đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PHYSICS (KANNADA

ENGLISH)

ELECTRICITY

Topic 1 Multiple Choice Questions

1. What is the SI unit of electric current?
A. Ampere
B. Ohm
C. Volt
D. Watt

Answer: A

D Watch Video Solution

2. No current flows between two charged bodies when connected if they have same.
A. capacity
B. potential
C. charge
D. none of the above

Answer: A::C

D Watch Video Solution

Topic 1 Match The Column

	Column A		Column B
1.	Unit of electric potential	(a)	algebraically
2.	Potential difference is measured by	(b)	Ohm's law
3.	Current carriers in a conductor are	(c)	-()-
4.	Have positive charge	(d)	Volt
5.	Charge on a body exists in	(e)	-(A)-
6.	Number of electrons in 1 C charge	(f)	Protons
7.	Charges can be added	(g)	Voltmeter
8.	A battery	(h)	$-Y A^{\circ}$
9.	$\mathrm{V} \propto \mathrm{I}$	(i)	6.25×10^{4}
10.	Symbol of rheostat	(i)	integral multiple of magnitude of charge on an electron
11.	Open switch .	(k)	electrons
12.	Ammeter	(I)	does work in moving electrons through a conductor.

- View Text Solution

Topic 1 Very Short Answer Type Questions

1. Define one volt (IV) potential difference.

2. Name the device that helps to maintain a potential difference anO!|~ a cnnductnr.

- View Text Solution

3. What does an electric circuit mean ?

- Watch Video Solution

4. State the relationship between 1 ampere and 1 coulomb.

D Watch Video Solution

5. What is meant by potential difference between two points?

- Watch Video Solution

6. Name the physical quantity which is same in
all the resistors when they are connected in se.ries.
7. Name the physical quantity whose unit is volt/ ampere.

- Watch Video Solution

8. A charge of 150 coulomb flows through a
wire in one minute. Find the electric current
flowing through it

- Watch Video Solution

9. Calculate the number of electrons constituting one coulomb of c.harge. (charge on 1 electron $=1.6 \times 10^{-19} \mathrm{C}$)

D Watch Video Solution

10. The voltage-current (V-I) graph of a metallic conductor at two different temperatures T_{1}
and T_{2} is shown below. At which temperature
is the resistance higher ?

- Watch Video Solution

11. A given length of a wire is doubled of itself and this process is repeated once again. By
what factor does the reeutance of the wire changes ?

D Watch Video Solution
12. 400 J of heat is produced in 4 s in a 4Ω resistor. Find potential difference acroes the resistor.

D Watch Video Solution
13. State in brief the meaning of a variable resistoL Draw a circuit diagram to illustrate its
function specially in the study of variation in current with the potential difference across a resistor.

D Watch Video Solution

14. What happens to the resistance of a conductor when its aru of cross-section is increased ?
15. Through which of the two wires, the electric current will flow more easily :
(i) a thick wire or (ii) a thin wire of the same material, and of the aame length when connected to the same source?

D Watch Video Solution

16. The resistance of a ralstor Is kept constant and the potential difference across its two
ends is decreased to half of its former value.

State the change that will occur in the current through it.

D Watch Video Solution

Topic 1 Short Answer Type Questions I

1. State the factors on which at a given
temperature the resistance of a cylindrical
conductor depends, State the S.I unit of resistivity.

- Watch Video Solution

2. Define electric wrrent. Name the particln that constitute electric current flowing through the metallic wires.

- Watch Video Solution

3. State the relation between work, charge and potential difference for an electric circuit.

Calculate the potential difference between the
two terminals of the battery if 100 joules of
work is required to transfer 20 coulombs of charge from one terminal of the battery to the other.

D View Text Solution

4. State the physical quantity which is equal to
the ratio of potential difference and curre.,t.

Define its SI unit.
5. List in a tabular form two differences between a voltmeter and an ammeter.

D Watch Video Solution

6. Draw a schematic diagram of an electric circuit comprising of 3 cells and an electric bulb, ammeter, plug-key in the ON mode and another with same components but with two bulbs in parallel and a volbneter across the combination.
7. Mention the condition under which charges
an move in a conductot Name the device
which is used to maintain this condition in an electric circuit

- Watch Video Solution

8. Calculate the resistance of a metal wire of length 2 m and area of cross section
$1.55 \times 10^{-6} \mathrm{~m}^{2}$, if the resistivity of the metal be $2.8 \times 10^{-8} \Omega \mathrm{~m}$?

D Watch Video Solution

9. A battery of 12 V is connected to a series combination of resistors $3 \Omega, 4 \Omega, 5 \Omega$ and 12Ω.

How much current would flow through the 12 W resistor ?
10. Calculate the work done in moving a charge of 2 coulombs across two points
having a potential difference of 12 V .

D Watch Video Solution

11. Calculate the electrical energy consumed by
a 1200 W toaster $\ln 30$ minutes.

- Watch Video Solution

12. What will be the cost of using the s.ime for

1 month if one unit of electricity costs ₹ 4 ?

D View Text Solution

13. Draw a schematic circuit diagram for a circuit in which three resistors R_{1}, R_{2} and R_{3}
a plug key under dosed condition, an ammeter are joined In series with a 5V battery. Also a voltmeter is connected to measure the potential difference across the resistor R_{1}

Topic 1 Short Answer Type Questions li

1. What is meant by saying that the potential difference between two points is 1 V ? .

- Watch Video Solution

2. What do the symbols given below represent in a circuit ? Write one function of each.

- Watch Video Solution

3. Draw symbol of :
(i) Rheostat, (ii) Volbneter, (iii) Electric bulb

D Watch Video Solution
4. Name and define S.I. unit of resistance.

Calculate the resistance of a resisto:r if the current flowing through it is 200 mA , when the applied potential difference is 0.8 V .

D Watch Video Solution

5. Define ruistance. Write the SI unit of resiatance. Match the correct range of ruiltivlty with the materials given :
(i)Conductors (a) $10^{-6} \Omega m$
(ii)Alloys
(b) 10^{12} to $10^{17} \Omega \mathrm{~m}$
(iii)Insulators
(c) 10^{-6} to $10^{-8} \Omega m$
6. Nichrome wire of length I and radius r has resistance of 10Ω. How would the resistance of the wire change when :
(i) Only length of the wire is doubled?
(ii) Only diameter of the wire is doubled ? Justify your answer .
7. Why element of electrical heating devices are made up of alloys ?

D Watch Video Solution

8. A wire of length I and area of aou-aection A wu dnwn into a wire of double Its length by melting orignial resistivity and resistance were ρ and R and resistance ?
9. An electric circuit consisting of a 0.5 m long
nichrome wire $X Y$, an ammeter, a voltmetu,
four cells. of 1.5 V each and a plug key wu Id up.
Draw a diagram of this drcuit in the 'ON' poiltlon. Following graph Wi8 plotted between the value of potential difference (V) and electric current (I). State the concluion that you draw about the relation between V
and I from thll graph.

D View Text Solution

10. Derive an expression for electric energy consumed in a device in terms of V, I and t ,
where V is the potential difference applied to
it, I is the current drawn by it and tis the time for which the current flows?

D Watch Video Solution

11. The resistance of a wire of 0.01 cm radius is
10Ω. If the resistivity of the material of the wire is 50×10^{-8} ohm meter, find the length of the wire.

D Watch Video Solution

12. There resistors of 3Ω each are connected to a battery of 3 V as shown. Calculate the current drawn from the battery.

D Watch Video Solution
13. In an electric field the work done in bringing a 2 coulomb charge from infinity to a
point A is 10 joules and in bringing the same charge to some another point 8 is 20 joules.

Find the potential difference between two points A and 8 . What would be the work done if the same charge is brought directly from A to 8 ?

D View Text Solution

14. The resistance per metre length of a wire is
10Ω. If the resistivity of the material of the
wire is 50×10^{-8} ohm metre, find the area of cross- section of the wire.

D Watch Video Solution

15. Three resistors of $5 \Omega, 10 \Omega$ and 15Ω are connected in series and the combination is connected to the battery of 30 V . Ammeter and voltmeter are connected in the circuit.

Draw a circuit diagram to connect all the devices in proper correct order. What is the
current flowing and potential difference across 10Ω resistance ?

D Watch Video Solution
16. Find out the reading of ammeter and voltmeter In the circuit given below :

D Watch Video Solution
17. Draw schematic diagram of a circuit consuting of a battery of five 2 V cells, a 5 ohm, a 10 ohm and a 15 ohm resistor and a plug key, all connected in series. Calculate the electric
current passing through the above circuit when the key is dosed.

D Watch Video Solution

18. An electric bulb is rated at $60 \mathrm{~W}, 240 \mathrm{~V}$.

Calculate its resistance. If the voltage drops to

192 V, calculate the power consumed and the
current drawn by the bulb. (Assume that the resistance of the bulb remains unchanged).

D Watch Video Solution

Topic 1 Long Answer Type Questions

1. What does an electric circuit mean ? Name a
device that helps to maintain a potential
difference acrou a conductor in a clrcuit. When
do we say that the potential difference across
a conductor is 1 volt ? Calcu1tte the amount of
work done in shifting a charge of 2 coulombs
from a point A to B having potentials $110 \vee$ and 25 V respectively.

D Watch Video Solution

2. Name an instrument that measures electric current in a circuit. Define unit of electric current.
3. What the following symbols mean in an electric circuit.

D Watch Video Solution
4. Draw a closed circuit diagram consisting of
0.5 m long nichrome wire XY , an ammeter, a voltmeter, four cells of 1.5 V and a plug key.

- Watch Video Solution

5. Draw a labelled circuit diagram to study a relationship betwee,w potential difference (V) across the two ends of a conductor and the current (I) flowing thought it State the formula to show • how I in a conductor varies when V across it is increased stepwise. Show this relationship also on a schematic graph.
6. Calculate the resistance of a conductor if
the current flowing through it is 0.25 A when
the applied potential difference is 1.0 V .

D Watch Video Solution

7.

With the help of a circuit dillgram prove that
when a number of resistors are connected in parallel, the reciprocal of equivalent resistance of the combination is equal to the sum of the reciprocals of the individual resistances of the resistors. Find the resistance between A and B in the following network.

D Watch Video Solution

8. Two identical resistors each of resistance 10
ohm are connected in (i) series, (ii) parallel to
a battery of 6 V . Calculate the ratio of power
consumed by the combination of resistor in the two cases.

D Watch Video Solution
9. i] State Ohm's law
ii] Explain the factors on which the resistance of a conductor depends.

D Watch Video Solution
10. Give any two differences between an ammeter and a voltmeter.

D Watch Video Solution

11. How will you convert a given set of resistors so that the equivalent resistance is increased ?

Give reason for your answer.

D Watch Video Solution

12. In the given circuit diagram, calculate :
(a) the value of current through each resistor
(b) the total current in the circuit
(c) the total effective resistance of the circuit.

D Watch Video Solution
13. Two students perform experiments on two given ralstors R_{1} and R_{2} and plot the following V-I graphs. If $R_{1}>R_{2}$ which of the two diagrams correctly represent th.e situation on the plotted curves ? Justify your answer.

Graph 1

- Watch Video Solution

14. An electric lamp of 24Ω and a conductor of
6Ω are connected in parallel to a 12 V battery.

Calculate :
(i) Total resistance
(ii) Total current in the circuit Potential difference across the conductor.

D Watch Video Solution

15. Draw a circuit diagram for a circuit consisting of a battery of five cells of 2 volts
each, a 5Ω resistor, a 10Ω resistor and a 15Ω
resistor, an ammeter and a plug key, all connected in aeries. Also connect a voltmeter to record tht: potential difference across the 15Ω resistor and calculate :
(i) the electric current passing through the above circuit and
(ii) potential difference across 5Ω resistor when the key is closed.

D Watch Video Solution

Topic 2 Multiple Choice Questions

1. Three resistances of $4 \Omega, 5 \Omega$ and 20Ω are connected in parallel. Their combined resistance is :

D Watch Video Solution

2. Three resistors of 1Ω each are connected to
form a triangle. The resistance between any two terminals is :
A. 3Ω
B. $\frac{1}{2} \Omega$
C. $\frac{2}{3} \Omega$
D. $\frac{3}{2} \Omega$

Answer: A::B::C

- Watch Video Solution

Topic 2 Match The Column

1. Match
 the
 Column:

1.	Resistivity	(a)	Ampere
2.	Energy	(b)	Ohm metre
3.	Resistance	(c)	Kilowatt hour
4.	Current	(d)	Ohm

- Watch Video Solution

Topic 2 Very Short Answer Type Questions

1. The SI unit of resistivity is
2. What is commercial unit of electric energy ?

- Watch Video Solution

3. On what principle is an electric bulb based ?

- Watch Video Solution

4. What is electric power ? State its SI unit.

- Watch Video Solution

5. Name the instrument used for measuring :
(i) Potential difference (ii) Current

D Watch Video Solution

6. Explain the following

Why is tungsten used almost exclusively for
filament of electric lamps?

- Watch Video Solution

7. In a circuit if two resistors of 5Ω and 10Ω

 are connected in series, compare the current passing through the two resistors.
D Watch Video Solution

8. How is an ammeter connected in a circuit to measure the current flowing through it ?

D Watch Video Solution

9. Write the relation between resistance (R) of
filament of a bulb, its power (P) and a constant voltage V applied across it.

D Watch Video Solution

10. Which is having more resistance -a 220 V , 100 W bulb or a 220 V , 60 W bulb.

D Watch Video Solution

11. Find the minimum resistance that can be made using five resistors, each of 5Ω.

D Watch Video Solution

Topic 2 Short Answer Type Questions I

1. A potential difference of 220 V is applied across a resistance of 440Ω in an electrical appliance. Calculate the current drawn and heat energy produced in 20 seconds.

Watch Video Solution

2. Define least count with one example.

D Watch Video Solution

3. Name the physical quantity that determines
the rate at which energy is delivered by an electric cunent. State and define the unit of this physical quantity.
4. State the factors on which the heat produced in a current canying conductor depends. Give one practical application of this effect.

D Watch Video Solution

5. Why are electric bulbs filled with chemically inactive nitrogen or argon?
6. What is meant by the statement that the rating of fuse in a ciruit is 5 A .

- Watch Video Solution

7. Explain two disadvantages of series
arrangement for household circuit.

- Watch Video Solution

8. Why are electric bulbs filled with chemically
inactive nitrogen or argon?

D Watch Video Solution
9. Give reason for the

Fuse wire is placed in series with the device.

- Watch Video Solution

10. A student draws the following circuit diagrams for the experiment on studying the dependence of current on potential difference (V) across a resistor. Name the puts labelled as
A, B, C and D in the dugram.

- Watch Video Solution

11. While experimentally verifying ohm's law a student observed that pointer of the voltmeter coincide with 15th division when the voltmeter has a least count of 0.05 V . Find the observed reading of voltmeter.

D Watch Video Solution

12. An electric heater rated 800 W operates

6h/day. Find the cost of energy to operate it for 30 days at ₹ 3.00 per unit.
13. How much current will an electric bulb draw from 220 V source if the resistance of the bulb is 1200Ω ? If in place of a bulb, a heater of resistance 100Ω is connected to the sources calculate the current drawn by it .

D Watch Video Solution

14. Out of the two wires X and Y shown below, which one has greater resistance? Justify your
answer.

- Watch Video Solution

15. An electric iron of resistance 20Ω takes a
current of 5A. Calculate the heat developed in

30s

D Watch Video Solution

1. Why are coils of electric toasters and electric irons are made of an alloy rather than a pure metal?

- Watch Video Solution

2. Why is series arrangement not used for domestic circuits?
3. Why are copper and aluminium wires, usually employed for electricity transmission ?

- Watch Video Solution

4. What is an electric fuse ? What is its role in
the electric circuits ? Should it be placed on
the neutral wire or on the live wire ? Justify your answer.
5. Define electric power. A device of resistance
R is connected across a source of V voltage and draws a current I. Derive an expression for power in terms of voltage and resistance.

- Watch Video Solution

6. An electric bulb is connected to a 220 V generator. The current is 0.5 A . What is the power of the bulb?
7. State one difference between Kilowatt and Kilowatt hour. Express 1 kWh in joules.

- Watch Video Solution

8. A bulb is rated $5 \mathrm{~V}, 500 \mathrm{~mA}$. Calculate the rated power and resistance of the bulb when it glows.

- Watch Video Solution

9. Define electric power. An electric motor is
rated at 2 kW . Calculate the cost of using it for
2 hours daily for the month of September if each unit costs ₹ 6.00 .

- Watch Video Solution

10. State Ohm's Law. Draw a circuit diagram to
verify this law indicating the positive and negative terminals of the battery and the
meters. Also show the direction of current in the circuit .

- Watch Video Solution

11. Give reason for the following :

Why are copper and aluminium wires used as
connecting wires ?

- Watch Video Solution

12. Explain the following

Why is tungsten used almost exclusively for
filament of electric lamps?

D Watch Video Solution

13. Give reason for the

Why ie lead-tin alloy used for fuse wires ?

D Watch Video Solution
14. V-1 graph for a conductor is as shown in figure.

(i) What do you infer from this graph?
(ii) State the law exprased here.

Name the physical quantity repraented by the
slope of this graph and state its SI unit
15. Show four different ways in which three resistors of Rohm each may be connected in a circuit. In which case is the equivalent resistance of the combination.
i] Maximum
ii] Minimum

D Watch Video Solution

16. Can you run electric geysor with power rating $2 \mathrm{~kW}, 220 \mathrm{~V}$ on a 5 A line ? Give reason
to justify your answer.

- Watch Video Solution

17. a] Derive an expression for the equivalent resistance of three resistors RI, R2 and R3 connected in a parallel.
b] Fuse of $3 \mathrm{~A}, 5 \mathrm{~A}$ and 10 A are available, calculate and select the fuse for operating electric iron of I kW power at 220 V line.

D Watch Video Solution

18. Electrical reslstivities of some substances,

In ohm- meter, at $20^{\circ} \mathrm{C}$ are given as follows:

Silver	1.60×10^{-8}
Copper	1.62×10^{-8}
Tungsten	5.2×10^{-4}
Mercury	94×10^{-8}
Iron	10×10^{-8}
Nichrome	10×10^{-6}

(i) Out of the silver and copper, which is a better conductor of electric current and why?

- Watch Video Solution

19. Electrical reslstivities of some substances, In ohm- meter, at $20^{\circ} \mathrm{C}$ are given as follows:

Silver	1.60×10^{-8}
Copper	1.62×10^{-8}
Tungsten	5.2×10^{-8}
Mercury	94×10^{-8}
Iron	10×10^{-8}
Nichrome	10×10^{-6}

Which substance is preferred to be used for electrical transmission lines ? Give reason.

D Watch Video Solution

20. Electrical reslstivities of some substances, In ohm- meter, at $20^{\circ} \mathrm{C}$ are given as follows:

Silver	1.60×10^{-8}
Copper	1.62×10^{-8}
Tungsten	5.2×10^{-8}
Mercury	94×10^{-8}
Iron	10×10^{-8}
Nichrome	10×10^{-6}

Name the material that you would advise to be used in the heater elements of electric heating, device and why ?

- Watch Video Solution

21. In the above circuit, connect a nichrome wire of length ' between points X and Y and note the ammeter reading.

(i) When this experiment is repeated by inserting another nichrome wire of the same thickness but twice the length (2L), what changes are observed in the ammeter reading
(ii) State the changes that are observed in the ammeter reading if we double the area of cross-section without changing the length in the above experiment. Justify your answer in both the cases.

- Watch Video Solution

22. What is meant by saying that the potential difference between two points is 1 V ? .
23. Two devices of ratings $44 \mathrm{~W}, 200 \mathrm{~V}$ and 11 W ,

220 V are connected in series. The combination
is connected across a 440 V mains. The fuse of which of the two devices is likely to burn when switch is on ? Justify your ,answer.

D Watch Video Solution

24. Obtain an expression for equivalent resistance of two resistors connected in a series combination.

D Watch Video Solution

25. Semi-conductors are certain type, of metals which allow only partial current to pass through them in one direction only. In a solar cell, the pieces(wafers) of semi-conductor materials containing impurities are so arranged that potenti,ll difference develops between two regions of the semi-conductors when light falls on it. A lead storage battery is connected in the circuit which gets charged and can be used as and when desired.
(i) How does conductivity of semi-conductors

increases?

(ii) Name any four materials which act as a semiconductor .

D Watch Video Solution

26. A bulb is rated at $200 \mathrm{~V}-40 \mathrm{~W}$. What is its
resistantt ? 5 such bulbs are lighted for 5
hours. Calculate the electrical energy
consumed ? Find the cost if the rate is 5.10 per KWh.

D Watch Video Solution

27. Three resistors of $10 \Omega, 15 \Omega$ and 20Ω are connected in series in a circuit. If the potential drop across the 15Ω resistor is 3 V , find the current in the circuit and potential drop across the 10Ω resistor.

D Watch Video Solution

28. A circuit has a line of 5 A . How many lamps
of rating 40W, 200V can simultaneously run
on this line safely?

- Watch Video Solution

29. Calculate the resistance of a 1 Km long copper wire of area of cross section
$2 \times 10^{-2} \mathrm{~cm}^{2}$. The resistivity of copper is 1.623×10^{-8} ohm-meter.

D Watch Video Solution

30. Study the following electric circuit and calculate the energy drawn from the battery in

10 s.

D Watch Video Solution

31. Study the following electric circuit

Calculate the current flowing in the circuit and
(ii) Calculate the potential difference across
10Ω resistor

D Watch Video Solution

32. Calculate the amount of heat generated while transferring 90000 coulombs of charge between the two terminals of a battery of 40 V in one hour. Also determine the power expended in the process.
33. Study the following electric circuit and calculate the potential difference across 5Ω resistor.

34. An electric heater is used on 220 V supply and takes a current of 5 A . What is ita power ?

Calculate the per hour cost of using the beater if 1 unit costs Rs 6.0.

D Watch Video Solution

35.

Find the effective resistance between the points A and B in the network shown In the figure.
36. Find the current drawn from the battery by
the network of four resistors shown in the
figure.

- Watch Video Solution

37.

In the given circuit, calculate :
(i) the total resistance of the circuit
(ii) the current through the circuit, and (iii) the potential difference across R_{1} and R_{2}
38. A torch bulb is rated 5 V and 500 mA .

Calculate its (i) power, (ii) resistance, (iii) energy consumed when it is lighted for 4 hours.

- Watch Video Solution

39. A lamp rated 60 W and an electric iron rated 800 W are used for 6 hours everyday.

Calculate the total energy consumed in 30 days.
40. Draw a diagram to show how two resistors
R_{1} and R_{2} are connected in parallel.

D Watch Video Solution

41. In a circuit if two resistors of 4Ω and 8Ω
are connected in parallel, find out the ratio of current passing through the two resistors.
42. A wire of resistance R is cut into five equal parts. These parts are then connected in panllel If the equivalent resistance of this combination is R^{\prime}. Calculate the ratio $\mathrm{R} / \mathrm{R}^{\prime}$.

Draw a clrcuit diagram to show two resoton
R_{1} and R_{2} connected In parallel along with a battery, by, ammeter and voltmeter.

- Watch Video Solution

43. Amongst iron, silver, nichrome, tungsten, copper, which metal / alloy should be used to make the
(i) Heating element of electric geysers
(ii) Filament of Incandescent bulbs.

An electric iron has rating of $750 \mathrm{~W}, 220 \mathrm{~V}$.

Calculate:
(i) Current required and
(ii) Its resistance when it is in use.
44. Find the equivalent resistance across the two ends A and B of this circuit.

- Watch Video Solution

45. Calculate the amount of heat generated when 7200 coulombs of charge is transferred
in one hour through a potential difference of 50 V.

- Watch Video Solution

46. An electric iron contumea energy at a rate of 840 W whe.n heating la at the maximum and 360 W , when the heating la at the minimum. The voltage at which it is running is 220 V . What are the cunent and resistance values in each case ?
47. Five resistors are connected in a circuit as shown. Find the ammeter reading when circuit is closed.

D Watch Video Solution

48. Study the circuit shown in which three identical bulbs $B_{1} B_{2}$ and B_{3} are connected in parallel with a battery of 4.5 V
(i) What will happen to the glow of other two bulbs if the bulb B_{3} gets fused ?
(ii) If the wattage of each bulb is 1.5 W , how much reading will the ammeter A show when all the three bulbs glow simultaneously.
(iii) Find the total resistance of the circuit.

49. How many resistors of 88Ω are connected
in parallel to carry 10 A current on a 220 V line
?

Watch Video Solution

50. What is the total resistance of n resistors each of resistance ' R ' connected in :
(a) Series, (b) Parallel.

D Watch Video Solution
51. Calculate the resultant resistance of 3
resistors $3 \Omega, 4 \Omega$ and 12Ω connected in
parallel.
52. A 400 W refrigerator operates for 16 h per day. Calculate the cost to operate it for 30 days at ₹ 3.40 per kWh.

D Watch Video Solution

53. The resistance offered by a wire of unit length and unit cross-sectional area is called resistivity. For a material irrespective of length and area, the resistivity is constant. It is also
called specific resistance of the material.
Metals and alloys have low resistivity while insulators have high resistivity. Resistivity of two elements A and B are $1.62 \times 10^{-8} \Omega \mathbf{m}$ and $520 \times 10^{-8} \Omega \mathrm{~m}$ respectively. Out of these two, name the element that can be used to make :
(i) filament of electric bulb.
(ii) wires for electrical transmission lines.

- Watch Video Solution

Topic 2 Long Answer Type Questions

1. What is meant by electric current ? Name and define S.I. unil In a conductor electrons are
flowing from B to A. What is the direction of
conventional current ? Give justification for your answer. A steady current of 1 Ampere flows through a conductor. Calculate the number of electrons that flow through any section of conductor In 1 second. (Charge on electron $1.6 \times 10^{-19} C$)

2. What is meant by potential difference ?

 State its SI unit.(Watch Video Solution
3. Name a device that helps to maintain a potential difference across a conductor.
(Watch Video Solution
4. What is the lowest total resistance that can be secured by combinations of four coils of resistance $4 \Omega, 8 \Omega, 12 \Omega, 24 \Omega$

- Watch Video Solution

5. Establish a relationship to determine the equivalent resistance R of a combination of
three resistors having resistances R_{1}, R_{2} and
R_{3} connected In series. Calculate the equivalent resistance of the combination of
three resistors of $2 \Omega, 3 \Omega$ and 6Ω joined in parallel.

D Watch Video Solution
6. Derive an expression for Joule's law of heating.

D Watch Video Solution

7. Give two examples for applications of heating effect of electric current
8. 100 J of heat is produced each second in a 4
Ω resistor. Find the potential difference across the resistor.
(Watch Video Solution
9. A wire of resistivity p is pulled to double its
length. What will be its new resistivity?Watch Video Solution
10. Draw a schematic diagram of a circuit consisting of a battery of three cells of 2 V each, a 5Ω resistor, an 8Ω resistor and a 12Ω resistor, and a plug key, all connected in series.

D Watch Video Solution
11. Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker?
12. Derive an expression for the equivalent resistance of three resistors $R_{1} R_{2}$ and R_{3} connected in series.

D Watch Video Solution
13. Fuse of $3 A, 5 A$ and $10 A$ are available.

Calculate and select the fuse for operating electric iron of 1 kW power at 220 V line.
14. What is meant by the statement that the resistance of a wire is 1Ω ?

- Watch Video Solution

15. Two identical resistors each of resistance 12
Ω are connected (i) in series (ii) in parallel, to a battery of $\mathbf{6} \mathbf{V}$.

Calculate the ratio of power consumed in the combination of resistors in the two cases.
16. How is a voltmeter connected in the circuit

to measure the potential difference between

two points?

D Watch Video Solution
17. Explain the term : Heating effect of electric

current.

D
 Watch Video Solution

18. Derive an expression for the heat produced

by electric current and state Joule's Law.

- Watch Video Solution

19. Why are electric bulbs filled with chemically
inactive nitrogen or argon ?

- Watch Video Solution

20. State Ohm's law. Give mathematical relation between potentW difference (V), Current (I) and resistance (R) of a conductor . Draw an electric circuit for studying ohm's law.

- Watch Video Solution

21. When a 12 V battery is connected across an
unknown resistor there is a current of 2.5 mA
in the circuit. Find the value of the resistance of the resistor.
22. Two wires X and Y are of equal length and have equal resistances. If the resistivity of X is more than that of Y which wire is thicker and why ? For the electric circuit given below calculate :

(i) Current in each resistor
(ii) Total current drawn from the battery and
(iii) Equivalent resistance of circuit

D Watch Video Solution
23. Study the following current time graphs
from two different sources.

(i) Use above graphs to list word differences between the current in the two cases.
(ii) Name the type of current in two cases (iii) Identify one lource each for these currents.
(iii) What Is meant by the statement that uthe frequency of current in India is 50 Hz ?

24. Calculate the resistance of the wire using

 the graph.
D Watch Video Solution

25. How many 176Ω resistors (in parallel) are required to carry 5A on a 220 V line?

D
 Watch Video Solution

26. Define electric power. Derive relation between power, potential difference and resistance.

- Watch Video Solution

27. Draw a labelled circuit diagram to study
the relationship between the cunent (I)
flowing through a conductor and the potential difference (V) applied acro its two ends. State
the formula conelatlng the I in a conductor
and the V acroa it. Also show their relationship
by drawing a diagram.
What would be the resistance of a resistor if the current flowing through it is 0.15 A when
the potential difference across it is 1.05 V ?

- Watch Video Solution

28. Find out the following in the electric circuit given in the figure.
(i) Effective resistance of two 8Ω resistors In
the combination
(ii) Current flowing through 4Ω resistor
(iii) Potential difference across 4Ω resistor
(iv) Power dissipated in 4Ω resistor
(v) Difference in reading of ammeter A_{1} and
A_{2} (if any).

D Watch Video Solution

29. Two conductors A and B of resistances 5Ω and 10Ω respectively are first joined in parallel and then in series. In each case the voltage applied is 20 V .
(i) Draw the circuit diagram to show the combination of these conducton in each case.
(ii) In which combination will the voltage across the conductors A and B be the same ?
(iii) In which arrangement will the current through A and B be the same ?
(iv) Calculate the equivalent resistance for each arrangement.

Ncert Corner Intext Questions

1. What does an electric circuit mean ?

- Watch Video Solution

2. Define the unit of current.

- Watch Video Solution

3. Calculate the number of electrons

 constituting one coulomb of charge.- Watch Video Solution

4. Name a device that helps to maintain a potential difference across a conductor.

5. What is meant by saying that the potential

 difference between two points is 1 V ?- Watch Video Solution

6. How much energy is given to each coulomb of charge passing through a 6 V battery?

- Watch Video Solution

7. On what factors does the resistance of a conductor depend?

- Watch Video Solution

8. Will current flow more easily through a thick
wire or a thin wire of the same material, when
connected to the same source? Why?

- Watch Video Solution

9. Let the resistance of an electrical component remains constant while the potential difference across the two ends of the components decreases to half of its former value. What change will occur in the current through it ?

- Watch Video Solution

10. Why are coils of electric toasters and electric irons made of an alloy rather than a

pure metal?

D Watch Video Solution

11. Use the data in Table 12.2 to answer the following-
(a) Which among iron and mercury is a better

conductor ?

(b) Which material is the best conductor?

- View Text Solution

12. Draw a schematic diagram of a circuit consisting of a battery of three cells of 2 V each, a 5Ω resistor, an 8Ω resistor and a 12Ω resistor, and a plug key, all connected in series.

D Watch Video Solution

13. Redraw the circuit of question 1 , putting in an ammeter to measure the current through the resistors and a voltmeter to measure potential difference across the 12Ω resistor.

What would be the readings in the ammeter and the voltmeter?

- Watch Video Solution

14. Judge the equivalent resistance when the
following are connected in parallel

$\rightarrow \quad$ a. 1Ω and $10^{6} \Omega$. b. 1Ω and $10^{3} \Omega$ and $10^{6} \Omega$

- Watch Video Solution

15. An electric lamp of 100Ω, a toaster of resistance 50Ω, and a water filter of resistance
500Ω are connected in parallel to a 220 V source. What is the resistance of an electric iron connected to the same source that takes
as much current as all three appliances and what is the current through it?

- Watch Video Solution

16. What are the advantages of connecting electrical devices in parallel with the battery instead of connecting them in series?

D Watch Video Solution

17. How can three resistors of resistances
$2 \Omega, 3 \Omega$ and 6Ω be connected to give a total resistance of a] 4Ω. b] 1Ω ?

D Watch Video Solution

18. What is the lowest total resistance that can

be secured by combinations of four coils of
resistance $4 \Omega, 8 \Omega, 12 \Omega, 24 \Omega$

- Watch Video Solution

19. Why does the cord of an electric heater not
glow while the heating element does?

- Watch Video Solution

20. Compute the heat generated while transferring 96000 coulomb of charge in one hour through a potential difference of 50 V .

- Watch Video Solution

21. An electric iron of resistance 20Ω takes a
current of 5 A . Calculate the heat developed in

30 sec.
22. What determines the rate at which energy

is delivered by a current?

- Watch Video Solution

23. An electric motor takes 5 A from a 220 V
line. Determine the power of the motor and
the energy consumed in 2 h .

- Watch Video Solution

Textbook Exercises

1. A piece of wire of resistance R is cut into five
equal parts. These parts are then connected in
parallel. If the equivalent resistance of this
combination is R^{\prime} then the ratio R / R^{\prime} is -
A. $\frac{1}{25}$
B. $\frac{1}{5}$
C. 5
D. 25

Answer: B
2. Which of the following terms does not represent electrical power in a circuit?
A. $I^{2} R$
B. $I R^{2}$
C. VI
D. $\frac{V^{2}}{R}$

Answer: B
3. An electric bulb is rated 220 V and 100 W .

When it is operated on 110 V , the power consumed will be-
A. 100 W
B. 75 W
C. 50 W
D. 25 W

Answer: B

- Watch Video Solution

4. Two conducting wires of the same material and of equal. lengths and equal diameters are
first connected in series and then parallel in a circuit across the same potential difference.

The ratio of heat produced in series and parallel combinations would be -
A. 1:2
B. 2 : 1
C. 1: 4
D. $4: 1$

Answer: A::D
(Watch Video Solution
5. How is a voltmeter connected in the circuit to measure the potential difference between two points?
6. A copper wire has diameter 0.5 mm and resistivity of $1.6 \times 10^{-8} \Omega \mathrm{~m}$. what will be the length of this wire to make its resistance 10Ω ? How much does the resistance change if the diameter is doubled?

- Watch Video Solution

7. The values of current I flowing in a given
resistor for the corresponding values or potential difference V across the resistor are
given below

I (amperes)	0.5	1.0	2.0	3.0	4.0
V (volts)	1.6	3.4	6.7	10.2	13.2

Plot a graph between V and I and calculate the resistance of that resistor.

- Watch Video Solution

8. When a 12 V battery is connected across an
unknown resistor there is a current of 2.5 mA
in the circuit. Find the value of the resistance
of the resistor.
9. A battery of 9 V is connected in series with resistors of $0.2 \Omega, 3 \Omega, 0.4 \Omega$ and 12Ω respectively. How much current would flow through the 12Ω resistors ?

- Watch Video Solution

10. How many 176Ω resistors (in parallel) are required to carry 5A on a 220 V line?
11. Show how you would connect three resistors, each of resistance 6Ω so that combination has a resistance of
(i) 9Ω (ii) 4Ω

D Watch Video Solution

12. Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 W .

How many lamps can be connected in parallel
with each other across the two wires of 220 V

line if the maximum allowable current is 5 A ?

D Watch Video Solution

13. A hot plate of an electric oven connected to
a 220 V line has two resistance coils A and B,
each of 240 resistance, which may be used separately, in series, or in parallel. What are the currents in the three cases?

D Watch Video Solution
14. Compare the power used in the 2Ω resistor in each of the following circuits: (i) a 6 V battery in series with 1Ω and 2Ω resistors, and (ii) a 4 V battery in puallel with 12Ω and 2 Ω resistors.

- Watch Video Solution

15. Two lamps, one rated 100 W at 220 V , and the other 60 W at 220 V , are connected in parallel to elecbic mains supply. What currnent
is drawn from the line if the supply voltage is

220 V?

D Watch Video Solution

16. Which uses more energy, a 250 W TV set in

1 hr or a 1200 W toaster in 10 minutes?

D Watch Video Solution

17. An electric heater of resistance 8Ω draws 15

A from the service mains 2 hours. Calculate the
rate at which heat is developed in the heater.

- Watch Video Solution

18. Why is the tungsten used almost exclusively for filament of electric lamps?

- Watch Video Solution

19. Why are the conductors of electric heating devices, such as bread-toaster and elecbic
irons, made of an alloy rather than a pure

metal ?

D Watch Video Solution
20. Why is the series arrangement not used for domestic circuits?

D Watch Video Solution

21. How does the resistance of a wire vary with
its, area of cross-section ?
22. Why are copper and aluminium wires

usually employed for electricity transmission ?

- Watch Video Solution

