©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(GUJRATI)

APPLICATION OF DERIVATIVES

Example

1. Find the rate of change of the area of a
circle per second with respect to its radius r
when $r=5 \mathrm{~cm}$.

- Watch Video Solution

2. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When
$x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter and (b) the area of the rectangle.

- Watch Video Solution

3. Show that the function f given by
$f(x)=x^{3}-3 x^{2}+4 x, x \in R$ is
increasing on R .

D Watch Video Solution

4. Find the intervals in which the function f
given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is
strictly increasing (b) strictly decreasing
5. Find the intervals in which $f(x)=\sin 3 x$, $x \in\left[0, \frac{\pi}{2}\right]$ is (i) increasing, (ii) decreasing.

- Watch Video Solution

6. Example 13 Find the intervals in which the function f tives $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}, 0 \leq x \leq 2 \pi$ is strictly increasing or strictly decreasing.

- Watch Video Solution

7. Find points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are (i) parallel to x-axis (ii) parallel to y-axis.

- Watch Video Solution

8. Find the equation of the tangent to the curve $y=\frac{x-7}{(x-2(x-3)}$ at the point where it cuts the x-axis.

- Watch Video Solution

9. Find local maximum and local minimum
values of the function f given by
$f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$.

- Watch Video Solution

10. Find all the points of local maxima and local minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$.

D Watch Video Solution

11. Find two positive numbers whose sum is 15
and the sum of whose squares is minimum.

- Watch Video Solution

12. Find the shortest distance of the point (0 ,
c) from the parabola $y=x^{2}$, where $0 \leq c \leq 5$.

- Watch Video Solution

13. Let $A P$ and $B Q$ be two vertical poles at points A and B, respectively. If
$A P=16 m, B Q=22 m a n d A B=20 m$, then
find the distance of a point R on $A B$ from the point A such that $R P^{2}+R Q^{2}$ is minimum.

D Watch Video Solution

14. If length of three sides of a trapezium other than base are equal to 10 cm , then find the area of the trapezium when it is maximum.

- Watch Video Solution

15. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

- Watch Video Solution

16. Find absolute maximum and minimum
values of a function f given by
$f(x)=12 x^{\frac{4}{3}}-6 x^{\frac{1}{3}}, x \in[-1,1]$.
17. An Apache helicopter of enemy is flying along the curve given by $y=x^{2}+7$. A soldier, placed at $(3,7)$, wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.

- Watch Video Solution

18. A water tank has the shape of an inverted
righ circular cone with its axis vertical and
vertex lowermost . Its semi-vertical angle is
$\tan ^{-1}(0.5)$. Water is poured into it at a constant rate of 4 cubic meter per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 2 m .

D Watch Video Solution

19. A man 2 metres high walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.

Watch Video Solution

20. Find the equation of the normal to the curve $x^{2}=4 y$ which passes through the point (1, 2).

D Watch Video Solution

21. The equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$, is
22. Find intervals in which the function given
by $f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5}+11$ is
(a) strictly increasing (b) strictly decreasing.

- Watch Video Solution

23. $f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is always and increasing function on the interval
24. A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of $0.05 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its area is increasing when radius is 3.2 cm.

D Watch Video Solution

25. An open topped box is to be constructed
by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of
aluminium and folding up the sides. Find the volume of the largest such box.

D Watch Video Solution

26. Manufacturer can sell x items at a price of rupees $\left(5-\frac{x}{100}\right)$ each. The cost price of x items is Rs $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit

D Watch Video Solution

1. Find the rate of change of the area of a circle with respect to its radius r when
(a) $r=3 \mathrm{~cm}$
(b) $r=4 \mathrm{~cm}$

- Watch Video Solution

2. The volume of a cube is increasing at the
rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the surface area increasing when the length of an edge is 12 cm ?
3. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm .

- Watch Video Solution

4. An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of
the cube increasing when the edge is 10 cm long?

D Watch Video Solution

5. A stone is dropped into a quiet lake and waves move in circles at the speed of $5 \mathrm{~cm} / \mathrm{s}$.

At the instant when the radius of the circular
wave is 8 cm , how fast is the enclosed area increasing?
6. 6. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?

- Watch Video Solution

7. The length x of a rectangle is decreasing at
the rate of $5 \mathrm{~cm} /$ minute and the width y is
increasing at the rate of $4 \mathrm{~cm} /$ minute. When x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of
(a) the perimeter, and (b) the area of the rectangle

- Watch Video Solution

8. A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm .

- Watch Video Solution

9. A balloon, which always remains spherical,
has a variable radius. Find the rate at which its
volume is increasing with the radius when the later is 10 cm

D Watch Video Solution

10. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm / s. How fast is its height on the wall
decreasing when the foot of the ladder is 4 m
away from the wall?

- Watch Video Solution

11. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate
12. The radius of an air bubble is increasing at
the rate of $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?

D Watch Video Solution

13. A balloon, which always remains spherical,
has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x.
14. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on
the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

15. The total cost C (x) in Rupees associated
with the production of x units of an item is
given
$C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$.

Find the marginal cost when 17 units are produced

- Watch Video Solution

16. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=13 x^{2}+26 x+15$. Find the marginal revenue when $x=7$.

D Watch Video Solution
17. The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is:
A. 10π
B. 12π
C. 8π
D. 11π

Answer: B
18. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5 . \quad$ The marginal
revenue, when $x=15$ is (A) 116 (B) 96 (C) 90
(D) 126
A. 116
B. 96
C. 90
D. 126

1. Show that the function given by
$f(x)=3 x+17$ is strictly increasing on R.

D Watch Video Solution

2. Show that the function given by $f(x)=e^{2 x}$
is strictly increasing on R .

- Watch Video Solution

3. Show that the function given by f $f(x)=3 x+17(x)=s \in x$ is \quad (a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$ (c) neither increasing nor decreasing in $(0, \pi)$

- Watch Video Solution

4. Find the intervals in which the function f

$$
\text { given by } f(x)=2 x^{2}-3 x \text { is(a) } \quad \text { strictly }
$$

increasing (b) strictly decreasing

D Watch Video Solution

5. Find the intervals in which the function f
given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is (a)
strictly increasing (b) strictly decreasing

(Watch Video Solution

6. Find the intervals in which the following
functions are strictly increasing or decreasing:
(a $\quad x^{2}+2 x-5 \quad$ (b) $\quad 10-6 x-2 x^{2}$
$-2 x^{3}-9 x^{2}-12 x+1$ (d) $6-9 x-x^{2}$
$(x+1)^{3}(x-3)^{3}$

D Watch Video Solution

7. Find the interval in which the following function are strictly increasing or decreasing ?
A. $x^{2}+2 x+5$ B. $10-6 x-2 x^{2}$

D Watch Video Solution

8. Find the intervals in which the given functions are strictly increasing decreasing:
$-2 x^{3}-9 x^{2}-12 x+1$

D Watch Video Solution

9. Find the intervals in which the functions are strictly increasing or decreasing:
$6-9 x-x^{2}$
10. Find the intervals in which the functions are strictly increasing or decreasing:
$(x+1)^{3}(x-3)^{3}$
(Watch Video Solution
11. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x \succ 1$
, is an increasing function of x throughout its domain.
12. Find the values of x for which $y=[x(x-2)]^{2}$ is an increasing function

D Watch Video Solution

13. Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)-\theta}$ is an
increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

- Watch Video Solution

14. Prove that the logarithmic function is
strictly increasing on $(0, \infty)$.
15. Prove that the function f given by $f(x)=$
$x^{2}-x+1$ is neither strictly increasing nor decreasing on (-1, 1).

- Watch Video Solution

16. Which of the following functions is not decreasing on $(0, \pi / 2) ?$
B. $\cos 2 x$
C. $\cos 3 x$
D. $\tan x$

Answer: A::B

D Watch Video Solution

17. On which of the following intervals is the
function f given by $f(x)=x^{100}+\sin x-1$ decreasing ?
A. $(0,1)$
B. $\frac{\pi}{2}, \pi$
С. $0, \frac{\pi}{2}$
D. None of these

Answer: D

D Watch Video Solution

18. Find the least value of a such that the
function f given by $f(x)=x^{2}+a x+1$ is strictly increasing on $(1,2)$.
19. Let P be an interior point of triangle $A B C$.

Let Q and R be the reflections of P in $A B$ and
AC , respectively. If $\mathrm{Q}, \mathrm{A}, \mathrm{R}$ are collinear then $\angle A$ equals

D Watch Video Solution

20. Prove that the function f given by
$f(x)=\log \cos \quad x$ is strictly
decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.

- Watch Video Solution

21. Prove that the function f given by $f(x)=\log$ $|\cos \mathrm{x}|$ is decreasing on $\left(0, \frac{\pi}{2}\right)$ and increasing on $\left(\frac{3 \pi}{2}, 2 \pi\right)$.

- Watch Video Solution

22. Prove that the function given by
$f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing in
R.

D Watch Video Solution

23. The interval in which $y=x^{2} e^{-x}$ is
increasing is (A) $(-\infty, \infty)$ (B) $(2,0)$ (C)
$(2, \infty)(D)(0,2)$
A. $(-\infty, \infty)$
B. $(-2,0)$
C. $(2,00)$
D. $(0,2)$

Answer: D

D Watch Video Solution

Exercise 63

1. Find the slope of the tangent to the curve
$y=3 x^{4}-4 x$ at $x=4$.
2. Find the slope of the tangent to the curve
$y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.

D Watch Video Solution

3. Find the slope of the tangent to curve $y=x^{3}-x+1$ at the point whose x coordinate is 2.
4. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x coordinate is 3.

D Watch Video Solution

5. Find the slope of the normal to the curve
$x=a \cos ^{3} \theta, y=\sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

- Watch Video Solution

6. Find the slope of the normal to the curve
$x=1-a \sin \theta, y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.

D Watch Video Solution
7. Find points at which the tangent to the
curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to
the x-axis

D Watch Video Solution
8. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and (4, 4).

D Watch Video Solution

9. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x \quad 11$.
10. Find the equation of all lines having slope 1
that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.
(Watch Video Solution
11. Find the equation of all lines having slope 1
that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.
12. Find the equations of all lines having slope

0 which are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$.

D Watch Video Solution

13. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are (i) parallel to x-axis (ii) parallel to y-asis
14. Find the equations of the tangent and normal to the given curves at the indicated points: (i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0, \quad 5)$ (ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(1, \quad 3)$ (iii) $y=x^{3}$ at $(1, \quad 1)$ (iv) $y=x^{2}$ at $(0, \quad 0)$

- Watch Video Solution

15. find the equation of the tangent and normal to the given curves at the given points
(i) $y=x^{4}-6 x^{3}-10 x+5$ at $(1,3)$
(ii) $y^{2}=\frac{x^{3}}{4-x}$ at $(2-2)$

D Watch Video Solution

16. Find a point on the curve $y=x^{3}$, where
the tangent to the curve is parallel to the chord joining the points $(1,1)$ and $(3,27)$

D Watch Video Solution

17. Find the equations of the tangent and the normal to the curve $y=x^{2}$ at $(0,0)$ at the indicated points

- Watch Video Solution

18. Find the equations of the tangent to the given curves at the indicated points:
$\mathrm{x}=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}$ at $\mathrm{t}=\frac{\pi}{4}$
19. Find the equation of the tangent line to the curve $\mathrm{y}=x^{2}-2 \mathrm{x}+7$ which is
(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.

D Watch Video Solution

20. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=2$ are parallel.
21. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point.

- Watch Video Solution

22. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.
23. Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x-axis.

D Watch Video Solution

24. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.

D Watch Video Solution

25. Find the equation of the normals to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.

- Watch Video Solution

26. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
27. Show that the curves $x=y^{2}$ and $x y=k$ cut at right angles; if $8 k^{2}=1$

- Watch Video Solution

28. Find the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. at the point $\left(x_{0}, y_{0}\right)$

- Watch Video Solution

29. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$.

D Watch Video Solution

30. The slope of the normal to the curve $y=2 x^{2}+3 \sin \mathrm{x}$ at $x=0 \mathrm{is}(\mathrm{A}) 3$ (B) $\frac{1}{3}$ (C) -3
(D) $-\frac{1}{3}$
A. 3
B. $\frac{1}{3}$

$$
\begin{aligned}
& \text { C. }-3 \\
& \text { D. }-\frac{1}{3}
\end{aligned}
$$

Answer: D

- Watch Video Solution

31. The line $y=x+1$ is a tangent to the curve $y^{2}=4 \mathrm{x}$ at the poin
A. $(1,2)$
B. $(2,1)$
C. $(1,-2)$
D. $(-1,2)$

Answer: A
(D) Watch Video Solution

Exercise 64

1. $\sqrt{25.3}$

D Watch Video Solution
2. Using differentials, find the approximate value of each of the up to 3 places of decimal. $\sqrt{49.5}$

D Watch Video Solution

3. Using differentials, find the approximate value of each of the up to 3 places of decimal.
$\sqrt{0.6}$
4. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(0.009)^{\frac{1}{3}}$

D Watch Video Solution

5. Using differentials, find the approximate value of each of the up to 3 places of decimal.
$(0.0999)^{\frac{1}{10}}$
6. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(15)^{\frac{1}{4}}$

D Watch Video Solution

7. Using differentials, find the approximate value of each of the up to 3 places of decimal.
$(26)^{\frac{1}{3}}$

D View Text Solution
8. Find approminate value of $(255)^{\frac{1}{4}}$.

- Watch Video Solution

9. Using differentials, find the approximate value of $(82)^{\frac{1}{4}}$ upto 3 places of decimal.

- Watch Video Solution

10. Using differentials, find the approximate
value of $\sqrt{401}$

- Watch Video Solution

11. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(0.0037)^{\frac{1}{2}}$

- Watch Video Solution

12. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(26.57)^{\frac{1}{3}}$
13. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(81.5)^{\frac{1}{4}}$

- Watch Video Solution

14. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(3.968)^{\frac{3}{2}}$
15. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(32.15)^{\frac{1}{5}}$

D Watch Video Solution

16. Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$.

D Watch Video Solution

17. Find the approximate value of $f(5.001)$,
where $f(x)=x^{3}-7 x^{2}+15$.

D Watch Video Solution

18. Find the approximate change in the volume
V of a cube of side x metres caused by
increasing the side by 1%.

D Watch Video Solution
19. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

D Watch Video Solution

20. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.
21. If the radius of a sphere is measured as 9
cm with an error of 0.03 cm , then find the approximate error in calculating its surface area.

D Watch Video Solution

22. If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is :
A. 47.66
B. 57.66

C. 67.66

D. 77.66

Answer: D

D Watch Video Solution

23. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is(A) $0.06 x^{3} m^{3}$ (B) $0.6 x^{3} m^{3}$ (C)
$0.09 x^{3} m^{3}$ (D) $0.9 x^{3} m^{3}$
A. $0.06 x^{3} \mathrm{~m}$
B. $0.6 x^{3} m^{3}$
C. $0.09 x^{3} m^{3}$
D. $0.9 x^{3} m^{3}$

Answer: C

D Watch Video Solution

Exercise 65

1. Find the maximum and minimum values, if any, of the functions given by $f(x)=(2 x-1)^{2}+3$

D Watch Video Solution

2. Find the maximum and minimum values, if
any, of the functions given by
$f(x)=9 x^{2}+12 x+2$

D Watch Video Solution
3. Find the maximum and minimum values, if any, of the functions given by
$f(x)=-(x-1)^{2}+10$

- Watch Video Solution

4. Find the maximum and minimum values, if
any, of the functions given by

$$
g(x)=x^{3}+1
$$

5. Find the maximum and minimum values, if any, of the functions given by
$f(x)=|x+2|-1$

D Watch Video Solution
6. Find the maximum and minimum values, if
any, of the functions given by
$g(x)=-|x+1|+3$

D Watch Video Solution
7. Find the maximum and minimum values, if any, of the functions given by $h(x)=\sin (2 x)+5$

- Watch Video Solution

8. Find the maximum and minimum values, if
any, of the following functions given by (i)
$f(x)=|x+2| 1$
$g(x)=|x+1|+3$
$h(x) \quad=\quad s \in \quad(2 x) \quad+\quad 5$ (iv) `f" "(x)"
"=" "|" "s in" "4x" "+"

D Watch Video Solution
9. Find the maximum and minimum values, if any, of the functions given by
$h(x)=x+1, x \in(-1,1)$

D Watch Video Solution
10. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$

D Watch Video Solution

11. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$g(x)=x^{3}-3 x$

D Watch Video Solution

12. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:

$$
h(x)=\sin x+\cos x, 0<x<\frac{\pi}{2}
$$

- Watch Video Solution

13. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\cos \mathrm{x}, 0<x<2 \pi$

D Watch Video Solution

14. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$\mathrm{f}(\mathrm{x})=x^{3}-6 x^{2}+9 x+15$

D Watch Video Solution

15. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$\mathrm{g}(\mathrm{x})=\frac{x}{2}+\frac{2}{x} x>0$

D Watch Video Solution

16. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$g(x)=\frac{1}{x^{2}+2}$

D Watch Video Solution

17. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$\mathrm{f}(\mathrm{x})=x \sqrt{1-x}, 0 \ll 1$

D Watch Video Solution

18. Prove that the following functions do not have maxima or minima:(i) $f(x)=e x$

$$
\begin{equation*}
g(x)=\log x(\text { iii }) h(x)=x^{3}+x^{2}+x+1 \tag{ii}
\end{equation*}
$$

D Watch Video Solution

19. Prove that the functions do not have maxima or minima:
$g(x)=\log x$

- Watch Video Solution

20. Prove that the functions do not have maxima or minima:
$\mathrm{h}(\mathrm{x})=x^{3}+x^{2}+x+1$
21. Find the absolute maximum value and the absolute minimum value of the functions in the given intervals:
$\mathrm{f}(\mathrm{x})=x^{3}, x \in[-2,2]$

D Watch Video Solution

22. Find the absolute maximum value and the
absolute minimum value of the functions in
the given intervals:
$\mathrm{f}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}, x \in[0, \pi]$
23. Find the absolute maximum value and the absolute minimum value of the functions in the given intervals:
$\mathrm{f}(\mathrm{x})=4 \mathrm{x}-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]$

- Watch Video Solution

24. Find the absolute maximum value and the absolute minimum value of the functions in
the given intervals:
$\mathrm{f}(\mathrm{x})=(x-1)^{2}+3, x \in[-3,1)$

D Watch Video Solution

25. Find the maximum profit that a company
can make, if the profit function isgiven by
$p(x)=41-24 x-18 x^{2}$

D Watch Video Solution
26. Find the maximum value and the minimum
value and the minimum value of
$3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval
$[0,3]$.

- Watch Video Solution

27. At what points in the interval $[0,2 \pi]$, does
the function $s \in 2 x$ attain its maximum value?
28. What is the maximum value of the function
$s \in \quad x+\cos \quad x ?$

- Watch Video Solution

29. Find the maximum value of
$2 x^{3}-24 x+107$ in the interval [1, 3]. Find the maximum value of the same function in $[3,1]$.
30. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$. Find the value of a.

- Watch Video Solution

31. Find the maximum and minimum values of
the function $f(x)=x+\sin 2 x,(0<x<\pi)$
32. Find two numbers whose sum is 24 and whose product is as large as possible.

D Watch Video Solution

33. Find two positive numbers x and y such
that $x+y=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

34. Find two positive numbers x and y such that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

D Watch Video Solution

35. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

D Watch Video Solution

36. A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maxi

- Watch Video Solution

37. A rectangular sheet of tin 45 cm by 24 cm is
to be made into a box without top, by cutting
off squares from each corners and folding up
the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?

D Watch Video Solution

38. Show that of all the rectangles inscribed in
a given fixed circle, the square has the maximum area.

D Watch Video Solution

39. Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

D Watch Video Solution

40. Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
41. A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What
should be the length of the two pieces so that the combined area of the square and the circle is minimum?

D Watch Video Solution

42. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

- Watch Video Solution

43. Show that the right-circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.
44. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.

D Watch Video Solution

45. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.
46. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is(A) $(2 \sqrt{2}, 4)$
A. $(2 \sqrt{2}, 4)$
B. $(2 \sqrt{2}, 0)$
C. $(0,0)$
D. $(2,2)$

Answer: A

- Watch Video Solution

47. For all real values of x, the minimum value of $\frac{1-x+x^{2}}{1+x+x^{2}}$ is(A) 0 (B) 1 (C) 3 (D) $\frac{1}{3}$
A. 0
B. 1
C. 3
D. $\frac{1}{3}$

Answer: D

D Watch Video Solution
48.
The
maximum
value of
$[x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq \operatorname{iis}(\mathrm{A})\left(\frac{1}{3}\right)^{\frac{1}{3}}$
$\frac{1}{2}(\mathrm{C}) 1(\mathrm{D}) 0$

> A. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
> B. $\frac{1}{2}$
C. 1
D. 0

Answer: C

1. Using differentials, find the approximate value of each of the following:
(a) $\left(\frac{17}{81}\right)^{\frac{1}{4}}$ (b) $(33)^{-\frac{1}{5}}$

D Watch Video Solution

2. Show that the function given by
$f(x)=\frac{\log x}{x}$ has maximum at $x=e$.
3. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base ?

D Watch Video Solution

4. Find the equation of the normal to curve $x^{2}=4 y$ which passes through the point $(1,2)$.
5. Show that the normal at any point θ to the

curve

$x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta$ is at a constant distance from the origin.

D Watch Video Solution

6. Find the intervals in which the function f
given by $f(x)=\frac{4 \sin x-2 x-x c \theta}{2+\cos x}$ is
increasing (ii) decreasing.

Watch Video Solution

7. Find the intervals in which the function f
given by $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$ is increasing (ii) decreasing.

- Watch Video Solution

8. Find the maximum area of an isosceles
triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end of the major axis.
9. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m 3 . If building of tank costs Rs 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?

D Watch Video Solution

10. The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.

D Watch Video Solution

11. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m . Find the
dimensions of the window to admit maximum
light through the whole opening.

D Watch Video Solution

12. A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the maximum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.
13. Find the points at which the function f given by $f(x)=(x-2)^{4}(x+1)^{3}$ has local maxima local minima point of inflexion

D Watch Video Solution

14. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$.
15. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4 r}{3}$.

- Watch Video Solution

16. Let f be a function defined on $[a, b]$ such
that $f^{\prime}(x)>0$, for all $x \in(a, b)$. Then prove that f is an increasing function on (a, b).
17. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$.

D Watch Video Solution

18. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.

- Watch Video Solution

19. A cylindrical tank of radius 10 m is being
filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of(A) $1 \mathrm{~m}^{3} / h$ (B) 0.1 m^{3} / h (C) $1.1 m^{3} / h$ (D) $0.5 m^{3} / h$
A. $1 \mathrm{~m} / \mathrm{h}$
B. $0.1 \mathrm{~m} / \mathrm{h}$
C. $0.1 \mathrm{~m} / \mathrm{h}$
D. $0.5 \mathrm{~m} / \mathrm{h}$

Answer: A

D Watch Video Solution

20. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5 \quad$ at \quad the
point (2, -1), is
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. $\frac{7}{6}$
D. $\frac{-6}{7}$

Answer: B

D Watch Video Solution

21. The line $y=m x+1$ is a tangent to the
curve $y^{2}=4 x$ if the value of m is(A) 1 (B) 2 (C)
3 (D) $\frac{1}{2}$
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

22. The normal at the point $(1,1)$ on the curve

$$
\begin{aligned}
& 2 y+x^{2}=3 \text { is(A) } x+y=0 \quad \text { (B) } x y=0 \quad \text { (C) } \\
& x+y+1=0(\mathrm{D}) x y=0
\end{aligned}
$$

A. $x+y=0$
B. $x-y=0$
C. $x+y+1=0$
D. $x+y=1$

Answer: B

- Watch Video Solution

23. The normal to the curve $x^{2}=4 y$ passing
$(1,2)$ is(A) $x+y=3$ (B) $x y=3$ (C) $x+y=1$
(D) $x y=1$
A. $x+y=3$
B. $x-y=3$
C. $x+y=1$
D. $x-y=1$

Answer: A

- Watch Video Solution

24. The points on the curve $9 y^{2}=x^{3}$, where the normal to the curve makes equal intercepts with the axes are (A) $\left(4, \pm \frac{8}{3}\right)$
$\left(4, \frac{-8}{3}\right)$
(C) $\left(4, \pm \frac{3}{8}\right)$
(D) $\left(\pm 4, \frac{3}{8}\right)$
A. $\left(4, \pm \frac{8}{3}\right)$
B. $\left(4, \frac{-8}{3}\right)$
C. $\left(4, \pm \frac{3}{8}\right)$
D. $\left(\pm 4, \frac{3}{8}\right)$

Answer: A
(Watch Video Solution

