©゙" doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT PHYSICS(GUJRATI)

ELECTRIC CHARGES AND FIELDS

Example

1. How can you charge a metal sphere positively without touching it
2. If 10^{9} electrons move out of a body to another body every second how much time is required to get a total charge of 1 C on the other body

- Watch Video Solution

3. How much positive and negative charge is
there in a cup of water
4. Columb law for electrostatic force between
two point charges and newton law for gravitational force between two the distance between the charges and masses respectively
(a) compare the strength of these forces by determining the ratio of their magnitudes
for an electron and a proton and (ii) for two
protons (b) estimate the accelerators of electron and proton due to the electrical force oftheir mutual attarction when they are 1 A

$$
\begin{aligned}
& \left(=10^{-10} \mathrm{~m}\right) \\
& \left(m_{p}=1.67 \times 10^{27} \mathrm{kgm}_{e}=9.11 \times 10^{-31} \mathrm{~kg}\right)
\end{aligned}
$$

D Watch Video Solution

5. A charged metallic sphere A is suspended by
a nylon thread another charged metallic sphere b held by an insulating centers is 10 cm
as shown in Fig. 1.7(a). The resulting repulsion of A is noted (for example, by shining a beam of light and measuring the deflection of its shadow on a screen). Spheres A and B are
touched by uncharged spheres C and D respectively, as shown in Fig. 1.7(b). C and D are then removed and B is brought closer to A to a distance of 5.0 cm between their centers, as shown in Fig. 1.7(c). What is the expected repulsion of A on the basis of Coulomb's law?

Spheres A and C and spheres B and D have identical sizes. ignore the sizes of a and b in comparison to the separation between their

centers

D Watch Video Solution
6. consider three charges q_{1}, q_{2}, q_{3} each equal to q at the vertices of an equilateral triangle of side I what is the force on a charge Q placed at the centroid of the triangle

D Watch Video Solution
7. Consider the charges q, q and $-q$ placed at vertices of an equilateral triangle as shown it figure. What is the force on each charge ?

- Watch Video Solution

8. An electron falls throgh a distance of 1.5 cm
in a uniform electric field of magnitude $2.0 \times 10^{4} N c^{-1}$ the direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance compute the time of falls in each case contrast
the situation with that of free fall under gravity

D Watch Video Solution

9. Two point charges q_{1} and q_{2} of magnitude + $10^{-8} \mathrm{c}$ and $-10^{-8} \mathrm{c}$ respectively are placed
0.1 m apart calculate the electric fields at
points a, b and c

D Watch Video Solution

10. Tow charges $\pm 10 \mu \mathrm{C}$ are placed 5.0 mm apart determine the electric field at (a) a point p on the axis of the dipole 15 cm away from its centre o ont the side of the positive charge as
(a) and (b) a point q 15 cm away from o on a
line passing through o and normal to the axis of the dipole as

(b)

D Watch Video Solution
11. The electric field components are

$$
E_{x}=a x^{-1 / 2}, E_{y}=E_{z}=0 \text { in which a }=800
$$

$\mathrm{N} / \mathrm{C}^{1 / 2}$ calculate (a) the flux through the cube and (b) the charge within the cube asume that $\mathrm{a}=0.1 \mathrm{~m}$

- Watch Video Solution

12. An electric field is uniform and in the positive x direction for postive x and uniform
with the same magnitude but in the negative x direction x it is given that $E=200$ I N/C length 20 cm and radius 5 cm has its centre at the origin and its axis $x=-10 \mathrm{~cm}$ (a) what is the net ioutward flux through each flate face (b) what is the flux through the side of the cylinder (C) what is the net outward flux thoght the cylinder (d) what is the net charge inside the cylinder

D Watch Video Solution

13. An early model for an atom considered it to
have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge up to a radius R. The atom as
a whole is neutral. For this model, what is the electric field at a distance r from the nucleus?

Exercises

1. What is the force between two small charged speres having charges of $2 \times 10^{-7} \mathrm{c}$ and 3×10^{-7} c placed 30 cm apart in air

D Watch Video Solution

2. The electrostatic force on a small sphere of
charge $0.4 \mu \mathrm{c}$ due to the distance bwtwen the
two spheres (b) what is the force on the second spere due to the first

D Watch Video Solution

3. Check that the ratio $k e^{2} / \mathrm{G} m_{e} m_{p}$ is dimensionaless look up a table of physical constant and determine the value of this ratio what does the ratio signify
4. (a) explain the menaing of the statement electric charge of a body is quantised
(b) why can one ignore quantisation of electric charge when dealing with macrosocpic large scale charges

- Watch Video Solution

5. When a galss rod is rubbed with a sild cloth charges appear on both a smilar phenomenon
is observeed with many other pairs of bodies
expalin how this observation is consistent with the law of conservation of charge

D Watch Video Solution

6.

Four
point
charges
$q_{A}=2 \mu C, q_{B}=-5 \mu C, q_{c}=2 \mu c$
and
$q_{d}=-5 \mu c$ are force on a charge of $1 \mu \mathrm{c}$
placed at the centre of the square

D Watch Video Solution
7. (a) an electrostatic field line is a contiuous
curve that is field line cannot have sudden
breaks why not
(b) explain why two field lines never cross each other at any point

- Watch Video Solution

8. Two point charges $q_{A}=3 \mu c$ and
$q_{B}=-3 \mu \mathrm{c}$ are located 20 cm apart in a
(a) what is the electric field at the midpoint O of the line $A B$ joining the two charges
(b) if a negative test charge of magnitude $1.5 \times 10^{-9} \mathrm{c}$ is placed at this point what is the force experienced by the test charge

- Watch Video Solution

9. A system has two charges $q_{A}=2.5 \times 10^{-7}$ c and $Q_{B}=-2.5 \times 10^{-7} \mathrm{c}$ located at points a ($0,0,-15 \mathrm{~cm}$) and $\mathrm{B}:(0,0+15 \mathrm{~cm})$ respectively
what are the total charge and electric dipole moment of the system

D Watch Video Solution

10. An electric dipole with dipole moment
4×10^{-9} c m is aligned at 30° calculate the magnitude of the torque acting on the dipole

D Watch Video Solution
11. A polythene piece rubbed with wool is found to have a negative charge of $3 \times 10^{-7} \mathrm{c}$ (a) estimate the number of electrons transferred (from which to which)
(b) is there a transfer of mass from woool to polythene

D Watch Video Solution

12. (a) Two insulated charged copper spheres a and b have their centres separated by a
distance of 50 cm what is the nutual force of electrostatic repulsion if the charge on each is
$6.5 \times 10^{-7} c$ the radii of a and b negligible compared to the distance of separation
(b) what is the force of repuslion if each spere is charged double the above amount andf the distance between them is haved

- Watch Video Solution

13. Suppose the spheres A and B in Exercise
1.12 have identical sizes. A third sphere of the
same size but unchanged is brought in contact with the first, then brought in contact with the second, and finally removed from both. What is the new force of repulsion between A and B ?

D Watch Video Solution

14. Track of three charged particles in a uniform electroastatic field give the sign of
the three charges which particle has the
highest charge to mass ratio

- Watch Video Solution

15. Consider a uniform electric field $\mathrm{E}=3 \times 10^{3} \hat{i}$
N / C (a) what is the flux of this field thriought a
square of 10 cm on a side whose plane is parallel to the $y z$ plane (b) hwhat is the flux through the same a $60^{\circ} \mathrm{m}$ angle with the x axis
16. What is the net flux of the uniform electric
field of exercise through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planers

- Watch Video Solution

17. Careful measurement of the electric field at the surface of a black box indicates that the net outward flux through the surface of the (a)
what ist the net charge inside the box (b) if the net outward flux through the surface of the box wre zero could you conclude that there were no charges inside the box why or why not

D Watch Video Solution

18. A point charge $+\mu \mathrm{c}$ is a distance 5 cm directly above the centre of a square of side 10 cm as what is the magnitude of the electric
flux through the square

- Watch Video Solution

19. A point charge of $2.0 \mu \mathrm{c}$ is at the centre of
a cubic gaussian surface 9.0 cm on edge what
is the net electric flux through the surface
20. A point charge causes an elelctric flux of
$-1.0 \times 10^{3} N \frac{m^{2}}{C}$ to pass through a spherical gaussioan of 10.0 cm radius centred on the charge (a) if the radius of the gaussian surface wrere doubled how much flux would pas through the surface (b) what is the value of the point charge

Watch Video Solution

21. A conducting sphere of radius 10 cm has an
unknown charge if the electric field 20 cm
from the centre of the sphere is $1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and points radialy inward what is the net charge on the sphere

D Watch Video Solution

22. A uniformly charged conducting sphere of
2.4 m diameter has a (a) find the charge on the
sphere (b) what is the total eletric fluxd leaving the surface of the sphere

D Watch Video Solution

23. An infinite line charge produces a field of $9 \times 10^{4} \mathrm{~N} / \mathrm{C}$ at a distance of 2 cm calculate the
linear charge density

D Watch Video Solution
24. Two large thin metal plates are parallel and
close to each other on their inner faces the
plates have surface charges densites of opposite region of the first plate (b) in the outer region of the second plate and (c) between the plates

- Watch Video Solution

25. An oil drop of 12 exess electrons is held stationary under a constant eletric field of
$2.55 \times 10^{4} N C^{-1}$ the density of the oil is 1.26 g cm^{-3} estimage the radius of the drop
(g=9.81 m s $\left.{ }^{-2} e=1.60 \times 10^{-19} \mathrm{C}\right)$

D Watch Video Solution

26. Which among the curves cannot possibly represent electrostatic field lines?

(d)

(e)

- Watch Video Solution

27. In a certain region of space electric field is along the z direction throughuot the
magnitude of electric is however not constant
$10^{-5} N C^{-1}$ per meter what are the force torque experienced by a system having a total dipole equal to $10^{-7} \mathrm{~cm}$ in the negative z direction

D Watch Video Solution

28. (a) a conductor a with a cavity given a charge Q show that the entire charge must appear on the outer surface of the conductor
(b) another condluctor B with charge q is
sensitive instrument is to be shielded from the
strong electrosatitic fields in its environment
suggest a possible way

(a)

(b)

D Watch Video Solution

29. A hollow charged conductor has a tiny hole cut in to its surface show that the electric field
in the hole is n where n is the charge density near the hole

D Watch Video Solution

30. Obtain the formula for the electric field due to a long thin wire of uniform linear charge density E without using gauss law

- Watch Video Solution

31. It is now established that protons and neutrons are themselves built out of more elementary units called quarks a proton and a neutron consist of three quarks each together with electrons build up ordinary matter suggest a possible quark composition of a proton and neutron
32. (a) consider an arbitrary electrostic field configuration a small test charge is placed at a null point of the configuration show that the equailibrium of the test charge is necessarly unstable
(b) verify this result for the simple configuration of two charges of the same mangnitude and sign placed a certain distance apart

- Watch Video Solution

33. A particle of mass m and charge enters the region between the two charged plates initally moving along x axis with speed v_{x} the length of plate is I and an uniform vertical deflectio of the particle at the far edge of the plate is $q E L^{2} / 2 m v_{x}^{2}$
compare this motion with motion of a projectile in gravitational field
34. Suppose that the particle in exercise in 1.33
an electron projecrted with velocity
$v_{x}=2.0 \times 10^{6} \mathrm{~ms}^{-1}$ if E between the paltes
separted by 0.5 cm is $9.1 \times 10^{2} \mathrm{~N} / \mathrm{C}$ where will the electron strike the uppear plate $\left(|e|=1.6 \times 10^{-19} c, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)$

- Watch Video Solution

