©゙doubtnut
 India's Number 1 Education App

CHEMISTRY

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE
 PAPERS

CHEMICAL THERMODYNAMICS AND ENERGETIC

Example

1. A system consisting of 1 mole of an ideal gas undergoes an isothermal expansion at 25° from 1.0 bar to a lower pressure while generating 100 J of work. What is the final pressure of the system if the external pressure of the system is constant of 0.1 bar?
A. 1.23 bar
B. 0.712 bar
C. 0.958 bar

D. 0.664 bar

Answer: B

- Watch Video Solution

2. Two litres of an ideal gas at a pressure of 10 atm expands isothermally at $25^{\circ} \mathrm{C}$ into a vacuum until its total volume is 10 litres. How much heat is absorbed and how much work is done in the expansion ?
A. 0,0
B. 0,2
C. 3,0
D. 1.5,1.5

Answer: A

D Watch Video Solution

3. 1 g of graphite is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure according to the equation

C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
During the reaction, temperature rises from 298 K to 299 K . If the heat capacity of the bomb calorimeter is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at 298 K and 1 atm ?
A. $-2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-5.46 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $5.46 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

Answer: A

(D) Watch Video Solution

4. For
reaction,
$\Delta H=10000 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=25 \mathrm{~kJ} \mathrm{k}^{-1} \mathrm{~mol}^{-1}$. The minimum temperature, above which the reaction would be spontaneous is
A. $127^{\circ} \mathrm{C}$
B. $400^{\circ} \mathrm{C}$
C. $75^{\circ} C$
D. $410^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

5. Calculate ΔG^{Θ} for the conversion of oxygen to ozone, $\left(\frac{3}{2}\right) O_{2}(g) \Leftrightarrow O_{3}(g) a t 298 K$, of K_{p} for this conversion is 2.47×10^{-29}.
A. $1.63 \mathrm{kJmol}^{-1}$
B. $164 \mathrm{kJmol}^{-1}$
C. $16.3 \mathrm{kJmol}^{-1}$
D. $1630 \mathrm{kJmol}^{-1}$

Exercise 1

1. Thermodynamics is not concerned about....
A. energy changes involvedin a chemical reaction
B. the extent to which a chemical reaction proceeds
C. the rate at which a reaction proceeds
D. the feasibility of a chemical reaction

Answer: C

- Watch Video Solution

2. Which of the following statement is correct?
A. The presence of reacting species in a covered beaker is an example of open system
B. There is an exchange of energy as well as matter between the systemm and the surroundings in a closed systemm
C. the presence of reactants in a closed vessel made up of copper is an example of a closed system
D. The presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system.

Answer: C

- Watch Video Solution

3. Which of the following is the intensive quantity?
A. Enthalpy and temperature
B. Volume and temperature
C. Enthalpy and volume
D. Temperature and refractive index

Answer: D

- View Text Solution

4. A thermodynamics state function is a quantity
A. used to determine heat changes
B. whose value is independent of path
C. used to determine pressure volume work
D. whose value depends on temperature only

Answer: B

5. During the adiabatic process,
A. pressure is maintained constant
B. gas is isothermally expanded
C. there is a perssure volume work
D. The system changes heat with surrounding

Answer: C

- View Text Solution

6. If W is the amoung of work done by the system and q is the amount of heat supplied to the system, identify the type of the system.
A. isolated system
B. closed system
C. open system
D. system with thermally conducting walls

Answer: B

D View Text Solution

7. Which of the following is an intensive property?
A. Temperature
B. Viscosity
C. Surface tension
D. All of these

Answer: D

D Watch Video Solution

8. Which of the following is the correct option for the free expansion of an ideal gas under adiabatic condition?
A. $q=0, \Delta T<0, W \neq 0$
B. $q=0, \Delta T \neq 0, W=0$
C. $q \neq 0, \Delta T=0, W=0$
D. $q=0, \Delta T=0, W=0$

Answer: D

- Watch Video Solution

9. Five moles of a gas is put through a series of changes as shown graphically in a cyclic process. The process during $A \rightarrow B, B \rightarrow C$ and $C \rightarrow A$ respectively are
A. isochoric, isobaric, isothermal
B. isobatic, isochoric,isothermal
C. isothermal, isobaric, isochoric
D. isochoric, isothermal, isobaric

D View Text Solution

10. A process in which the system does not exchange heat with the surroundings is known as
A. isothermal
B. isobaric
C. isochoric
D. adiabatic

Answer: D

D Watch Video Solution

11. In which process net work done is zero ?
A. Cyclic
B. Isobaric
C. Adiabatic
D. Free expansion

Answer: D

- Watch Video Solution

12. Which of the given properties depends on the manner in which a change is brought about?
(i) ΔE
(ii) q
(iii) W
A. Only (i)
B. Both (i) and (ii)
C. Both (ii) and (iii)

Answer: C

- Watch Video Solution

13. Which is correct for an endothermic reaction ?
A. ΔH is positive
B. ΔH is negative
C. ΔE is negative
D. ΔH is zero

Answer: A

- Watch Video Solution

14. If a refrigerator's door is opened then, we get
A. room heated
B. room cooled
C. more amount of heat is passed out
D. no effect on room

Answer: C

- View Text Solution

15. Match the columns for the different types of system in thermomdynamics.
A. 1-A,2-B,3-C
B. 1-B,2-A,3-C
C. 1-A,2-C,3-A
D. 1-C,2-B,3-A

D View Text Solution

16. The change in the internal energy for an isolated system at constant volume is
A. $\Delta U \neq 0$
B. $\Delta U=\Delta E+\Delta W$
C. $\Delta U=0$
D. none of these

Answer: C

D Watch Video Solution

17. If a gas, at constant temperature and pressure expands, then its
A. internal energy increases and then decreases
B. internal energy increases
C. internal energy remains the same
D. internal energy decreases

Answer: C

- Watch Video Solution

18. Select the correct statement(s).
A. $q=+v e$ means heat is transferred from the system to the surroundings
B. $q=-v e$ means heat is transferred from the surroundings to the system
C. $q=+\mathrm{ve}$ means heat is transferred from the suroundings to the system
D. all of these

Answer: C

- Watch Video Solution

19. Which of the following statement/expression is/are correct?
A. $\Delta U=W_{\text {adiabatic }}$
B. $W_{a d}=+v e$, when work is done on the system
C. $W_{a d}=-v e$, when work is done by the system
D. All of these

Answer: D

- Watch Video Solution

20. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?
A. $-464 J$
B. +464 J
C. +307 J
D. $-307 J$

Answer: C

- Watch Video Solution

21. Which of the following is the correct expression for the change in internal energy used for general case?
A. $\Delta U=q$
B. $\Delta U=w$
C. $\Delta U=q+W$
D. $\Delta U=W_{\text {adiabatic }}$

Answer: C

- Watch Video Solution

22. The change in internal energy for an isolated system at constannt volume is
A. zero
B. -2.18 erg
C. +4.27 erg
D. +2.78 erg

Answer: A

23. For the equilibrium, $A(g) \Leftrightarrow B(g), \Delta H$ is $-40 \mathrm{~kJ} / \mathrm{mol}$, if the ratio of the activation energies of the forward $\left(E_{f}\right)$ and reverse $\left(E_{b}\right)$ reactions is 2/3, then
A. $E_{f}=80 \mathrm{~kJ} / \mathrm{mol}, E_{b}=120 \mathrm{~kJ} / \mathrm{mol}$
B. $E_{f}=60 \mathrm{~kJ} / \mathrm{mol}, E_{b}=100 \mathrm{~kJ} / \mathrm{mol}$
C. $E_{f}=30 \mathrm{~kJ} / \mathrm{mol}, E_{b}=70 \mathrm{~kJ} / \mathrm{mol}$
D. $E_{f}=70 \mathrm{~kJ} / \mathrm{mol}, E_{b}=30 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

24. Based on the first law of thermodynamics, which one of the following statement is correct?
A. For an isothermal process, $q=+\mathrm{W}$
B. for an isochoric process, $\Delta U=-q$
C. For an adiabatic process, $\Delta U=-W$
D. For a cyclic process, $q=-\mathrm{W}$

Answer: D

- View Text Solution

25. Select the correct statement/expression about the graph.
A. it is an irreversible compression
B. pressure is not constant and changes in finite step during compression from initial volume, V_{i} to final volume, V_{f}
C. Both (a) and (b)
D. none of these

Answer: C

26. If 1 mole of an ideal gas exapands isothermally at $37^{\circ} C$ from 15 L to 25 L , the maximum work obtained is
A. 12.87 L atm
B. 6.43 L atm
C. 8.57 L atm
D. 2.92 L atm

Answer: A

- View Text Solution

27. An ideal gas expands from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The workdone is
A. $-900 J$
B. -900 J
C. 270 J
D. 900 kJ

Answer: A

- Watch Video Solution

28. For an ideal gas, pressure (p) and interal energy (E) per unit volume are related as
A. $p=\frac{2}{3} E$
B. $p=\frac{E}{2}$
C. $p=\frac{3}{2} E$
D. $p=2 E$

Answer: A

29. How many joules of heat are absorbed when 70.0 g of water is completely vaporised at its boiling point?
A. 23352 J
B. 7000 J
C. 15813 J
D. 158200 J

Answer: D

- Watch Video Solution

30. Change in internal energy when $4 k J$ of work is done on the system and 1 kJ of heat is given out of the system is
A. $+1 k J$
B. $-5 k J$
C. $+5 k J$
D. $+3 k J$

Answer: D

- Watch Video Solution

31. A system absorb 600 J of heat and work equivalent to 300 J on its surroundings. The change in internal energy
A. 300 J
B. 400 J
C. 500 J
D. 600 J

Answer: A

- Watch Video Solution

32. Select the correct formula about the change in enthalpy.
A. $\Delta_{r} H=(S u m$ of enthalpies of reactants)-(Sum of enthalpies of products)
B. $\Delta_{r} H=$ (Sum of enthalpies of products)-(Sum of enthalpies of reactants)
C. $\Delta_{r} H=$ (Difference of enthalpies of products)-(Difference of enthalpies of reactants)
D. $\Delta_{r} H=$ (Difference of enthalpies of reactants)-(Difference of enthalpies of products)

Answer: B

- Watch Video Solution

33. Select the correct formula for $\Delta_{\text {sol }} H^{-}$.
A. $\Delta_{\text {sol }} H^{\ominus}=\Delta_{\text {lattice }} H^{\ominus}-\Delta_{\text {hyd }} H^{\ominus}$
B. $\Delta_{\text {sol }} H^{\ominus}=\Delta_{\text {lattice }} H^{\ominus}+\Delta_{\text {hyd }} H^{\ominus}$
c. $\Delta_{\text {lattice }} H^{\ominus}=\Delta_{\text {sol }} H^{\ominus}+\Delta_{\text {hyd }} H^{\ominus}$
D. $\Delta_{\text {hyd }} H^{\ominus}=\Delta_{\text {sol }} H^{\ominus}+\Delta_{\text {lattice }} H^{\ominus}$.

Answer: B

- Watch Video Solution

34. Which of the following statement is correct regarding melting of ice?
A. It is the phase transformation
B. It takes places at constant pressure and temperature
C. Both (a) and (b)
D. none of these

Answer: C

35. Which of the following is not an endothermic reaction?
A. Dehydrogenation
B. Ethane to ethene
C. Combustion of propane
D. Change of chlorine molecule into chlorine atoms

Answer: C

- View Text Solution

36. Given : $S_{(s)}+\frac{3}{2} O_{2(g)} \rightarrow S O_{3(g)+2 X K c a l}$
$\mathrm{SO}_{2(s)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{SO}_{3(g)+Y K \mathrm{Cal}}$
The heat of formation of $S O_{2}$ is : -
A. $x+y$
B. $x-y$
C. $2 x-y$
D. $2 x+y$

Answer: C

- Watch Video Solution

37. In the given reaction, $N a(s) \rightarrow N a(g)$

The enthalpy of atomisation is same as the
A. enthalpy of dissociation
B. enthalpy of sublimation
C. enthalpy of association
D. enthalpy of vaporisation

Answer: B

- Watch Video Solution

38. In the following process,
$H_{2}(g) \rightarrow 2 H(g), \quad \Delta_{H-H} H^{\ominus}=435.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ the enthalpy
change involved is the
A. bond dissociation enthalpy of $\mathrm{H}-\mathrm{H}$ bond
B. bond association enthalpy of $\mathrm{H}-\mathrm{H}$ bond
C. mean bond dissociation enthalpy of $\mathrm{H}-\mathrm{H}$ bond
D. mean bond association enthalpy of $\mathrm{H}-\mathrm{H}$ bond

Answer: A

- Watch Video Solution

39. Enthalpy of solution of NaOH (solid) in water is $-41.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When NaOH is dissolved in water, the temperature of water
A. increases
B. decreases
C. does not change
D. fluctuates indefinitely

Answer: A

- View Text Solution

40. ΔU° for combustion of methane is $-\mathrm{XkJ} \mathrm{mol}^{-1}$. The value of ΔH° is
A. $=\Delta U^{\circ}$
B. $>\Delta U^{\circ}$
C. $<\Delta U^{\circ}$
D. $=0$

Answer: C

41. Two moles of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K . the enthalpy change (in kJ) for the process is
A. 11.4
B. -11.4
C. 0
D. 4.8

Answer: C

- View Text Solution

42. For the given reaction,

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Select the correct option for $\Delta_{r} H$.
A. $\left[H_{m}\left(\mathrm{CO}_{2}, g\right)+2 \mathrm{H}_{m}\left(\mathrm{O}_{2}, g\right)\right]-\left[2 \mathrm{H}_{m}\left(\mathrm{H}_{2} \mathrm{O}, l\right)+\mathrm{H}_{m}\left(\mathrm{CH}_{4}, g\right)\right]$
B. $\left[2 \mathrm{H}_{m}\left(\mathrm{O}_{2}, g\right)+\mathrm{H}_{m}\left(\mathrm{CH}_{4}, g\right)\right]-\left[H_{m}\left(\mathrm{CO}_{2}, g\right)+2 \mathrm{H}_{m}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)\right]$
C. $\left[H_{m}\left(\mathrm{CO}_{2}, g\right)+2 \mathrm{H}_{m}\left(\mathrm{H}_{2} \mathrm{O}, l\right)\right]-\left[H_{m}\left(\mathrm{CH}_{4}, g\right)+2 \mathrm{H}_{m}\left(\mathrm{O}_{2}, g\right)\right]$
D. $\left[H_{m}\left(\mathrm{CO}_{2}, g\right)+H_{m}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)\right]-\left[\mathrm{H}_{m}\left(\mathrm{CH}_{4}, g\right)+2 \mathrm{H}_{m}\left(\mathrm{O}_{2}, g\right)\right]$

Answer: C

- Watch Video Solution

43. What is Δn_{g} for the combusion of 1 mole of benzene, when both reactants and products are gases at 298 K
A. 0
B. 1
C. 0.5
D. 1.5

Answer: C

44. Enthalpy change for the reaction,
$4 H(g) \rightarrow 2 H_{2}(g)$ is -869.5 kJ.
The dissociation energy of $\mathrm{H}-\mathrm{H}$ bonds is
A. $+217.4 k J$
B. $-434.8 k J$
C. -869.6 kJ
D. $+434.8 k J$

Answer: D

- View Text Solution

45. The heat energy required to ionise the following molecules is given as follows
$N_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{1}} H_{2}^{\oplus}(\mathrm{g}), O_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{2}} O_{2}^{+}(\mathrm{g})$
$L i_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{3}} L i_{2}^{\oplus}(\mathrm{g}), C_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{4}} C_{2}^{\oplus}(\mathrm{g})$
The correct decreasing order of energy in terms of heat
A. $\Delta H_{1}>\Delta H_{3}>\Delta H_{2}>\Delta H_{4}$
B. $\Delta H_{2}>\Delta H_{3}>\Delta H_{1}>\Delta H_{4}$
C. $\Delta H_{3}>\Delta H_{4}>\Delta H_{1}>\Delta H_{2}$
D. $\Delta H_{3}>\Delta H_{1}>\Delta H_{4}>\Delta H_{2}$

Answer: C

- View Text Solution

46. Given that $\Delta H_{f}(H)=218 \mathrm{~kJ} / \mathrm{mol}$, express the H-H bond energy in kcal/mol
A. 52.15
B. 911
C. 104
D. 52153

Answer: C

47. Calculate the difference between ΔE and ΔH for the following reaction at $27^{\circ} \mathrm{C}$ (in kcal)

C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
A. -0.6
B. -1.2
C. +0.6
D. +1.2

Answer: C

Watch Video Solution

48. The sublimation energy of $l_{2}(s)$ is $57.3 \mathrm{~kJ} / \mathrm{mol}$ and the enthalpy of fusion is $15.5 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of vaporisation of l_{2} is
A. $41.8 \mathrm{~kJ} / \mathrm{mol}$
B. $-41.8 \mathrm{~kJ} / \mathrm{mol}$
C. $72.8 \mathrm{~kJ} / \mathrm{mol}$
D. $-72.8 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- View Text Solution

49. The enthalpy of reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ is $\quad \Delta H_{1} \quad$ and \quad that of
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$ is ΔH_{2}. Then
A. $\Delta H_{1}<\Delta H_{2}$
B. $\Delta H_{1}+\Delta H_{2}=0$
C. $\Delta H_{1}>\Delta H_{2}$
D. $\Delta H_{1}=\Delta H_{2}$

D View Text Solution

50. The heat of neutralisation is highest for the reaction between
A. $\mathrm{NH}_{4} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{HNO}_{3}-\mathrm{NH}_{4} \mathrm{OH}$
C. $\mathrm{NaOH}-\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{HCl}-\mathrm{NaOH}$

Answer: D

- View Text Solution

51. The $\mathrm{H}-\mathrm{H}$ bond energy is $430 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{Cl}-\mathrm{Cl}$ bond energy is 240 kJ $\mathrm{mol}^{-1}, \Delta H$ and $H C l$ is -90 kJ . The $\mathrm{H}-\mathrm{Cl}$ bond energy is about
A. $180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $213 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- View Text Solution

52. Heat of formation off SO_{2} is -298 kJ . What is the heat of combustion of 4 g of S ?
A. $+37 k J$
B. $-37.25 k J$
C. $+298 k J$
D. 18.6 kJ
53. The quantity of heat measured for a reaction in a bomb calorimeter is equal to
A. ΔG
B. ΔH is negative
C. $p \Delta V$
D. ΔE

Answer: D

- View Text Solution

54. Heat capacity $\left(C_{p}\right)$ is an extensive property but specific heat (C) is an intensive property. What will be the relation between C_{p} and C for 1 mole of water?
A. $+4.18 \mathrm{JK}^{-1}$
B. $-4.18 \mathrm{JK}^{-1}$
C. $-75.3 \mathrm{JK}^{-1}$
D. $+75.3 \mathrm{JK}^{-1}$

Answer: D

- View Text Solution

55. The volume of gas is reduced to half from its original volume. The specific heat will
A. reduced to half
B. be doubled
C. remains constant
D. increase four times

Answer: C

56. The gaseous mixture containing 2 moles of each of two ideal gases
$A\left(C_{V}, m=\frac{3}{2} R\right)$
and $B\left(C_{V}, m=\frac{5}{2} R\right)$. Find out the average molar heat capacity at constant volume.
A. 8 R
B. 3 R
C. 2 R
D. R

Answer: C

- View Text Solution

57. Calculate the difference between C_{p} and C_{V} for 10 mole of an ideal gas.
A. 83.14 J
B. 8.314 J
C. 831.4 J
D. 0.8414 J

Answer: A

- Watch Video Solution

58. Entropy is
A. a thermodynamic concept
B. a state function
C. independent of path
D. all of these

Answer: D

59. Which of the following statement is false regarding entropy?
A. The greater the disorder in an isolated system, the lower is the entropy
B. the entropy change can be attributed to rearrangement of atoms
or ions from one pattern in the reactant of another (in the product)
C. Decrease of regularity in structure would mean increase in entropy
D. The gase ous state is the state of highest entropy

Answer: A

- Watch Video Solution

60. From an isolated system, $\Delta U=0$, what will be ΔS ?
A. 0
B. >0
C. <0
D. ≥ 0

Answer: B

- View Text Solution

61. For the reaction, $2 \mathrm{Cl}(g) \rightarrow C l_{2}(g)$, what are the signs of ΔH and $\Delta S ?$
A.,++
B.,+-
C.,$- \quad-$
D.,-+

Answer: C

62. The standard molar entropy of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Standard molar entropy of $\mathrm{H}_{2} \mathrm{O}(s)$ is
A. more than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. less than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. equal to $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. none of these

Answer: B

- Watch Video Solution

63. Select the incorrect expression from the following expressions.
A. $\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surr }}$
B. $\Delta S_{\text {surr }}=\frac{\Delta H_{\text {surr }}}{T}=-\frac{\Delta H_{\text {sys }}}{T}$
C. $\Delta S_{\text {total }}<0$ (spontaneous process)
D. $\Delta G=\Delta-T \Delta S$

Answer: C

- Watch Video Solution

64. Find our the entropy change in surroudings when 1 mole of $\mathrm{H}_{2} \mathrm{O}(l)$ is formed under standard conditions $\Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. $959.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $286 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-959.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $-286 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

65. Unit of entropy is
A. $J K^{-1} \mathrm{~mol}^{-1}$
B. $J \mathrm{~mol}^{-1}$
C. $J^{-1} K^{-1} \mathrm{~mol}^{-1}$
D. $J K \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

66. One mole of which o the following has the highest entropy?
A. Liquid nitrogen
B. Hydrogen gas
C. Mercury
D. Diamond

Answer: B

D View Text Solution

67. In a reversible process, $\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$ is
A. >0
B. <0
C. ≥ 0
D. $=0$

Answer: D

68. According to second law of thermodynamics, a process (reaction) is spontaneous, if during the process
A. $\Delta S_{\text {universe }}>0$
B. $\Delta S_{\text {universe }}=0$
C. $\Delta H_{\text {system }}=0$
D. $\Delta S_{\text {universe }}=\Delta S_{\text {system }}$

Answer: A

- View Text Solution

69. The second law of thermodynamics says that in a cyclic process
A. work cannot be converted into heat
B. heat cannot be convertd into work
C. work cannot be completely converted into heat
D. heat cannot be completely converted into work

Answer: D

70. Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction?
A. Exothermic and decreasing disorder
B. Endothermic and increasing disorder
C. Exothermic and increasing disorder
D. Endothermic and decreasing disorder

Answer: C

- View Text Solution

71. One mole of a perfect gas expands isothermally to ten times of its original volume. The change in entropy is
A. 0.1 R
B. 2.303 R
C. 10.0 R
D. 100.0 R

Answer: B

- View Text Solution

72. Which of the following does not have zero entropy even at absolute zerOo?
$\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NaCl}, \mathrm{NO}$
A. $\mathrm{CO}, \mathrm{CO}_{2}$
B. CO, NO
C. $\mathrm{CO}_{2}, \mathrm{NaCl}$
D. NaCl

Answer: B

73. In which case, a spontaneous reaction is possible at any temperature
A. $\Delta H(-v e), \Delta S(+v e)$
B. $\Delta H(-v e), \Delta S-(v e)$
C. $\Delta H+(v e), \Delta S+(v e)$
D. none of these

Answer: A

- Watch Video Solution

74. 2 moles of ann ideal gas at $27^{\circ} \mathrm{C}$ are expanded reversibly from 2 L to 20 L . find entropy change. ($\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$)
A. 0
B. 4
C. 9.2
D. 92

Answer: C

- View Text Solution

75. At $27^{\circ} \mathrm{C}$, latent heat of fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$. Entropy change during fusion is
A. $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
B. $0.977 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
C. $9.07 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
D. none of these

Answer: A

76. In evaporation of water, ΔH and ΔS are
A.,++
B. + , -
C. - , -
D.,-+

Answer: A

- Watch Video Solution

77. Which one of the following is correct?
A. $-\Delta G=\Delta H-T \Delta S$
B. $\Delta H=\Delta G-T \Delta S$
C. $\Delta S=\frac{1}{T}[\Delta G-\Delta H]$
D. $\Delta S=\frac{1}{T}[\Delta H-\Delta G]$

- Watch Video Solution

78. The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant (K) as
A. $\Delta G^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
B. $\Delta G^{\circ}=\mathrm{RT} \log \mathrm{K}$
C. $\Delta G^{\circ}=2.303 \mathrm{RT} \log \mathrm{K}$
D. $\Delta G^{\circ}=-2.303 \mathrm{RT} \ln \mathrm{K}$

Answer: A

- View Text Solution

79. Find the value of ΔG° if the $\Delta H^{\circ}=-29.8 \mathrm{kcal}$ and $\Delta S^{\circ}=-0.100 \mathrm{kcal} K^{-1}$ is given at 298 K .
A. 0
B. 1
C. 2
D. 4

Answer: A

- Watch Video Solution

80. If $K<1,0$, what will be the value of ΔG° ?
A. Zero
B. 1
C. Positive
D. Negative

Answer: C

81. Find the equilibrium constant K_{p} in $\log K_{p}$ if the standard free energy change of a reaction $\Delta G^{\circ}=-115 k J$ at 298 K is
A. 2.303
B. 13.83
C. 2.016
D. 20.16

Answer: D

- Watch Video Solution

82. The equilibrium constant for a reaction is 10 . what will be the value of ΔG° ? Given, $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.
A. $-574.414 \mathrm{Jmol}^{-1}$
B. $-5744.14 \mathrm{Jmol}^{-1}$
C. $-57.4414 \mathrm{Jmol}^{-1}$
D. $57441.4 \mathrm{Jmol}^{-1}$

Answer: B

- View Text Solution

83. Which of the following correctly represents the physical significance of Gibbs energy change?
A. $-\Delta G=W_{\text {compression }}$
B. $-\Delta G=W_{\text {expansion }}$
C. $\Delta G=-W_{\text {expansion }}=W_{\text {non-expansion }}$
D. $\Delta G=W_{\text {expansion }}$

Answer: B

- View Text Solution

84. At 1 atm pressure, $\Delta S=75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \Delta H=30 \mathrm{~kJ}_{\mathrm{mol}}{ }^{-1}$, the temperature of the reaction at equilibrium is
A. 400 K
B. 330 K
C. 200 K
D. 110 K

Answer: A

- Watch Video Solution

85. Under which of the following sets of conditions, ΔG is always negative?
A. $\Delta H=-v e$ and $\Delta S=+v e$
B. $\Delta H=-v e$ and $\Delta S=-v e$
C. $\Delta H=+v e$ and $\Delta S=+v e$
D. $\Delta H=+v e$ and $\Delta S=-v e$

Answer: A

- Watch Video Solution

86. The gibbs free energy for a reversible reaction at equilibrium is
A. positive
B. negative
C. zero
D. can be positive or negative

Answer: C

87. Consider the reaction, $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+393.5 k J$, the signs of $\Delta H, \Delta S$ and ΔG respectively are
A.,$+ \quad-\quad-$
B.,,-++
C.,$- \quad-$,
D.,,-+-

Answer: D

- View Text Solution

88. The free energy for a reaction having
$\Delta H=31400 \mathrm{cal}, \Delta S=32 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ at $1000^{\circ} \mathrm{C}$ is
A. -9336 cal
B. -7386 cal
C. -1936 cal
D. +9336 cal

Answer: A

- View Text Solution

Exercise 2

1. The free energy change for the following reaction are given below:
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta G^{\circ}=-1234 \mathrm{~J}$
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta G^{\circ}=-394 k J$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta G^{\circ}=-237 k J$
what is the standard free energy change for the reaction?

$$
\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

A. $-209 k J$
B. -2259 kJ
C. +2259 kJ
D. 209 kJ

Answer: D

- View Text Solution

2. When one mole of monoatomic ideal gas at T temperature undergoes adiabatic change under a constant external pressure of 1 atm, change in volume is from 1 L to 2 L . The final temperature in kelvin would be
A. $\frac{T}{2^{(2 / 3)}}$
B. $T+\frac{2}{3 \times 0.0821}$
C. T
D. $T-\frac{2}{3 \times 0.0821}$

Answer: A

3. The heat of neutralisation of a strong acid and a strong alkali is 57.0 kJ mol^{-1}. The heat released when 0.5 mole of HNO_{3} solution is mixed with 0.2 mole o KOH is
A. 57.0 kJ
B. 11.4 kJ
C. 28.5 kJ
D. 34.9 kJ

Answer: B

- View Text Solution

4. A cylinder of gas is assumed to contain 11.2 kg of butane $\left(C_{4} H_{10}\right)$. If a normal family needs 20000 kJ of energy per day, the cylinder will last in (given that ΔH for combustion of butane is -2658 kJ)
A. 20 days
B. 25 days
C. 26 days
D. 24 days

Answer: C

- View Text Solution

5. Calculate the enthalpy change on freezing of 1.0 mole of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$
$\left[\Delta_{\text {fus }} H=6.03 \mathrm{kJmol}^{-1}\right.$ at $\left.0^{\circ} \mathrm{C}\right]$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{C}_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
A. $-753 \mathrm{Jmol}^{-1}$
B. $-368 \mathrm{Jmol}^{-1}$
C. $-7.151 \mathrm{kJmol}^{-1}$
D. $-6.03 \mathrm{kJmol}^{-1}$

Answer: C

D View Text Solution

6. IF $900 \mathrm{~J} / \mathrm{g}$ of heat is exchanged at boiling point of water then increase in entropy is
A. $43.4 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
B. $87.2 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
C. $900 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
D. zero

Answer: A

D View Text Solution

7. The heat of atomisation of methane and ethene are $360 \mathrm{~kJ} / \mathrm{mol}$ and 620
$\mathrm{kJ} / \mathrm{mol}$, respectively. The longest wavelenth of light capable of breaking
the C-C bond is (Avogadro number $=6.02 \times 10^{23}, h=6.62 \times 10^{-34} \mathrm{Js}$)
A. $2.48 \times 10^{3} \mathrm{~nm}$
B. $1.49 \times 10^{3} \mathrm{~nm}$
C. $2.49 \times 10^{5} \mathrm{~nm}$
D. $2.48 \times 10^{4} \mathrm{~nm}$

Answer: D

- View Text Solution

8. In the given figure,

What does the above figure represent?
A. Calorimeter for measuring heat changes at constant volume
B. Bom calorimeter for measuring heat changes at constant volume
C. Calorimeter for measuring heat changes at constant pressure
D. none of these

Answer: C

- View Text Solution

9. Energies requried to break the individual C-H bonds in each successive step differ
$\mathrm{CH}_{4}(g) \rightarrow \mathrm{CH}_{3}(g)+H(g), \Delta_{\mathrm{bond}} H^{\ominus}=439 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
$\mathrm{CH}_{2}(g) \rightarrow \mathrm{CH}(g)+H(g), \Delta_{\mathrm{bond}} H^{\ominus}=439 \mathrm{kJmol}^{-1}$
$C H(g) \rightarrow C(g)+H(g), \Delta_{b o n d} H^{\ominus}=347 \mathrm{kJmol}^{-1}$.
In such cases we use
A. bond association enthalpy of C-H bond, $\Delta_{C-H} H^{\ominus}=416 \mathrm{kJmol}^{-1}$
B. Bond association enthalpy of $\mathrm{C}-\mathrm{H}$ bond,

$$
\Delta_{C-H} H^{\ominus}=1665 \mathrm{kJmol}^{-1}
$$

C. mean bond enthalpy of C-H bond, $\Delta_{C-H} H^{\ominus}=416 \mathrm{kJmol}^{-1}$
D. none of these

Answer: C

- Watch Video Solution

10. Use the given data to calculate the resonance energy of $\mathrm{N}_{2} O \cdot\left(\Delta_{f} H^{\ominus}\right.$ of $\left.\mathrm{N}_{2} \mathrm{O}=82 \mathrm{kJmol}^{-1}\right)$

Bond energy of $\mathrm{N}=\mathrm{O} \rightarrow 607 \mathrm{kJmol}^{-1}$
Bond energy of $\mathrm{O}=\mathrm{O} \rightarrow 498 \mathrm{kJmol}^{-1}$ bond energy of $\mathrm{N}=\mathrm{N} \rightarrow 418 \mathrm{kJmol}^{-1}$

Bond energy of $N \equiv N \rightarrow 946 \mathrm{kJmol}^{-1}$

Choose the correct option.
A. $82 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-88 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-82 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
D. $+88 \mathrm{kJmol}^{-1}$

Answer: B

11. A reaction takes place in a several sequential steps A, B, C and D. the vlaue of enthalpy change for sequential steps are p, q, r and s respectively. If A and C have equal values of enthalpy change with total enthalpy change is t , then choose the incorrect statement among the following.
А. $q=r$
B. $q+r=t-(s+p)$
C. $2 q=t-(s+p)$
D. $q+r=p+s$

Answer: D

- View Text Solution

12. The pressure volume work for an ideal gas can be calculated by using the expression $W=-\int_{V_{i}}^{V_{f}} p_{\text {ext }} d V$. The work can also be calculated
from the pV -plot by using the area under the curve within the specified limits. When an ideal gas is compressed (a) reversibly or (b) irreversibly from volume V_{i} to V_{f}. choose the correct option.
A. $W_{(\text {reversible })}=W_{(\text {irreversible })}$
B. $W_{\text {(reversible) }}<W_{\text {(irreversible) }}$
C. $W_{(\text {reversible })}>W_{(\text {Irreversible })}$
D. $W_{(\text {reversible })}=W_{(\text {irreversible })}+p_{e x t} \cdot \Delta V$

Answer: B

- View Text Solution

13. Different stages of the thermodynamic process are given in the pV diagram.

Calculate the work done is each stage.

$$
\text { A. } W_{A B}=-7200 J, W_{B C}=0, W_{C D}=2400 J, W_{A D}=0
$$

B. $W_{A B}=+7200 J, W_{B C}=0, W_{C D}=-2400, W_{A D}=0$
C. $W_{A B}=0, W_{B C}=-7200 J, W_{C D}=0, W_{A D}=2400 J$
D. $W_{A B}=, W_{B C}=, W_{C D}=, W_{A D}=-2400$

Answer: A

- View Text Solution

14. The (i)____of a syste can be changed by transfer of heat from the surrounding to the system of cive-verse without expenditure of (ii) \qquad .

Identify (i) and (ii) in order to complete the above statement.
A. (i)-enthalpy, (ii)-work
B. (i)-internal energy, (ii) heat
C. (i)-enthalpy, (ii)- heat
D. (i)-internal energy, (ii)-work

Answer: D

15. Molar enthalpy change for vaporisation of 1 mole of water at 1 bar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (If water vapour is assumed to be perfect gas). Find out of the internal energy change. If 1 mole of water is vaporised at 1 bar pressure and $100^{\circ} \mathrm{C}$.
A. $+37.904 \mathrm{kJmol}^{-1}$
B. $-37.904 \mathrm{kJmol}^{-1}$
C. $44.096 \mathrm{kJmol}^{-1}$
D. $-44.096 \mathrm{kJmol}^{-1}$

Answer: A

- View Text Solution

16. The heat of reaction for
$C_{10} \mathrm{H}_{8}(\mathrm{~s})+12 \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)$
at constant volume is -1228.2 kcal at $25^{\circ} \mathrm{C}$. The heat of reaction at constant pressure and same temperature is
A. -1228.2 kcal
B. -1229.3 kcal
C. -1232.9 kcal
D. -1242.6 kcal

Answer: B

- View Text Solution

17. The graph expresses the various steps of the system containing 1 mole of gas. Which type of process system has when it moves from C to A ?
A. Isochoric
B. Isobaric
C. Isothermal
D. Cyclic

Answer: B

- View Text Solution

18. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of 1:1:0.5 and ΔH_{f} for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
A. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. none of these

Answer: D

- View Text Solution

19. The equilibrium constannt of a reaction is 0.008 at 298 K . the standard energy change of the reaction at the same temperature is
A. $-11.96 k J$
B. $-5.43 k J$
C. $-8.46 k J$
D. $+11.96 k J$

Answer: D

- View Text Solution

20. The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from 1 kg of coke is (assume coke to be 100% carbon). (Given: Enthalpies of combustion of $\mathrm{CO}_{2}, \mathrm{CO}$ and H_{2} are $393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}$ respectively all at 298K)
A. $0.79: 1$
B. $0.69: 1$
C. $0.86: 1$
D. $0.96: 1$

Answer: B

- View Text Solution

21. The value of ΔH for cooling 2 moles of an ideal monoatomic gas from $225^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ at constant pressure will be [given $C_{p}=\frac{5}{2} R$]
A. 250 R
B. $-500 R$
C. 500 R
D. $-250 R$

Answer: B

22. Which of the following statement is correct for the spontaneous adsorption of a gas?
A. ΔS is negative and therefore, ΔH should be highly positive
B. ΔS is negative and therefore, ΔH should be highly negative
C. ΔS is positive and therefore, ΔH should be negative
D. ΔS is positive and therefore, ΔH should also be highly positive

Answer: B

- Watch Video Solution

23. The value of enthalpy change (ΔH) for the reaction $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad$ at $\quad 27^{\circ} \mathrm{C} \quad$ is $-1366.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of internal energy change for the above reaction at this temperature will be
B. -1369.0 kJ
C. -1364.5 kJ
D. -1361.5 kJ

Answer: C

- View Text Solution

24. A plot of In k against $\frac{1}{T}$ (abscissa) is expected to be a straight line with intercept on coordinate axis equal to
A. $\frac{\Delta S^{\circ}}{2.303 R}$
B. $\frac{\Delta S^{\circ}}{R}$
C. $-\frac{\Delta S^{\circ}}{R}$
D. $R \times \Delta S^{\circ}$

Answer: B

25. A container of 1.0 L capacity filled with 1.0 mole of ideal gas is connected to an evacuated vessel to 9L. Calculate change in entropy. (R=1.987 cal.)
A. $0.188 \mathrm{cal}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
B. $0.4576 \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
C. $4.576 \mathrm{cal}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
D. $4.366 \mathrm{cal} \cdot \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Answer: D

(D) Watch Video Solution

26. In which of the following reactions, the enthalpy is the least?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HCN}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{CN}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- View Text Solution

27. For a particular reversible reaction at temperature $T, \Delta H$ and ΔS were found to be +ve . If T_{e} is the temperature at equilibrium, the reaction would be spontaneous when
A. $T_{e}>T$
B. $T>T_{e}$
C. T_{e} is 5 times T
D. $T=T_{e}$

Answer: B

28. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-94 \mathrm{kcal}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}=-135.2 \mathrm{kcal}$
The heat of formation of $C O(g)$ is
A. -26.4 kcal
B. 41.2 kcal
C. 26.4 kcal
D. 229.2 kcal

Answer: A

- Watch Video Solution

29. The heat of formations for $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ are -400 kJ $\mathrm{mol}^{-1},-280 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $-70 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The heat of combustion of CH_{4} in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ is
A. 890
B. -160
C. -890
D. -90

Answer: C

- Watch Video Solution

30. A hypothetical reaction $A \rightarrow 2 B$, proceeds through following sequence of steps
(i) $A \rightarrow C, \Delta H=q$
(ii) $C \rightarrow D, \Delta H=v$
(iii) $\frac{1}{2} D \rightarrow B, \Delta H=x$

Then, the heat of reaction is
A. $q-v+2 x$
B. $q+v-2 x$
C. $q+v+2 x$
D. $q+2 v-2 x$

Answer: C

- Watch Video Solution

31. ΔH for the reaction,

C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
at 298 K and 1 atm is -17900 cal. The ΔE for the above conversion should be
A. -17900 cal
B. 17900 cal
C. 17304 cal
D. -17304 cal

Answer: D

32. The decreasing order of bond dissociation energies of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ bonds is
A. $H-H>-C-H>-C-C-$
B. $-C-C->-C-H>H-H$
c. $-C-H>-C-C->H-H$
D. $-C-C->H-H>-C-H$

Answer: A

- View Text Solution

33. If the end energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 433, 1992 and 364 kJ $m o l^{-1}$ respectively, then ΔH° for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$ is
A. -261 kJ
B. $+103 k J$
C. $+261 k J$
D. -103 kJ

Answer: D

- Watch Video Solution

34. At $27^{\circ} \mathrm{C}$ one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm . The value of ΔE and q are ($\mathrm{R}=2 \mathrm{cal}$)
A. 0,-965.84 cal
B. $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
C. $+865.58 \mathrm{cal}, \quad-865.58 \mathrm{cal}$
D. $+965.84 \mathrm{cal},+865.58 \mathrm{cal}$

Answer: A

35. The internal energy change when a system goes from state A to B is $40 \mathrm{~kJ} / \mathrm{mol}$. I the system goes from A to B by a reversible path and return to state A by a irreversible path, what would be the net change in internal energy?
A. 40 kJ
B. $>40 \mathrm{~kJ}$
C. $<40 k J$
D. zero

Answer: D

D View Text Solution

36.

Given,
$2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}, \Delta H=-193.4 k J, \mathrm{Mg}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{MgO}, \Delta H=$

What is the ΔH for the following reaction?
$3 \mathrm{Mg}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{MgO}+2 \mathrm{Fe}$
A. $-227.2 k J$
B. $-272.3 k J$
C. 227.2 kJ
D. 272.3 kJ

Answer: A

D View Text Solution

37. Enthalpy of formation off HF and HCl are -161 kJ and -92 kJ , respectively.

Which of the following statements is incorrect?
A. HCl is more stable than HF
B. HF and HCl are exothermic compounds
C. The afinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen
D. HF is jmore stable than HCl

Answer: D

- Watch Video Solution

38. For the reaction, $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=571$. bond energy of H $\mathrm{H}=435, \mathrm{O}=\mathrm{O}=498$, then calculate the average bond energy of $\mathrm{O}-\mathrm{H}$ bond using the above data
A. 484
B. -484
C. 271
D. -271
39. The bond energy of ann $\mathrm{O}-\mathrm{H}$ bond is $109 \mathrm{kcal} / \mathrm{mol}$. When 1 mole of water is formed, then
A. 1009 kcal is released
B. 218 kcal is absorbed
C. 109 kcal is absorbed
D. 218 kcal is released.

Answer: D

- View Text Solution

40. Given the following thermochemical equations,
$\mathrm{Zn}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{ZnO}+84,000 \mathrm{cal}$
$\mathrm{Hg}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{HgO}+21,700 \mathrm{cal}$

Accordingly the heat of reaction for the following reaction, $\mathrm{Zn}+\mathrm{HgO} \rightarrow \mathrm{Hg}+$ heat is
A. 105700 cal
B. 61000 cal
C. 10500 cal
D. 623000 cal

Answer: D

- View Text Solution

41. The enthalpy of vaporisation of liquid water using the data
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-285.77 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H=-241.84 \mathrm{~kJ} / \mathrm{mol}$
is
A. $+43.93 k J / m o l$
B. $-43.93 \mathrm{~kJ} / \mathrm{mol}$
C. $527.61 \mathrm{~kJ} / \mathrm{mol}$
D. $-527.61 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- View Text Solution

42. Energy requried to dissociate 4 g of gaseous hydrogen into free gaseous atoms is 208 kcal at $25^{\circ} \mathrm{C}$. The bond energy of $\mathrm{H}-\mathrm{H}$ will be
A. $104 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
B. $52 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
C. $10.4 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
D. $1040 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$

Answer: A

43. The enthalpy of a monoatomic gas at T kelvin is
A. $\frac{7}{2} R T$
B. $\frac{3}{2} R T$
C. $\frac{1}{2} R T$
D. $\frac{5}{2} R T$

Answer: D

- View Text Solution

44. The enthalpy change (ΔH) for the process,
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}(\mathrm{~g})+4 \mathrm{H}(\mathrm{g})$ is
is $1724 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the bond energy of $\mathrm{N}-\mathrm{H}$ bond in ammonia is 391 kJ mol^{-1}, what is the bond energy for N-N bond in $\mathrm{N}_{2} \mathrm{H}_{4}$?
A. $391 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $160 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
C. $1173 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $320 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

45. $\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3}(\mathrm{~g})$

The heat of reaction is [bond energy of $\mathrm{C}=\mathrm{C}=80 \mathrm{kcal}, \mathrm{C}=\mathrm{C}=145 \mathrm{kcal}, \mathrm{C}-\mathrm{H}=98$ kcal, $\mathrm{H}-\mathrm{H}=103 \mathrm{kcal}$]
A. -14 kcal
B. -28 kcal
C. -42 kcal
D. -56 kcal

Answer: B

46. The following is (are) endothermic reaction
I. combustion of methane.
II. Decomposition of water.
III. Dehydrogenation of ethane to ethylene
IV. Conversion of graphite to diamond
A. (I) and (II)
B. (II) and (III)
C. (III) and (IV)
D. (II), (III) and (IV)

Answer: D

- Watch Video Solution

47. In a calorimeter, the temperature of the calorimeter increases by 6.12

K , the heat capacity of the systemm is $1.23 \mathrm{~kJ} / \mathrm{g} / \mathrm{deg}$. What is the molar
heat of decomposition for the ammonium nitrate?
A. $-7.53 \mathrm{~kJ} / \mathrm{mol}$
B. $-398.1 \mathrm{~kJ} / \mathrm{mol}$
C. $-16.1 \mathrm{~kJ} / \mathrm{mol}$
D. $-602 k J / m o l$

Answer: D

- View Text Solution

48. Consider the following reaction and corresponding energy diagram:
$A \rightarrow P$
which of the following statements is incorrect?
A. It is a two step reaction
B. First step is slower than second step
C. A is more unstable compared to P
D. All steps are exothermic

Answer: D

- View Text Solution

49. Heat of formation of $\mathrm{H}_{2} \mathrm{O}$ is $-188 \mathrm{~kJ} / \mathrm{mol}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ is $-286 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy change for the reaction,
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. 196 kJ
B. $-196 k J$
C. $984 k J$
D. $-984 k J$

Answer: A

- Watch Video Solution

50. ΔH for combustion of ethene and ethyne are -341.1 and -310.0 kcal, respectively. What will be the ratio of calorific values of ethane and ethyne, respectively?
A. $1: 0.95$
B. $0.65: 2$
C. $0.95: 1$
D. $0.002: 1$

Answer: C

- Watch Video Solution

51. 2.1 g of Fe combines with S evolving 3.77 kJ . The heat of formation of FeS (in kJ/mol) is
A. -1.79
B. 100.5
C. -3.77
D. none of these

Answer: B

- View Text Solution

52. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{kJmol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{kJmol}^{-1}$, the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in NH_{3} is
A. $-964 \mathrm{kJmol}^{-1}$
B. $-352 \mathrm{kJmol}^{-1}$
C. $+1056 \mathrm{kJmol}^{-1}$
D. $-1102 \mathrm{kJmol}^{-1}$

Answer: B

53.

The above diagram represents
A. enthalpy for exothermic reactions
B. enthalpy for endothermic reactions
C. entropy for exothermic reaction
D. entropy for endothermic reaction

Answer: A

- View Text Solution

54. Calculate the bond enthalpy of $X e-F$ bond as given in the equation,
$X e F_{4}(g) \rightarrow X e^{+}(g)+F^{-}(g)+F_{2}(g)+F_{g}, \Delta_{r} H=292 \mathrm{kcal} \mathrm{mol}^{-1}$ Ionisation energy of $\mathrm{Xe}=279 \mathrm{kcal} / \mathrm{mol}$ bond energy ($\mathrm{F}-\mathrm{F}$) $=38 \mathrm{kcal} / \mathrm{mol}$ Electron affinity of $\mathrm{F}=85 \mathrm{kcal} / \mathrm{mol}$
A. $8.5 \mathrm{kcal} / \mathrm{mol}$
B. $34 \mathrm{kcal} / \mathrm{mol}$
C. $24 \mathrm{kcal} / \mathrm{mol}$
D. none of these

Answer: B

- View Text Solution

55. 18 g of water is taken to prepare, the tea. Find out the internal energy of vaporisation at $100^{\circ} C .\left(\Delta_{\text {vap }} H^{\ominus}\right.$ for water at $373 \mathrm{~K}=40.66 \mathrm{kJmol}^{-1}$)
A. $37.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-37.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $43.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-43.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

56. Which of the following statement is incorrect about the equation?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l), \Delta_{r} H^{-}=-1367 \mathrm{~kJ} m o
$$

A. the reaction is endothermic in nature.
B. The numerical value of $\Delta_{r} H^{\ominus}$ refers to the number of moles of substances specified by an equation. Standard enthalpy change
$\Delta_{r} H^{\ominus}$ will have units as kJ mol^{-1}
C. The coefficients in a balanced thermochemical equations refer to the number of moles (never molecules) of reactants and products involved in the reaction
D. The equation describes the combustion of liquid ethanol at constant temperature and pressure.

- View Text Solution

57. Calculate the enthalpy of vaporisation of I_{2} if the sublimation energy and enthalpy of fusion of I_{2} is $57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $15.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively
A. $-72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

58. A system containing some quantity of water in a thermos flask or in an insulated beaker. This would not allow exchange of heat between the system and surrouding through its boundary. This process is called as
A. isothermal process
B. adiabatic process
C. isochoric process
D. isobaric process

Answer: B

- Watch Video Solution

59.

For
the
reaction
$A \rightarrow B, \Delta H=+23 \mathrm{~kJ} / \mathrm{mol}$ and $B \rightarrow C, \Delta H=-18 \mathrm{~kJ} / \mathrm{mol}$, the decreasing order of enthalpy of A, B, C follows the order
A. A, B, C
B. B, C, A
C. C, B, A
D. C, A, B

Answer: B

- View Text Solution

60. The ratio of enthalpy of vaporisation and the normal boilng point of a liquid approximately equals to (i) \qquad . The above statement follows the
(ii) \qquad . Choose the correct word to complete the above statement.
A. (i) $88 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$, (ii) capacity rule
B. (i) $88 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, (ii) Trouton's rule
C. (i) $88 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, (ii) capacity rule
D. (i) $88 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, (ii) Trouton's rule

Answer: D

61. Arrange the following units in the decreasing order of their value
A. 1 cal gt 1 erg gt 1 eV gt 1 Joule
B. 1 cal gt 1 Joule gt 1 erg gt 1 eV
C. 1 cal gt 1 eV gt 1 erg gt 1 Joule
D. 1 Joule gt 1 eV gt 1 erg gt 1 cal

Answer: B

- Watch Video Solution

62. The reaction of cyanamide, $\mathrm{NH}_{4} \mathrm{CN}(s)$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K . calculate the enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{4} \mathrm{CN}(g)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
A. $-741.46 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $741.46 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $241.46 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-241.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

63. Consider the following reactions:
(i) $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g), \Delta_{r} H^{\ominus}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g), \Delta_{r} H^{\ominus}=-74 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

Select the correct statement about the given reaction.
A. In (i) reaction, $N O(g)$ is unstable because the energy is released.

The energy is released in (ii) reaction, $\mathrm{NO}_{2}(g)$ is stable. Unstable $\mathrm{NO}(\mathrm{g})$ changes into the stable $\mathrm{NO}_{2}(\mathrm{~g})$
B. The energy is absorbed in (i) reaction, $\mathrm{NO}(\mathrm{g})$ is unstable. As energy
is released in the (ii) reaction $\mathrm{NO}_{2}(g)$ is stable. That's why unstable $\mathrm{NO}(\mathrm{g})$ changes into the stable $\mathrm{NO}_{2}(g)$
C. Both (a) and (b)
D. none of these

Answer: B

- View Text Solution

64. In view of the signs of ΔG^{θ} for the following reactions,
$\mathrm{PbO}_{2}+\mathrm{Pb} \rightarrow 2 \mathrm{PbO}, \Delta_{r} G^{\ominus}<0$,
$\mathrm{SnO}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{SnO}, \Delta_{r} G^{\ominus}>0$
Which oxidation states are more characteristic for lead and tin?
A. For lead +4 , for tin +2
B. For lead +2 , ffor tin +2
C. For lead +4 , for tin +4
D. For lead +2 , for tin +4

Answer: D

- View Text Solution

65. In an irreversible process taking place at constant T and p and in which only pressure volumee work is being done, the change in Gibbs free energy (dG) and change in entropy (dS), satisfy the criteria.
A. $(d S)_{V, E}<0,(d G)_{T, p}<0$
B. $(d S)_{V, E}>0,(d G)_{T, p}<0$
C. $(d S)_{V, E}=0,(d G)_{T, p}=0$
D. $(d S)_{V, E}=0,(d G)_{T, p}>0$

Answer: B

- View Text Solution

66. In adiabatic conditions 1 mole of CO_{2} gas at 300 K is expanded such that its volume becomes 27 times. Calculate the work done.
($C_{V}=6$ cal mol^{-1} and $\gamma=1.33$ is given)
A. 1400 cal
B. 1000 cal
C. 900 cal
D. 1200 cal

Answer: D

- View Text Solution

67. $\Delta_{f} U^{\ominus}$ for the formation of $\mathrm{CH}_{4}(\mathrm{~g})$ at certain temperature is -393 kJ mol^{-1}. The value of $\Delta_{f} H^{\ominus}$ is
A. zero
B. $<\Delta_{f} U^{\ominus}$
C. $>\Delta_{f} U^{\ominus}$
D. equal to $\Delta_{f} U^{\ominus}$

Answer: B

- View Text Solution

68. 1.0 mole of a monoatomic ideal gas is expanded from state (I) to state (II) as shown in the figure. Calculate the work done for the expansion of gas from state (I) to state (II) at 298K.
A. -1771.46 J
B. -1717.46 J
C. +1771.46 J
D. +1717.46 J

Answer: B

69. What is the equilibrium constant, K for the following reaction at 400 K?
$2 \mathrm{NOCl}(g) \Leftrightarrow 2 N O(g)+C l_{2}(g)$
$\Delta H=77.2 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\Delta S=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 400K.
A. -3.708
B. 1.95×10^{-4}
C. 2.8×10^{4}
D. 1.67×10^{-5}

Answer: B

- View Text Solution

70. Match the columns with the laws of thermodynamics.
A. 1-A,2-C,3-A
B. 1-A,2-B,3-C
C. 1-C,2-B,3-A
D. 1-B,2-A,3-C

Answer: A

- View Text Solution

71. Match the columns with the atomicity of gases to the heat capacity at constant pressure $\left(C_{p}\right)$.
A. 1-B,2-C,3-A
B. 1-A,2-B,3-C
C. 1-C,2-A,3-B
D. 1-C,2-B,3-A

Answer: C

- View Text Solution

72. An ideal gas is allowed to expand against a constant pressure of 2 bar from 10 L to 50 L in one step. The amount of work done by the gas is x . if the same expansion were carried out reversible, what is the relation of work done with the earlier case?
A. Lower
B. Higher
C. Same as before
D. Cannot anything

Answer: B

73.

A sample of 1.0 mole of a monoatomic ideal gas is taken through a process of expansion and compression as shown in the figure. What will be the value of ΔH for the process as a whole?
A. -3.150
B. -2.303
C. +2.303
D. 0

Answer: D

- View Text Solution

74. What would be the heat released when an aqueous solution containing 0.5 mole of HNO_{3} is mixed with 0.3 mle of OH^{-}? (Enthalpy of neutralisation is -57.1 kJ)
A. 28.5 kJ
B. 17.1 kJ
C. 45.7 kJ
D. 1.7 kJ

Answer: B

- View Text Solution

75. The molar heat capacity of water at constant pressure is 75
$J K^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand the increase in temperature of water is
A. 2.4 K
B. 3.6 K
C. 4.8 K
D. 1.2 K

D View Text Solution

76. For a reaction at $25^{\circ} \mathrm{C}$, enthalpy and entropy changes are $-11.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $-105 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. What is the Gibb's free energy?
A. 15.05 kJ
B. 19.59 kJ
C. 2.55 kJ
D. 22.55 kJ

Answer: B

77. The standard molar heat of formation ethane, CO_{2} and water (I) are respectively $-21.1,-94.1$ and -68.3 kcal . The standard molar heat of combustion of ethane will be
A. $-372 k c a l$
B. 162 kcal
C. 240 kcal
D. 183.5 kcal

Answer: A

- View Text Solution

78. The ΔH_{f}° of $\mathrm{O}_{3}, \mathrm{CO}_{3}, \mathrm{NH}_{3}$ and HI are 142.2, -393.3, -46.2 and +25.9 kJ per mol, respectively. The order of their increasing stabilities will be
A. $\mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}$
B. $\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}, \mathrm{O}_{3}$
C. $\mathrm{O}_{3}, \mathrm{HI}, \mathrm{NH}_{3}, \mathrm{O}_{2}$
D. $\mathrm{NH}_{3}, \mathrm{HI}, \mathrm{CO}_{2}, \mathrm{O}_{3}$

Answer: C

- View Text Solution

79. One molee of methanol when burnt in O_{2}, gives out $723 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of heat. If one mole of O_{2} is used, what will be the amount of heat evovled?
A. 723 kJ
B. 924 kJ
C. 482 kJ
D. 241 kJ

Answer: C

80. ΔH_{f}° (298K) of methanol is given by the chemical equation,
A. $\mathrm{CH}_{4}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
B. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
C. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
D. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$

Answer: B

- View Text Solution

81. Formation of a solution from two components can be considered as
(1). pure solvent \rightarrow separated solvennt molecules, ΔH_{1}
(2). Pure solute \rightarrow separated solute molecules, ΔH_{2}
(3). Separated solvent and solute molecules \rightarrow solution, ΔH_{3}

Solution so formed will be ideal if

$$
\text { A. } \Delta H_{\text {soln }}=\Delta H_{1}-\Delta H_{2}-\Delta H_{3}
$$

B. $\Delta H_{\text {soln }}=\Delta H_{3}-\Delta H_{1}-\Delta H_{2}$
C. $\Delta H_{\text {soln }}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}$
D. $\Delta H_{\text {soln }}=\Delta H_{1}+\Delta H_{2}+\Delta H-\Delta H_{3}$

Answer: C

- View Text Solution

82. If the value of C_{p} for nitrogen gas is $7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then the value of ΔH on heating 28 g of nitrogen gas from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant pressure will be
A. 1200 J
B. 700 J
C. 1400 J
D. 1500 J

Answer: B

83. The equilibrium concentration o the species in the reaction $A+B \Leftrightarrow C+D$ are $3,5,10$ and $15 \mathrm{~mol} L^{-1}$ respectively. At 300 K , the ΔG for the reaction is
A. 13.81
B. -1381.8
C. -138.18
D. 1391.6

Answer: B

- View Text Solution

Mht Cet Corner

1. Identify an extensive property amongst the following:
A. Viscosity
B. Heat capacity
C. Density
D. Surface tension

Answer: B

D Watch Video Solution

2. The criterior for a spontaneous process is
A. $\Delta G>0$
B. $\Delta G<0$
C. $\Delta G=0$
D. $\Delta S_{\text {Total }}<0$

Answer: B

3. Mathematical equation of first law of thermodynamics for isochoric process is
A. $\Delta U=q_{V}$
B. $-\Delta U=q_{V}$
C. $q=-W$
D. $\Delta U=W$

Answer: A

- View Text Solution

4. What is the amount of work done when 0.5 mole off methane, $C H_{4}(g)$, is subjected to combustion at 300 K ? (Given, $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
A. $-2494 J$
B. $-4988 J$
C. +4988 J
D. +2494 J

Answer: D

- View Text Solution

5. The pressure of a gas is 100 k Pa . if it is compressed from $1 \mathrm{~m}^{3}$ to $10 \mathrm{dm}^{3}$, find the work done.
A. 99 kJ
B. $-99 k J$
C. 114.9 kJ
D. $-114.9 k J$

Answer: A

6. Given, $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$), the work done during combustion of 0.090 kg of ethane (molar mass $=30$) at 300 K is
A. -18.7 kJ
B. 18.7 kJ
C. 6.234 kJ
D. $-6.234 k J$

Answer: C

- View Text Solution

7. Which among the following is a feature of adiabatic expansion?
A. $\Delta V<0$
B. $\Delta U<0$
C. $\Delta U>0$
D. $\Delta T=0$

Answer: D

D Watch Video Solution

8. The work done when two moles of an ideal gas is compressed from a volume of $5 \mathrm{~m}^{3}$ to $1 d \mathrm{~m}^{3}$ at 300 K , under a pressure of 100 kPa is
A. 499.9 kJ
B. $-499.9 k J$
C. $-99.5 k J$
D. $42495 k J$

Answer: A

D Watch Video Solution

9. Assuming enthalpy of combustion of hydrogen at 273 K is -286 kJ and enthalpy of fusion of ice at the same temperature to be +6.0 kJ , calculate
enthalpy change during formation of 100 g of ice.
A. $+1622 k J$
B. -1622 kJ
C. $+292 k J$
D. $-292 k J$

Answer: B

- Watch Video Solution

10. Find the correct equation.
A. $E_{2}-E_{1}-H_{2}+H_{1}=n_{2} R T-n_{1} R T$
B. $E_{2}-E_{1}-H_{2}-H_{1}=n_{2} R T+n_{1} R T$
C. $H_{2}-H_{1}-E_{2}+E_{1}=n_{2} R T-n_{1} R T$
D. $H_{2}-H_{1}-E_{2}+E_{1}=n_{2} R T+n_{1} R T$

Answer: C

11. The heat of neutralisation of a strong acid and a strong alkali is 57.0 kJ mol^{-1}. The heat releaed when 0.5 mole of HNO_{3} solution is mixed with 0.20 mole of KOH solution is
A. 57.0 kJ
B. 11.4 kJ
C. 28.5 kJ
D. 34.9 kJ

Answer: B

- View Text Solution

12. According to Hess's law, the heat of reaction depends upon
A. initial condition of reactants
B. initial and final condition of reactants
C. intermediate path of the reaction
D. end conditions of reactats

Answer: B

- View Text Solution

13. The heat of combustion of carbon is $-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon thee formation of 35.2 g off CO_{2} from, carbon and oxygen gas is
A. $+315 k J$
B. $-31.5 k J$
C. $-315 k J$
D. $+31.5 k J$

Answer: C

14. The heat of formation of water is 260 kJ . How much $\mathrm{H}_{2} \mathrm{O}$ is decomposed by 130 kJ of heat?
A. 0.25 mol
B. 1 mol
C. 0.5 mol
D. 2 mol

Answer: C

- View Text Solution

15. In \qquad process, work is done at the expense of internal energy.
A. Isothermal
B. isochoric
C. adiabatic
D. isobaric

Answer: C

D View Text Solution

16. At the same conditions of pressure, volume and temperature, work done is maximum for which gas if all gases have equal masses?
A. NH_{3}
B. N_{2}
C. Cl_{2}
D. $H_{2} S$

Answer: A

- View Text Solution

17. 16 g off oxygen gas expands isothermally and reversibly at 300 K from $10 \mathrm{dm}^{3}$ to $100 \mathrm{dm}^{3}$. The work done is (in J)
A. zero
B. -2875 J
C. +2875 J
D. infinite

Answer: B

- View Text Solution

18. Heat of combusion of methane is -800 kJ . What is the heat of combustion of $4 \times 10^{-4} \mathrm{~kg}$ of methane?
A. -800 kJ
B. $-3.2 \times 10^{4} \mathrm{~kJ}$
C. $-20 k J$
D. -1600 kJ

Answer: C

- Watch Video Solution

19. Kirchhoff's equation is
A. $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
B. $\log \frac{p_{2}}{p_{1}}=\frac{\Delta H_{V}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} \times T_{2}}\right]$
C. $\Delta C_{p}=\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}$
D. $\log \frac{k_{2}}{k_{1}}=\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$

Answer: C

- View Text Solution

20. If ΔE is the heat of reaction for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at constant volume, the ΔH (heat of reaction at constant pressure), at constant temperature is
A. $\Delta H=\Delta E+R T$
B. $\Delta H=\Delta E-R T$
C. $\Delta H=\Delta E-2 R T$
D. $\Delta H=\Delta E+2 R T$

Answer: B

- View Text Solution

21. The bond energy is the energy required to
A. dissociate oneemole of the substance
B. dissociate bond in 1 kg of the substance
C. break onemole of similar bonds
D. break bonds in one mole of substance

Answer: C

- View Text Solution

22. For the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}^{\ominus}=-573.2 k J$
The heat of decomposition of water per mole is
A. 286.6 kJ
B. 573.2 kJ
C. -28.66 kJ
D. zero

Answer: A

- View Text Solution

23. For an ideal gas, the heat of reaction at constant pressure and constant volumee are related as
A. $H+E=p V$
B. $E=H+p \Delta V$
C. $q_{p}=q_{v}+\Delta n R T$
D. none of these

Answer: C

D View Text Solution

24. Hess's law is based on
A. law of conservation of mass
B. law of conservation of energy
C. first law of thermodynamics
D. none of these

D View Text Solution

25. Which of the following is a path function?
A. Internal energy
B. Enthalpy
C. Work
D. Entropy

Answer: C

- View Text Solution

26. In a closed containerr, a liquid is stirred with a paddle to increse the temperature. Which of the following is true?
A. $\Delta E=W \neq 0, q=0$
B. $\Delta E=W=q \neq 0$
C. $\Delta E=0, W=q \neq 0$
D. $W=0, \Delta E=q \neq 0$

Answer: A

- View Text Solution

27. The standard molar heat of formation of ethane, CO_{2} and water (I) are -21.1, -94.1 and -68.3 kcal , respectively. The standard molar heat of combustion of ethane will be
A. $-373 k c a l$
B. 162 kcal
C. -240 kcal
D. 183.5 kcal

Answer: A

D View Text Solution

28. The CO_{2} gas does not follow gaseous laws at all ranges of pressure and temperature because
A. it is triatomic gas
B. its internal energy is quite high
C. there is attraction between its molecules
D. it solidity at low temperature

Answer: C

D Watch Video Solution

29. Heat of neutralisation will be minimum for which of the following combination?
A. $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{NaOH}+\mathrm{HCl}$
D. $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$

Answer: B

- Watch Video Solution

30.2 moles of helium gas expanded isothermally and irreversibly at $27^{\circ} \mathrm{C}$ from volume $1 \mathrm{dm}^{3}$ to $1 \mathrm{~m}^{3}$ at constant pressure of 100 kPa . Calculate the work done.
A. 99900 kJ
B. 99900 J
C. 34464.65 kJ
D. 34464.65 J

Answer: B

D View Text Solution

31. Heat of formation of $S O_{2}$ is -298 kJ . What is the heat of combustion of 4 g of S ?
A. $+37 k J$
B. $-37.25 k J$
C. $+298 k J$
D. 18.6 kJ

Answer: B

- View Text Solution

32. Bond energy of hydrogen gas is -433 kJ . How much is the bond dissociation energy of 0.5 mole of hydrogen gas?
A. $-433 k J$
B. $+433 k J$
C. $-216 k J$
D. +216 kJ

Answer: D

- Watch Video Solution

33. For the reaction, $\mathrm{PCl}_{5}(g) \rightarrow P C l_{3}(g)+C l_{2}(g)$
A. $\Delta H=\Delta E$
B. $\Delta H>\Delta E$
C. $\Delta H<\Delta E$
D. none of these

Answer: B

34. Enthalpy (H) is equal to
A. internal energy (E)
B. product of pressure (p) and volume (V) of gas
C. internal energy (E) +pV
D. work (W) done by a system

Answer: C

- View Text Solution

35. If the heat formation of CO_{2} is -393 k . The amount of heat evolved in the formation of 0.176 kg of CO_{2} is
A. $-1357.9 k J$
B. -1275.9 kJ
C. -1572.0 kJ
D. -1165.5 kJ

Answer: C

- Watch Video Solution

36. If a gas, at constant temperature and pressure expands, then its
A. entropy first increases and then decreases
B. internal energy increases
C. internal energy remains the same
D. internal energy decreases

Answer: C

- View Text Solution

37. Molar heat capacity at constant volume can be given a
A. $C_{V}=\frac{d E}{d T}$
B. $C_{V}=\frac{d H}{d T}$
C. $C_{p}=\frac{d E}{d T}$
D. $C_{p}=\frac{d H}{d T}$

Answer: A

- View Text Solution

38. Mass and energy are conserved is demonstrated by
A. first law of thermodynamics
B. law of conservation of energy
C. law of conservation of mass
D. modified form of Ist law of thermodynamics

Answer: A

39. If ΔG° for the reaction given below is 1.7 kJ , the equilibrium constant of the reaction,
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ at $25^{\circ} C$, is
A. 0.5
B. 2
C. 3.9
D. 24

Answer: A

- View Text Solution

40. It is general principle that the less energy a system constains, it is
A. less stable
B. more stable
C. unstable
D. more unstable

Answer: B

Watch Video Solution

