

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

POLYNOMIALS

Topic 1 Degree Value And Zero Of A Polynomail Multiple Choice Question

1. The degree of polynomial $p(x) = x^2 - 3x + 4x^3 - 6$

is

A. 2

B. 1

C. 3

D. 6

Answer: C

Watch Video Solution

2. If the polynomial $p(x)=x^2-x+1$ is divided by

(x- 2) then the remainder is:

B. 3

C. 0

D. 1

Answer: B

3. If
$$p(x) = x^3 - 4x^2 - 2x + 20$$
 the factor for this

polynomial is :

A. x+2

B. x-2

C. x-1

D. x+1

Answer: A

Watch Video Solution

4. Which of the following is the zeroes of the polynomial $x^2 + 4x + 4$?

A. 2

B. -2

C. 4

D. -4

Answer: B

A. 6

B. 2

C. 1

D. 0

Answer: A

6. If $f(x) = 2x^3 + 3x^2 + 11x + 6$, then f(1) is :

A. 6

B. 2

C. 1

D. 0

Answer: D

7. If $f(x) = x^2 + x - 1$ then the value of f(1) is

A. 3

B. -1

C. 1

D. 0

Answer: C

8. If $f(x) = x^2 + 7x - 10$, then the value of f(2) is:

A. 3

B. 5

C. 8

D. 10

Answer: C

Watch Video Solution

9. If lpha and eta are the zeroes of the polynomial $2x^2+5x+1$, then the value of lpha+eta+lphaeta is

B. -1

C. 1

D. 3

Answer: A

10. The polynomial whose zeroes are - 5 and 4 is :

A.
$$x^2-5x+4$$

B.
$$x^2 + 5x - 4$$

$$\mathsf{C.}\,x^2+x-20$$

D.
$$x^2 - 9x - 20$$

Answer: C

Watch Video Solution

11. If $\sqrt{3}$ and $\sqrt{3}$ are the zeroes of a polynomial p(x), then p(x) is :

A. $x^2 - 3$ B. $x^2 - 9$ C. $x^2 + 3$

D. $3x^2 - 1$

12. The maximum number of zeroes that a polynomial of degree 3 can have is :

A. One

B. Two

C. Three

D. None

Answer: C

13. If 1 is the zero of the quadratic polynomial $x^2 + kx - 5$, then the value of k is:

A. 4

B. -4

C. 0

D. 5

Answer: A

14. If one zero of the quadratic polynomial $2x^2 + kx - 15$ is 3, then the other zero is :

A. -15

B.
$$\frac{-15}{2}$$

C. $\frac{-5}{2}$

D. k

Answer: C

15. If
$$p(x) = 5x^2 - 3x + 7$$
, then p(1) equals to :

A. -10

B. 9

C. -9

D. 10

Answer: B

Watch Video Solution

16. The number of zeroes of the polynomial $x^3-x-3-3x^2$ is:

A. Zero

B. 1

C. 2

D. 3

Answer: D

17. If x + y + 2 = 0, then $x^{(3)} + y^{(3)} + 8$ equals to :

A.
$$\left(x+y+2
ight)^3$$

B. Zero

C. 6xy

D. -6xy

Answer: C

Watch Video Solution

18. If x = 2 is a zero of the polynomial $2x^2 + 3x - p$,

then the value of pis:

A. -4

B. 0

C. 8

D. 14

Answer: D

19.
$$x + \frac{1}{x}$$
 is:

A. A polynomial of degree 1

B. A polynomial of degree 2

C. A polynomial of degree 3

D. Not a polynomial

Answer: D

20. Integral zeroes of the polynomial (x + 3) (x - 7) are :

A. -3,-7

B. 3,7

C. -3,7

D. 3, -7

Answer: C

Watch Video Solution

21. If $2(a^2+b^2)=(a+b)^2$ then :

A. a + b = 0 B. a = b C. 2a = b D. ab = 0

Answer: B

Watch Video Solution

22. The sum and the product of three numbers are 0 and 30 respectively. The sum of their cubes is :

B. 90

C. 160

D. 900

Answer: B

Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Very Short Answer Type Question

1. Find the zeroes of polynomial p(x) from the graph

given

2. If
$$p(x) = 2 - x^2$$
 find the value of p(-1)?

Watch Video Solution

3. Write the degree of the polynomial $19x + \sqrt{3}x^3 + 14.$

7. Find the zero of the polynomial : $x^2 + 2x + 1$.

10. For the polynomial $x^2 - 5x + 6$, find the sum of

zeroes

13. Write the quadratic polynomial whose zeros are $-\frac{1}{4}$ and 1

Topic 1 Degree Value And Zero Of A Polynomail Short Answer Type Question

1. Find the zeroes of polynomial $p(x) = 6x^2 - 3 - 7x$

2. (i) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

 $rac{1}{4},\ -1$

(ii) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

$$\sqrt{2}, \frac{1}{3}$$

(iii) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

 $0,\sqrt{5}$

(iv) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

1, 1

(v) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

$$-rac{1}{4},rac{1}{4}$$

(vi) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

4, 1

3. Solve the equation $3x^2 - 5x + 2 = 0$ by using the

formula

5. Find the degree of the following polynomials.

 $x^2 - 9x + 20$

6. Find the degree of the following polynomials.

 $2x + 4 + 6x^2$

Watch Video Solution

7. Find the degree of the following polynomials.

 $x^3 + 2x^2 - 5x - 6$

Watch Video Solution

8. Find the degree of the following polynomials.

$$x^3 + 17x - 21 - x^2$$

10. Find the values of the following polynomials:

$$g(x)=7x^2+2x+14$$
, when x = 1

11. Find the values of the following polynomials:

$$p(x) = -x^3 + x^2 - 6x + 5$$
, when x = 2

Watch Video Solution

12. Find the values of the following polynomials:

$$p(x)=2x^2+rac{1}{4}x+13$$
, when x = -1

Watch Video Solution

13. Find the values of the following polynomials:

$$p(x) = 2x^4 - 3x^3 \! - \! 3x^2 + 6x - 2$$
, when x = -2.

14. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases :

$$f(x)=3x+1, x=\ -\ rac{1}{3}$$

Watch Video Solution

15. Verify whether the indicated numbers are zeroes of

the polynomials in each of the following cases :

$$p(x)=x^2-4, x=2, x=-2$$

16. Verify whether the indicated numbers are zeroes of

the polynomials in each of the following cases :

$$p(x)=5x-8, x=rac{4}{5}$$

Watch Video Solution

17. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases : $p(x)=3x^3-5x^2-11x-3, x=3, x=-1$ and $x=-rac{1}{3}$

18. Find the zeroes of the quadratic polynomial $\sqrt{3}x^2 - 8x + 4\sqrt{3}$ Watch Video Solution **19.** Find all the zeroes of $f(x) = x^2 - 2x$. Watch Video Solution

20. Find the values of a and b, it they are the zeroes of

polynomial $x^2 + ax + b$.

23. Find the condition that zeroes of polynomial $p(x) = ax^2 + bx + c$ are reciprocal to each other.

24. If m and n are zeroes of the polynomial $3x^2 + 11x - 4$ find the value of $\frac{m}{n} + \frac{n}{m}$

Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Long Answer Type Question I

1. if
$$x^3 + ax^2 - bx + 10$$
 is divisible by $x^2 - 3x + 2$

find the value of a and b

4. Find the zeroes of the following quadratic polynomials and verify.

5. Find the zeroes of the following quadratic polynomials and verify.

 x^2-2x-5

Watch Video Solution

6. Find the zeroes of the following quadratic polynomials and verify.

 $4a^2 - 49$

7. Find the zeroes of the following quadratic polynomials and verify.

$$2a^2-2\sqrt{2}a+1$$

Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Long Answer Type Question li

1. If the polynomial
$$f(x)=3x^4+3x^3-11x^2-5x+10$$
 is completely divisible by $3x^2-5$ find all its zeroes

2. Given that $x - \sqrt{5}$ is a factor of the polynomial $x^3 - 3\sqrt{5}x^2 - 5x + 15\sqrt{5}$ find all the zeroes of the polynomial.

Watch Video Solution

Topic 2 Division Algorithm For Polynomials Very Short Answer Type Question

1. In the polynomial
$$g(x)=x-2, q(x)=x^2-x+1$$
 and $r(x)=4$ find

1. Find the quotient and remainder when $\left(x^6-2x^5-x+2
ight)$ is devided by x-2

2. When Polynomial $(2x^3 + ax^2 + 3x - 5)$ and $\left(x^3+x^2-4x-a
ight)$ are divisible by x-1 leaves the same remainder find the value of a.

Watch Video Solution

What must be added to the polynomial

 $P(x)=x^4+2x^3-2x^2+x-1$ So that the

resulting polynomial is excatly divisible by x^2+x-3

4. By division algorithm for polynomials

$$egin{aligned} P(x) &= |g(x)q(x)| + r(x) \ P(X) - r(x) &= g(x)q(x) \ P(x) + \{-r(x)\} = g(x)q(x) \end{aligned}$$

View Text Solution

5. We must be added to $2x^3 + 3x^2 - 22x + 12$ so that the result is exactly divisible by $2x^2 + 5x - 14$

6. A polynomial p(x) is devided by g(x) the obtained quotient q(x) and the remainder r(x) are given in the table. Find p(x) in each case. S. I p(x) g(x) q(x) r(x)(a) ? x - 2 $x^2 - x + 1$ 4

Watch Video Solution

7. A polynomial p(x) is devided by g(x) the obtained quotient q(x) and the remainder r(x) are given in the table. Find p(x) in each case. S. I p(x) g(x) q(x) r(x)

(b) ?
$$x+3 \ 2x^2+x+5 \ 3x+1$$

8. A polynomial p(x) is devided by g(x) the obtained quotient q(x) and the remainder r(x) are given in the table. Find p(x) in each case. S. $I \quad p(x) \quad g(x) \qquad q(x) \qquad r(x)$

(c) ?
$$2x + 1 x^3 + 3x^2 - x + 1 0$$

Watch Video Solution

9. A polynomial p(x) is devided by g(x) the obtained quotient q(x) and the remainder r(x) are given in the table. Find p(x) in each case. S. I p(x) g(x) q(x) r(x)

$$(d) \quad ? \quad x+1 \quad x^3+3x^2-x-1 \quad 2x-4$$

10. A polynomial p(x) is devided by g(x) the obtained quotient q(x) and the remainder r(x) are given in the table. Find p(x) in each case.

11. Find the quotient and remainder on dividing p(x)

by g(x)

$$p(x) = 4x^3 + 8x^2 + 8x + 7, g(x) = 2x^2 - x + 1$$

Topic 2 Division Algorithm For Polynomials Long Answer Type Question I

remainder.

Watch Video Solution

2. Find the divisor g(x) when the polynomial $p(x) = 4x^3 + 2x^2 - 10x + 2$ is devided by g(x) and the quotient and remainder obtained are $(2x^2 + 4x + 1)$ and 5 respectively.

3. Devide p(x) by g(x) in each of the following cases and verify division algorithm:

$$p(x) = x^2 + 4x + 4, g(x) = x + 2$$

Watch Video Solution

4. Devide p(x) by g(x) in each of the following cases and verify division algorithm:

$$p(x) = 2x^2 - 9x + 9, g(x) = x - 3$$

5. Devide p(x) by g(x) in each of the following cases

and verify division algorithm:

 $p(x) = x^3 + 4x^2 - 5x + 6, g(x) = x + 1$

Watch Video Solution

6. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

7. What should be added to x^4-1 so that it is exactly divisible by $2x^2+2x+1$

Watch Video Solution

8. The polynomial $p(x)=ax^3+3x^2-13$ and $g(x)=2x^3-4x+a$ are divided by (x-3) if the remainder in each case is the same , find the value of a.

9. Find the quotient and remainder when $6x^4 + 11x^3 + 13x^2 - 3x + 27$ is divided by 3x + 4. Also check the remainder obtained by using remainder theorem.

Topic 2 Division Algorithm For Polynomials Long Answer Type Question Ii

1. Find the quotient and remainder on dividing p(x) by g(x) in each of the following cases, without actual

division :

$$p(x) = x^2 + 7x + 10, g(x) = x - 2$$

2. Find the quotient and remainder on dividing p(x) by g(x) in each of the following cases, without actual division :

$$p(x)=x^3+4x^2-6x+2, g(x)=x-3$$

3. What must be subtracted from $\left(x^3+5x^2+5x+8
ight)$ so that the resulting

polynomial Is excatly divisible by $\left(x^2+3x-2
ight)$?

4. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$, is divided by another polynomial $x^2 - 2x + k$, the reminder comes out to be x + a, find k and a.

Watch Video Solution

Topic 3 Remainder Theorem Multiple Choice Question

1. The remainder when $p(x) = 2x^2 - x - 6$ is divided

by (x - 2) is equal to :

A. P(-2)

B. P(2)

C. P(3)

D. P(-3)

Answer: b

Watch Video Solution

2. On dividing $5y^3 - 2y^2 - 7y + 1$ by y, what will be

the remainder ?

1. Find the value of a if (x - 5) is a factor of

$$(x^3 - 3x^2 + ax - 10)$$

2. The polynomials $ax^3 + 3x^2 - 13$ and $2x^3 - 4x + a$ are divided by (x-3). If the remainder is same in each case, find the value of a.

3. If
$$f(x) = 2x^3 + 3x^2 - 11x + 6$$
 find f(0)

4. If
$$f(x) = 2x^3 + 3x^2 - 11x + 6$$
 find

f(1)

5. If
$$f(x) = 2x^3 + 3x^2 - 11x + 6$$
 find f(-1)

6. If $f(x) = 2x^3 + 3x^2 - 11x + 6$ find f(2)

Watch Video Solution

Topic 3 Remainder Theorem Long Answer Type Question

1. Using the remainder theorem, find the remainder when $p(x) = x^3 + 3x^2 - 5x + 8$ is divided by g(x) = x-3. Verify the result by actual division.

2. Without actual division, show that $f(x)=2x^4-6x^3+3x^2+3x-2$ is exactly divisible by $x^2-3x+2.$

Watch Video Solution

3. Devide $x^3 + 4x^2 - 3x - 10$ by x+1 and verify your

remainder by remainder theorem.

Topic 3 Remainder Theorem Long Answer Type Question

1. The polynomial $x^3 + 2x^2 - 5ax - 8$ and $x^3 + ax^2 - 12 - 6$ when devided by (x-2) and (x-3) leave remainder p and q respectively. If q-p=10 find the value of a .

Topic 4 Factor Theorem And Factorization Multiple Choice Question

1. Factorisation of $x^3 + 1$ is :

A.
$$(x+1)ig(x^2-x+1ig)$$

B. $(x+1)(x^2+1)$

C.
$$(x+1)ig(x^2+x+1ig)$$

D. $(x-1)ig(x^2-x-1ig)$

Answer:

Watch Video Solution

Topic 4 Factor Theorem And Factorization Short Answer Type Question

1. In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not.

$$p(x) = x^3 - 3x^2 + 6x - 20g(x) = x - 2$$

2. In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not.

$$p(x)=2x^4+x^3+4x^2-x-7g(x)=x+2$$

Watch Video Solution

3. In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not.

$$p(x)=3x^4+3x^2-4x-11g(x)=x-rac{1}{2}$$

4. In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not.

$$p(x) = 3x^3 + x^2 - 20x + 12g(x) = 3x - 2$$

Watch Video Solution

5. In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not.

$$p(x)=2x^4+3x^3-2x^2-9x-12, g(x)=x^2-3$$

6. Verify
$$x^3-y^3=(x-y)ig(x^2+y^2+xyig)$$
Hence

factorise $216x^3 - 125y^3$

Watch Video Solution

Topic 4 Factor Theorem And Factorization Long Answer Type Question Ii

1. If both (x-2) and
$$\left(x-\frac{1}{2}\right)$$
 are factors of $\left(ax^2+5x+b\right)$ show that a=b
Watch Video Solution

2. Find the values of a and b if $x^2 - 4$ is a factor of $ax^4 + 2x^3 - 3x^2 + bx - 4$ and hence factorise it completely.

Watch Video Solution

Textbook Corner Exercise 91

1. The graphs of y= p(x) are given in figure below for some polynomial p(x) find number of zeroes of p(x) in

each case.

HARRIE		建制度
- 1111		出日期
		222 222 12
	O	
和法国	和建建能	關鍵
語語書		關鍵體

2. The graphs of y= p(x) are given in figure below for some polynomial p(x) find number of zeroes of p(x) in

HIGH	int the	10000
新聞教		网络中国群
計算合計	संस्था साम	BAD HIN
消費用		14
School St.	IN CHINE	IN A PARTY OF
	115.00	
	921021321	1000101000008
1112131		
10100303030		2210-052-02-18-0

Watch Video Solution

3. The graphs of y = p(x) are given in figure below for

some polynomial p(x) find number of zeroes of p(x) in

each case.

Watch Video Solution

4. The graphs of y= p(x) are given in figure below for some polynomial p(x) find number of zeroes of p(x) in

each case.

Watch Video Solution

5. (i) The graphs of y p(x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

6. The graphs of y= p(x) are given in figure below for some polynomial p(x) find number of zeroes of p(x) in each case.

Watch Video Solution

Textbook Corner Exercise 9 2

1. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.

 x^2-2x-8

Watch Video Solution

2. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.

 $4s^2 - 4s + 1$

3. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.

 $6x^2 - 7x - 3$

4. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.

$$4u^{2} + 8u$$

5. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.

 $t^2 - 15$

6. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.

 $3x^2 - x - 4$

7. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

 $rac{1}{4},\ -1$

8. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

 $\sqrt{2}, \frac{1}{3}$

9. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

 $0,\sqrt{5}$

Watch Video Solution

10. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

1, 1

11. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

$$-rac{1}{4},rac{1}{4}$$

Watch Video Solution

12. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

4, 1

1. Divide p(x) by g(x) and find the quotient and remainder :

$$p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2$$

Watch Video Solution

2. (i) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

$$p(x)=x^3-3x^2+5x-3, g(x)=x^2-2$$

(ii) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

$$p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$$

(iii) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

$$p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$$

Watch Video Solution

3. Divide p(x) by g(x) and find the quotient and remainder :

$$p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$$

4. Check whether the first polynomial is a factor of the

second polynomial by dividing :

$$t^2-3, 2t^4+3t^3-2t^2-9t-12$$

Watch Video Solution

5. Check whether the first polynomial is a factor of the second polynomial by dividing :

$$x^2+3x+1, 3x^4+5x^3-7x^2+2x+2$$

6. Check whether the first polynomial is a factor of the

second polynomial by dividing :

$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

8. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

Watch Video Solution

9. Give examples of polynomials p(x), g(x), q(x) and r(x),

which satisfy the division algorithm and

 $\deg p(x) = \deg q(x)$

10. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

 $\deg q(x) = \deg r(x)$

Watch Video Solution

11. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg r(x) = 0

Watch Video Solution

Textbook Corner Exercise 94

1. (i) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

$$2x^2+x^2-5x+2, rac{1}{2}, 1, \ -2$$

(ii) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

 $x^3 - 4x^2 + 5x - 2, 2, 1, 1$

2. (i) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

$$2x^2+x^2-5x+2,rac{1}{2},1,\ -2$$

(ii) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

 $x^3 - 4x^2 + 5x - 2, 2, 1, 1$

3. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

4. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find a and b.

Watch Video Solution

5. If the zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$ Find other

6. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$, is divided by another polynomial $x^2 - 2x + k$, the reminder comes out to be x + a, find k and a.