# ©゙doubtnut 

## CHEMISTRY

# BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS 

## COORDINATION COMPOUNDS

## Example

1. When $0.1 \mathrm{~mol} \mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2$ mole of AgCl are obtained. The conductivity of solution will correspond to
A. 1:3 electrolyte
B. 1:2 electrolyte
C. 1:1 electrolyte
D. 3:1 electrolyte

Answer: B

## - Watch Video Solution

2. Which of the following is correct value of x in $\mathrm{Cr}(\mathrm{CO})_{x}$ ?
A. 4
B. 5
C. 6
D. 8

## Answer: C

3. The magnetic moment of $\left[\mathrm{CoF}_{6}\right]^{3-}$ by using CFT is
A. 0
B. 49
C. 5.9
D. 1.73

Answer: B

## - Watch Video Solution

4. Crystal field stabilization energy for high spin $d^{4}$ octahedral complex is
A. $-1.8 \Delta_{0}$
B. $-1.2 \Delta_{0}$
C. $-1.6 \Delta_{0}$
D. $-0.8 \Delta_{0}$

## Answer: D

## - Watch Video Solution

## Exercise 1

1. The coordination number of $\mathrm{Coin}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ is
A. 2
B. 5
C. 6
D. 1

Answer: C
2. A complex compound in which the oxidation number of a metal is zero , is
A. $K_{4}\left[f e(C N)_{6}\right]$
B. $K_{3}\left[F e(C N)_{6}\right]$
C. $\left[\mathrm{Ni}\left(\mathrm{CO}_{4}\right)\right]$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$

## Answer: C

## D Watch Video Solution

3. The oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is:
A. 0
B. +1
C. +2
D. +3

## Answer: D

## - Watch Video Solution

4. In the complex ion $\left.[\mathrm{CoNH})_{6}\right]^{3+}$, the $\mathrm{NH}_{3}$ molecules are linked to the central metal ion by
A. ionic bonds
B. covalent bonds
C. coordinate bonds
D. hydrogen bonds

## Answer: C

5. The oxidation state of Fe in brown complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is
A. +3
B. 0
C. +2
D. +1

## Answer: D

6. The number of unidentate ligands in the complex ion is called
A. oxidation number
B. primary valency
C. coordination number
D. EAN

Answer: C

## D Watch Video Solution

7. The denticity of the ligand $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ is
A. tridentate
B. pentadentate
C. tetradentate
D. bidentate

## Answer: C

## D Watch Video Solution

8. How many ions are produced from $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ in solution ?
A. 6
B. 4
C. 3
D. 2

## Answer: B

## - Watch Video Solution

9. The name of the ring structure complex compound formed between metal ion and polydentate ligand is
A. simple complex
B. chelate complex
C. polynuclear complex
D. none of these

Answer: B
10. The primary and secondary valencies of chromium in the complex ion, dichlotodioxalatochromoium (III), are respectrively
A. 3,4
B. 4,3
C. 3,6
D. 6,3

## Answer: C

## - Watch Video Solution

11. Potassium ferrocyanide is a
A. complex salt
B. double salt
C. normal salt
D. mixed salt

Answer: A

## - Watch Video Solution

12. EDTA has coordination number
A. 3
B. 4
C. 5
D. 6
13. Ligands are
A. the ions bound to the central atom/ion the coordination entity
B. the molecules bound to the central atom/ion in the coordination entity
C. Lewis acids
D. both (a) and (b)

## Answer: D

## (D) Watch Video Solution

14. Which complex gives three chloride ions per formula unit ?
A. $\mathrm{Cr} C \frac{l_{3}}{6} \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CrC} \frac{l_{2}}{5} \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CrCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
D. All of these

Answer: A

## - Watch Video Solution

15. Which of the following complex species is not expected to exhibit optical isomerism ?
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CL}_{3}\right]$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]^{+}$
16. The ionisation isomer of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{Cl}_{2}$
B. $\left.\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right] \mathrm{Cl}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$

## Answer: B

17. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right]^{2+}$ ion is
A. pentamminenitrito cobalt (IV) ion
B. pentamminenitro cobalt (III) ion
C. pentamminenitrito cobalt (III) ion
D. pentamminenitro cobalt (IV ) ion

## Answer: C

## - Watch Video Solution

18. The possible number of the stereo isomers in $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right]^{\oplus}$ is .
A. 2
B. 3
C. 4
D. 6

Answer: A
19. The complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right] \quad$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are the examples of which type of isomerism?
A. linkage isomerism
B. coordination isomerism
C. ionisation isomerism
D. geometrical isomerism

## Answer: B

## - Watch Video Solution

20. Which can exist both as diastereoisomer and enantiomer ?
A. $\left[P t(e n)_{3}\right]^{4+}$
B. $\left[P t(e n){ }_{2} C I B r\right]^{2+}$
C. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{0}$
D. $\left[\mathrm{PtCl}_{2} B r_{2}\right]^{0}$

## Answer: B

## - Watch Video Solution

21. Due to the presence of ambidenate ligands coordination compounds show isomerism. Palladium complexes of the type $\left[P d\left(C_{6} H_{5}\right)_{2}(S C N)_{2}\right] \&\left[P d\left(C_{6} H_{5}\right)_{2}(N C S)_{2}\right]$ are
A. linkage isomerism
B. coordination isomerism
C. ionisation isomerism
D. geometrical isomerism
22. $E A N$ of Fe in $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ is.
A. 27
B. 24
C. 35
D. 29

## Answer: C

## - Watch Video Solution

23. The correct IUPAC name of $K_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$ is
A. potassium tetrahydroxyzinc (II)
B. dipotassium tetrahydroxyzinc (II)
C. potassium tetrahydroxyzincate (II)
D. potassium tetrahydroxy zincate (III)

## Answer: C

## - Watch Video Solution

24. Match the Column and choose the correct option from the codes given below.
A.
$A \quad B \quad C$
$\begin{array}{lll}2 & 3 & 1\end{array}$
B. $A \quad C$
B.
$\begin{array}{lll}3 & 1 & 2\end{array}$
C $A \quad C$
$1 \quad 23$
D. $\begin{array}{lll}A & B & C \\ 3 & 2 & 1\end{array}$
25. The correct statement on the isomerism associated with the following complex ions.
$I\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NH}_{5}\right]^{2+}$
II. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
III. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}$
A. (I) and (II) show geometrical and optical isomerism
B. (I) and (II) show only optical isomerism
C. (II) and(III) show only geometrical isomerism
D. (II) and (III) show geometrical and optical isomerism

## Answer: C

## - Watch Video Solution

26. The compounds $\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ constitutes a pair of
A. coordination isomers
B. linkage isomers
C. ionisation isomers
D. hydate isomers

## Answer: C

## D Watch Video Solution

27. Which of the following has an optical isomer?
(en=ethylenediamine) ?
A. $\left[\mathrm{Zn}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
B. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(e n)\right]^{3+}$
D. $\left[Z n(e n)_{2}\right]^{2+}$

## Answer: B

## - Watch Video Solution

28. Which one amongst the following, exhibit geometrical isomerism
?
A. $\left[\mathrm{Co}^{I I I}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$
B. $C o^{I I I}[E D T A]^{1-}$
C. $\left[\mathrm{Cr}^{I I I}(S C N)_{6}\right]^{3-}$
D. $\left[P t^{I I}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

## Answer: D

29. The correct name of the compound $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$, according to IUPAC system is
A. Cuprammonium nitrate
B. Tetramminecopper (II) dinitrate
C. Tetramminecoper (II) nitrate
D. Tetramminecoper (II) dinitrite

## Answer: C

## D Watch Video Solution

30. Which of the following ion does not follow EAN rule ?
A. $\left[\mathrm{Fe}(\mathrm{CH})_{6}\right]^{4-}$
B. $\left[\operatorname{Ag}(C N)_{2}\right]^{-}$
C. $\left[\operatorname{Pt}(\mathrm{Cl})_{6}\right]^{2-}$
D. None of these

Answer: B

## D Watch Video Solution

31. A complex of the type $\left[M(A A)_{2} X_{2}\right]$ is known to the optically active. What does this indicate about the structure of the complex?

Give one example of such complex.
A. It has an octahedral geometry
B. It is tetrahedral complex
C. It is trans complex
D. none of the above
32. Optical isomerism is shown by octahedral complexes
A. having all monodentate ligands
B. having all the three bidentate ligands
C. having two trans bidentate ligands
D. having two trans monodentate ligands

## Answer: B

## - Watch Video Solution

33. The IUPAC name of $\left[\mathrm{Ni}\left(P P h_{3}\right)_{2} C l_{2}\right]^{2+}$ is
A. bis- dichlorido (triphenylphosphine ) nikel (II )
B. dichloride bis ( triphenylphoshine ) nikel (IV )
C. dischlorido triphenylphospine nickel (II )
D. triphenylphosphine nickel (II ) dichloride

## Answer: B

## - Watch Video Solution

34. Which one of the following has largest number of isomers?
A. $\left[R u\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. $\left[\operatorname{Ir}\left(P R_{3}\right)_{2} H(C O)\right]^{2+}$
D. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

## Answer: D

35. IUPAC name of $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. Potassium ferricyanide
B. hexayano ferrate (III )
C. potassium hexacyano ferrate (III )
D. Potassium hexacyano ferrate (II )

## Answer: C

## - Watch Video Solution

36. The number of water molecule(s) directly bonded to the metal centre in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is-
A. 1
B. 2
C. 3
D. 4

## Answer: D

## - Watch Video Solution

37. IUPAC name of $\mathrm{Na} 3\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ is
A. sodium hexanitrito cobaltate (II)
B. sodium hexanitro cobaltate (III)
C. sodium hexanitritro cabaltate (III)
D. sodium cobaltinitrite

Answer: B

## D Watch Video Solution

38. Which kind of isomerism is exhibited by octahedral $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] C I ?$.
A. Geometrical and ionisation
B. Geometrical and optical
C. optical ionisation
D. Geometrical only

## Answer: A

## D Watch Video Solution

39. The complex, $\left[P t(p y)\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers?
A. 2
B. 3
C. 4
D. 0

Answer: B

## - Watch Video Solution

40. The effective atomic is shown by
A. 35
B. 27
C. 33
D. 36

## Answer: C

41. Geometrical isomerism is shown by
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(e n)\right]^{3+}$
C. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(e n)_{2}\right]^{3+}$

## Answer: D

## - Watch Video Solution

42. In which case EAN of Cr is maximum ?
A. $\left[C r(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{+}$
D. EAN is equal in all of the above

## Answer: D

## D Watch Video Solution

43. Write IUPAC names of (i) $K_{3}\left[F e(C N)_{5} N O\right]$ (II) $K_{3}\left[A l\left(C_{2} O_{4}\right)_{3}\right]$.
A. Pentacyano nitrosyl potassium ferrate (II)
B. Potassium cyano pentanitrosyl ferrate (II)
C. potassium pentacyanonitrosyl ferrate (III)
D. Potassium pentacyanonitrosonium ferrate (I)

## Answer: D

## - Watch Video Solution

44. The complex $\mathrm{Na} a_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is called :
A. pentacyanonitroso sodium ferrate
B. pentacyanonitroso sodium ferrate (II)
C. Sodium pentacyanonitrosonium ferrate (II )
D. Sodium pentacyanonitroso ferrate

## Answer: C

## D Watch Video Solution

45. Which of the following complexes show linkage isomerism ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Co}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SCN}\right]^{2+}$
D. $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

## Answer: C

46. According to IUPAC nomenclature sodium nitroprusside is named
as
A. sodium nitroferricyanide
B. sodium nitroferrocyanide
C. Sodium nitroferrocyanonitrosyl ferrate (II)
D. Sodium pentacyanonitrosonium ferrate (III)

## Answer: D

## - Watch Video Solution

47. The magnetic moment (spin only) of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is
B. 5.46 BM
C. 2.2BM
D. 1.41 BM

## Answer: C

## (D) Watch Video Solution

48. In Spectrochemical series, chorine is above than water . I .e $\mathrm{Cl}>\mathrm{H}_{2} \mathrm{O}$ this is due to
A. Good $\pi-$ acceptor properties of Cl
B. Strong $\sigma$ - donor and good $\pi-$ acceptor [properties of Cl
C. good $\pi$ - donor properties of Cl
D. none of the above
49. What is the magnetic moment of $K_{3}\left|F e F_{6}\right|$ ?
A. $5.91 B M$
B. $4.89 B M$
C. $3.87 B M$
D. $6.92 B M$

Answer: A

Watch Video Solution
50. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and $\mathrm{Co}^{2+}$ are $d^{4}, d^{5}, d^{6}$ and $d^{7}$ respectively. Which one of the following will exhibit minimum paramagnetic behavious?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

## Answer: D

## - Watch Video Solution

51. In which of the following coordination entites the magnitude of
$\Delta_{0}$ (CFSE in octehedral field) will be maximum.
$(A t . N o . C o=27)$
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Answer: C

Watch Video Solution
52. Which of the following complex species does not involve inner orbital hybridisation?
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: A

D Watch Video Solution
53. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18000 \mathrm{~cm}^{-1}$
B. $16000 \mathrm{~cm}^{-1}$
C. $8000 \mathrm{~cm}^{-1}$
D. $2000 \mathrm{~cm}^{-1}$

## Answer: C

## D Watch Video Solution

54. Magnetic moment of the compledxes is zero in
A. $\left[\mathrm{Ni}(\mathrm{CH})_{4}\right]^{2-},\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
B. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+},\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Answer: A

## - Watch Video Solution

55. For $d^{4}$ ions the fourth electron enters one of the $e_{g}$ orbitals giving rise to the configuration $t_{2 g}^{3} e_{g}^{1}$, when
A. $\Delta_{0}>P$
B. $\Delta_{0}<P$
C. $\Delta_{0}=P$
D. $\Delta_{0}>P$

## Answer: B

56. Which one of the following is wrongly matched ?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}-$ square planar
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]-$ Neitral ligand
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}-S p^{3} d^{2}$
D. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}-$ Follows EAN rule

## Answer: C

## - Watch Video Solution

57. Which complex compound possesses $s p^{3} d^{2}$ hybridization
A. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Fe}(\mathrm{Cl})_{6}\right]^{3-}$

## Answer: D

58. The number of unpaired electrons in $\mathrm{Ni}(\mathrm{CO})_{4}$ is
A. 0
B. 1
C. 3
D. 4

Answer: A

- Watch Video Solution

59. how many uppaired electrons are present in the central metal ion of $\left[\mathrm{CoCl}_{4}\right]^{2-}$ ?
A. 3
B. 4
C. 5
D. 2

## Answer: A

## - Watch Video Solution

60. Crystal field stabilization energy for high spin $d^{4}$ octahedral complex is
A. $-0.6 \Delta_{0}$
B. $-1.8 \Delta_{0}$
C. $-1.6 \Delta_{0}+P$
D. $-1.2 \Delta_{0}$
61. Magnetic moments $2.84 B . M$ is given by :
(At. nos. $\mathrm{ni}=28, \mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27$ ).
A. $N i^{2+}$
B. $T i^{3+}$
C. $C r^{3+}$
D. $\mathrm{Co}^{2+}$

Answer: A

- Watch Video Solution

62. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral. Why?
A.former is in +2 oxidation state while the latter is in zero oxidation state
B. former has two unpaired electrons while the latter has no uunpaired electron
C. former has three unpaired electrons while the latter has four unpaired electrons
D. Both (a) and (b)

## Answer: D

## D Watch Video Solution

63. The correct relationship between $\Delta_{t}$ and $\Delta_{0}$ is expressed as
A. $\Delta_{t}=(9 / 4) \Delta_{0}$
B. $\Delta_{t}=(5 / 7) \Delta_{0}$
C. $\Delta_{t}=(7 / 5) \Delta_{0}$
D. $\Delta_{t}=(4 / 9) \Delta_{0}$

Answer: D

## - Watch Video Solution

64. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is
A. Colourless and diamagnetic
B. Coloured and octahedral
C. Colourless and paramahnetic
D. coloured and paramagnetic
65. Excited state configuration of $\mathrm{Mn}^{2+}$ is
A. $t_{2 g}^{4}$
B. $t_{2 g}^{3} e_{g}^{2}$
C. $t_{2 g}^{4} e_{g}^{2}$
D. $t_{2 g}^{5} e_{g}^{0}$

Answer: B

## D Watch Video Solution

66. Considering $\mathrm{H}_{2} \mathrm{O}$ as a weak field ligand, the number of unpaired electrons in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ will be (At. no. of $\mathrm{Mn}=25$ )
A. three
B. five
C. two
D. four

## Answer: B

## - Watch Video Solution

67. Of the following complex ions, which is diamagnetic in natures?
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{CuCl}_{2}\right]^{2-}$

## Answer: C

68. An octahedral complex is formed when hybrid orbitals of the following type are involved
A. $S P^{3}$
B. $d s p^{2}$
C. $d^{2} S p^{3}$
D. $s p^{2} d^{2}$

## Answer: C

## - Watch Video Solution

69. High spin complex $\left[\mathrm{FeCI}_{6}\right]^{3-}$ has th d-configuration
A. $t_{2 g}^{3} e_{g}^{2}$
B. $t_{2 g}^{5}$
C. $t_{2 g}^{2} e_{g}^{3}$
D. $e_{g}^{5}$

## Answer: A

## - Watch Video Solution

70. The correct statement with respect to the complexes $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left|\mathrm{Ni}(\mathrm{CN})_{4}\right|^{2-}$ is
A. Contains Ni atom in same oxidation state in both the complexes
B. Possess square planar geometry
C. Possess tetrahedral geometry
D. Have square planar and tetrahedral geometry respectively
71. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ differ in :
A. Geometry magnetic moment
B. magnetic moment and colour
C. Geometry and hybridisation
D. none of the above

## Answer: D

Watch Video Solution
72. What is true about $\left[\mathrm{MnCl}_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ ? each of these are outer orbital complexes.
II. Each of these have $S P^{3} d^{2}$ hybridisation .
III. Each of these are paramagnetic.

IV . $\left[\mathrm{MnCl}_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ have four ,five and four unpaired electrons respectively.

Choose the correct statements .
A. I,II and III
B. IIIIII and IV
C. I,III and IV
D. I,II ,III and IV

## Answer: D

## - Watch Video Solution

73. Which of these statements about $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is true?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a low spin complex
B. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a low spin complex
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a high

- spin complex
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a high spin complex


## Answer: A

## - Watch Video Solution

74. One mole of the complex $\mathrm{CoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ on reaction with excess of $\mathrm{AgNO}_{3}$ agives two moles of white precipitate thus, complex is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

## Answer: B

## - Watch Video Solution

75. Paramagnetic octahedral complex, $\left[\mathrm{CoF}_{6}\right]^{3-}$ uses outer orbital (4d) in hybridisation $\left(s p^{3} d^{2}\right)$. it is thus called
A. outer orbital complex
B. high spin complex
C. spin free complex
D. all of the above

## Answer: D

76. Cobalt (III) chloride forms several octahedral complexes with amonia. Which of the following will not give test for chloride ions with silver nitrate at $25^{\circ} \mathrm{C}$ ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left.\left.[\mathrm{Co}) \mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

## Answer: A

## - Watch Video Solution

77. The most stable complex among the following is
A. $\left[P d(C N)_{4}\right]^{4-}$
B. $\left[P d(C N)_{4}\right]^{3-}$
C. $\left[N i(C N)_{4}\right]^{4-}$
D. $\left[N i(C N)_{4}\right]^{3-}$

Answer: b

## (D) Watch Video Solution

78. Which of the following is an organometallic compound ?
A. Lithium methoxide
B. Lithium acetate
C. Lithium dimethylamine
D. Methyl lithium

## Answer: D

## - Watch Video Solution

79. In metal carbonyl (organometallic) complexes, the M -C bond is
A. ionic
B. covalent with character
C. Covalent
D. coordinate covalent

## Answer: D

## - Watch Video Solution

80. For the complex $M L_{2}$ stepwise formation constants for
$M+L \Leftrightarrow M L$
$M+L \Leftrightarrow M L_{2}$
are 4 and 3 . Hence overcell stability constant for $M+2 L \Leftrightarrow M L_{2}$ is
A. 12
B. 7
C. 1.33
D. 0.75

Answer: A

D Watch Video Solution
81. The M-C $\pi$ bond is formed by the
A. donation of a pair of electrons by metal ion
B. sharing of a pair of electrons
C. receiving of a pair of electrons by metal ion
D. none of the above

Answer: A
82. $M+4 L \Leftrightarrow M L_{4}$

For this reaction overall stability constant $\left(\beta_{4}\right)$ is expressed as
A. $\beta_{4}=[M L] /\left[M L_{3}\right][L]$
B. $\beta_{4}=\left[M L_{4}\right] /\left[M L_{3}\right][L]$
C. $\beta_{4}=\left[M L_{4}\right] /[M][L]^{4}$
D. $\beta_{4}=[M L] /[M][L]$

## Answer: C

## - Watch Video Solution

83. which of the following organometallic compound has $\sigma$ and $\pi-$ bonds?
A. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
B. $K\left[P t C l_{3}\left(\eta^{2}-C_{2} H_{4}\right)\right]$
C. Both (a) and (b)
D. None of the above

## Answer: D

## - Watch Video Solution

84. which of the following fields involve the use of coordination compounds ?
I. Electroplating
II.Medicinal chemistry
III. Textile dyeing
IV. Metallurfical processes
V. Analytical reagents

Chosse the correct option
A. I,II ,III and IV
B. IIIIII ,IV, and V
C. I,III and V
D. I , II , III , IV and V

## Answer: D

## - View Text Solution

85. Match the column and choose the correct option from the codes given below .

A $B \quad C$
A. $1 \begin{array}{lll}A & 3\end{array}$

A $B \quad C$
B.
$3 \quad 1 \quad 2$
c $A \quad B \quad C$
$\begin{array}{ccc}3 & 2 & 1\end{array}$
D. $A \quad B \quad C$
$2 \quad 31$

## Answer: B

## View Text Solution

## Exercise 2 Miscellaneous Problems

1. The IUPAC name of the complex ion formed when gold dissolves in aqua-regia is
A. tetrachloridoaurate (III)
B. tetrachloridoaurate (II)
C. tetrachlorideoaurate (I)
D. dichloridoaurate (III)

## Answer: A

2. The oxidation state of Fe in brown complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

## - Watch Video Solution

3. What is the spin only magnetic moment when HCl is added to an aqueous solution of $\mathrm{CoCl}_{2}$. Its colours changes from reddish pink to deep blue . Colour .
A. 3.88 BM
B. 5.9 BM
C. 7 BM
D. 35 BM

Answer: B

## - Watch Video Solution

4. When concentrated HCl is added to an aqueous solution of $\mathrm{CoCl}_{2}$. Its colour changes from reddish pink to deep blue. Which complex ion gives blue colour in this reaction ?
A. $\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{CoCl}_{6}\right]^{3-}$
C. $\left[\mathrm{CoCl}_{6}\right]^{4-}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

## Answer: A

5. Red precipitae is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal $N i(I I)$. Which of the following statement is not true?
A. Red complex has a square planar geometry
B. Complex has symmetrica H -bonding
C. Red complex has a tetrahedral geometry
D. Dimethyglyoxime functions as bidentate ligand

## Answer: C

## D Watch Video Solution

6. The complex used as an anticancer agent is
A. $\mathrm{meso}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\mathrm{Cis}-\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
C. $\mathrm{CisK}_{2}\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]$
D. $\mathrm{Na} \mathrm{CoCl}_{2}$

## Answer: B

## - Watch Video Solution

7. The oxidation number of Co in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ is
A. +3
B. 0
C. -3
D. 6
8. AgCl dissolved in excess of $\mathrm{NH}_{3}, \mathrm{KCN}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solutions the complex produces ions
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{+}$and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$
B. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{3-}$ and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-}$
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{4}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{3-}$ and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-}$
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$

## Answer: A

## ( Watch Video Solution

9. What is the ratio of uncomplexed to complexed to complexed
$\mathrm{Zn}^{2+}$ ion in a solution that is $10 \mathrm{MinNH}_{3}$. If the stability constant of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is $3 \times 10^{9}$ ?
A. $3.3 \times 10^{-9}$
B. $3.3 \times 10^{-11}$
C. $3.3 \times 10^{-14}$
D. $3 \times 10^{-13}$

## Answer: C

## - Watch Video Solution

10. In the complex with formula $\mathrm{MCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ the co-ordination number of the metal $M$ is six. And there is a no molecule of hydration in it. The volume of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution needed to precitate the free chloride ions in 200 ml of 0.01 M solution of the complex is
A. 40 mL
B. 20 mL
C. 60 mL
D. 80 mL

Answer: B

## D Watch Video Solution

11. The number of ions formed when hexammine copper (II) sulphate is dissolved in water is
A. 1
B. 2
C. 4
D. 6

Answer: B
12. Both $\mathrm{Co}^{3+}$ and $\mathrm{Pt}^{4+}$ have a coordination number of six. Which of the following pair of complexes will show approximately the same electrical conductance for their 0.001 M aqueous solution ?
A. $\mathrm{CoCl}_{2} .4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .4 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .3 \mathrm{NH}_{3}$

## Answer: C

## - Watch Video Solution

13. In which of the following octahedral complexes of Co (at. no. 27), will the magnitude of $\Delta_{o}$ be the highest?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

## Answer: A

## - Watch Video Solution

14. Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect:
A. cholrophyll is green pigment in plants and contain calcium
B. haemolobin is the red pigment of blood and contains iron
C. Cyanocobalamine is vitamin $B_{12}$ and contains cobalt
D. Carboxypeptidase -A is an enzyme and contains zinc
15. Which of the following complex ions has electrons that are symmetrically filled in both $t_{2 g}$ and $e_{g}$ orbitals ?
A. $\left[\mathrm{FeF}_{3}\right]^{3-}$
B. $\left[m n(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

## Answer: A

## - Watch Video Solution

16. According to Postulates of wener's theory for coordination compounds, which of the following is true
A. Primary valencies are ionisable
B. Secondary valencies are ionisable
C. Only primary valencies are non- ionisable
D. Primary and secondary are non -ionisable

## Answer: A

## - Watch Video Solution

17. Among the following complexes, which has a magnetic moment of
5.9 BM
$\mathrm{Ni}(\mathrm{CO})_{4}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{mnBr}_{4}\right]^{2-},\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
A. $\mathrm{Ni}(\mathrm{CO})_{4}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{MnBr}_{4}\right]^{2-}$

## Answer: D

## - Watch Video Solution

18. Match the Column ( formulation of cobalt (III) chloride ammonia complexes ) and choose the correct option from the codes given below .
A. $(A, B, C)(2(I), 1(I I), 3(I I I))$
B. $(A, B, C)(3(I I), 2(I I I), 1(I))$
C. $(A, B, C)(1(I I I), 3(I I), 2(I))$
D. $(A, B, C)(2(I I), 3(I), 1(I I))$

## Answer: C

19. In the complex ions, $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3+}$ the coordination number of Fe and Co is 6 because
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and ethane - 1,2 dimaine are bidentate ligands
B. $C_{2} O_{4}^{2-}$ and ethane -1,2,- dimamine are ambidentate ligands
C. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and ethane-1,2-dimamine are monodentate ligands
D. None of the these

## Answer: A

## - Watch Video Solution

20. Which of the following complexes does not have $d^{2} S p^{3}$ hybridisation?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

## Answer: D

## - Watch Video Solution

21. Potassium trioxalatochromate (III) is
A. $K_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
B. $K\left[C r\left(C_{2} O_{4}\right)_{3}\right]$
C. $K_{2}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
D. $K_{4}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) 3\right]$

## Answer: A

22. EAN of mg is ...... in $[M g(E D T A)]^{2-}$
A. 16
B. 20
C. 22
D. 18

## Answer: C

## - Watch Video Solution

23. Which one of the following is an inner orbital complex as well as diamagnetic in nature?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

## Answer: B

## - Watch Video Solution

24. When EDTA solution is added to $M g^{2+}$ ion solution then the incorect statement regarding the reaction will be
A. Four coordination sites of $\mathrm{Mg}^{2+}$ are occupied by EDTA and remaining two statement j regarding sites are occupied by water molecules
B. all six coordination sites of $\mathrm{Mg}^{2+}$ are occupied
C. pH of the solution decreases
D. Colourless $[M g-E D T A]^{2-}$ chelate is formed
25. Which statement in incorrect for metal - ligand complex ?
A. Larger the value if ionisation potential of central metal , stronger is the bond
B. Greater the dipole moment of ligand, more stable is metal
ligand bond
C. Greater the charge on ligand , more stronger is the bond
D. Larger the ligand , less stable is the metal -ligand complex .

## Answer: D

## - View Text Solution

26. Which of the following is an orgabometallic compound ?
A. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Zn}-\mathrm{C}_{2} \mathrm{H}_{5}$
B. $\mathrm{B}\left(\mathrm{OCH}_{3}\right)_{3}$
C. $B\left(O C_{2} H_{5}\right)_{3}$
D. None of the above

Answer: A

## D Watch Video Solution

27. The total number possible isomers for the complex compound $\left[\mathrm{Cu}^{I I}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{Pt}^{I I} \mathrm{CI}_{4}\right]\right.$ are
A. 3
B. 6
C. 5
D. 4

## D Watch Video Solution

28. If excess of $\mathrm{AgNO}_{3}$ solution is added to 100 mL of a 0.024 M solution of dichlorobis (ethylene diamine) cobalt (III) chloride, how many mol of AgCl be precipitated:
A. 0.0012
B. 0.0016
C. 0.0024
D. 0.0048

## Answer: C

29. When $1 \mathrm{~mol} \mathrm{CrCl} 3.6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}, 3 \mathrm{~mol}$ of AgCl are obtained. The formula of the coplex is
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] C L_{3}$

## Answer: D

## D Watch Video Solution

30. The octahedral complex of a metal ion $M^{3+}$ with four monodentate ligands $L_{1}, L_{2}, L_{3}$ and $L_{4}$ absorb wavelengths in the region of red,green, yellow and bule, respectively The increasing order of ligand strengh of the four ligands is
A. $L_{4}<L_{3}, L_{2}<L_{1}$
B. $L_{1}<L_{3}<L_{2}<L_{4}$
C. $L_{3}<L_{2}<L_{4}<L_{1}$
D. $L_{1}<L_{2}<L_{4}<L_{3}$

## Answer: B

## - Watch Video Solution

31. $\left[\mathrm{NiCl}_{2}\left\{P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right]$ exhibits temperature dependent magnetic behaviour. The coordination geometries of $\mathrm{Ni}^{2+}$ in the paramagnetic and diamagnetic states are:
A. Tetrahedral and tetrahedral
B. Square planar and square planar
C. tetrahedral and square planar
D. Square planar and tetrahedral

Answer: C

## D Watch Video Solution

32. The atomic number of cobalt is 27 .The EAN of cobalt in
$N a_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}-(4) \mathrm{Cl}_{2}\right]\right.$ is
A. 24
B. 36
C. 34
D. 35

## Answer: B

D Watch Video Solution
33. Amongst the following cis - trans isomerism in shown by
A. $M a_{4}$
B. $M\left(a a^{\prime}\right)_{2}$ [where aa' are unsymmetrical ligands ]
C. $M a_{3} b$
D. $M(a a) \_(2)$

## Answer: B

## - Watch Video Solution

34. The existence of two different coloured comlexes with the composition $\left|\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right|^{+}$is due to
A. ionisation isomerism
B. coordination isomerism
C. linkage isomerism
D. geometrical isomerism

## Answer: D

## - Watch Video Solution

35. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour ?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left.\left[C r\left(N H_{3}\right)\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

## Answer: A

## - Watch Video Solution

36. The IUPAC name of $\mathrm{Ni}(\mathrm{CO})_{4}$ is
A. tetracbonylnickelate (0)
B. tetracarbonyl nikel (II)
C. tetracarbonyl nickel (0)
D. tetracarbonyl nickelate (II )

## Answer: C

## - Watch Video Solution

37. From four transition metal octahedral complexes, (the choice given below) low spin electronic configuration arises only for
A. $d^{1}$ to $d^{3}$ complexes
B. $d^{4}, \operatorname{to} d^{7}$ complexes
C. $d^{7}$ to $d^{9}$ complexes
D. $d^{1}, d^{2}$ and $d^{8}$ complexes

Answer: B

## - Watch Video Solution

38. Calculate the coordination number of the metal ion, its oxidation state, number of electrons and number of unpaired electrons in dorbitals respectively in complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{SO}_{4}\right] \mathrm{Cl}$
A. 6,3,6,4
B. 6,3,6,0
C. 5,3,6,4
D. 5,3,6,0

Answer: A
39. The correct structure of ethylenediamineteraacetic acid (EDTA) is.
A.
B.
.
C.
D.

## Answer: C

## - Watch Video Solution

40. Which of the following 0.1 M complex compound solutions will have the minimum electrical conductivity ?
A. Hexammine platinum (IV ) chloride
B. Terammine chloroido platinum (IV ) chloride
C. Pentamine chlorido platinum (IV ) chloride
D. Tromminetrchlorido platinum (IV ) chloride

## Answer: D

## D Watch Video Solution

41. Which has maximum paramagnetic character ?
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

## Answer: D

42. Which of the following does not have a metal carbon bond?
A. $\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$
C. $K\left[P t\left(C_{2} H_{4}\right) C l_{3}\right]$
D. $\mathrm{Ni}(\mathrm{CO})_{4}$

## Answer: A

## - Watch Video Solution

43. The coordination number and the oxidation state of the element 'E' in the complex $\left[E(e n)_{2}\left(C_{2} O_{4}\right)\right] N O_{2}$ (where (en) is ethylenediamine) are, respectively
A. 6 and 2
B. 4 and 3
C. 4 and 3
D. 6 and 3

## Answer: D

## - Watch Video Solution

44. The metal ion in complex $\underline{A}$ has EAN identical to the atomic number of krypton. $\underline{A}$ is
( Atomic no. Of $C r=24, F e=26, p d=46$ )
A. $\left[\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{6}\right] C l_{4}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$
C. $N a_{4}\left[F e(C N)_{6}\right]$
D. $K_{3}\left[F e(C N)_{6}\right]$

## Answer: C

45. $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+} \mathrm{Cl}^{-}$( green )and $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+} \mathrm{Cl}^{-}$( violet ) have identical formula $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$, but distinct properties
.Such compounds are called ....A ... here ,A refers to
A. isomers
B. coordination compounds
C. Either (a) or (b)
D. None of these

## Answer: A

## - View Text Solution

46. Classify the following structures into nitro -N A nitrito -O-B thiocyanato C, Isothicoyanato D.
choose the correct option.
A. I-A,II-B,III-C,IV -D
B. I-B,II-C,III-D,IV -A
C. I-D,II-C,III-B,IV -A
D. I -C,II-A,III-D,IV -B

## Answer: B

View Text Solution
47. Which isomerism is repeseted by the following square planar complex ?
A. Optical isomerism
B. Linkage isomerism
C. Geometrical isomerism
D. None of these

Answer: D

## - View Text Solution

48. InK contains $\mathrm{Fe}^{3+}$. Spot of ink can be removed by addition of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ complex formed is
A. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{6}\right]^{3-}$
B. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{2-}$
D. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}$

## Answer: B

49. Hexaammineplatinum (IV) tetracloridoplatinate (II) is
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\left[\mathrm{PtCl}_{4}\right]\right.$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{PtCl}_{4}\right]_{2}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]_{3}\left[\mathrm{PtCl}_{4}\right]_{2}$

## Answer: C

## (D) Watch Video Solution

50. Which of the following will give a pair of enantiomorphs? .
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{PtCl}_{6}\right]\right.$

## Answer: C

## D Watch Video Solution

51. Coordination number of Cr is three. A comlex ion of Cr with $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ end and superoxide ion, $\mathrm{O}_{2}^{-}$has the fomula , $\left[\mathrm{Cr}\left(\mathrm{CO}_{2} \mathrm{O}_{4}\right)_{x}(e n)_{y}\left(\mathrm{O}_{2}\right)_{z}\right]^{-}$The ratio $x: y: z$ will be
A. 1:1:1
B. 1:1:2
C. 1:2:2
D. 2:1:1

## Answer: B

52. The stabilization of coordination compound due to chelation is called the chelate effect. Which of the following is the most stable complex species?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

## Answer: C

## D Watch Video Solution

53. The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light of the visible region, for the complexes, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}-(6)\right]^{3+} \cdot\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+} \cdot\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right.$
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

## Answer: C

## D Watch Video Solution

54. Which of the following is obtained when auric chloride reacts with sodium chloride ?
A. $N a[A u C l]$
B. $N a[A u C l 2]$
C. $\mathrm{Na}\left[\mathrm{AuCl}_{3}\right]$
D. $N a\left[A u C l_{4}\right]$

## Answer: D

## - Watch Video Solution

55. Consider the following complexes:
(I) $K_{2} \mathrm{Ptcl}_{6}$ (II) $\mathrm{PtCl}_{4} \cdot 2 \mathrm{NH}_{3}$
(III) $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$ (IV) $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$

Their electrical conductances in an aqueous solution are:
A. $256,0,97,404$
B. $404,0,97,256$
C. $256,97,0,404$
D. $404,97,256,0$

Answer: A
56. EAN of cobalt is 36 in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{O}_{2}(e n) \mathrm{Cl}\right]$ thus , $\mathrm{O}_{2}$ is
A. Dioxide
B. Superoxide ion
C. Peroxide ion
D. oxide

## Answer: C

## - Watch Video Solution

57. A correct statement is
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is paramagnetic
B. $\left[M n B r_{6}\right]$ is tetrahedral
C. $\left[\mathrm{CoBr}_{2}(e n)_{2}\right]^{-}$exihibit linkage isomerism
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an inner orbital complex

## D Watch Video Solution

58. Which among the following will be named as dibromidobis ( ethyene
A. $\left[C r(e n)_{3}\right] B r_{3}$
B. $\left[\mathrm{Cr}(e n)_{2} \mathrm{Br}_{2}\right] \mathrm{Br}$
C. $\left[C r(e n) B r_{4}\right]^{-}$
D. $\left[C r(e n) B r_{2}\right] B r$

## Answer: B

## - Watch Video Solution

59. Which of the following is a negatively charged bidentable ligand ?
A. Cyano
B. Ethylene diamine
C. Acetato
D. DMG

Answer: D

## D Watch Video Solution

60. Consider the follwing complexes ion $P, Q$ and $R$
$P=\left[\mathrm{FeF}_{6}\right]^{3-}, Q=\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin only magnetic moment values (inBM) is .
A. $R<Q<P$
B. $Q<R<P$
C. $R<P<Q$
D. $Q<P<R$

## Answer: B

## - Watch Video Solution

61. One mole of complex compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{3}$ gives 3 moles of ions on dissolution in water. One mole of same complex reacts with two moles of $\mathrm{AgNO}_{3}$ to yield two moles of $\mathrm{AgCl}(s)$. The complex is:
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] . \mathrm{Cl} . \mathrm{NH}_{3}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right] \cdot 2 \mathrm{NH}_{2}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

## Answer: D

62. Co-ordination number of platinum in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}$ ion is :
A. 2
B. 4
C. 6
D. 8

## Answer: C

## D Watch Video Solution

63. Ammonia gas does not evolve from the complex $\mathrm{FeCl}_{2} \cdot 4 \mathrm{NH}_{3}$ But it gives white precipitate with aqueous solution of $\mathrm{AgNO}_{3}$. Coordination number of central name of the complex will be .
A. Ammonium trichloro triamine iron (III)
B. Tetraamine iron (III ) chloride
C. Dichlorido tetraamine iron (II ) chloride
D. Dichlorido tetraamine iron (III) chloride

## Answer: D

## - View Text Solution

64. How many electrons are present in 3d - orbital of tetrahedral $K_{2}\left[\mathrm{NiCl}_{4}\right]$ complex ?
A. 8 electrons
B. 10 electrons
C. 7 electrons
D. 6 electrons

## Answer: A

65. The two isomers X and Y with the formula $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{ClBr}$ were taken for experiment on depression in freezing point. It was found that one mole of $X$ gave depression corresponding to 2 moles of particles and one mole of $Y$ gave depression to 3 moles of particles.

The structural formulae of $X$ and $Y$ raspectively are
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{ClBr}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right]$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{BrCl},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{ClBr}\right] \mathrm{Br} . \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}\right] \mathrm{BrCl},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{ClBr}\right] \mathrm{Br} . \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{ClH}_{2} \mathrm{O},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2}$

## Answer: D

## - Watch Video Solution

66. Geometrical shapes of the complexes fromed by the reaction of $\mathrm{Ni}^{2+}$ with $\mathrm{CO}, \mathrm{CN}^{-}$and $\mathrm{H}_{2} \mathrm{O}$, respecitively, are :
A. Octahedral , tetrahedral and square planar
B. Tetrahedral , square planar and octahedral
C. square planar , tetrahedral and octahedral
D. Octahedral , square planar and octahedral

Answer: B

## (D) Watch Video Solution

67. Which of the following shell, form only outer orbital octahedral complex ?
A. $d^{4}$
B. $d^{8}$
C. $d^{6}$
D. None of these

Answer: B

## - Watch Video Solution

68. In $\mathrm{Fe}(\mathrm{CO})_{5}$. the $\mathrm{Fe}-\mathrm{C}$ bond possesses
A. $\pi$ - character only
B. both $\sigma$ and $\pi$ characters
C. ionic character
D. $\sigma$-character only

## Answer: B

69. What is the structural formula of lithium tetrahydrido aluminate
A. $\left[A l\left[L i H_{4}\right]\right.$
B. $A l_{2}\left[L i H_{4}\right]_{3}$
C. $L i\left[A I H_{4}\right]$
D. $L i\left[A i H_{4}\right]_{2}$

## Answer: C

## - Watch Video Solution

70. Which of the following can participate in linkage isomerism ?
A. $\mathrm{NO}_{2}^{-}$
B. $\mathrm{H}_{2} \mathrm{NCH} \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{~N} \mathrm{H}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. : $\mathrm{NH}_{3}$

## D Watch Video Solution

71. The non -existant metal carbonyl among the following is `
A. $\mathrm{Cr}(\mathrm{CO})_{6}$
B. $\mathrm{Mn}(\mathrm{CO})_{5}$
C. $\mathrm{Ni}(\mathrm{CO})_{4}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: B

## (D) Watch Video Solution

72. Consider the following statements,
I. In coordination compounds, metals show two types of linkage (
valencies ).
II. The primary valencies are normallt ionisable and are satisfied by negative ions.
the correct statement(s) is / are
A. only I
B. only II
C. both I and II
D. neither I nor II

## Answer: C

## - Watch Video Solution

73. The name of is
A. `Tetraamine aquacobalt chlroride
B. Tetraaamminediaquacobalt (III) chloride
C. Tetraaminediaquacobalt (IV ) chloride
D. None of the above

## Answer: B

## - View Text Solution

74. Atomic number of $\mathrm{Mn}, \mathrm{FeCO}$ and Ni are $25,26,27$ and 28 respectively . Which of the following outer orbital octahedral complexes have same number of unpaired electrons ?
I. $\left[\mathrm{MnCl}_{6}\right]^{3-}$
II. $\left[F e F_{6}\right]^{3-}$
III. $\left[\mathrm{CoF}_{6}\right]^{3-}$ IV. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ Itbrlt choose the correct code .
A. $I$ and $I I$
B. $I I$ and $I V$
C. I, III and $I V$
D. $I$ and $I I I$

## Answer: D

D Watch Video Solution
75. Which one of the following has a square planar geometry ?
A. $\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{FeCl}_{4}\right]^{2-}$
C. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
D. $\left[\mathrm{PtCl}_{4}\right]^{2-}$

## Answer: D

## - Watch Video Solution

76. Which one of the cyano complexes would exhibit the lowest value of paramagnetic behaviour?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[M n(C N)_{6}\right]^{2-}$
D. $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$

## Answer: A

## D Watch Video Solution

77. The pair of compounds having metals in their highest oxidation state is
A. $\mathrm{MnO}_{2}, \mathrm{FeCl}_{3}$
B. $\left[\mathrm{MnO}_{4}\right]^{-}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{3}\right]$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{-}$

## Answer: B

## - Watch Video Solution

## Mht Cet Corner

1. Which of the following is a neutral complex ?
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
D. $K_{4}\left[F e(C N)_{6}\right]$
2. The correct IUPAC name $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ is
A. tetrammine trinitro -N - cobalt (III)
B. Triammine trinitro - N -cobalt (II)
C. Triammine cobalt (III) nitrite
D. Triammine trinitro - N - cobaltate (III)

## Answer: A

## - Watch Video Solution

3. 

$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \operatorname{Cr}(\mathrm{SCN})_{6}$
and
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{SCN})_{4}\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{SCN})_{2}\right]$ are the examples of what type of isomerism?
A. Lonisation isomerism
B. Linkage isomerism
C. Coordination isomerism
D. Solvate isomerism

## Answer: C

## - Watch Video Solution

4. Select the diamagnetic complex ion amongst the following complexes (At no. : Fe= 26,Co=27 )
A. $K_{3}\left[F e(C N)_{6}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\left.K_{3}\right)\left[F e F_{6}\right]$
D. $K_{3}\left[\mathrm{CoF}_{6}\right]$
5. A magnetic moment of 1.73 B.M. will be shown by one among the following:
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[N i(C N)_{4}\right]^{2-}$
C. $\mathrm{TiCl}_{4}$
D. $\left[\mathrm{CoCl}_{6}\right]^{4-}$

## Answer: A

## - Watch Video Solution

6. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ shows the following hybridisation .
A. $d s p^{2}$
B. $s p^{3} d$
C. $d s p^{3}$
D. $s p^{3}$

Answer: A

- Watch Video Solution

7. Which of the following is diamagnetic in nature ?
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\mathrm{NiCl}_{4}^{2-}$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[\mathrm{MnCl}_{4}\right]^{2-}$

## Answer: C

