©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(GUJRATI)

VECTOR ALGEBRA

Example

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south .

- Watch Video Solution

2. Classify the following measures as scalars and vectors.
(i) 5 seconds
(ii) $1000 \mathrm{~cm}^{3}$
(iii) 10 Newton
(iv) $30 \mathrm{~km} / \mathrm{hr}$
(v) $10 \mathrm{~g} / \mathrm{cm}^{3}$
(vi) $20 \mathrm{~m} / \mathrm{s}$ towards north

- Watch Video Solution

3. In Fig 10.5 ., which of the vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
4. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal .

- Watch Video Solution

5. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

6. Find unit vector in the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$

D Watch Video Solution

7. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

8. Find the unit vector in the direction of the sum of vectors,

$$
\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k} \text { and } \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}
$$

D Watch Video Solution

9. Write the direction ratio's of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.
10. Find the vector joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$ directed from P to Q .

- Watch Video Solution

11. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio
$2: 1$, (i) intermally, and (ii) externally.

- Watch Video Solution

$$
\begin{array}{ccc}
\text { 12. Show that } & \text { the } & \text { points } \\
A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 j-4 \hat{k}) & \text { are }
\end{array}
$$

vertices of a right angled triangle.
13. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

- Watch Video Solution

> 14. Find angle θ between the vectors
> $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

15. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
16. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 k$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

D Watch Video Solution

17. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

- Watch Video Solution

18. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$.

- Watch Video Solution

19. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ (Cauchy- Schwartz inequality).

- Watch Video Solution

20. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ (triangle inequality).

- Watch Video Solution

> 21. Show that the $A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.

- Watch Video Solution

22. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

- Watch Video Solution

23. Find a unit vector perpendicualr to each of the vectors $(\vec{a}+\vec{b}) \quad$ and $\quad(\vec{a}-\vec{b}), \quad$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

24. Find the area of atriangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices.
25. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

26. Write all the unit vectors in XY - plane.

- Watch Video Solution

27. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear.
28. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one the them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

29. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \quad$. Evaluate the quantity
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$,
$|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=2$.

- Watch Video Solution

30. If with reference to the right handed system of mutually perpendicular unit
vectors
\hat{i}, \hat{j} and $\hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in
the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

Exercise 101

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

D Watch Video Solution

2. Classify the following measures as scalars and vectors .
(i) 10 kg
(ii) 2 meters north
(iii) 40°
(iv) 40 watt
(v) 10^{19} coulomb
(vi) $20 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

3. Classify the following as scalar and vector quantities.
(i) time period
(ii) distance
(iii) force
(iv) velocity
(v) work done
4. In Fig (a square), identify the following vectors
(i) Coinitial
(ii) Equal
(iii) collinear but not equal

- Watch Video Solution

5. Answer the followings true or false.
(i) \vec{a} and $-\vec{a}$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

1. Compute the magnitude of the following vectors:
$\vec{a}=\hat{i}+\hat{j}+k, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

D Watch Video Solution

2. Write two different vectors having same magnitude.

- Watch Video Solution

3. Write two different vectors having same direction.

- Watch Video Solution

4. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

Watch Video Solution

5. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point ($-5,7$).

- Watch Video Solution

> 6. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}--7 \hat{k}$

- Watch Video Solution

7. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.
8. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

- Watch Video Solution

9. For given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

D Watch Video Solution

10. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.
11. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

12. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

D Watch Video Solution

13. Find the direction cosines of the vector joining the points
$A(1,2,-3)$ and $B(-1,-2,1)$, directed from A to B.

D Watch Video Solution

14. Show that vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX, OY and OZ.

D Watch Video Solution

15. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$.
(i) internally (ii) externally

- Watch Video Solution

16. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.
17. Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}=5 \hat{k}$,respectively form the vertices of a right angled triangle.

- Watch Video Solution

18. If triangle ABC (Fig 10.18), which of the following is not true:
(A) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
(B) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
(C) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
(D) $\overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

A. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
B. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
c. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
D. $\overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

Answer: C

19. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect :
A. $\vec{b}=\lambda \vec{a}$, for some scalar λ
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are not proportional
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.
20. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.

- Watch Video Solution

2. Find the angle between the vectors
$\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

3. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $7 \hat{i}+\hat{j}$.

D Watch Video Solution

4. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.

D Watch Video Solution

5. Show that each of the given three vectors is a unit vector.
$\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
Also, show that they are mutually perpendicular to each other.

- Watch Video Solution

$$
\begin{aligned}
& \text { 6. Find }|\vec{a}| \text { and }|\vec{b}| \\
& (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8 \text { and }|\vec{a}|=8|\vec{b}|
\end{aligned}
$$

7. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

8. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

- Watch Video Solution

9. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.

- Watch Video Solution

10. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

- Watch Video Solution

11. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b}.

- Watch Video Solution

12. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{a} b=0$, then what can be concluded about the vector \vec{b} ?

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

14. If either vector $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$. But the converes need not be true . Justify your answer with an example.

- Watch Video Solution

15. If either vector A, B, C of a triangle $A B C$ are (1,2,3),(-1,0,0),($0,1,2$), respectively, then find $\angle A B C$. [$\angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}]$.
16. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-1)$ are collinear.

- Watch Video Solution

$$
\begin{array}{cccc}
\text { 17. Show that } & \text { the } & \text { points } \\
A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 j-4 \hat{k}) & \text { are }
\end{array}
$$

vertices of a right angled triangle.

- Watch Video Solution

18. If \vec{a} is a nonzero vector of mangitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=1 /|\lambda|$

Answer: D

- Watch Video Solution

Exercise 104

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

D Watch Video Solution

2. Find a unit perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.
3. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \vec{a}.

D Watch Video Solution

4. Show $(\vec{a}-\vec{b}) x(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

5. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.
6. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$. What can you conclude about the vectors \vec{a} and \vec{b} ?

- Watch Video Solution

7. Let the vectors $\vec{a}, \vec{b} \vec{c}$ be given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

8. If either vector $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$. But the converes need not be true. Justify your answer with an example.
9. Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.

- Watch Video Solution

10. Find the area the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

12. Area of a rectangle having vertices A, B, C and D with position
vectors $\quad-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k} \quad$ and
$-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$, respectively is
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

D Watch Video Solution

Miscellaneous Exercise On Chapter 10

1. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

D Watch Video Solution

2. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$.
3. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

D Watch Video Solution

4. If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer .

- Watch Video Solution

5. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

6. A vector has magnitude 5 units. It is parallel to the resultant vectors of $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$. Find this vector.

D Watch Video Solution

7. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{j}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

8. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear , and find the ratio in which B divides AC.

- Watch Video Solution

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$ Also, show that P is the mid point of the line segment $R Q$.

- Watch Video Solution

10. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 k$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal Also, find its area.

D View Text Solution

11. Show that the direction cosines of a vector equally inclined to
the axes $O X, O Y$ and OZ are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

(Watch Video Solution

12.

Let
$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and $\vec{c} \cdot \vec{d}=15$.

D View Text Solution

13. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.
14. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$.

Choose the correct answer in Exercises 16 to 19.

D Watch Video Solution

15. If θ is angle between two vectors \vec{a} and \vec{b} then $\vec{a} \cdot \vec{b} \geq 0$ only when
A. $0<\theta \frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer: B
16. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

17. The value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is
A. 0
B. -1
C. 1
D. 3

Answer: C

- Watch Video Solution

18. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π
