

CHEMISTRY

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

NATURE OF CHEMICAL BOND

Exercise 1

1. What is the necessary condition for an ionic

compound to be soluble in water?

A.
$$\Delta H_{
m hyd} > \Delta H_{
m lattice}$$

B.
$$\Delta H_{
m lattice} > \Delta H_{
m hyd}$$

C.
$$\Delta H_{
m hyd} > \Delta H_{
m lattice}$$

D. None of these

Answer: B

Watch Video Solution

2. Arrange the following ionic compunds in order of increasing ionic character:

$$\mathsf{A.}\ A < B < C < D$$

$$\mathsf{B}.\,D < C < B < A$$

$$\mathsf{C}.\,B < A < C < D$$

$$\mathsf{D}.\, C < A < B < D$$

Answer: A

Watch Video Solution

3. Which of the following is the weakest bond?

- A. Hydrogen bond
- B. Covalent bond
- C. lonic acid
- D. Metallic bond

Answer: C

Watch Video Solution

4. The high following points and insolution in orgaints solvents of sulphanilic acid are due to itsstructure

- A. simple ionic structure
- B. cubic structure
- C. bipolar ionic structure
- D. hexagonal structure

Answer: A

Watch Video Solution

5. The molecule which contains ionic as well as covalent bond, is

A. NH_4Cl

B. H_2O

 $\mathsf{C}.\ CaCl_2$

D. CCl_2

Answer: C

Watch Video Solution

6. Which is the most covalent?

A. C-F

B.
$$C-O$$

$$C. C - S$$

D.
$$C-Br$$

Answer: B

Watch Video Solution

7. The molecule having zero dipole moment is

A. ClF_3

B. CH_4

 $\mathsf{C}.\,PH_3$

D. CH_2Cl_2

Answer: B

Watch Video Solution

8. The correct order of decreasing polarity is

A.
$$HF > SO_2 > H_2O > NH_3$$

B.
$$HF>H_2O>SO_2>NH_3$$

$$\mathsf{C}.\,HF>NH_3>SO_2>H_2O$$

D.
$$H_2O>NH_3>SO_2>HF$$

Answer: B

Watch Video Solution

9. What is the bond angle of H-O-H in ice (answer approx. value) ?

A. 120° '28

B. 109°

C. 90°

D. 60°

Answer: B

Watch Video Solution

10. The bond angles of $NH_3, NH_4^{\,\oplus}$ and $NH_2^{\,\oplus}$ are in the order .

A.
$$NH_2^- < NH_3 > NH_4^+$$

B.
$$NH_4^{\,+} > NH_3 > NH_2^{\,-}$$

C.
$$NH_3>NH_2^{\,-}>NH_4^{\,+}$$

D.
$$NH_3>NH_4^{\,+}>NH_2^{\,-}$$

Answer: B

Watch Video Solution

11. Arrange the following in the correct order of bond length $N_2,\,O_2\,$ and $\,Cl_2\,$

A.
$$N_2>Cl_2>O_2$$

B.
$$N_2 < C l_2 < O_2$$

C.
$$N_2 < O_2 < C l_2$$

D.
$$Cl_2 < N_2 < O_2$$

Answer: C

Watch Video Solution

12. The compound having maximum dipole moment is

A. NH_3

 $\operatorname{B.}NF_3$

C. NCl_3

D. NI_3

Answer: A

Watch Video Solution

13. Which of the following is correct order of bond angle?

A.
$$H_2O>OF_2>SF_2>H_2S$$

$$\mathsf{B.}\,H_2O>SF_2>OF_2>H_2S$$

$$\mathsf{C.}\,H_2O>OF_2>H_2S>F_2S$$

$$\operatorname{D.} H_2O > H_2S > OF_2SF_2$$

Answer: A

Watch Video Solution

14. Which of the following is correct regarding bond energies of NO, NO^+ and NO^- ?

A.
$$NO^- > NO > NO^+$$

$$\mathsf{B}.\,NO^+>NO^->NO$$

$$\mathsf{C}.\,NO>NO^->NO^+$$

D.
$$NO^+ > NO > NO^-$$

Answer: D

Watch Video Solution

15. Which of following requires maximum energy to udego decomposition?

A. O_2

B. C_2

 $\mathsf{C}.\,O_2^{\,+}$

D. N_2

Answer: D

Watch Video Solution

16. What is the structure ox XeF_6 ?

- A. Tetrahedral
- B. Distorted octahedral
- C. Octahedral
- D. None of these

Answer: B

Watch Video Solution

17. Among the three molecules $XeF_4,\,SF_4,\,SiF_4,\,$ which has/have tetrahedral structure?

- A. All the three
- B. SiF_4 and SF_4
- C. Only SiF_4
- D. Only SF_4

Answer: C

Watch Video Solution

18. Among the following, chose the correct pair, which is isostructural and isoelectronic?

A.
$$NO_3^-, CO_3^{2-}$$

B.
$$SO_3, NO_3^-$$

C.
$$ClO_3^-, CO_3^{2-}$$

D.
$$CO_3^{2-}$$
, ClO_3^-

Answer: A

Watch Video Solution

19. Isostructrual species are those which have the same shape and hybridisation. Among the given identify the isostructural pairs.

A. NF_3 and BF_3

B. BF_4^- and NH_4^+

 $C. Bcl_3 \text{ and } BrCl_3$

D. NH_3 and NO_3^-

Answer: B

Watch Video Solution

20. Which of the following is paramagnetic?

A. NO^-

B. O_2^{2-}

C. CN^-

D. *CO*

Answer: A

21. Which of the following statements is correct regarding $BeCl_2$?

A. It violates octet rule and has sp^2 hybridisation

B. It has sp hybridisation and follows octet rule

C. It violatesoctet rule and has linear structure

D. All of the above are true

Answer: C

Watch Video Solution

22. In NO_3^- ion, the number of bond pairs and

lone pairs of electrons on nitrogen atom are:

A. 2,2

B. 3,1

C. 1,3

D. 4,0

Answer: D

Watch Video Solution

23. What is the type of hybridisation of carbon atoms marked with star?

$$H_2C = C - C - O - H \ ert egin{pmatrix} & ert \ & ert \ H & O \end{matrix}$$

A. sp^2, sp

 $\mathtt{B.}\,sp^2,\,sp^2$

 $\mathsf{C}.\,sp,\,sp^2$

D. None of these

Answer: B

Watch Video Solution

24. Which of the following show correct structure of lCl_2 ?

A. 🗾

В. 🗾

C. 📝

D. None of these

Answer: B

Watch Video Solution

25. Among the following, molecules, which one have trigonal planar structure?

 XeO_3 , SO_3 , BF_3 , NH_3

A. XeO_3 and BF_3

 $B.BF_2$ and SO_3

 $C. NH_3 \text{ and } SO_3$

D. All of the above

Answer: B

Watch Video Solution

26. Which of the following set posses sp^3 hybridsatio ?

A.
$$lO_4^-$$
 , lCl_4^- , $lF_4^{\ +}$

B. XeO_3 , XeO_4 , XeF_4

C. SO_3^{2-}, SO_4^{2-}

D. PCl_4^+ , BF_4^- , lCl_4^-

Answer: C

Watch Video Solution

27. Hybridisation of the nitrogen atom and electronic geometry around nitrogen atom in pyridine is

A. sp^3 , pyramidal

B. sp^2 trigonal planar

 $C. sp^2$, linear

D. sp^3 tetrahedral

Answer: B

iew Text Solution

28. Match the type of bond (given in Column I) with method of formation (given in Column II) and choose the correct option from the codes

given below.

- $A \quad B \quad C \quad D$
- A. 6 2 3 1
- $A \quad B \quad C \quad D$
- $A \quad B \quad C \quad D$
- c. 1 2 3 4
- D. $egin{array}{ccccc} A & B & C & D \ 2 & 4 & 5 & 6 \end{array}$

Answer: A

View Text Solution

29. Which se tof molecules are paramagnetic?

 $A. B_2 C_2 \text{ and } O_2$

 $B. C_2, O_2 \text{ and } B_2$

 $C. O_2, N_2 \text{ and } B_2$

 $D. B_2, O_2 \text{ and } NO$

Answer: D

30. Which of the following molecule will be stabilised by losing one elctron from its HOMO?

- A. C_2
- B. N_2
- $\mathsf{C}.\,CN$
- $D.O_2$

Answer: C

31. Hydrogen bonding is maximum in

- A. ethyl chloride
- B. triethly amine
- C. ethanol
- D. diethyl ether

Answer: C

32. Which one among the following does not have the hydrogen bond?

- A. Phenol
- B. Water
- C. Liquid NH_3
- D. Liquid HCl

Answer: D

33. Which of the following explanations accounts for o-nitro-phenol to be more volatile than p-nitrophenol?

- A. Resonance
- B. Steric hinderance
- C. Hydrogen bond
- D. Hyperconjugation

Answer: C

34. In which of the following molecules the van der Waals forces are likely to be the most important in determining the mpt. and b.pt.?

- A. CO
- B. H_2S
- C. Br_2
- D. HCl

Answer: C

35. The pair of molecules forming strongest hydrogen bonds are

A.
$$SiH_4$$
 and SiF_6

B.
$$CH_3 - C - CH_3 \,\, ext{ and } \,\, CHCl_3$$

$$\mathsf{C.}\,H - {C \atop | I \atop O} - OH \ ext{and} \ CH_3 - {C \atop | I \atop O} - OH$$

D.
$$H_2O$$
 and H_2

Answer: C

Exercise 2 Miscellaneous Problems

1. The percentage ionic characterin Cs-Cl bond present in CsCl molecule will, be, if the electronegativities for Cs and Cl are $0.8 \ \mathrm{and} \ 3.0$, respectively

A. 62.9~%

 $\mathsf{B.}\,60~\%$

 $\mathsf{C.}\ 75\ \%$

D. 52.14~%

Answer: D

Watch Video Solution

- **2.** If molecule MX_3 has zero dipole moment, the sigma bonding orbitals used by M (atomic number $\,<\,21$) are
 - A. sp hybridised
 - B. sp^2 hybridised
 - C. sp^3 hybridised
 - D. None of these

Watch Video Solution

3. Which of the following pairs has zero dipole moment?

- A. CH_2Cl_2 and NF_3
- B. SiF_4 and BF_3
- $C. PCl_3$ and ClF
- $D.BF_3$ and NF_3

Watch Video Solution

4. Given : Dipole moment of HCl=1.03 D

Bond length of HI=0.38D

Bond length = 161pm

The ratio of partial positive charge on H-aotm

in HCl to that in HI will be

A. 2:1

B. 3.42:1

C. 2.39:1

D.4:1

Answer: B

Watch Video Solution

5. The correct order of increasing covalent character of the following is

A. $SiCl_4 < AlCl_3 < CaCl_2 < KCl$

 $\mathsf{B.}\,KCl < CaCl_2 < AlCl_3 < SiCl_4$

C. $AlCl_3 < CaCl_2 < KCl < SiCl_4$

D. None of the above

Answer: B

Watch Video Solution

6. Bond energy H-H, F-F and H-F bonds are 104, 38 and 135 Kcal mol^{-1} , respectively. The resonance energy in the H-F molecule will be

- A. 142 Kcal mol^{-1}
- B. 66 kcal mol^{-1}
- C. $72.14 \text{ kcal mol}^{-1}$
- D. $79.26~\mathrm{kcal}~\mathrm{mol}^{-1}$

Answer: C

Watch Video Solution

7. Which of the following compounds has the samallest bond angle in its molecule?

A. H_2O

B. H_2S

 $\mathsf{C}.\,NH_3$

D. SO_2

Answer: B

Watch Video Solution

8. The bond order of H_2^- ion is $\frac{1}{2}$. If it has 2 bonding electrons, how many antibonding electrons it will have?

- A. 3
- B. 1
- C. 2
- D. 4

Watch Video Solution

9. Arrange the following molecules in the increasing order of bond angle.

 $H_2OH_2SH_2SeH_2Te$ II IIIIV

A. I < II < III < IV

 $\mathsf{B}.\,IV < III < II < I$

 $\mathsf{C}.\,I < III < II < IV$

D. IV < II < III < I

Answer: B

Watch Video Solution

10. The compound MX_4 is tetrahedral. The number of $\angle XMX$ angles formed in the compound is

B. four
C. five
D. six
Answer: D
Watch Video Solution
11. Match the following and chose the correct
option.

A. three

A.
$$\frac{A}{4}$$
 $\frac{B}{1}$ $\frac{C}{3}$ $\frac{D}{2}$

B. $\frac{A}{1}$ $\frac{B}{3}$ $\frac{C}{2}$ $\frac{D}{4}$

C. $\frac{A}{3}$ $\frac{B}{2}$ $\frac{C}{4}$ $\frac{D}{1}$

D. $\frac{A}{3}$ $\frac{B}{1}$ $\frac{C}{2}$ $\frac{D}{4}$

Answer: A

12. In XeF_2, XeF_4 and $XeF_6(g)$ the number of lone pairs on Xe respectively are :

- A. 2,3,1
- B. 1,2,3
- C. 4,1,2
- D. 3,2,1

Answer: D

Watch Video Solution

13. Molecular shapes of

 SF_4 . $And CF_4$ and XeF_4 are:

- A. different with 1,0 and 2 lone pairs of elcterons on the central atoms, respectively
- B. different with 0,1 and 2 lone pairs of electrons on the central atoms, respectively
- C. the same with 1,1 and 1 lone pairs of electrons on the central atoms, respectively

D. the same with 2,0 and 1 lone pairs of electrons on the central atoms, respectively

Answer: A

Watch Video Solution

14. The d-orbitals involved in sp^3d hybridisation is:

A. d_{xy}

B. d_{zx}

C. d_{z^2}

D. $d_{x^2-y^2}$

Answer: B

Watch Video Solution

15. In accordance to molecular theory,

A. O_2^+ is diamagnetic and bond order is

more than O_2

B. O_2^+ is diamagnetic and bond order is less than O_2

C. O_2^+ is diamagnetic and bond order is $\operatorname{\mathsf{more}} \operatorname{\mathsf{than}} O_2$

D. O_2^+ is diamagnetic and bond order is less than O_2

Answer: C

16. The bond dissociation energy of B-F in BF_3 is $646kJmol^{-1}$ whereas that of C-F in CF_4 is $515kJmol^{-1}$. The correct reason for higher B-F bond dissociation energy as compared to that of C-F in CF_4 is

A. smaller size B-atom as compared to that of C-atom

B. stronger $\,\sigma\,$ bond between B adn F in BF_3 as compared to that between C and F is CF_4

C. significant $p\pi-p\pi$ interaction between

B and F in BF_3 wheres there is no possibility of such interaction between C and F in CF_4

D. lower degree of $p\pi-p\pi$ interaction between B and F in BF_3 than that of between C and F in CF_4

Answer: C

Watch Video Solution

17. Which of the following statements (s) is/are true?

A. HF is less polar than HBr

B. Absolutely pur water does not contain any ions

C. Chemical bond formation takes place

when foreces of attraction overcome the

forces of repulsion

take place

D. In covalency, transference of electrons

Answer: C

Watch Video Solution

18. In which of the following ionixation processes, the bond order has increased and the magnetic behaviour has changed?

A.
$$C_2
ightarrow C_2^{\,+}$$

B.
$$NO o NO^+$$

C.
$$O_2 o O_2^+$$

D.
$$N_{2
ightarrow N_{2}^{+}}$$

Watch Video Solution

19. Consider the following compounds,

I, 1,2-hydroxybenzene

II 1,3-dihydroxybenzene

III 1,4-dihydroxybenzene

IV. Hydroxybenzene

A.
$$I < II < III < IV$$

$$\mathsf{B}.\,IV < I < II < III$$

$$\mathsf{C}.\,IV < II < I < III$$

$$\mathsf{D}.\,I < II < IV < III$$

View Text Solution

20. Ortho -nitrophenol is less soluble in water than p-and m — nitrophenols because

A. o-nitrophenol is more steam volatile than those of m-and p-isomers

- B. o-nitrophenol shows intermolecular H-bonding
- C. o-nitrophenol shows intermolecular H-bonding
- D. melting point of o-nitrophenol is lower than those of m-and p-isomers

Watch Video Solution