©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(GUJRATI)

ELECTROCHEMISTRY - II

Example

1. Predict whether the reaction
$2 A g_{(s)}+Z n_{(a q)}^{2+} \rightarrow 2 A g_{(a q)}^{+}+Z n_{(s)}$
is feasible or not.

- View Text Solution

2. Determine the feasibility of the reaction
$2 A l_{(s)}+3 S n_{(a q)}^{4+} \rightarrow 2 A l^{3+}+3 S n_{(a q)}^{2+}$
3. What is the potential of a half-cell consisting of zinc electrode in $0.01 \mathrm{MZnSO}_{4}$ solution $25^{\circ} \mathrm{C} . E^{\circ}=0.763 \mathrm{~V}$.

- View Text Solution

4. Calculate the emf of the cell.
$Z n\left|Z n^{2+}(0.001 M)\right|\left|A g^{+}(0.1 M)\right| A g$
The standard potential of $\mathrm{Ag} / \mathrm{Ag}^{+}$half - cell is +0.80 V and $\mathrm{Zn} / \mathrm{Zn}^{2+}$ is -0.76 V .

- View Text Solution

5. Calculate the equilibrium constant for the reaction between silver nitrate and metallic zinc.
6. Calculate the E.M.F. of the zinc - silver cell at $25^{\circ} \mathrm{C}$ when $\left[\mathrm{Zn}^{2+}\right]=0.10 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=10 M .\left[E^{\circ}\right.$ cell at $25^{\circ} \mathrm{C}=1.56$ volt $]$

- View Text Solution

7. Write the cell reactions for the following cells.
(i) $\mathrm{Zn}\left|\mathrm{ZnO}_{2}^{2-}, \mathrm{OH}^{-}\right| \mathrm{HgO} \mid \mathrm{Hg}$
(ii) $\mathrm{Pb}\left|\mathrm{PbSO}_{4}\right| \mathrm{H}_{2} \mathrm{SO}_{4}\left|\mathrm{PbSO}_{4}\right| \mathrm{PbO}_{2} \mid \mathrm{Pt}$
(iii) $\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{HCl}\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right| \mathrm{Hg} \mid \mathrm{Pt}$

- View Text Solution

8. Calculate the potential of the following cell at 298 K

$$
\begin{aligned}
& Z n / Z n^{2+}(a=0.1) / C u^{2+}(a=0.01) / C u \\
& E_{Z n^{2+} / Z n}^{\circ}=-0.762 V \\
& E_{C u^{2+} / C u}^{\circ}=+0.337 V
\end{aligned}
$$

Compare the free energy change for this cell with the free enegy of the cell in the standard state.

- View Text Solution

9. Calculate the standard e.m.f. of the reaction
$F e^{3+}+3 e^{-} \rightarrow F e_{(s)}$. Given the e.m.f. values of
$\mathrm{Fe}^{3+}+e \rightarrow \mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{2+}+2 e \rightarrow \mathrm{Fe}_{(s)}$ as +0.771 V and $=0.44$

- View Text Solution

10. The standard electrode potantials of the half cells $A g^{+} / A g$ and $\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}$ are 0.7991 V and 0.771 V respectively. Calculate the equilibrium constant of the reaction :
$A g_{(s)}+F e^{3+} \Leftrightarrow A g^{+}+F e^{2+}$

- View Text Solution

Self Evaluation B Answer In One Or Two Sentences

1. The standard reduction potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ electrode systems are -0.035 V and -0.44 V respectively. Predict which of the two oxidations is easy: $\mathrm{Fe}^{3+} / \mathrm{Fe}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$.

- View Text Solution

2. Write the cell reaction for the half cell $\mathrm{Cl}_{(a q)}^{-} / A g C l_{(s)} A g$.

- View Text Solution

Self Evaluation D Solve The Problems

1. Write the Nernst equation for the half cell $Z n_{(a q)}^{2+} / Z n_{(s)}$.

- View Text Solution

2. The emf of the cell : $\mathrm{Cd} / \mathrm{CdCl}_{2} \cdot 25 \mathrm{H}_{2} \mathrm{O} / \mathrm{AgCl}_{(s)} \mathrm{Ag}$ is 0.675 V . Calculate ΔG of the cell reaction.

- View Text Solution

3. The standard free energy change of the reaction $M_{(a q)}^{+}+e \rightarrow r M_{(s)}$ is $-23.125 k J$. Calculate the standard emf of the half cell.

D View Text Solution

4. The emf of the half cell $C u_{(a q)}^{2+} / C u_{(s)}$ containing $0.01 \mathrm{M} \mathrm{Cu}^{2+}$ solution is +0.301 V . Calculate the standard emf of the half cell.

D View Text Solution

5. If $E_{1}=0.5 \mathrm{~V}$ corresponds to $C r^{3}+3 e^{-} \rightarrow C r_{(s)}$ and $E_{2}=0.41 \mathrm{~V}$ corresponds to $\mathrm{Cr}^{3+}+e \rightarrow \mathrm{Cr}^{2+}$ reactions, calculate the emf $\left(E_{3}\right)$ of
the reaction $\mathrm{Cr}^{2+}+e \rightarrow \mathrm{Cr}^{2+}$ reactions, calculate the emf $\left(E_{3}\right)$ of the reaction $\mathrm{Cr}^{2+}+2 e \rightarrow C r_{(s)}$

- View Text Solution

6. Calculate the standard emf of the cell having the standard free energy change of the cell reaction is $-64.84 k J$ for 2 electrons transfer.

- View Text Solution

7. Calculate the emf of the cell $\mathrm{Zn} / \mathrm{ZnO}_{2}^{-}, \mathrm{OH}_{(a q)}^{-}, \mathrm{HgO} / \mathrm{Hg}$ given that E° values of $\mathrm{OH}^{-}, \mathrm{ZnO}_{2}^{-} / \mathrm{Zn}$ and $\mathrm{OH}^{-}, \mathrm{HgO} / \mathrm{Hg}$ half cells are -1.216 V and 0.098 V respectively.

- View Text Solution

8. The equilibrium constant of cell reaction :
$A g_{(s)}+F e^{3+} \Leftrightarrow F e^{2+}+A g$ is 0.335 , at $25^{\circ} \mathrm{C}$. Calculate the standard
emf of the cell $\mathrm{Ag} / \mathrm{Ag}^{+}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}$. Calculate E° of $F e^{3+}, F^{2+} / P t$ half cell.

- View Text Solution

9. Calculate the emf of the cell having the cell reaction
$2 \mathrm{Ag}^{+}+Z n \Leftrightarrow 2 \mathrm{Ag}+Z n^{2+}$ and $E_{\text {cell }}^{\circ}=1.56 \mathrm{~V}$ at $25^{\circ} \mathrm{C} \quad$ when concentration of $\mathrm{Zn}^{2+}=0.1 \mathrm{M}$ and $\mathrm{Ag}^{+}=10 \mathrm{M}$ in the solution.

- View Text Solution

10. The emf values of the cell reactions $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$ and $\mathrm{Ce}^{2+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{e}^{-}$are 0.61 V and -0.85 V respectively. Construct the cell such that the free energy change of the cell is negative. Calculate the emf of the cell.
11. A zinc rod is placed in 0.095 M zinc chloride solution at $25^{\circ} \mathrm{C}$. emf of this half cell is -0.79 V . Calculate $E_{Z n^{2+} / Z n}^{\circ}$.
