びdoubtnut

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

REAL NUMBERS

Topic 1 Euclid S Division Algorithm Multiple Choice Questions

1. By applying Euclid's division lemma, 72 and 28 can be expressed as :

$$
\text { A. } 28=(72-16) \times 2
$$

B. $72=(28 \times 2)+16$
C. $72=(28 \times 2)-16$
D. $16=72-(28+2)$

Answer: B

D Watch Video Solution

2. The relationship between the dividend (a), divisor (b), quotient (q) and the remainder (r) is :
A. $a=(b+q) \times r$
B. $a=(b-q) \times r$
C. $a=(b-r) \times q$
D. $a=(b \times r) \times q$

Answer: D

D Watch Video Solution

3. Euclids Division Lemma states that for any two positive integers a and b, there exists unique integers q and r such that $a=b q+r$, where r must satisfy.
A. $0<r<b$
B. $0 \leq r<b$
C. $0<r \leq b$
D. $0 \leq r \leq b$

Answer: B

- Watch Video Solution

4. For any positive integer a and 3 , there ex:ist unique integers q and r such that $a=3 q+r$, where r must satisfy:
A. $0 \leq r<3$
B. $1<r<3$
C. $0<r<3$
D. $0<r \leq 3$
5. If q is some integer, then any positive odd integer is of the form :
A. $6 q$
B. $6 q+1$
C. $6 q+2$
D. $6 q+4$

Answer: B

- Watch Video Solution

6. $n^{2}-1$ is divisible by 8 , if n is
A. an integer
B. natural number
C. an odd number
D. an even integer

Answer: C

- Watch Video Solution

7. For q to be an integer, then any integer can be expressed as a equals to :
A. $3 q+1$
B. $3 q, 3 q+1,3 q+2$
C. $3 q$
D. $3 q+1,3 q+2,3 q+3$

Answer: B

- Watch Video Solution

8. If the H.C.F. of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
A. 4
B. 2
C. 11
D. 3

Answer: B

- Watch Video Solution

9. A number N when divided by 14 remainder 5 . The remainder when number is divided by 7 is :
A. 7
B. 0
C. 5
D. 4

Answer: C

- Watch Video Solution

10. The remainder when the square of any prime number greater than 3 is divided by 6 is :
A. 1
B. 3
C. 2
D. 4

Topic 1 Euclid S Division Algorithm Very Short Answer Type Questions

1. State Euclid's division lemma

D Watch Video Solution
2. Using Euclid's division algorithm, find the HCF of 65 and 117.

- Watch Video Solution

3. Find the remainder when the square of any prime number greater than 3 is divided by 6 .

- Watch Video Solution

4. What is the use of Euclid's division lemma ?

- Watch Video Solution

5. What is the number of the form $(4 m+1)$?

- Watch Video Solution

6. What is the base of Eulid's division algorithm?

- Watch Video Solution

7. Whal is the number of the form $(4 m+2)$?

D Watch Video Solution

8. Write the even prime number.

- Watch Video Solution

9. Write a number which is neither prime nor composite.

D Watch Video Solution

Topic 1 Euclid S Division Algorithm Short Answer Type Questions

1. By Euclid's division lemma, show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m.

- Watch Video Solution

2. There are 75 roses and 45 lily Bowers. These are to be made into bouquets containing both the flowers. All the bouquets should contain the nme number of flowers.

Find the number of bouquets that can be formed and the number of flowers in them.

- Watch Video Solution

3. The length and breath of a rectangular field is 110 m and 30 m respectively. Calculate the length of the longest rod which can measure the length and breadth of the field exactly.

- Watch Video Solution

4. Find the HCF of 1656 and 4025 by Euclid's division algorithm.
5. Show that any positive odd integer is of the form $4 q+$ 1 or $4 q+3$, where q is some integer.

- Watch Video Solution

Topic 1 Euclid S Division Algorithm Long Answer Type Questions 1

1. Prove that the product of three consecutive positive integers is divisible by 6 .
2. Show that any positive even int.eger is of the form 4q or $4 \mathrm{q}+2$, where q is a whole number.

D Watch Video Solution

3. Show that one and only one out of $n, n+2$ or $n+4$ is divisible by 3 , where n is any positive integer.

D Watch Video Solution

4. The HCF of 65 and 117 is expressible in the form 65 m -
5. FInd the value of m. Also find the LCM of 65 arid 117 using prime factorization method.

Topic 1 Euclid S Division Algorithm Long Answer Type Questions li

1. Use Euclid's division algorithm to find the HCF of following numben :
(a) 65 and 111 (b) 237 and 81
(c) 55 and 210 (d) 305 and 793

- View Text Solution

2. Find HCF of 81 and 237 and expraa it as a linear combination of 81 and 237 i.e., HCF of $81,237=81 x+237 y$ for some x and y.

(D) Watch Video Solution

Topic 2 Prime Factorization H C F L C M Multiple Choice Questions

1. a and b are two positive integers such that the least prime factor of b is 3 and the least prime factor of b is 5 .

Then, the least prime factor of $(a+b)$ is:
A. 2
B. 3
C. 5
D. 8

Answer: A

- Watch Video Solution

2. The HCF of $3^{3} \times 5$ and $3^{2} \times 5^{2}$ is t
A. 45
B. 25
C. 675
D. 135

Answer: A

- Watch Video Solution

3. The number of prime factors of 145 is:
A. 2
B. 3
C. 4
D. 5

Answer: A

D Watch Video Solution

4. If two positive integers p and q cui be expressed as $p=$ $a^{3} b^{2}$ and $\mathrm{q}=a b^{3} c^{2}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ being prime numbers, then $\operatorname{HCF}(p, q)$ is:
A. abc
B. $a b^{2}$
C. $a^{3} b^{3} c^{2}$
D. $a^{2} b^{2} c^{2}$

Answer: B

- Watch Video Solution

5. LCM of $2^{3} \times 3^{2}$ and $2^{2} \times 3^{3}$
A. 2^{3}
B. 3^{3}
C. $2^{3} \times 3^{3}$
D. $2^{2} \times 3^{2}$

Answer: C

- Watch Video Solution

Topic 2 Prime Factorization H C F L C M Very Short Answer Type Qeustions

1. Express 140 as a product of prime factors.

D Watch Video Solution

2. In prime factorization of 1309 write the highest prime
factor.
3. Express 210 as the product of prime factors.

- Watch Video Solution

4. Express 6762 as the product of prime factors.

D Watch Video Solution

5. What is the HCF of the smallest composite number and the smallest prime number ?
6. Find the LCM and HCF of $\frac{1}{2}, \frac{1}{3}$

- Watch Video Solution

Topic 2 Prime Factorization H C F L C M Short Answer Type Qeustions

1. Prove $3+\sqrt{5}$ is inational

- Watch Video Solution

2. Find HCF of 14 and 21
3. Find the smallest number which when increased by 17 is exactly divisible by both 520 and 468 .

- Watch Video Solution

4. A rectangular hall is 18 m 72 cm long and 13 m 20 cm
broad. It is to be paved with square tiles of the same size. Find the least possible number of such tile.

D Watch Video Solution

5. IF $25025=p_{2}^{x 1}, p_{2}^{x 2}, p_{3}^{x 3}, p_{4}^{x 4}$ find the values of $p_{1}, p z, p_{3}, p_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$.

- Watch Video Solution

6. Find the HCF of 105 and 1515 by prime factorization method.

(D) Watch Video Solution

7. Find the LCM and HCF of the following integers by expressing them as product of primes :
(i) 12,15 and 30 (b) 18,81 and 108

Topic 2 Prime Factorization H C F L C M Long Answer Type Qeustions I

1. x, y and z start at the same time in the same direction
to run around a circular stadium x completes a round in

126 seconds, y in 154 seconds and z in 231 seconds all
starting at the same poinl After what time will they meet
again at the starting point. How many rounds would
have x, y and z completed by this time?

D Watch Video Solution

Topic 3 L C M And Formula Multiple Choice Questions

1. If a is an odd number, b is not divisible by 3 and LCM or a and b is p, then LCM of $3 a$ and $2 b$ is :
A. p^{2}
B. 5 p
C. 6 p
D. $3 p$

Answer: C

D Watch Video Solution

2. Two positive integers p and q can be expressed as $p=$ $a b^{2}$ and $\mathrm{q}=a^{3} b$, a and b being prime numbers. LCM of p
and q is :
A. $a b$
B. $a^{2} b^{2}$
C. $a^{3} b^{2}$
D. $a^{3} b^{3}$

Answer: C

- Watch Video Solution

3. The HCF of two numbers ' 11 ' and ' b ' is 5 and their LCM is 200 , then the product of ' a ' and ' b ' is :
A. 205
B. 1000
C. 200
D. 195

Answer: B

D Watch Video Solution

Topic 3 L C M And Formula Very Short Answer Type Questions

1. Find
$\left(\frac{\mathrm{HCF} \text { of } \mathrm{t} \text { wodistinct natural numbers }}{\text { LCM of same distinct natural numbers }}\right)$
2. If a and b are any two positive integers then $\operatorname{HCF}(a, b)$
$\times \operatorname{LCM}(a, b)$ is equal to

- Watch Video Solution

Topic 3 L C M And Formula Short Answer Type Questions

1. If HCF of 52 and 182 is 26 , find their LCM.

- Watch Video Solution

2. Given that $\operatorname{HCF}(306,1314)=18$. Find $\operatorname{LCM}(306,1314)$.

Topic 3 L C M And Formula Long Answer Type Questions I

1. Find the HCF and LCM of the pairs of integers and verify that $\operatorname{LCM}(\mathrm{a}, \mathrm{b}) \times \operatorname{HCF}(\mathrm{a}, \mathrm{b})=a \times b$.
(a) 16 and 80 (b) 125 and 55

- Watch Video Solution

2. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF $=$ product of the two numbers

510 and 92

Topic 4 Irrational Numbers Rational Numbers Short Answer Type Questions

1. Prove that $\sqrt{3}+\sqrt{2}$ is an irrational number.

- Watch Video Solution

2. P.T $5-\sqrt{3}$ is irrational.

(D) Watch Video Solution

Topic 4 Irrational Numbers Rational Numbers Long Answer Type Questions I

1. If p prime number, then prove that \sqrt{p} is irrational ?

- Watch Video Solution

2. Prove that $\sqrt{2}$ is irrational .

- Watch Video Solution

3. Prove that the $(\sqrt{2}+\sqrt{5})$ are irrational numbers.

Topic 4 Irrational Numbers Rational Numbers Long Answer Type Questions li

1. Show that there is no positive integer, n for which
$\sqrt{n-1}+\sqrt{n+1}$ is rational .

- Watch Video Solution

Textbook Corner Exercise 81

1. (i) Use Euclid's division algorithm to find the HCF of:

135 and 225
(ii) Use Euclid's division algorithm to find the HCF of: 196 and 38220
(iii) Use Euclid's division algorithm to find the HCF of: 867 and 255 ,

- Watch Video Solution

2. Show that any positive odd integer is of the form $6 q+1$, or $6 \mathrm{q}+3$, or $6 \mathrm{q}+5$, where q is some integer.

- Watch Video Solution

3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of
columns. What is the maximum number of columns in which they can march?

D Watch Video Solution

4. Use Euclid's division lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$
for some integer m.
(Hint : Let x be any positive integer then it is of the form
$3 q, 3 q+1$ or $3 q+2$. Now square each of these and show
that they can be rewritten in the form $3 m$ or $3 m+1$.]

D Watch Video Solution

5. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.

- Watch Video Solution

Textbook Corner Exercise 82

1. Express each number as a product of its prime factors:

140
2. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF $=$ product of the two numbers

26 and 91

- Watch Video Solution

3. Find the LCM and HCF of the following integers by applying the prime factorisation method.

12, 15 and 21

D Watch Video Solution

4. Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.
5. Check whether 6^{n} can end with the digit 0 for any natural number n .

- Watch Video Solution

6.

Explain
why
$(7 \times 11 \times 13)+13$ and $(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)+5$
are composite numbers.
7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the start-ing point?

(D) Watch Video Solution

Textbook Corner Exercise 83

1. Prove that $\sqrt{5}$ is an irrational number.
2. Prove that $3+2 \sqrt{5}$ is an irrational number.

- Watch Video Solution

3. Prove that following are irrational

- View Text Solution

Textbook Corner Exercise 84

1. Without actually performing the long division state
whether the following rational numbers will have a terminating decimal expansion or a non-terminating
repeating decimal expansion
13
$\overline{3125}$

- Watch Video Solution

2. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion $\frac{17}{8}$

- Watch Video Solution

3. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion
$\frac{64}{455}$

D Watch Video Solution

4. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion $\frac{15}{1600}$
5. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion 29 $\overline{343}$

D Watch Video Solution

6. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion
[^0]
- Watch Video Solution

7. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion

129
$\overline{2^{2} 5^{7} 7^{5}}$

(D) Watch Video Solution

8. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating
repeating decimal expansion

- Watch Video Solution

9. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion

35
$\overline{50}$

- Watch Video Solution

10. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion

77

$\overline{210}$

D Watch Video Solution

11. Write down the decimal expansions of $\frac{17}{8}$

D Watch Video Solution

12. The following real numbers have decimal expansions
as given below. In each case, decide whether they are
rational or not. If they are rational, and of the form, $\frac{p}{q}$ what can you say about the prime factors of q ?
43.123456789

- Watch Video Solution

[^0]: 23
 $\overline{2^{3} 5^{2}}$

