© 'doubtnut

India's Number 1 Education App

MATHS
 BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)
 POLYNOMIALS

Topic 1 Degree Value And Zero Of A Polynomail Multiple Choice Question

1. The degree of polynomial $p(x)=x^{2}-3 x+4 x^{3}-6$
is
A. 2
B. 1
C. 3
D. 6

Answer: C

- Watch Video Solution

2. If the polynomial $p(x)=x^{2}-x+1$ is divided by
$(x-2)$ then the remainder is:
A. 2
B. 3
C. 0
D. 1

Answer: B

- Watch Video Solution

3. If $p(x)=x^{3}-4 x^{2}-2 x+20$ the factor for this polynomial is :
A. $x+2$
B. $x-2$
C. $x-1$
D. $x+1$

Answer: A

- Watch Video Solution

4. Which of the following is the zeroes of the polynomial $x^{2}+4 x+4 ?$
A. 2
B. -2
C. 4
D. -4

Answer: B

D Watch Video Solution

5. If $x=1$ is a zero of the polynomial $f(x)=x^{3}-2 x^{2}+4 x+K$, then the value of Kis:
A. 6
B. 2
C. 1
D. 0

Answer: A

- Watch Video Solution

6. If $f(x)=2 x^{3}+3 x^{2}+11 x+6$, then $\mathrm{f}(1)$ is:
A. 6
B. 2
C. 1
D. 0

Answer: D
7. If $f(x)=x^{2}+x-1$ then the value of $\mathrm{f}(1)$ is
A. 3
B. -1
C. 1
D. 0

Answer: C

(D) Watch Video Solution
8. If $f(x)=x^{2}+7 x-10$, then the value of $\mathrm{f}(2)$ is:
A. 3
B. 5
C. 8
D. 10

Answer: C

- Watch Video Solution

9. If α and β are the zeroes of the polynomial $2 x^{2}+5 x+1$, then the value of $\alpha+\beta+\alpha \beta$ is
A. -2
B. -1
C. 1
D. 3

Answer: A

- Watch Video Solution

10. The polynomial whose zeroes are-5 and 4 is :
A. $x^{2}-5 x+4$
B. $x^{2}+5 x-4$
C. $x^{2}+x-20$
D. $x^{2}-9 x-20$

Answer: C

- Watch Video Solution

11. If $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of a polynomial $p(x)$, then $p(x)$ is :
A. $x^{2}-3$
B. $x^{2}-9$
C. $x^{2}+3$
D. $3 x^{2}-1$

Answer: A

D Watch Video Solution

12. The maximum number of zeroes that a polynomial of degree 3 can have is :
A. One
B. Two
C. Three
D. None

Answer: C
13. If 1 is the zero of the quadratic polynomial $x^{2}+k x-5$, then the value of k is:
A. 4
B. -4
C. 0
D. 5

Answer: A

D Watch Video Solution
14. If one zero of the quadratic polynomial $2 x^{2}+k x-15$ is 3 , then the other zero is :
A. -15
B. $\frac{-15}{2}$
C. $\frac{-5}{2}$
D. k

Answer: C

D Watch Video Solution
15. If $p(x)=5 x^{2}-3 x+7$, then $\mathrm{p}(1)$ equals to :
A. -10
B. 9
C. -9
D. 10

Answer: B

16. The number of zeroes of the polynomial $x^{3}-x-3-3 x^{2}$ is:
A. Zero
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

17. If $x+y+2=0$, then $x^{\wedge}(3)+y^{\wedge}(3)+8$ equals to :
A. $(x+y+2)^{3}$
B. Zero
C. $6 x y$
D. $-6 x y$

Answer: C

- Watch Video Solution

18. If $\mathrm{x}=2$ is a zero of the polynomial $2 x^{2}+3 x-p$,
then the value of pis:
A. -4
B. 0
C. 8
D. 14

D Watch Video Solution

19. $x+\frac{1}{x}$ is:
A. A polynomial of degree 1
B. A polynomial of degree 2
C. A polynomial of degree 3
D. Not a polynomial

Answer: D
20. Integral zeroes of the polynomial $(x+3)(x-7)$ are :
A. $-3,-7$
B. 3,7
C. -3,7
D. 3, -7

Answer: C

D Watch Video Solution

21. If $2\left(a^{2}+b^{2}\right)=(a+b)^{2}$ then:
A. $a+b=0$
B. $a=b$
C. $2 \mathrm{a}=\mathrm{b}$
D. $a b=0$

Answer: B

Watch Video Solution

22. The sum and the product of three numbers are 0 and 30 respectively. The sum of their cubes is :
A. 0
B. 90
C. 160
D. 900

Answer: B

D Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Very Short Answer Type Question

1. Find the zeroes of polynomial $p(x)$ from the graph given

D Watch Video Solution

2. If $p(x)=2-x^{2}$ find the value of $\mathrm{p}(-1)$?

D Watch Video Solution

3. Write the degree of the polynomial
$19 x+\sqrt{3} x^{3}+14$.
4. If $f(x)=x^{2}-4$ find $\mathrm{f}(4)$

D Watch Video Solution
5. Find the zeroes of the polynomial $4 a^{2}-49$.

D Watch Video Solution
6. Find the zeroes of the polynomial : $x^{2}+5 x-14$.
7. Find the zero of the polynomial : $x^{2}+2 x+1$.

- Watch Video Solution

8. Find the value of $p(x)=x^{2}-3 x-4$ at $\mathrm{x}=0$.

- Watch Video Solution

9. If $x=1$ is a zeru of the polynomial $f(x)=x^{3}-2 x^{2}+4 x+k$, write the value of k .
10. For the polynomial $x^{2}-5 x+6$, find the sum of
zeroes

- Watch Video Solution

11. What are zeros of the the polynomial $x^{2}-2 x-3$?

D Watch Video Solution
12. What is the degree of constant polynomial ?

Watch Video Solution

13. Write the quadratic polynomial whose zeros are
$-\frac{1}{4}$ and 1

D Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Short Answer Type Question

1. Find the zeroes of polynomial $p(x)=6 x^{2}-3-7 x$

D Watch Video Solution
2. (i) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. $\frac{1}{4},-1$
(ii) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
$\sqrt{2}, \frac{1}{3}$
(iii) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
$0, \sqrt{5}$
(iv) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes
respectively.
1,1
(v) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
$-\frac{1}{4}, \frac{1}{4}$
(vi) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

4,1
3. Solve the equation $3 x^{2}-5 x+2=0$ by using the formula

D Watch Video Solution
4. Write the degree of the polynomial
$f(x)=x^{2}-3 x^{3}+2$

D Watch Video Solution
5. Find the degree of the following polynomials.
$x^{2}-9 x+20$
6. Find the degree of the following polynomials. $2 x+4+6 x^{2}$

D Watch Video Solution

7. Find the degree of the following polynomials.
$x^{3}+2 x^{2}-5 x-6$

D Watch Video Solution

8. Find the degree of the following polynomials.
$x^{3}+17 x-21-x^{2}$
9. Find the degree of the following polynomials.
$\sqrt{3} x^{3}+19 x+14$

D Watch Video Solution

10. Find the values of the following polynomials:
$g(x)=7 x^{2}+2 x+14$, when $\mathrm{x}=1$

D Watch Video Solution
11. Find the values of the following polynomials:
$p(x)=-x^{3}+x^{2}-6 x+5$, when $\mathrm{x}=2$

Watch Video Solution
12. Find the values of the following polynomials:
$p(x)=2 x^{2}+\frac{1}{4} x+13$, when $\mathrm{x}=-1$

D Watch Video Solution

13. Find the values of the following polynomials:
$p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, when $\mathrm{x}=-2$.
14. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases :
$f(x)=3 x+1, x=-\frac{1}{3}$

D Watch Video Solution

15. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases :
$p(x)=x^{2}-4, x=2, x=-2$
16. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases :
$p(x)=5 x-8, x=\frac{4}{5}$

D Watch Video Solution

17. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases :
$p(x)=3 x^{3}-5 x^{2}-11 x-3, x=3, x=-1 \quad$ and
$x=-\frac{1}{3}$
18. Find the zeroes of the quadratic polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$

D Watch Video Solution
19. Find all the zeroes of $f(x)=x^{2}-2 x$.

- Watch Video Solution

20. Find the values of a and b, it they are the zeroes of polynomial $x^{2}+a x+b$.
21. If α and β are zeroes of the polynomial $f(x)=x^{2}-x-k$, such that $\alpha-\beta=9$. find k.

Watch Video Solution

22. If p, q are zeroes of polynomial
$f(x)=2 x^{2}-7 x+3$ find the value of $p^{2}+q^{2}$

Watch Video Solution

23. Find the condition that zeroes of polynomial $p(x)=a x^{2}+b x+c$ are reciprocal to each other.
24. If m and n are zeroes of the polynomial $3 x^{2}+11 x-4$ find the value of $\frac{m}{n}+\frac{n}{m}$

D Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Long Answer Type Question I

1. if $x^{3}+a x^{2}-b x+10$ is divisible by $x^{2}-3 x+2$
find the value of a and b
2. find the quotient and the remainder when $f(x)=2 x^{3}-3 x^{2}+5 x-7$ is divided by $g(x)=x-3$ using synthetic division

D Watch Video Solution

3. Find the zeros of the polynomial
$p(x)=x^{2}-15 x+50$

- Watch Video Solution

4. Find the zeroes of the following quadratic polynomials and verify.
$x^{2}+4 x+4$

- Watch Video Solution

5. Find the zeroes of the following quadratic polynomials and verify.
$x^{2}-2 x-5$

Watch Video Solution
6. Find the zeroes of the following quadratic polynomials and verify.
$4 a^{2}-49$
7. Find the zeroes of the following quadratic polynomials and verify.

$$
2 a^{2}-2 \sqrt{2} a+1
$$

D Watch Video Solution

Topic 1 Degree Value And Zero Of A Polynomail Long Answer Type Question li

1.

If
the
polynomial
$f(x)=3 x^{4}+3 x^{3}-11 x^{2}-5 x+10$ is completely
divisible by $3 x^{2}-5$ find all its zeroes

(Watch Video Solution

2. Given that $x-\sqrt{5}$ is a factor of the polynomial $x^{3}-3 \sqrt{5} x^{2}-5 x+15 \sqrt{5}$ find all the zeroes of the polynomial.

D Watch Video Solution

Topic 2 Division Algorithm For Polynomials Very Short Answer Type Question

1.

In
the
polynomial
$g(x)=x-2, q(x)=x^{2}-x+1$ and $r(x)=4$ find
$p(x)$

D Watch Video Solution

2. What is the relationship between dividend, divisor, quotient and remainder?

D Watch Video Solution

Topic 2 Division Algorithm For Polynomials Short Answer Type Question

1. Find the quotient and remainder when
$\left(x^{6}-2 x^{5}-x+2\right)$ is devided by $\mathrm{x}-2$

D Watch Video Solution

2. When Polynomial $\left(2 x^{3}+a x^{2}+3 x-5\right)$ and $\left(x^{3}+x^{2}-4 x-a\right)$ are divisible by $\mathrm{x}-1$ leaves the same remainder find the value of a.
(D) Watch Video Solution
3. What must be added to the polynomial
$P(x)=x^{4}+2 x^{3}-2 x^{2}+x-1 \quad$ So that the resulting polynomial is excatly divisible by $x^{2}+x-3$
4. By division algorithm for polynomials
$P(x)=|g(x) q(x)|+r(x)$
$P(X)-r(x)=g(x) q(x)$
$P(x)+\{-r(x)\}=g(x) q(x)$

- View Text Solution

5. We must be added to $2 x^{3}+3 x^{2}-22 x+12$ so that the result is exactly divisible by $2 x^{2}+5 x-14$
(D) Watch Video Solution
6. A polynomial $p(x)$ is devided by $g(x)$ the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.

$$
\begin{array}{lllll}
S . I & p(x) & g(x) & q(x) & r(x) \\
(a) & ? & x-2 & x^{2}-x+1 & 4
\end{array}
$$

D Watch Video Solution

7. A polynomial $p(x)$ is devided by $g(x)$ the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.
S. I $\quad p(x) \quad g(x) \quad q(x) \quad r(x)$
(b) ? $\quad x+3 \quad 2 x^{2}+x+5 \quad 3 x+1$
8. A polynomial $p(x)$ is devided by $g(x)$ the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.

$$
\begin{array}{lllll}
S . I & p(x) & g(x) & q(x) & r(x) \\
(c) & ? & 2 x+1 & x^{3}+3 x^{2}-x+1 & 0
\end{array}
$$

D Watch Video Solution

9. A polynomial $p(x)$ is devided by $g(x)$ the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.
S. I $\quad p(x) \quad g(x) \quad q(x) \quad r(x)$
(d) ? $\quad x+1 \quad x^{3}+3 x^{2}-x-1 \quad 2 x-4$
10. A polynomial $p(x)$ is devided by $g(x)$ the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.
S. I $\quad p(x) \quad g(x)$
$q(x)$
$r(x)$
(e) ? $\quad x^{2}+2 x+1 \quad x^{4}+2 x^{2}+5 x-7 \quad 4 x+12$

D Watch Video Solution

11. Find the quotient and remainder on dividing $p(x)$ by $g(x)$
$p(x)=4 x^{3}+8 x^{2}+8 x+7, g(x)=2 x^{2}-x+1$

Topic 2 Division Algorithm For Polynomials Long Answer

 Type Question I1. If the quotient obtained on dividing
$\left(8 x^{4}-2 x^{2}+6 x-7\right) \quad$ by $\quad(2 x+1) \quad$ is
$\left(4 x^{3}+p x^{2}-q x+3\right)$, then find p, q and also the remainder.

D Watch Video Solution

2. Find the divisor $g(x)$ when the polynomial $p(x)=4 x^{3}+2 x^{2}-10 x+2$ is devided by $\mathrm{g}(\mathrm{x})$ and the quotient and remainder obtained are $\left(2 x^{2}+4 x+1\right)$ and 5 respectively.
3. Devide $p(x)$ by $g(x)$ in each of the following cases and verify division algorithm:
$p(x)=x^{2}+4 x+4, g(x)=x+2$

- Watch Video Solution

4. Devide $p(x)$ by $g(x)$ in each of the following cases and verify division algorithm:

$$
p(x)=2 x^{2}-9 x+9, g(x)=x-3
$$

5. Devide $p(x)$ by $g(x)$ in each of the following cases and verify division algorithm:
$p(x)=x^{3}+4 x^{2}-5 x+6, g(x)=x+1$

D Watch Video Solution

6. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

D Watch Video Solution
7. What should be added to $x^{4}-1$ so that it is exactly divisible by $2 x^{2}+2 x+1$

Watch Video Solution

8. The polynomial $p(x)=a x^{3}+3 x^{2}-13$ and $g(x)=2 x^{3}-4 x+a$ are divided by (x-3) if the remainder in each case is the same, find the value of a.
9. Find the quotient and remainder when
$6 x^{4}+11 x^{3}+13 x^{2}-3 x+27$ is divided by $3 \mathrm{x}+4$.
Also check the remainder obtained by using remainder theorem.

D Watch Video Solution

Topic 2 Division Algorithm For Polynomials Long Answer Type Question li

1. Find the quotient and remainder on dividing $p(x)$ by $\mathrm{g}(\mathrm{x})$ in each of the following cases, without actual
division :
$p(x)=x^{2}+7 x+10, g(x)=x-2$

Watch Video Solution

2. Find the quotient and remainder on dividing $p(x)$ by $\mathrm{g}(\mathrm{x})$ in each of the following cases, without actual division :
$p(x)=x^{3}+4 x^{2}-6 x+2, g(x)=x-3$

Watch Video Solution

3. What must be subtracted from
$\left(x^{3}+5 x^{2}+5 x+8\right)$ so that the resulting
polynomial Is excatly divisible by $\left(x^{2}+3 x-2\right)$?

D Watch Video Solution

4. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$, is divided by another polynomial $x^{2}-2 x+k$, the reminder comes out to be $x+a$, find k and a.

- Watch Video Solution

Topic 3 Remainder Theorem Multiple Choice Question

1. The remainder when $p(x)=2 x^{2}-x-6$ is divided
by $(x-2)$ is equal to :
A. $P(-2)$
B. P(2)
C. P(3)
D. P(-3)

Answer: b

- Watch Video Solution

2. On dividing $5 y^{3}-2 y^{2}-7 y+1$ by y , what will be the remainder?

Topic 3 Remainder Theorem Short Answer Type Question

1. Find the value of a if $(x-5)$ is a factor of $\left(x^{3}-3 x^{2}+a x-10\right)$

D Watch Video Solution

2. The polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-4 x+a$ are divided by ($x-3$). If the remainder is same in each case, find the value of a.
3. If $f(x)=2 x^{3}+3 x^{2}-11 x+6$ find
f(0)

D Watch Video Solution
4. If $f(x)=2 x^{3}+3 x^{2}-11 x+6$ find
$\mathrm{f}(1)$

D Watch Video Solution
5. If $f(x)=2 x^{3}+3 x^{2}-11 x+6$ find
$f(-1)$
6. If $f(x)=2 x^{3}+3 x^{2}-11 x+6$ find
f(2)

D Watch Video Solution

Topic 3 Remainder Theorem Long Answer Type Question I

1. Using the remainder theorem, find the remainder when $p(x)=x^{3}+3 x^{2}-5 x+8$ is divided by $\mathrm{g}(\mathrm{x})=$
$x-3$. Verify the result by actual division.

> 2. Without actual division, show that
> $f(x)=2 x^{4}-6 x^{3}+3 x^{2}+3 x-2$ is exactly divisible by $x^{2}-3 x+2$.

D Watch Video Solution
3. Devide $x^{3}+4 x^{2}-3 x-10$ by $\mathrm{x}+1$ and verify your remainder by remainder theorem.

D Watch Video Solution

Topic 3 Remainder Theorem Long Answer Type Question li

1. The polynomial $x^{3}+2 x^{2}-5 a x-8$ and $x^{3}+a x^{2}-12-6$ when devided by ($\mathrm{x}-2$) and ($\mathrm{x}-3$) leave remainder p and q respectively. If $q-p=10$ find the value of a.

D Watch Video Solution

Topic 4 Factor Theorem And Factorization Multiple Choice Question

1. Factorisation of $x^{3}+1$ is :
A. $(x+1)\left(x^{2}-x+1\right)$
B. $(x+1)\left(x^{2}+1\right)$

> C. $(x+1)\left(x^{2}+x+1\right)$
> D. $(x-1)\left(x^{2}-x-1\right)$

Answer:

D Watch Video Solution

Topic 4 Factor Theorem And Factorization Short Answer Type Question

1. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$
or not.
$p(x)=x^{3}-3 x^{2}+6 x-20 g(x)=x-2$

- Watch Video Solution

2. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$ or not.
$p(x)=2 x^{4}+x^{3}+4 x^{2}-x-7 g(x)=x+2$

D Watch Video Solution
3. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$ or not.
$p(x)=3 x^{4}+3 x^{2}-4 x-11 g(x)=x-\frac{1}{2}$

- Watch Video Solution

4. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$ or not.
$p(x)=3 x^{3}+x^{2}-20 x+12 g(x)=3 x-2$

Watch Video Solution

5. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$ or not.

$$
p(x)=2 x^{4}+3 x^{3}-2 x^{2}-9 x-12, g(x)=x^{2}-3
$$

6. Verify $x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)$ Hence factorise $216 x^{3}-125 y^{3}$

D Watch Video Solution

Topic 4 Factor Theorem And Factorization Long Answer Type Question li

1. If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $\left(a x^{2}+5 x+b\right)$ show that $\mathrm{a}=\mathrm{b}$
2. Find the values of a and b if $x^{2}-4$ is a factor of $a x^{4}+2 x^{3}-3 x^{2}+b x-4$ and hence factorise it completely.

D Watch Video Solution

Textbook Corner Exercise 91

1. The graphs of $y=p(x)$ are given in figure below for some polynomial $p(x)$ find number of zeroes of $p(x)$ in
each case.

D Watch Video Solution

2. The graphs of $y=p(x)$ are given in figure below for some polynomial $p(x)$ find number of zeroes of $p(x)$ in
each case.

D Watch Video Solution

3. The graphs of $y=p(x)$ are given in figure below for some polynomial $p(x)$ find number of zeroes of $p(x)$ in
each case.

D Watch Video Solution

4. The graphs of $y=p(x)$ are given in figure below for
some polynomial $p(x)$ find number of zeroes of $p(x)$ in
each case.

(D) Watch Video Solution

5. (i) The graphs of $y p(x)$ are given in Fig. below, for some polynomials $p(x)$. Find the number of zeroes of
$\mathrm{p}(\mathrm{x})$, in each case.

(iii)

(iv)

(vi)

(v)

D Watch Video Solution

6. The graphs of $y=p(x)$ are given in figure below for some polynomial $p(x)$ find number of zeroes of $p(x)$ in each case.

D Watch Video Solution

1. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients. $x^{2}-2 x-8$

- Watch Video Solution

2. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
$4 s^{2}-4 s+1$
3. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.
$6 x^{2}-7 x-3$

- Watch Video Solution

4. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.
$4 u^{2}+8 u$
5. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
$t^{2}-15$

- Watch Video Solution

6. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients.
$3 x^{2}-x-4$
7. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively. $\frac{1}{4},-1$
8. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.
$\sqrt{2}, \frac{1}{3}$
9. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.
$0, \sqrt{5}$

D Watch Video Solution
10. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

1,1
11. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.
$-\frac{1}{4}, \frac{1}{4}$

- Watch Video Solution

12. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

4,1

- Watch Video Solution

Textbook Corner Exercise 93

1. Divide $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder :
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$

D Watch Video Solution

2. (i) Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the

following:

$p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) Divide the polynomial $\mathrm{p}(\mathrm{x})$ by the polynomial $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder in each of the following:
$p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

- Watch Video Solution

3. Divide $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder:
$p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$
4. Check whether the first polynomial is a factor of the second polynomial by dividing :
$t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

D Watch Video Solution

5. Check whether the first polynomial is a factor of the second polynomial by dividing :
$x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

D Watch Video Solution
6. Check whether the first polynomial is a factor of the second polynomial by dividing :
$x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

D Watch Video Solution

7. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are
$\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
D Watch Video Solution
8. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

D Watch Video Solution

9. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
10. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

D Watch Video Solution

11. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and $\operatorname{deg} r(x)=0$

- Watch Video Solution

1. (i) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:
$2 x^{2}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$
(ii) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:
$x^{3}-4 x^{2}+5 x-2,2,1,1$
2. (i) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:
$2 x^{2}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$
(ii) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:
$x^{3}-4 x^{2}+5 x-2,2,1,1$
3. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

- Watch Video Solution

4. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.

D Watch Video Solution

5. If the zeroes of the polynomial
$x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$ Find other

- Watch Video Solution

6. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$, is divided by another polynomial $x^{2}-2 x+k$, the reminder comes out to be $x+a$, find k and a.

- Watch Video Solution

