

MATHS

NCERT - NCERT MATHEMATICS(GUJRATI)

APPLICATION OF INTEGRALS

1. Find the area enclosed by the circle
$$x^2+y^2=a^2.$$

2. Find the area enclosed by the circle the ellpise

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

Watch Video Solution

3. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.

Watch Video Solution

4. Find the area of the region in the first quadrant enclosed by the x-aixs, the line y = x, and the circle

View Text Solution

7. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside in the parabola $y^2 = 4x$.

View Text Solution

8. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2), and (3, 1).

View Text Solution

9. Find the area of the region enclosed between the two circle $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$. View Text Solution

10. Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum.

View Text Solution

11. Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = -1

13. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x= 0, x= 4, y = 4 and y= 0 into three equal parts.

14. Find the area of the region

$$ig\{(x,y)\!:\!0\leq y\leq x^2+1, 0\leq y\leq x+1, 0\leq x\leq 2ig\}$$

View Text Solution

Exercise 81

1. Find the area of the region bounded by the curve

 $y_2 = x$ and the lines x = 1, x = 4 and the x-axis in

the first quadrant.

2. Find the area of the region bounded by $y_2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

View Text Solution

3. Find the area of the region bounded by $x^2 = 4y, y = 2, y = 4$ and the y-axis in the first

quadrant.

4. Find the area of the region bounded by the ellipse $rac{x^2}{16}+rac{y^2}{9}=1.$ View Text Solution 5. Find the area of the region bounded by the ellipse $rac{x^2}{4}+rac{y^2}{9}=1.$ View Text Solution

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $r^2 + y^2 = 4$.

8. The area between $x = y^2$ and x = 4 is divided

into two equal parts by the line x= a, find the value

of a.

9. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

Watch Video Solution

10. Find the area bounded by the curve $x^2 = 4y$

and the line x = 4y - 2.

Watch Video Solution

11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

12. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2

is

Α. π

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

13. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

A. 2
B.
$$\frac{9}{4}$$

C.
$$\frac{9}{3}$$

D. $\frac{9}{2}$

Answer: B

Exercise 8 2

1. Find the area of the circle $4x^2 + 4y^2 = 9$ which

is interior to the parabola $x^2=4y$.

View Text Solution

3. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3. **Vatch Video Solution**

4. Using integiation find the area of region bounded by the triangle whose vertices are (-1,0), (1,3) and (3, 2).

5. Using integration find the area of the triangular region whose sides have the equations y = 2x+1, y = 3x + 1 and x = 4.

6. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

A.
$$2(\pi-2)$$

 $\mathsf{B.}\,\pi-2$

 $C. 2\pi - 1$

D.
$$2(\pi + 2)$$

Answer: B

Watch Video Solution

is

A.
$$\frac{2}{3}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Miscellaneous Exercise

1. Find the area under the given curves and given lines:

(i) $y = x^2, x = 1, x = 2$ and x-axis

(ii) $y = x^4, x = 1, x = 5$ and x-axis

2. Find the area between the curves y = x and

$$y = x^2$$
.

Watch Video Solution

3. Find the area of the region lying in the first quadrant and bounded by $y = 4x^{2}$, x = 0, y = 1 and y = 4.

Watch Video Solution

4. Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$.

6. Find the area enclosed between the parabola

$$y^2=4ax$$
 and the line y = mx.

View Text Solution

7. Find the area enclosed by the parabola $4y = 3x^2$

and the line 2y = 3x + 12.

8. Find the area of the smaller region bounded by

the ellipse
$$\displaystyle rac{x^2}{9} + \displaystyle rac{y^2}{4} = 1$$
 and the line $\displaystyle rac{x}{3} + \displaystyle rac{y}{2} = 1$

View Text Solution

9. Find the area of the smaller region bounded by

the ellipse
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 and the line $rac{x}{a}+rac{y}{b}=1$

Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.

11. Using the method of integration find the area bounded by the curve |x|+|y|= 1. [Hint: The required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 1].

13. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x - 2y = 4

6 and x - 3y + 5 = 0

16. Area bounded by the curve v=x, the x-axis and

the ordinates x = -2 and x = 1 is

B.
$$-\frac{15}{4}$$

C. $\frac{15}{4}$
D. $\frac{17}{4}$

17. The area bounded by the curve $y = x^2$, x-axis and the ordinates: x = - 1 and x= 1 is given by

A. 0
B.
$$\frac{1}{3}$$

C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

18. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola y = 6x is

A.
$$rac{4}{3} \left(4\pi - \sqrt{3}
ight)$$

B. $rac{4}{3} \left(4\pi + \sqrt{3}
ight)$
C. $rac{4}{3} \left(8\pi - \sqrt{3}
ight)$
D. $rac{4}{3} \left(8\pi + \sqrt{3}
ight)$

Answer: C

19. The area bounded by the y-axis, y = cos x and y =

sin x when $0 \leq x \leq rac{\pi}{4}$ is

A.
$$2ig(\sqrt{2-1}ig)$$

- $\mathsf{B.}\,\sqrt{2}-1$
- $\mathsf{C}.\sqrt{2}+1$
- D. $\sqrt{2}$

Answer: B

