match the column I with Column II.

	Column I		Column II	
(A)	Distance between earth and sun	(p)	Micron	
(B)	Interatomic distance in a solid	(q)	Fermi	
(C)	Size of a nucleus	(r)	Light year	
(D)	Wavelength of infrared laser	(s)	Angstrom	

A. A-p,B-q,C-r,D-s

B. A-r,B-s,C-q,D-p

C. A-q,B-p,C-s,D-r

D. A-s,B-r,C-p,D-q

5. Which one of the following intruments is not used for the measurement of length?

Atomic clock
vernier callipers

Screw gauge

Spherometer
A. Atomic clock
B. varnier callipers
C. Screw gauge

D. Spherometer

Answer: A

- Watch Video Solution

6. A new unit of length is chosen such that the
speed of light in vacuum is unity. What is the
distance between the sun and the earth in
terms of the new unit, if light takes 8 min and

20 sec. to cover the distance ?
A. 300
B. 400
C. 500
D. 600

Answer: C

D View Text Solution

7. Light year is :

A. light emitted by the sun in one year.
B. The time taken by light to travel from
sun to earth.
C. The distance travelled by light in free
space in one year.
D. The time taken by earth to go once
around the sun.

Answer: C

D View Text Solution
8. Light year is a unit of
A. Distance
B. time
C. speed
D. intensity of light

Answer: A
9. How many light years alpha centauri away

from the earth?

A. 1.29
B. 2.29
C. 3.29
D. 4.29

Answer: D

D Watch Video Solution
10. Which one of the following methods is used to measure distance of a planet or a star from the earth?
A. Echo method
B. Parallax method
C. Triangulation method
D. none of these

Answer: B
11. Laser beams are used to measure long distances because
A. it is very intense.
B. It is highly monochromatic.
C. It is an unidirectional beam of light.
D. All of these

Answer: D

D Watch Video Solution

12. The distnace of the moon from the earth is
about 60 times the radius of the earth. What
will be diameter of the earth (approximately in degrees) as see from the moon?
A. 1°
B. 2°
C. 4°
D. 6°

Answer: B
13. The sun's angular diameter is measured to be 1920". The distance of the sun from the earth is $1.496 \times 10^{11} \mathrm{~m}$. What is the diameter of the sun?
A. $1.39 \times 10^{9} m$
B. $1.39 \times 10^{10} \mathrm{~m}$
C. $1.39 \times 10^{11} \mathrm{~m}$
D. $1.39 \times 10^{12} \mathrm{~m}$

Answer: A

- Watch Video Solution

14. Calculate the length of the arc of a circle of radius 31.0 cm which subtands and angle of $\frac{\pi}{6}$ at the centre.
A. 11.7 cm
B. 14.7 cm
C. 16.7 cm
D. 15.7 cm

Answer: D

- Watch Video Solution

15. The order of magnitude of the diameter of
the earth is (diamtere of the earth is
$\left.1.28 \times 10^{7} \mathrm{~m}\right)$

5

6

7

8
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution
16. How many wavelength of $K r^{86}$ are there is one metre
1553164.13
1650763.73
2348123.73
652189.63

A. 1553164.13

B. 1650763.73
C. 2348123.73
D. 652189.63

Answer: B

D Watch Video Solution
17. The ratio of molar volume to atomic volume
for 1 mole of hydrogen is (Take size of hydrogen molecule to be $1 \tilde{\mathrm{~A}} . .$.)
A. 7.1×10^{4}
B. 7.1×10^{6}
C. 7.1×10^{10}
D. 7.1×10^{8}

Answer: A

D View Text Solution
18. If the size of bacteria is 1 micron, what will be the number of it in 1 m length?
A. One hundred
B. One crore
C. One thousand
D. One million

Answer: D

D Watch Video Solution
19. One astronomical unit (AU) is equal to
A. $1.496 \times 10^{8} \mathrm{~km}$
B. $9.46 \times 10^{12} \mathrm{~km}$
C. $3.084 \times 10^{13} \mathrm{~km}$
D. $4.596 \times 10^{15} \mathrm{~km}$

Answer: A

D Watch Video Solution
20. What is the ratio of volume of atom of the volume of nucleus?
A. 10^{10}
B. 10^{15}
C. 10^{20}
D. 10^{25}

Answer: B

D Watch Video Solution
21. The ratio of one micron to one nanometre is
A. 10^{3}
B. 10^{-3}
C. 10^{-6}
D. 10^{-9}

Answer: A

D Watch Video Solution
22. Which of the following conversions is incorrect?
A. 1 curie $=3.7 \times 10^{10} g^{-1}$
B. 1 barn $=10^{-25} m^{2}$
C. 1 quintal $=100 \mathrm{~kg}$
D. 1 litre $=10^{-3} \mathrm{~m}^{3}$

Answer: B

D Watch Video Solution

1. the device used for measuring the mass of atoms and molecules is
A. spring balance
B. torsional balance
C. mass specrograph
D. common balance

Answer: C

D Watch Video Solution
2. Which of the following statements is incorrect regarding mass?
A. it is a basic property of matter.
B. The SI unit of mass is kg .
C. The mass of an atom is expressed in u.
D. It depends upon the temperature, pressure or location of the object in space.

Answer: D

D Watch Video Solution

3. Express unified atomic mass unit in kg .

> A. $1.66 \times 10^{-25} \mathrm{~kg}$
> B. $1.66 \times 10^{-27} \mathrm{~kg}$
> C. $1.66 \times 10^{-29} \mathrm{~kg}$
> D. $1.66 \times 10^{-31} \mathrm{~kg}$
4. 10^{-3} gram is called
A. kilogram
B. milligram
C. decigram
D. microgram

Answer: B
5. If the value of force is 100 N and vlaue of acceleration is $0.001 \mathrm{~ms}^{-2}$ what is the value of mass in this system of units?
A. $10^{3} \mathrm{~kg}$
B. $10^{4} \mathrm{~kg}$
C. $10^{5} \mathrm{~kg}$
D. $10^{6} \mathrm{~kg}$

Answer: C

- Watch Video Solution

6. Match the column I with column II ItBrgt

	Column I (Event)	Column II (Time interval)	
(A)	Life time of an excited state of an atom	(p)	10^{17}
(B)	Average human life-span	(q)	10^{11}
(C)	Age of Egyptian pyramids	(r)	10^{9}
(D)	Age of the universe	(s)	10^{-8}

A. A-s,B-r,C-q,D-p
B. A-p,B-q,C-r,D-s
C. A-q,B-p,C-s,D-r
D. A-r,B-s,C-p,D-q

D Watch Video Solution

7. One second is defined as

A. 1650763.73 perods of krypton clock
B. 652189.6 peridos of krypton clock
C. 1650763.73 periods of cesium clock
D. 9192631770 periods of cesium clock.
8. Light from the sun reaches the earth approximately in
A. 5 s
B. 50 s
C. 500s
D. 0.5 s

Answer: C
9. The distance of a galaxy from the earth is of the order of $10^{25} \mathrm{~m}$. The time taken by light to reach the earth from the galaxy is
A. $3 \times 10^{14} s$
B. $3 \times 10^{16} s$
C. $3 \times 10^{18} s$
D. $3 \times 10^{20} s$

Watch Video Solution

Accuracy Precision Of Instruments And Errors In

 Measurements1. If the error in measuring the radius of the sphere is 2% and that in measuring its mass is
3%, Then the error in measuring the density of material of the sphere is:
A. 0.05
B. 0.07

C. 0.09

D. 0.11

Answer: C

- Watch Video Solution

2. Which of the following is the most precise

 instrument for measuring length?A. Metre rod of least count 0.1 cm

B. vernier callipers of least count 0.01 cm

C. Screw gauge of least count 0.001 cm
D. none of these

Answer: C

D Watch Video Solution

3. Which of the following time measuring devices is most precise
A. A wall clock
B. An atomic clock

C. A digital watch

D. A stop watch.

Answer: B

- Watch Video Solution

4. Which of the following statements is
incorrect?
A. Every measurement by measuring
instrument has some error.
B. A measurement can have more accuracy
but less precision and vice versa.
C. Every calculated quantity that is based
on measured values has some error.
D. The magnitude of the difference
between the true value of the quantity
and the individual measurement value is
called the relative error of the measurement.

- Watch Video Solution

5. Which of the followig inctruemnts has minium least count?
A. A screw gauge of pitch 1 mm and 100 divisions n the circular scale.
B. A spherrrometer of pitch 0.1 mm and 100
divisions on the circular scale.
C. An optical intrument that can measure
length to within a wavelength of light.
D.

Answer: D

D Watch Video Solution

6. The vernier scale of a travelling microscope
has 50 divisions which coincide with 49 main
scale divisions. If each main scale division is 0.5 mm , then the least count of the microscope is
A. 0.01 cm
B. 0.5 mm
C. 0.01 mm
D. 0.5 cm

Answer: C

D Watch Video Solution

7. The period of oscillation of a simple pendulum in the experiment is recorded as
$2.63 s, 2.56 s, 2.42 s, 2.71 s$, and $2.80 s$.
Find
the average absolute error.
A. 0.11 s
B. 0.12 s
C. 0.13 s
D. 0.14 s

Answer: A

D Watch Video Solution

8. Find the relative error in Z, if
$Z=A^{4} B^{1 / 3} / C D^{3 / 2}$.
A.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}
$$

B.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}
$$

C.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}
$$

D.

$$
\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}
$$

Answer: A
9. The temperature of two bodies measured by
a thermometer are $t_{1}=20^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ and
$t_{2}=50^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$. Calculate the
temperature difference and error there in .
A. $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
B. $70^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
D. $70^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
10. Two resistors of resistances
$R_{1}=(300 \pm 3) \Omega$ and $R_{2}=(500 \pm 4) \Omega$ are connected in series. The equivalent resistance of the series combination is
A. $(800 \pm 1) \Omega$
B. $(800 \pm 7) \Omega$
C. $(200 \pm 7) \Omega$
D. $(200 \pm 1) \Omega$

Answer: B

- Watch Video Solution

11.

Two
resistances
$R_{1}=100 \pm 3 \Omega$ and $R_{2}=200 \pm 4 \Omega \quad$ are
connected in series. Find the equivalent resistance of the series combination.
A. $(66.7 \pm 1.8) \Omega$
B. $(66.7 \pm 4.0) \Omega$
C. $(66.7 \pm 3.0) \Omega$

D. $(66.7 \pm 7.0) \Omega$

Answer: A

D Watch Video Solution

12. Percentage erros in the measurement of mass and speed are 2% and 3% respectively.

The error in the estimation of kinetic energy
obtained by measuring mass and speed will be:
B. 0.02
C. 0.12
D. 0.1

Answer: A

D Watch Video Solution

13. A physical quantitiy X is related to four measurable quantities, a, b, c and d as give $X=a^{2} b^{3} c^{5 / 2} d^{-2}$. The percentage error in
the measurement of a, b, c and d are
$1 \%, 2 \%, 2 \%$ and 4% respectively. What is the percentage error in quantitiy X ?
A. 0.15
B. 0.17
C. 0.21
D. 0.23

Answer: C
(D) View Text Solution
14. The time period of a simple pendulum is given by $T=2 \pi \sqrt{L / g}$, where L is length and g acceleration due to gravity. Measured value of length is 10 cm known to 1 mm accuracy and time for 50 oscillations of the pendulum is 80 s using a wrist watch of 1 s resloution.

What is the accuracy in the determination of g
?
A. 0.02
B. 0.03
C. 0.04

D. 0.05

Answer: D

- Watch Video Solution

Significant Figures

1. Which of the following statement is
incorrect regarding significant figures?
A. All the non-zero digits are significant
B. All the zeros betwee two non-zero digits
are significant
C. Greater the number of significant figrues
in a measurement, smaller is the
percentage error.
D. The power of 10 is counted while
counting the number of significant
figures.

Answer: D

D View Text Solution
2. The value of resistance is 10.845Ω and the urrent is $3.23 \tilde{A} . .$. . On multiplying, we get the potential difference is 35.02935 V . the value of potential difference in terms of significant figures would be
A. 35 V
B. 35.0 V
C. 35.029 V
D. 35.03 V

Answer: B

D View Text Solution

3. A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$.

Calculate its volume
A. $1.7 \times 10^{-6} \mathrm{~m}^{3}$
B. $1.73 \times 10^{-6} \mathrm{~m}^{3}$
C. $1.78 \times 10^{-6} m^{3}$
D. $1.732 \times 10^{-6} \mathrm{~m}^{3}$

Answer: A

- Watch Video Solution

4. The radius of a sphere is 1.41 . its volume to
an appropring number of significant figure is
A. $11.73 \mathrm{~cm}^{3}$
B. $11.736 \mathrm{~cm}^{3}$
C. $11.7 \mathrm{~cm}^{3}$
D. $117 \mathrm{~cm}^{3}$

D Watch Video Solution

5. The mass of a box measured by a grocer's balance is 2.3 kg . Two gold pieces of masses
20.15 g and 20.17 g are added to the box. What is (a) total mass of the box (b) the difference
in masses of gold pieces to correct significant figures.
A. 2.3 kg
B. 2.34 kg
C. 2.340 kg
D. 2.3403 kg

Answer: A

D Watch Video Solution

6. In the quastion number 71 , what is the difference in the masses of the pieces?
A. 0.02 g
B. 0.021 g
C. 0.022 g
D. 0.024 g

Answer: A

D View Text Solution

7. The numbers 3.845 and 3.835 on rounding off to 3 significant figures will give
A. 3.85 and 3.84

B. 3.84 and 3.83

C. 3.85 and 3.83
D. 3.84 and 3.84

Answer: D

D Watch Video Solution

8. The respective number of significant figures for thenumbers 6.320, 6.032, 0.0006032 are
A. $3,4,8$
B. $4,4,8$
C. $4,4,4$
D. $4,3,4$

Answer: C

D Watch Video Solution

9. The number of significant figures in the numbers 4.8000×10^{4} and 48000.50 are respectively
A. 5 and 6
B. 5 and 7
C. 2 and 7
D. 2 and 6

Answer: B

D Watch Video Solution

10. A body travels uniformly a distance of
$(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Find the
velocity of the body within error limits and the percentage error.

> A. $(3.5 \pm 0.6) m s^{-1}$
> B. $(3.5 \pm 0.3) m s^{-1}$
> C. $(6.1 \pm 0.6) m s^{-1}$
> D. $(6.1 \pm 0.3) m s^{-1}$

Answer: B
(D) Watch Video Solution

1. Which of the following physical quantities has a unit but no dimensions?
A. Relative velocity
B. Relative density
C. Strain
D. Angle

Answer: D

D Watch Video Solution
2. Which of the following physical quantities
has neither units nor dimensions?
A. 1. Relative velocity
B. 2. Relative density
C. 3. Angle
D. 4. Energy

Answer: B
(D) Watch Video Solution

3. A dimensionless quantity

A. never has a unit
B. always has unit
C. may have a unit
D. does not exit

Answer: C
(Watch Video Solution
4. Which of the following pairs of physical quantities have same dimensions?
A. Force and power
B. Torque and energy
C. Torque and power
D. Force ad torque.

Answer: B
(Watch Video Solution
5. If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

$$
\begin{aligned}
& \text { A. } \frac{(P-Q)}{R} \\
& \text { B. } P Q-R \\
& \text { C. } \frac{P Q}{R} \\
& \text { D. } \frac{\left(P R-Q^{2}\right)}{R}
\end{aligned}
$$

Answer: A

6. Which of the following sets have different dimensions?
A. Pressure, Young's modulus, stress
B. Emf, potential difference, electric potential
C. Heat, work done, energy
D. Dipole moment, electric flux, electric field.

Answer: D

D View Text Solution

Dimensional Formulae And Dimensional Equations

1. Match the column I with column II

A. A-p,B-q,C-r,D-s
B. A-q,B-p,C-s,D-r
C. A-s,B-r,C-q,D-p
D. A-r,B-s,C-p,D-q

Answer: C

D Watch Video Solution
2. If E, M, J, and G, respectively, denote energy , mass , angular momentum , and
gravitational constant, then $E J^{2} / M^{5} G^{2}$ has
the dimensions of
A. mass
B. length
C. time
D. angle

Answer: D
(Watch Video Solution
3. If power (P), surface tension (S) and Planck's constant (h) are arranged so that the dimensions of time in their dimensional formulae are in ascending order, then which of the following is correct?
A. P,S,h
B. P,h,S
C. S,P,h
D. S,h,P
4. The dimension of Planck's constant are the same as that of
A. charge
B. work
C. force
D. Angular momentum

Answer: D

5. Match the column I with column II

	Column I (Units)	$\begin{gathered} \text { Column II } \\ \text { (Dimensional formulae) } \end{gathered}$	
(A)	Pas	(p)	$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
(B)	$\mathrm{Nm} \mathrm{K}^{-1}$	(q)	$\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$
(C)	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	(r)	[$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$]
(I)	$\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$	(s)	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$

A. A-q,B-p,C-r,D-s
B. A-p,B-q,C_s,D-r
C. A-r,B-s,C-p,D-q
D. A-s,B-r,C-q,D-p

Answer: C

D Watch Video Solution

6. The dimensional formula of electric potential is
A. $\left[M L^{2} T^{-3} A^{1}\right]$
B. $\left[M^{-1} L^{2} T^{-2} A\right]$
C. $\left[M^{-1} L^{2} T^{-2} A^{-1}\right]$
D. $\left[M L^{2} T^{-2} A\right]$

D Watch Video Solution

7. Dimensional formula of ΔQ, heat supplied

 to the system is:A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{1}\right]$

Answer: A

- Watch Video Solution

8. The dimensional formula of physical quantity is $\left[M^{a} L^{b} T^{c}\right]$.Then that physical quantity is
A. surface tension if $a=1, b=1, c=-2$
B. force if $a=1, b=1, c=2$
C. angular frequency if $a=0, b=0, c=-1$
D. spring constant if $a=1, b=-1, c=-2$

Answer: C

- Watch Video Solution

Dimensional Analysis And Its Applications

1. Checking the correctness of equations using
the method of dimensions is based on
A. the type of system
B. equality of inertial frames of references
C. principle of homogeneity of dimensions

D. none of these

Answer: C

D Watch Video Solution

2. Using the principle of homogeneity of dimensions, which of the following is correct?
A. $T^{2}=\frac{4 \pi^{2} r^{3}}{G M}$
B. $T^{2}=4 \pi^{2} r^{2}$
C. $T^{2}=\frac{4 \pi^{2} r^{3}}{G}$
D. $T=\frac{4 \pi^{2} r^{3}}{G}$

Answer: A

D Watch Video Solution

3. Which of the following relations is dimensionally incorrect?
А. $1 u=931.5 \mathrm{MeV}$
B. $1 \mathrm{u}=931.5 \mathrm{MeV} / c^{2}$
C. $1 \mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}$

D. none of these

Answer: B

D Watch Video Solution

4. On the basis of dimensions, decide which of
the following relation for the displacement of
a particle undergoing simple harmonic motion is not correct :

$$
\text { A. } y=a \sin \left(\frac{2 \pi t}{T}\right)
$$

B. $y=a \cos \omega t$
C. $y=\frac{a}{T} \sin \left(\frac{t}{a}\right)$
D. $y=a \sqrt{2}\left(\sin \left(\frac{2 \pi t}{T}\right)+\cos \left(\frac{2 \pi t}{T}\right)\right)$

Answer: C

D Watch Video Solution

5. The displacement of a progressive wave is represented by $y=A \sin (\omega t-k x)$ where x is distance and t is time. The dimensions of $\frac{\omega}{k}$ are same as those of
A. velocity
B. wave number
C. wavelength
D. frequency

Answer: A

D Watch Video Solution
6. If velocity of light c, planck's constant h and gravitational constnat G are taken as
fundamental quantities then the dimensions
of the length will be
A. $\sqrt{\frac{c h}{G}}$
B. $\sqrt{\frac{h G}{c^{5}}}$
C. $\sqrt{\frac{h G}{c^{3}}}$
D. $\sqrt{\frac{h c^{3}}{G}}$

Answer: C

D Watch Video Solution

7. A new system of units is proposed in which

 unit of mass is $\alpha k g$, unit of length $\beta \mathrm{m}$ and unit of time γ s. How much will 5 J measure in this new system ?A. $5 \alpha \beta^{2} \gamma^{-2}$
B. $5 \alpha^{-1} \beta^{-2} \gamma^{2}$
C. $5 \alpha^{-2} \beta^{-1} \gamma^{-2}$
D. $5 \alpha^{-1} \beta^{2} \gamma^{2}$

Answer: B
8. If the energy, $E=G^{p} h^{q} c^{r}$, where G is the universal gravitational constant, h is the Planck's constant and c is the velocity of light, then the values of p are q and r are, respectively
A. $-1 / 2,1 / 2$ and $5 / 2$
B. $1 / 2,-1 / 2$ and $-5 / 2$
C. $-1 / 2,1 / 2$ and $3 / 2$
D. $1 / 2,-1 / 2$ and $-3 / 2$

Answer: A

- Watch Video Solution

9. The equation fo state of a gas is given by
$\left(P+\frac{a}{V^{3}}\right)\left(V-b^{2}\right)=c T$, where $\mathrm{P}, \mathrm{V}, \mathrm{T}$ are pressure, volume and temperature respectively, and a, b, c are constants. The dimesions of a and b are respectively
A. $\left[M L^{8} T^{-2}\right]$ and $\left[L^{3 / 2}\right]$
B. $\left[M L^{5} T^{-2}\right]$ and $\left[L^{3}\right]$
C. $\left[M L^{5} T^{-2}\right]$ and $\left[L^{6}\right]$
D. $\left[M L^{6} T^{-2}\right]$ and $\left[L^{3 / 2}\right]$

Answer: A

D View Text Solution
10. The velocity of a paritcle (v) at an instant t
is given by $v=a t+b t^{2}$. The dimesion of b is
A. [L]
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

D Watch Video Solution

Ncert Exemplar

1. The number of significant figures in 0.06900
is
A. 5
B. 4
C. 2
D. 3

Answer: B

D Watch Video Solution
2. The sum of the numbers $436.32,227.2$ and
0.301 in appropriate significant figures is
A. 663.821
B. 664
C. 663.8
D. 663.82

Answer: C

D Watch Video Solution

3. The mass and volume of a body are 4.237 g
and $2.5 \mathrm{~cm}^{3}$, respectively. The density of the
meterial of the body in correct significant figures is
A. $1.6948 \mathrm{gcm}^{-3}$
B. $1.69 \mathrm{gcm}^{-3}$
C. $1.7 \mathrm{gcm}^{-3}$
D. $1.695 \mathrm{gcm}^{-3}$

Answer: C

- Watch Video Solution

4. The numbers 2.745 and 2.735 on rounding off to 3 significant figures will give
A. 2.75 and 2.74
B. 2.74 and 2.73
C. 2.75 and 2.73
D. 2.74 and 2.74

Answer: D
(Watch Video Solution
5. The length and breadth of a rectangular sheet are 16.2 cm and 10.1 cm , respectively. The area of the sheet in appropriate significant figures and error is
A. $164 \pm 3 \mathrm{~cm}^{2}$
B. $163.62 \pm 2.6 \mathrm{~cm}^{2}$
C. $163.6 \pm 2.6 \mathrm{~cm}^{2}$
D. $163.62 \pm 3 \mathrm{~cm}^{2}$

Answer: A

6. Which of the following pairs of physical quantites does not have same dimensional formula ?
A. Work and torque
B. Angular momentum and Planck's
constant.
C. Tension and surface tension.
D. Impulse and linear momentum.
7. Measure of two quantities along with the precision of respective measuring instrument is $\quad A=2.5 m s^{-1} \pm 0.5 m s^{-1}, \mathrm{~B}=0.10 \mathrm{~s}+-0.01 \mathrm{~s}$.

The value of $A B$ will be
A. $(0.25 \pm 0.08) m$
B. $(0.25 \pm 0.5) m$
C. $(0.25 \pm 0.05) m$
D. $(0.25 \pm 0.135) m$

Answer: A

- Watch Video Solution

8. You measure two quantities as
$A=1.0 m \pm 0.2 m, B=2.0 m \pm 0.2 m . \quad$ We
should report correct value for $\sqrt{A B}$ as
A. $1.4 m \pm 0.4 m$
B. $1.41 m \pm 0.15 m$
C. $1.4 m \pm 0.3 m$
D. $1.4 m \pm 0.2 m$

Answer: D

- Watch Video Solution

9. which of the following measurements is most precise?
A. 5.00 mm
B. 5.00 cm
C. 5.00 m
D. 5.00 kg

Answer: A

D View Text Solution

10. The mean length of an object is 5 cm .

Which of the following measurements is most
accurate?
A. 4.9 cm
B. 4.805 cm
C. 5.25 cm
D. 5.4 cm

Answer: A

D Watch Video Solution

11. Young's modulus of steel is
$1.9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ When expressed is CGS units
of dynes $/ \mathrm{cm}^{2}$ it will be equal to
$\left(1 N=10^{5} d y\right.$ ne, $\left.1 m^{2}=10^{4} \mathrm{~cm}^{2}\right)$
A. 1.9×10^{10}
B. 1.9×10^{11}
C. 1.9×10^{12}

D. 1.9×10^{13}

Answer: C

D Watch Video Solution

12. If momentum (p), area (A) and time (t) are
taken to be fundamental quantities then
energy has the dimensional formula
A. $\left[p^{1} A^{-1} t^{-1}\right]$
B. $\left[p^{2} A^{1} t^{1}\right]$
C. $\left[p^{1} A^{1 / 2} t^{1}\right]$
D. $\left[p^{1} A^{1 / 2} t^{-1}\right]$

Answer: D

- Watch Video Solution

Assertion And Reason

1. Assertion: The units of some physical quantities can be expressed as combination of
the base units. Itbr. Reason: We need only a
limited number of units for expressing the derived physical quantities.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

2. Assertion: When we change the unit of measurerment of a quantity its numerical
value changes.

Reason: Smaller the unit of measurement smaller is its numerical value.
A. if both assertion and reason are true reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

D Watch Video Solution

3. Assertion : Parallax method cannot be used
for measuring distance of stars morer then

100 light year away.
Reason : Because parallax angle reduces so much that it cannot be measured accurately.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

- Watch Video Solution

4. Assertion: Light year is the distance that
light travels with velocity of $3 \times 10^{8} \mathrm{~ms}^{-1}$ in one year.

Reason: Light year is the unit for measuring time.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

D Watch Video Solution

5. Assertion: When percentage error in the meansurement of mass and velocity are 1%
and 2% respectively the percentagwe error in
K.E. is 5%.

Reason: $\frac{\Delta K}{K}=\frac{\Delta m}{m}=\frac{2 \Delta v}{v}$.
A. if both assertion and reason are true
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion: The number 1.202has four significant figure and the number 0.0024 has two significant figure.

Reason: All the zero digits are significant.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution

7. Assertion: A number 2.746 rounded off to
three significant figures is 2.75 , while the number 2.743 would be 2.74 .

Reason: In rounding off the uncertain digits,
the preceding digit is raised by 1 if the
insignificant digit to be dropped is more than 5 and is left unchanged if the latter is less than 5.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

8. Assertion: The given equation
$x=x_{0}+u_{0} t+\frac{1}{2} a t^{2} \quad$ is dimensionsally
correct, where x is the distance travelled by a particle in time t , initial position x_{0} initial velocity u_{0} and uniform acceleration a is along the direction of motion.

Reason: Dimensional analysis can be used for cheking the dimensional consistency or homogenetly of the equation.
A. if both assertion and reason are true reason is the correct explanation of assertion.

B. If both assertion and reason are true but

reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution

9. Assertion: A dimensionally wrong or inconsistaent equation must be wrong.

Reason: A dimensionally consistent equation is a exact or a correct equation.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

10. Assertion: Force can be added to pressure.

Reason: Force and pressure have same dimensions.
A. if both assertion and reason are true
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation fo
assertion.

C. If assertion is true but reaso is false.

D. IF both assertion and reason are false.

Answer: D

- Watch Video Solution

11. Assertion : 'Light year' and 'Wavelength' both measure distance.

Reason : Both have dimensions of time.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: C

12. Assertion: Pressure can not be subtracted
from pressure gradient.
Reason: Pressure and pressure gradient have different dimensions.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

D Watch Video Solution
13. Assertion: Both velocity and pseed have same dimesions.

Reason: Velocity cannot be added to speed.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution
14. Assertion: The dimensional formula of surface energy is $\left[M^{1} L^{2} T^{-2}\right]$. Reason:

Surface energy has same dimensions as that of potential energy.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo
assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: B

D Watch Video Solution

15. Assertion: Angle and angular displacement a dimensionless quantities.

Reason: Angle is equal in arc length divided by radius.
A. if both assertion and reason are true reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation fo assertion.
C. If assertion is true but reaso is false.
D. IF both assertion and reason are false.

Answer: A

\square

