©゙doubtnut

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGㄴISH)

TRIANGLES

Topic 1 Basic Proportionality Theorem Multiple Choice Questions

1. In the adjoining figure, D and E are the mid-points of $A B$ and $A C$ respectively. If $D E=4 c m$, then $B C$ is equal to :

A. 4 cm
B. 6 cm
C. 8 cm
D. 12 cm

Answer: C

2. In $\triangle A B C, D E| | B C$, If $A D=3 \mathrm{~cm}, B D=2 \mathrm{~cm}$ and $A E=2.7$, then AC is equal to :

A. 6.5 cm
B. 4.5 cm
C. 3.5 cm
D. 5.5 cm

Answer: B

- Watch Video Solution

3. In the adjoining figure, $X Y\left|\mid B C\right.$, then $\frac{A X}{A B}$ is equal to :

A. $\frac{A X}{A Y}$
B. $\frac{A X}{X B}$
C. $\frac{A Y}{A C}$
D. $\frac{A C}{A Y}$

Answer: C

- Watch Video Solution

4. In the given figure, $E F|\mid C A$ and $F G| \mid A B$ then $\frac{D E}{E C}$ is equal to :

A. $\frac{D G}{G B}$
B. $\frac{G B}{D G}$
C. $\frac{A F}{D F}$
D. $\frac{A B}{A D}$

Answer: A

D View Text Solution

5. In the given figure, $A B|\mid P Q$. If $P Q=1.5 \mathrm{~cm}, Q C=2 \mathrm{~cm}$ and $R Q=8 \mathrm{~cm}$, then measure of $A B^{\prime} s$:

A. 10 cm
B. 7.5 cm
C. 9.5 cm
D. 3.5 cm

Answer: B

- Watch Video Solution

6. In the given figure, $X Y|\mid B C$ and $X Z| \mid A C$ then $\frac{A X}{A B}$ is equal to :

A. $\frac{X Z}{A B}$
B. $\frac{X Y}{A C}$
C. $\frac{C Z}{B C}$
D. $\frac{B Z}{B C}$

Answer: C

- Watch Video Solution

7. ABCD is a trapezium in which $A B|\mid D C$ and its diagonals
intersect each other at the point O . Show that $\frac{A O}{B O}=\frac{C O}{D O}$
A. $\frac{O B}{O A}$
B. $\frac{A B}{C D}$
C. $\frac{O C}{O D}$
D. $\frac{A C}{B D}$

- Watch Video Solution

8. In $\triangle A B C, \mathrm{D}$ and E are the mid-points of AB and AC respectively, then the area of $\triangle A D E$ is :
A. $4 \Delta A B C$
B. $\frac{1}{4} \Delta A B C$
C. $2 \Delta A B C$
D. $\frac{1}{2} \triangle A B C$

Answer: B

- Watch Video Solution

9. In the given figure, $X Y\left|\mid B C\right.$, then $\frac{A X}{B X}$

A. $\frac{A Y}{A C}$
B. $\frac{Y C}{A Y}$
C. $\frac{A X}{A B}$
D. $\frac{A Y}{C Y}$

Answer: D

- Watch Video Solution

10. In $\triangle A B C, P Q| | A B$. The correct relation is :

A. $\frac{B Q}{B A}=\frac{C P}{C A}$
B. $\frac{A P}{P C}=\frac{B Q}{Q C}$
c. $\frac{P Q}{B Q}=\frac{A B}{B C}$
D. $\frac{P Q}{Q C}=\frac{A B}{A P}$

Answer: B
11. In the given figure $\angle A B C-\angle A Y X$, then the ratio of the corresponding sides is :

A. $\frac{A X}{A C}=\frac{A B}{A Y}=\frac{C B}{X Y}$
B. $\frac{A B}{A Y}=\frac{B C}{X Y}=\frac{A X}{A C}$
C. $\frac{A B}{A X}=\frac{A C}{A Y}=\frac{B C}{X Y}$
D. $\frac{A X}{A C}=\frac{A Y}{A B}=\frac{X Y}{C B}$

Answer: D

- Watch Video Solution

12. In the figure, $D E|\mid B C, A D: A B=1: 2, B C=6 \mathrm{~cm}$, then $D E$ is :

A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer: C

- Watch Video Solution

13. In a trapezium $\mathrm{ABCD}, A B| | D C$, Which of the following is a correct statement ?

A. $\frac{O A}{O C}=\frac{O B}{O D}$
B. $\frac{A D}{B C}=\frac{A B}{D C}$
c. $\frac{O B}{O D}=\frac{B C}{C D}$
D. $\frac{O A}{O C}=\frac{A D}{D C}$

Answer: A

- Watch Video Solution

14. In the following figure $D E|\mid A B$. If $A D=7 \mathrm{~cm}$, $C E=10 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$, then the length of $B E=$

A. 17 cm
B. 14 cm
C. 12 cm
D. 20 cm

Answer: B

- Watch Video Solution

15. In the figure, $X Y|\mid B C, A X=9 \mathrm{~cm}, X B=4.5 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$, then $X Y=$

A. 14 cm
B. 12 cm
C. 16 cm
D. 18 cm

Answer: B

O
Watch Video Solution
16. in the figure, $M N|\mid P R$. If $Q N: N R=2: 3$ and $P Q=11.5 \mathrm{~cm}$ then $Q M$ is equal to :

A. 10 cm
B. 2.3 cm
C. 4 cm
D. 4.6 cm

Answer: D
17. In a trapezium $\mathrm{ABCD}, A B| | D C$, Which of the following is a correct statement ?

A. $\frac{A D}{B C}$
B. $\frac{B C}{A D}$
C. $\frac{A O}{A B}$
D. $\frac{O B}{O C}$

Answer: D

18. It the following figure, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $A D=8 \mathrm{~cm}, \mathrm{CD}=2 \mathrm{~cm}$, then the length of BD is :

A

B
C
A. 4 cm
B. 8 cm
C. 16 cm
D. 10 cm

Answer: A

D Watch Video Solution

19. The corresponding sides of two equiangular triangles are :
A. Equal
B. Parallel
C. Proportional
D. Unequal

Answer: C

20. In the given $\triangle A B C=\sim \triangle P Q C$. The ratio of their corresponding sides is :

A. $\frac{A B}{P Q}=\frac{B C}{P C}=\frac{A C}{Q C}$
B. $\frac{A B}{P C}=\frac{B C}{P Q}=\frac{A C}{Q C}$
c. $\frac{B C}{P Q}=\frac{A B}{Q C}=\frac{A C}{P C}$
D. $\frac{A B}{P Q}=\frac{B C}{Q C}=\frac{A C}{P C}$

Answer: D

- Watch Video Solution

21. In the figure, $\angle A B C=\angle A Q P=90^{\circ}$, then $\frac{A Q}{A B}$

A. $\frac{B C}{P Q}$
B. $\frac{A C}{P Q}$
c. $\frac{Q P}{B C}$
D. $\frac{A P}{A B}$

Answer: C

- View Text Solution

22. In $\triangle A B C$ and $\Delta D E F$ is ${ }^{\prime}(\mathrm{AB}) /(\mathrm{DE})=(\mathrm{BC}) /(\mathrm{DF})$ then they will be similar if:
A. $\angle B$ and $\angle E$
B. $\angle A$ and $\angle D$
C. $\angle B$ and $\angle D$
D. $\angle A$ and $\angle F$

Answer: C

- Watch Video Solution

23. In the figure $\triangle A B C, B E \perp A C$ and $C F \perp A B$, $A D \perp B C$, then $\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{CE} 2=$

A. $O A 2+O B 2+O C 2$
B. $O D 2+O E 2+O F 2$
C. $A B 2+B C 2+A C 2$
D. AE2 + BF2 + CD2

Answer: D

- Watch Video Solution

24. In a right-angled triangle $\mathrm{ABC}, \angle C A B=90^{\circ}$. If $A D \perp B C$, then the angle equal to $\angle A C D$ is :

A. $\angle A B D$
B. $\angle D A B$
C. $\angle C A D$
D. $\angle A D E$

Answer: B
25. If the given triangles are similar, then the ratio between their sides is :

A. $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
B. $\frac{A B}{P R}=\frac{B C}{Q R}=\frac{A C}{P Q}$
C. $\frac{A B}{Q R}=\frac{R C}{R P}=\frac{A C}{P Q}$
D. $\frac{A B}{Q R}=\frac{B C}{P Q}=\frac{A C}{R P}$

Answer: A

- Watch Video Solution

26. Sides of a triangle are of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm respectively. Which of the sets of number are the sides of a triangle, similar to the above trianlge?
A. $4,5,6$
B. $5,6,7$
C. $12,13,14$
D. $6,9,12$

Answer: D

- Watch Video Solution

27. In the figure $\angle A P Q=\angle A C B$ and $\angle A Q P=\angle A B C$. Then

AP.AB is equal to :

A. $A Q . A C$
B. $A P . A B$
C. $A C . B C$
D. $B C . A B$

Answer: A
28. In parallelogram $A B C D, \mathrm{P}$ is a point on BC . In $\triangle D C P$ and
$\Delta B L P, D P: P L$ is equal to :

A. $D C: B L$
B. $D C: B P$
C. $P C: B L$
D. $D C: P L$

Answer: A

- Watch Video Solution

29. Select the set of numbers from the following which can form the similar triangles.
A. $9,12,18$ and $3,4,6$
B. 3, 4, 6 and $9,10,12$
C. $8,6,12$ and $2,6,3$
D. $3,4,5$ and $2,4,10$

Answer: A

- Watch Video Solution

30. $\triangle A B C$ has sides of length $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm . The perimeter of $\triangle D E F$ is 360 cm . If $\triangle A B C \cong \triangle D E F$ then the ratio of the ratio of the perimeters of $\triangle A B C$ and $\triangle D E F$ is:
B. 2: 1
C. $1: 20$
D. $20: 1$

Answer: C

D View Text Solution

Topic 1 Basic Proportionality Theorem Very Short Answer Type Questions

1. State "Basic proportionality theorem"

- Watch Video Solution

2. In $\triangle A B C, X Y| | B C, \frac{A Y}{C Y}=\frac{1}{2}$ and $A X=4$. Find $B X$.

- Watch Video Solution

3. State Thales theorem.

- Watch Video Solution

4. In $\triangle A B C$, DE is parallel to BC , If $\frac{A D}{D E}=\frac{3}{5}$ and $A C=4.8 \mathrm{~cm}$, then find $A E$.

- Watch Video Solution

5. What is the name of the quadrilateral formed by joining the midpoint of sides of a given quadrilateral ?
6. In $\triangle A B C, A B=6 \mathrm{~cm}$ and $D E|\mid B C$ such that $A E=\frac{1}{4} A C$, then what is AD ?

- Watch Video Solution

7. In $\triangle A B C, D$ and E are points on side AB and AC respectively such that $D E|\mid B C$ and $A D: D B=3$, If $E A=3.3 \mathrm{~cm}$, them find $A C$.

- Watch Video Solution

8. In the adjoining figure $\angle A B C=90^{\circ}$ and $B D \perp A C$, express
$(A D=D C)$, in terms of BD ?

D View Text Solution
9. In $\triangle A B C=90^{\circ}, B D \perp A C$. If $B D=8 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, find CD.

- Watch Video Solution

10. For two similar triangles ABC and $\mathrm{PQR}, \angle A=40^{\circ}, \angle B=60^{\circ}$, then what is $\angle R$?
11. Give two different examples of pair of similar figures.

- Watch Video Solution

12. If $\triangle A B C$ and $\triangle D E F$ are similar and $2 A B=D E$, $B C=8 \mathrm{~cm}$, then calculate EF.

- Watch Video Solution

13. If $\triangle A B C \sim \triangle P Q R$, perimeter $(\triangle A B C)=20 \mathrm{~cm}$, perimeter
$(\triangle P Q R)=20 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$, then find PQ.

- Watch Video Solution

14. If $\triangle A B C \sim \Delta P Q R$, then find $\angle B$.

- Watch Video Solution

15. If $\triangle P Q R$ in congruent to $\triangle S T U$, then what is the length of $T U$?

- Watch Video Solution

16. In $\triangle A B C$ and $\triangle D E F, \angle B=\angle E, \angle F=\angle C$ and $A B=2 D E$, then what do we use to cell these two triangles?

- Watch Video Solution

17. In $\triangle A B C, \mathrm{AD}$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}$, $B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$, then find AC .

Topic 1 Basic Proportionality Theorem Short Answer Type Questions

1. In $\triangle A B C, \angle A B C=90^{\circ}, B D \perp A C$. If $B D=8 \mathrm{~cm}$, $A D=4 c m$, find CD.

- Watch Video Solution

2. In $\triangle A B C, D E| | B C$ and $C D|\mid E F$. Prove that $A D^{2}=A F . A B$.

- View Text Solution

3. In the following figure, $A C|\mid B D$ and $C E| \mid D F$. If $O A=13 \mathrm{~cm}, A B=9 \mathrm{~cm}, O C=8 \mathrm{~cm}$ and $E F=4.5 \mathrm{~cm}$, find OE.

D View Text Solution

4. In $\triangle A B C$, AD is the median and $P Q|\mid B C$. Prove that $P E=E Q$

- Watch Video Solution

5. In $\triangle A B C, P Q| | B C, A P=3 \mathrm{~cm}, A R=4.5 \mathrm{~cm}, A Q=6 \mathrm{~cm}$, $A B=5 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$. Find the length of AD.

- Watch Video Solution

6. If one diagonal of a trapezium divides the other in the ration
$1: 2$, then prove that one of the parallel sides is twice the other.

- Watch Video Solution

7. A ladder resting against a vertical wall has its foot on the ground at the distance of 6 cm from wall. A man climbs two third of the ladder. What will be his distance from the wall now?

- Watch Video Solution

8. Study the following figure. Write the ratios in relation to basic proportionality theorem and its corollarise, in terms of a, b, c and
d.

D Watch Video Solution

9. In $\Delta \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$, find the length of AE.

- Watch Video Solution

10. In the given figure, $A C|\mid B D$ and $C E| \mid D F$. If $O A=12 \mathrm{~cm}, A B=9 \mathrm{~cm}, O C=8 \mathrm{~cm}$ and $E F=4.5 \mathrm{~cm}$, find OE.

11. At certain times of the day trees casts its shadow 12.5 feet long. If the height of the tree is 5 feet, find the height of another tree the casts its shadow 20 feet long at the same times.

20 Ft

- Watch Video Solution

12. X is any point inside $\triangle A B C, \mathrm{XA}, \mathrm{XB}$ and XC are joined ' E ' is any point on AX. If $E F||A B, F G|| B C$. Peove that $E G|\mid A C$.

- Watch Video Solution

13. In $\triangle A B C, \angle B=\angle C$, D and E are the points on AB and AC such that $B D=C E$, prove that $D E|\mid B C$.

(Watch Video Solution

14. $\triangle A B C-\triangle D E F$, Area of $\triangle A B C=64 \mathrm{~cm}^{2}$ and area of $\Delta D E F=121 \mathrm{~cm}^{2}$. If $E F=15.4 \mathrm{~cm}$, Find BC.

- Watch Video Solution

15. In $\triangle A B C, \angle A B C=90^{\circ}, \quad B M \perp A C, \quad A M=8 x^{2}$, $A M=2 x^{2}$, find $B M$ and $A B$.

D View Text Solution

16. From the following data, State whether $\triangle A B C$ is similar to $\triangle D E F$ or not :
(a) $\angle A=70^{\circ}, \angle B=80^{\circ}, \angle D=70^{\circ}, \angle F=30^{\circ}$
(b) $A B=8 \mathrm{~cm}, \quad B C=9 \mathrm{~cm}, \quad C A=15 \mathrm{~cm}, \quad D E=4 \mathrm{~cm}$,
$E F=3 \mathrm{~cm}, F D=5 \mathrm{~cm}$.

- View Text Solution

17. Select the set of numbers in the following, which can form similar triangles.
(I) 3, 4, 6 (II) 9, 12, 18
(III) $8,6,12$ (IV) 3, 4, 9

D View Text Solution

18. In the figure, $\angle Q P R=\angle U T S=90^{\circ}$ and $P R|\mid T S$. Prove that

(-) Watch Video Solution

19. In the following figure, $\angle A B C=90^{\circ}$ and $\angle A M P=90^{\circ}$.

Prove that : (I)
(i) $\triangle_{A B C \sim} \Delta_{A M P}$
(II) $\frac{C A}{P A}=\frac{B C}{M P}$

1. In the trapezium ABCD, $A B|\mid D C$ and $\triangle A R D-\triangle B E C$. Then Prove that $A D=B C$.

- Watch Video Solution

2. If a straight line divdes two sides of a triangle proportionally, then the straight line a parallel to third sides, (Converse of Thales theorem). Prove.
3. In a trapezium, prove that the line joining the midpoints of non

- parallel sides are parallel to the parallel sides of the trapezium.

- Watch Video Solution

4. In a trapezium ABCD, $A B|\mid C D$

If $O A=3 x-19$
$O C=3-5$
$B O=x-3$ and $O D=3$, find x

- Watch Video Solution

5. Find the unknown values is each of the following figures. All lengths given in centimetres. (Measures are not in scale)
(a)

(C)

- View Text Solution

6. In $\triangle A B C, \mathrm{D}$ and E are points in the sides AB and AC respectively such that $D E|\mid B C$ If $A D=6 \mathrm{~cm}, D B=9 \mathrm{~cm}$, and $A E=8 \mathrm{~cm}$ find AC .

- Watch Video Solution

7. E and F are points on the sides PQ and PR respectively of Δ PQR. For each of the following cases, state whether EF || QR:
(i) $P E=3.9 \mathrm{~cm}, E Q=3 \mathrm{~cm}, P F=3.6 \mathrm{~cm}, F R=2.4 \mathrm{~cm}$
(ii) $P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}, R F=9 \mathrm{~cm}$
(iii)
$P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}, P F=0.36 \mathrm{~cm}$

- Watch Video Solution

8. In the figure, $P C|\mid Q K$ and $B C| \mid H K$. If $A Q=6 \mathrm{~cm}$, $Q H=4 \mathrm{~cm}, H P=5 \mathrm{~cm}$ and $K C=18 \mathrm{~cm}$. Find AK and PB .

- Watch Video Solution

9. In the figure, $P R|\mid R C$ and $Q R| \mid B D$. Prove that $P Q|\mid C D$.

10. In $\triangle A B C, D E| | B C$ and $C D|\mid E F$. Prove that
$A D^{2}=A F \times A B$

- Watch Video Solution

11. If the diagonals of a quadrilateral divide each other proportionally, then prove that the quadrilateral is a trapezium.
12. In the given figure, $\frac{S P}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that PQR is an isosceles triangle.

- Watch Video Solution

13. In a $\triangle A B C$, let P and Q be points on AB and AC respectively such that $P Q|\mid B C$. Prove that the median AD bisects PQ .
14. Throught the mid-point M of the sides of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at L, and $A D$ produced to E . Prove that $E L=2 B L$.

- Watch Video Solution

15. Prove that the two madians of a triangle divide each other in the ratio $2: 1$

- Watch Video Solution

16. In the given figure $\angle A B D=\angle B D C$ and $C D=4 A B$. Show that $B D=5 B E$.

- Watch Video Solution

Topic 1 Basic Proportionality Theorem Long Answer Type Questions If

1. In a $\triangle A B C, X Y| | B C$ and $X Y=\frac{1}{2} B C$. If the area of $\triangle A X Y=10 \mathrm{~cm}^{2}$. Find the area of trapezium XYCB.

- Watch Video Solution

2. State and prove Basic proportionality theorem

- Watch Video Solution

3. In a trapezium ABCD, $A B|\mid A D$ and $D C=2 A B$. $E F\left|\mid A B\right.$, cuts AD in F and BC in E such that $\frac{B E}{E C}=\frac{3}{4}$. Diagonal DB intersects EF at G. Prove that, $7 E F=10 A B$.

- Watch Video Solution

4. Let $A B C$ be a triangle and D and E be two points on sides $A B$ such that $A D=B E$. If $D P|\mid B C$ and $E Q| \mid A C$, then prove that $P Q|\mid A B$.

- Watch Video Solution

5. Prove that "If two triangles are equlangular, then their corresponding sides are proportional".

(D) Watch Video Solution

6. Study the following fgures and find out in each case whether the triangles are similar. Give reason. (a)

(b)

(c)

(d)

D View Text Solution

Topic 3 Area Of Similar Triangles Multiple Choice Questions

1. The sides of two triangles are in the ratio $2: 3$. Then their areas are in the ratio :
A. $9: 4$
B. $4: 9$
C. 2:3
D. $3: 2$

Answer: B

- Watch Video Solution

2. In the given figure, $A B=C F, E F=B D \angle A F E=\angle D B C$. Prove that $\triangle A F E=\triangle C B D$
3. Triangles $A B C$ and $D E F$ are similar .The area of $\triangle A B C$ is $16 \mathrm{~cm}^{2}$, and that of $\triangle D E F 25 \mathrm{~cm}^{2}$. If $\mathrm{BC}=2.3 \mathrm{~cm}$, find EF

- Watch Video Solution

4. The corresponding sides of two similar triangles are in the ratio 4: 9 . The ratio between their areas is :
A. $2: 3$
B. $16: 18$
C. $81: 16$
D. $14: 19$

Answer: B

5. If the ratio of the perimeter of two similar triangles is $4: 25$, then find the ratio of the areas of the similar triangles
A.
B.
C.
D.

Answer: A

- Watch Video Solution

6. Which of the following is not a correct statement ?
A. All the rectangles are similar
B. All the rhombus are similar
C. All the right angled triangles are similar
D. All the equilateral traingles are similar

Answer: D

- Watch Video Solution

7. The area of two similar triangles $A B C$ and $P Q R$ are ' $25 \mathrm{~cm}^{\wedge} 2$ ' and ' $49 \mathrm{~cm}{ }^{\wedge} 2^{\prime}$ If $Q R=9.8 \mathrm{~cm}$ then $B C$ is

- Watch Video Solution

8. Two similar triangles have areas 120 sq. cm and 480 sq. cm respectively. Then the ratio of any pair of corresponding sides is :
A. 1: 4
B. 1:2
C. $4: 1$
D. $2: 3$

Answer: B

- Watch Video Solution

9. In a $\triangle A B C, D, E, F$ are respectively, the mid- points of $B C, C A$, and $A B$. If the lengths of side $A B, B C$ and $C A$ are $7 \mathrm{~cm}, 8 \mathrm{~cm}, 9 \mathrm{~cm}$, respectively, find the perimeter of Δ DEF.
A. 12 cm
B. 21 cm
C. 24 cm
D. 18 cm

- Watch Video Solution

10. The area (A) of triangle, whose base is 4 units longer than its altitude (x) is :
A. $A=\frac{1}{2} x(x-4)$
B. $A=\frac{1}{2} x(x+4)$
C. $A=\frac{1}{2}(4 x)$
D. $A=\frac{1}{2} x(x+4 x)$

Answer: B

- Watch Video Solution

1. What is the ratio of areas of two similar triangles whose sides are in the ratio $15: 19$?

- Watch Video Solution

2. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. What is the ratio of their corresponding sides ?

- Watch Video Solution

3. If $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$, then find $\frac{\operatorname{ar} \Delta P R Q}{\operatorname{ar} \Delta B C A}$?

- Watch Video Solution

4. If two triangles are similar such that the ratio of their areas is $25: 16$, then is the ratio of their corresponding medians ?

- Watch Video Solution

5. If $\triangle A B C \sim \triangle D E F, B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$, and Area of
$\triangle A B C=54 \mathrm{~cm}^{2}$, then Area of $\triangle D E F$ is

- Watch Video Solution

6. The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If The madian of first triangle is 12.1 cm , then what is the corresponding median of the other triangle?

- Watch Video Solution

Topic 3 Area Of Similar Triangles Short Answer Type Questions

1. If the area of the similar triangles are equal, then they are congruent. Prove.

- Watch Video Solution

2. In $\triangle A B C, X Y| | B C$ and XY divides the triangle into two parts of equal area. Find $B X: A B$.
[Hint : $A B C=2 \Delta A X Y]$

- Watch Video Solution

3. In the trapezium $\mathrm{ABCD}, A B| | C D, A B=2 C D$ and $\operatorname{ar}(\triangle A O B)=84 \mathrm{~cm}^{2}$, find the area of $\triangle C O D$.

- Watch Video Solution

4. In the given figure, $A E|\mid D B, B C=7 \mathrm{~cm}, B D=5 \mathrm{~cm}$, $D C=4 \mathrm{~cm} . \quad$ If $\quad C R=12 \mathrm{~cm}, \quad$ find $\quad \mathrm{AE}$ and AC

- Watch Video Solution

5. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles and $B D=D C$. Find the ratio between areas of $\triangle A B C$ and $\triangle B D E$.

- Watch Video Solution

6. The corresponding altitudes of two similar triangles are $\mathbf{6 c m}$ and 9 cm respectively. Find the ratio their areas.

- Watch Video Solution

7. Find the ratio between areas of $\triangle A O B$ and $\triangle C O D$, if $A B=3 C D$

- Watch Video Solution

8. In the given figure $D E|\mid B C$. If $A D=1.5 \mathrm{~cm}, B D=2 A D$, then find $\frac{a r(\triangle \mathrm{ADE})}{a r(\text { trapezium BCED })}$

9. D, E and F are the mid-points of sides of $\triangle A B C . \mathrm{P}, \mathbf{Q}, \mathbf{R}$ are the mid-points of sides DEF. This process of marking the mid-points and forming a new triangle is continued. How are the areas of these triangles related?

- Watch Video Solution

2. Two isosceles triangles are having equal vertical angles and their areas are in the ratio $9: 16$. Find the ratio of their corresponding altitudes.

- Watch Video Solution

3. $\triangle A B C$ and $\triangle B D C$ are on the same base BC . Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

- Watch Video Solution

Topic 3 Area Of Similar Triangles Long Answer Type Questions li

1. Prove that "the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".
2. If the areas of two-similar triangles are equal, prove that the they are congruent.

- Watch Video Solution

Topic 4 Pythagorean Triplets Multiple Choice Questions

1. In $\triangle P Q R, \angle P Q R=90^{\circ}$, The correct relation with respect in
$\triangle P Q R$ is :

A. $P R^{2}=P Q^{2}-Q R^{2}$
B. $P Q^{2}=Q R^{2}-P R^{2}$
C. $P R^{2}=P Q^{2}+Q R^{2}$
D. $Q R^{2}=P Q^{2}-P R^{2}$

Answer: C
2. In $\triangle A B C, \angle A B C=90^{\circ}$, If $A C=(x+y) \quad$ and $B C=(x-y)$, then length of $\mathbf{A B}$ is :
A. $x^{2}-y^{2}$
B. $2 x y$
C. $2 \sqrt{x y}$
D. $x^{2}-y^{2}$

Answer: C

- Watch Video Solution

3. Which one of the following groups is a pythagorean triplet ?
A. $3,4,5$
B. $1,2,3$
C. $2,3,4$
D. $9,10,14$

Answer: A

- Watch Video Solution

4. The Pythagorean triplets among the following is :
A. $8,15,17$
B. $5,8,17$
C. $5,12,17$
D. $3,6,9$

Answer: A
5. Which one of the following is Pythagorean Triplet ?
A. $8,15,16$
B. $8,15,18$
C. $10,60,61$
D. $8,15,17$

Answer: D

- Watch Video Solution

6. "If the square of one side of a triangle is equal in the sum of squares on the other two sides, then those two sides contain a right angle ." This statement refers to :
A. Pythagoras theorem
B. Thales theorem
C. Converse of Thales theorem.
D. Converse of Pythagoras theorem

Answer: D

D Watch Video Solution

7. The length of a diagonal of a square of sides 5 cm is :
A. $5 \sqrt{2} \mathrm{~cm}$
B. $2 \sqrt{5} \mathrm{~cm}$
C. 10 cm
D. $10 \sqrt{2} \mathrm{~cm}$

Answer: A

- Watch Video Solution

8. From the figure, the length of $A D$ is :
A. 12 cm
B. 14 cm
C. 11 cm
D. 13 cm

Answer: D

- View Text Solution

9. A straight pole of height 2 ft casts a shadow of 6 ft long at a definate time. The height of another pole which casts a shadow of

12 ft at the same time is :
A. 3 ft
B. 4 ft
C. 8 ft
D. 20 ft

Answer: B

D Watch Video Solution

10. In a right-angles triangle, hypotenuse is I and the remaining two sides are a m and n. Then the correct relation is :
A. $m=+\sqrt{n^{2}-l^{2}}$
B. $n=+\sqrt{m^{2}-l^{2}}$
C. $m=+\sqrt{l^{2}-n^{2}}$
D. $l=+\sqrt{m^{2}-n^{2}}$

Answer: C

- Watch Video Solution

11. In $\triangle X Y Z$ if $X Y^{2}-Y Z^{2}=X Z^{2}$, then the hypotenuse and right angled vertex are :
A. XZ and $\angle X$
B. XY and $\angle Z$
C. YZ and $\angle X$
D. YZ and $\angle Y$

Answer: B

- Watch Video Solution

12. In a rhombus $A B C D$, diagonals intersects at 0 . The sum of $A C^{2}+B D^{2}$ are :

A. $4 A B^{2}$
B. $4 A C^{2}$
C. $4 B D^{2}$
D. $A A C^{2}$

Answer: A

- Watch Video Solution

13. In the figure $O A=A B=B C=C D=1$ unit. The unit of $O D$ is :

A. 1
B. 2
C. 3
D. 4

Answer: B
14. Which of the following are the side of the right-angles triangle

?

A. $36,17,18$
B. $20,30,10$
C. $35,27,18$
D. $41,40,9$

Answer: D

- Watch Video Solution

15. In a right-angled triangle $A B C$, if $\angle A B C=90^{\circ}$. Which of the
following is correct ?
A. $B C^{2}=A C^{2}+A B^{2}$
B. $A C^{2}=A B^{2}+B C^{2}$
C. $A B^{2}=A B^{2}+A C^{2}$
D. $B C^{2}=A B^{2}+A C^{2}$

Answer: A

- Watch Video Solution

16. A vertical pole of 10 cm casts a shadow of 8 m at a certain time of the day. The length of the shadow cast by a tower standing next of the pole of height 30 m is :
A. 37.5 m
B. 36 m
C. 32.5 m

D. 32 m

Answer: A

- Watch Video Solution

Topic 4 Pythagorean Triplets Very Short Answer Type Questions

1. What is the name given the largest side of a right angled triangle ?

- Watch Video Solution

2. In a $\Delta P Q R, \mathbf{N}$ is point on PR such that $Q N \perp P R$, also $P N . N R=Q N^{2}$. Then find $\angle P Q R$
3. If \mathbf{S} is a point on side $P Q$ of a $\triangle P Q R$ such that $P S=Q S=R S$, then find $P R^{2}+Q R^{2}$

- Watch Video Solution

4. A man gose 15 m due west and then 8 m due north. Calculate the distance from the starting point.

- Watch Video Solution

5. A ladder 17 m long reaches a window of a building 15 m above the ground. The distance of the foot of the ladder from the building is?

Topic 4 Pythagorean Triplets Short Answer Type Questions

1. $A B C D$ is square F is the mid-point of All. $B E$ is one third of $B C$. If the area of $\triangle F B E$ is $108 \mathrm{~cm}^{2}$, Find the length of $A C$.

- Watch Video Solution

2. In this figure $\angle P Q R=90^{\circ}$ and $Q S \perp P R$. If $Q P=1.5 \mathrm{~cm}$ and $Q R=2 \mathrm{~cm}$, calculate the length of $Q S$.

Q
 R

- Watch Video Solution

3. The sides of right-angled triangle containing the right angle are 5 cm and 12 cm . Find its hypotenuse.

4. Find the length of the diagonal of a square of side 12 cm .

- Watch Video Solution

5. The length of the diagonal of a rectangular playground is 125 m and length of one side is 75 m . Find the length of the other side.

- Watch Video Solution

6. In

LAW,
$\angle L A W=90^{\circ}, \angle L N A=90^{\circ}$ and $L W=26 \mathrm{~cm}, L N=6 \mathrm{~cm}$ and $A N=8 \mathrm{~cm}$. Calculate the length of WA.

- Watch Video Solution

7. In the given triangle $\mathrm{PQR}, \angle Q P R=90^{\circ}, P Q=24 \mathrm{~cm}$ and $Q R=26 \mathrm{~cm}$ and in $\triangle P K R, \angle P K R=90^{\circ}$ and $K R=8 \mathrm{~cm}$, find

PK

- Watch Video Solution

8. In an equilateral triangle $A B C, A D$ is drawn perpendicular to $B C$ meeting BC in A Prove that $A D^{2}=x B D^{2}$ Find \mathbf{x}.

9. A man steadily gores 10 m due east and then $\mathbf{2 4} \mathrm{m}$ due north. Find the distance from the starting point.

- Watch Video Solution

Topic 4 Pythagorean Triplets Long Answer Type Questions

1. In $\triangle A B C, A B=B C$, BD is the altitude for the base AC of triangle $D C=x$ units $B D=2 x-1$ units, $B C=(2 x+1)$ units. Find the measure of the sides of a triangle.

- Watch Video Solution

2. In $\triangle A B C, \mathrm{C}$ is a point on BD such that $\mathrm{BC}: \mathrm{CD}=1: 2$ and $\triangle \mathrm{ABC}$ is an equilateral triangle Prove that $A D^{2}=7 A C^{2}$

- Watch Video Solution

3. In $\triangle A B C . \angle A=90^{\circ}, A D \perp B C$ and $\angle B=45^{\circ}$, If $A R=x$, find AD in terms of x.
4. The perimeter of angled triangle is $\mathbf{3 0} \mathbf{~ c m}$ and its hypotenuse is

13 cm . Find the length of other two sides of triangle.

- Watch Video Solution

5. ABCD is a trapezium is which $A B|\mid C D$ and $B C \perp A B$. If $A B=7.5 \mathrm{~cm}, A D=13 \mathrm{~cm}$ and $C D=12.5 \mathrm{~cm}$, find the length of BC.

- Watch Video Solution

6. A ladder of length $2.6 m$ is leaned against a wall. When it is at distance of $2.4 m$ from the foot of the wall, the top of the ladder touches the bottom edge of the window in the wall. It the foot of
the ladder is moved 1.4 m towards the wall, it touches the top edge of the window. Find the height of the window.

- Watch Video Solution

7. In $\triangle A B C \angle B A C=90^{\circ} \angle B:=\angle C=1: 2$ and $A C=4 \mathrm{~cm}$.

Calculate the length of DB.

- View Text Solution

Topic 4 Pythagorean Triplets Long Answer Type Questions Ii

1. Prove that "In a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides".
2. Derive the formula for height and area of an equilateral triangle.

- Watch Video Solution

3. In $\triangle A B C, a+b=18$ units, $b+c=25$ units and $c+a=17$ units. What type of triangle is $A B C$? Give reason.

Topic 5 Pythagoras Theorem Short Answer Type Questions

1. In the given figure , BD \perp AC .Prove that

$$
A B^{2}+C D^{2}=A D^{2}+B C^{2}
$$

D Watch Video Solution

Topic 5 Pythagoras Theorem Long Answer Type Questions

1. In $\triangle A B C, B D: C D=3: 1$ and $A D \perp B C$. Prove that $2\left(A B^{2}-A C^{2}\right)=B C^{2}$.

- Watch Video Solution

2. In an equilateral triangle $\mathrm{ABC}, A D \perp B C$. Prove that :
$A B^{2}+C D^{2}=\frac{5}{4} A C^{2}$

(-) Watch Video Solution

3. ABC is a right angled triangle with $\angle C=90^{\circ}$, $B C=a, A C=b, \quad C D \perp A B \quad$ and $\quad C D=p . \quad$ Show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

4. ABCD is a rhombus. Prove that $A C^{2}+B D^{2}=4 A B^{2}$

D Watch Video Solution

Topic 5 Pythagoras Theorem Long Answer Type Questions li

1. In a right angled triangle, square on the hypotenuse is equal to sum of the squares on the other sides. Prove the statement.

- Watch Video Solution

2. "If the square on the longest sides of a triangle is equal to the sum of the squares on the other two sides then those two sides contain a right angle." Prove.

- Watch Video Solution

3. In $\triangle A B C, C D \perp A B, C A=2 A D$ and $B D=3 A D$. Prove that $\angle B C A=90^{\circ}$

- Watch Video Solution

4. The shortest distance AP from a point ' A ' to QR is $12 \mathrm{~cm} . \mathrm{Q}$ and R are respectively 15 cm and 20 cm from ' A ' and on opposite sides of AP. Prove that $\angle Q A R=90^{\circ}$

- Watch Video Solution

Textbook Corner Exercise 21

1. Fill in the blank unsing the correct word given in brackets :
(i) All circle are \qquad (congruent, similar)
(ii) All squares are ___ (similar, congruent)
(iii) All __ triangles are similar.(isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a)
their corresponding angles are and (b) their corresponding sides are \qquad . (equal, proportional)

- Watch Video Solution

2. Give two different examples of pair of
similar figures.

-
 Watch Video Solution

3. State whether the following quadrilaterals are similar or not:

4. In Fig, (i) and (ii), $D E|\mid B C$. Find EC in (i) and AD in (ii).

- Watch Video Solution

2. E and F are points on the sides $P Q$ and $P R$ respectively of Δ PQR. For each of the following cases, state whether EF || QR:
(i) $P E=3.9 \mathrm{~cm}, E Q=3 \mathrm{~cm}, P F=3.6 \mathrm{~cm}, F R=2.4 \mathrm{~cm}$
(ii) $P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}, R F=9 \mathrm{~cm}$
(iii)
$P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}, P F=0.36 \mathrm{~cm}$
3. In Fig. LM || CB and LN \|CD , prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

- Watch Video Solution

4. In Fig $D E\left|\mid A C\right.$ and $A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

5. In Fig $D E \| O Q$ and $D F \| O R$. Show that $E F|\mid Q R$.

- Watch Video Solution

6. In Fig A, B and C are points on OP, OQ and OR respectively such that $A B|\mid P Q$ and $A C$ || $P R$. Show that $B C$ || $Q R$.

- Watch Video Solution

7. Using Theorem , prove that a line drawn thought the mid- point of one side of a triangle parallel to another side bisects the third side .(Recall that you have proved it in class IX).

- Watch Video Solution

8. Using Theorem, prove that the line joining the mid-point of any two sides of a triangle is parallel to the third side. (Recall
that you have done it is class IX).

- Watch Video Solution

9. ABCD is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point 0 . Show that $\frac{A O}{B O}=\frac{C O}{D O}$

- Watch Video Solution

10. The diagonals of a quadriateral ABCD intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$ show that ABCD is a trapezium.

- Watch Video Solution

Textbook Corner Exercise 23

1. State which pairs of triangles in Fig are similar. Write the similarity criterion used by you for answering the question also write the pairs of similar triangles in the symbolic form:

2. In the figure given below, $\triangle O D C-\triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle D O C, \angle D C O$ and $\angle O A B$

- Watch Video Solution

3. Diagonlas $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point 0 . using a similarity criterion for
two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

- Watch Video Solution

4. In Fig. $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\lfloor 1=\lfloor 2$. Show that $\triangle P Q S \sim \Delta T Q R$

5. S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q-\Delta R T S$.

- Watch Video Solution

6. In Fig. If $\triangle A B E=A C D$, show that $\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

7. In Fig. Altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :
(i) $\triangle A E P \sim \triangle C D P$
(ii) $\triangle A B D \sim \Delta C B E$
(iii) $\triangle A E P \sim \Delta A D B$
(iv) $\triangle P D C \sim \triangle B E C$

- Watch Video Solution

8. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and BE intersects CD at F . show that $\triangle A B E \sim \Delta C F B$

- Watch Video Solution

9. In Fig , ABC and AMP are two right triangles, right angled at B and M respectively. Prove that :
$\triangle A B C \sim \Delta A M P$

- Watch Video Solution

10. GD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of
$\triangle A B C$ and and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that:
$\frac{C D}{G H}=\frac{A C}{F G}$

- Watch Video Solution

11. In Fig E is a point on side $C B$ produced of an isosceles triangle

ABC with $\mathrm{AB}=\mathbf{A C}$. If $A D \perp B C$ and $E F \perp A C$, prove that
$\triangle A B D \sim \Delta E C T$

- Watch Video Solution

12. sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to side PQ and QR median PM of
$\Delta P Q R$ (see Fig). Show that $\triangle A B C \sim \Delta P Q R$

- Watch Video Solution

13. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show $C A^{2}=C B . C D$

- Watch Video Solution

14. side $A B$ and $A C$ and median $A D$ od a triangle $A B C$ are respectively proportional to side $P Q$ and $P R$ and median $P M$ of
another triangle PQR. Show that $\triangle A B C \sim \Delta P Q R$

- Watch Video Solution

15. A verticle pole of height 6 m casts a shadow 4 m long on the ground, and at the same time a tower on the same ground casts a shadow 28 m long. Find the height of the tower.

- Watch Video Solution

16. If $A D$ and $P M$ are median of triangles $A B C$ and $P Q R$ respectively
where $\triangle A B C-\triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

Textbook Corner Exercise 24

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be , respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathbf{E F}=\mathbf{1 5 . 4} \mathbf{c m}$, find $\mathbf{B C}$

- Watch Video Solution

2. Diagonals of a trapezium ABCd with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD.

- Watch Video Solution

3. In the figure given below, ABC and DBC are two triangles on the same base BC . If AD intersects BC at O, show that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

- Watch Video Solution

4. D, E and F are respectively the mid-points of the sides $A B, B C$ and CA of a $\triangle A B C$. Prove that by joining these mid-points D, E and F, the $\triangle A B C$ is divided into four congruent triangles
5. Prove that the ratio at the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

6. Prove that the area of an equilateral triangle described on one side of a square is equal of half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

7. $A B C$ and BDF are two equilateral triangles such that D is the mid -point of $B C$. Ratio of the areas of triangles $A B C$ and BDF is
8. Sides of two similar triangles are in the ratio 4:9 Areas of these triangles are in the ratio

- Watch Video Solution

Textbook Corner Exercise 25

1. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle, write the length of its hypotenuse.
7cm, 24 cm, 25 cm
2. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $\mathbf{P M} \perp \mathbf{Q R}$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

3. In Fig. ABD is a triangle right angled at A and $A C \perp B D$ show that
(i) $A B^{2}=B C \cdot B D$, (ii) $A C^{2}=B C \cdot D C$, (iii) $A D^{2}=B D \cdot C D$

- Watch Video Solution

4. $A B C$ is an isosceles triangle right angled at C. Prove that

$$
A B^{2}=2 A C^{2}
$$

- Watch Video Solution

5. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

- Watch Video Solution

6. $A B C$ is an equilateral of side $2 a$. Find each of its altitudes.

- Watch Video Solution

7. Prove that sum of the squares of the side of a rhombus is equal to the to the sum of the squares of its diagonals.

- Watch Video Solution

8. In the figure given below, O is point in the interior of a triangle $\mathrm{ABC}, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i)
$O A^{2}+O B^{2}+O C^{2}+O D^{2}-O E^{2}-O F^{2}=A R^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

- Watch Video Solution

9. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.
10. A guy wire attached to a vertical pole of height 18 m is $\mathbf{2 4} \mathbf{~ m}$ long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

- Watch Video Solution

11. An aeroplane leaves an airpot and flies due north at a speed of $1,000 \mathrm{~km}$ per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1,200 \mathrm{~km}$ per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops .

- Watch Video Solution

13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angale at C prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

- Watch Video Solution

14. The perpendicular from A on side BC of a $\triangle A B C$ intersects $\mathbf{B C}$ at \mathbf{D} such the $\mathrm{DB}=\mathbf{3 C D}$. Prove that $\mathbf{2} A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

15. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

D Watch Video Solution

16. In an equilateral triangle, prove that three times the square pf one side is equal to four times the square of one of its altitudes.
17. Tick the correct answer and justify : In
$\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$

The angle B is :

- Watch Video Solution

Textbook Corner Exercise 26

1. In the figure given below, PS is the bisector of $\angle Q P R$ of
$\triangle P Q R$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$

- Watch Video Solution

2. In Fig. D is point on hypotenuse $A C$ of $\Delta A B C, B D \perp A C D M \perp B C$ and $D N \perp A B$. Prove that :
(i) $D M^{2}=D N \cdot M C$, (ii) $D N^{2}=D M \cdot A N$

- Watch Video Solution

3. In Fig . ABC is a triangle in which
$\angle A B C<90^{\circ}$ and $A D \perp B C$.

$$
A C^{2}=A B^{2}+B C^{2}-2 B C . B D
$$

- Watch Video Solution

4. In Fig . ABC is a triangle in which
$\angle A B C<90^{\circ}$ and $A D \perp B C$.

$$
A C^{2}=A B^{2}+B C^{2}-2 B C . B D
$$

- Watch Video Solution

5. In Fig. AD is a median of a triangle $A B D$ and $A M \perp B C$. Prove that :

$$
A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}
$$

- Watch Video Solution

6. Prove that the sum of the squares of the diagonals of parallelogram is equal to sum of the squares of its sides.

- Watch Video Solution

7. In Fig . two chords $A B$ and CD intersect each other at the point

 P. prove that :$\triangle A P C \sim \Delta D P B$

- Watch Video Solution

8. In Fig. two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that (i)
$\Delta P A C \sim \Delta P D B$, (ii) PA $\cdot \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$

- Watch Video Solution

9. In Fig. D is a point on side BC of $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$ prove that AD is the bisector of $\angle B A C$.

- Watch Video Solution

10. Nazima is fly fishing in a stream. The tip of her fishing rod is $1.8 m$ above the surface of water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her rod to the fly) is taut, how much string does she have out(see fig)? If she pulls in the string at the rate of 5 cm per second, what will be the
heriozontal distance of the fly from her after 12 seconds.

0
Watch Video Solution

